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f 4 Introduction
| Propulsion and power generation in the U.S.

U Emerging “trans-critical” conditions in advanced devices
Requirement for a new capability for future engine design

O Collaborative theoretical & experimental research
Theory: Mesoscale technigues in trans-critical injections

Imaging: Developing microscopic high-speed imaging for validation

0 Results & outcome
(a) Predictive & affordable model for trans-critical conditions
(b) Paradigm change in gas turbines, liquid rockets & diesel engines

O Perspective & outlook
(a) Integration of advances into industry CFD
(b) Control over injections independent of “trans-critical” conditions
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Introduction
p " The role of combustion in modern society

f’

=

» Combustion in the United States (propulsion & power generation)
= >90% reliance for all transportation
= ~100% reliance for heavy duty trucks and airplanes
= ~80% for primary energy generation
= ~60% for electrical production

» All-electric and plug-in hybrid transportation
= Less than 1% of current automotive sales
despite promise in reducing vehicle emissions*

(*Source: Argonne National Laboratory 2015)

= Further gains in clean & efficient combustion will have large
economic and environmental impacts
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2z
@F Introduction
~7"  Significance of mixture preparation to advanced combustion

Photo courtesy C. F. Edwards, Stanford University

» Close proximity between liquid injection & flame

» Fuel injection significantly determines combustion
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C//;\?F Introduction
7 Significance of mixture preparation to advanced combustion

, » Goals of advanced combustion strategies
= Reliable ignition & combustion
= Optimal efficiency for minimal fuel consumption
= Minimal harmful emissions (e.g., NOX, soot)
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E/Y\EF Introduction
~7  Significance of mixture preparation to advanced combustion

» Goals of advanced combustion strategies
= Reliable ignition & combustion
= Optimal efficiency for minimal fuel consumption
* Minimal harmful emissions (e.g., NOx, soot)
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~7  Significance of mixture preparation to advanced combustion

» Goals of advanced combustion strategies
= Reliable ignition & combustion
= Optimal efficiency for minimal fuel consumption
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Cz\\;?F Introduction
~7  Significance of mixture preparation to advanced combustion

» Goals of advanced combustion strategies
= Reliable ignition & combustion
= Optimal efficiency for minimal fuel consumption
* Minimal harmful emissions (e.g., NOx, soot)

Equivalence Ratio

* |njection determines temporal
progression of mixing i
= Control of mixture preparation key
to advanced combustion
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Emerging “trans-critical” conditions in
advanced devices

Requirement for new a capabillity for
future engine design

9

(A) sandia Nationa Laboratories



2

A\ Emerging “trans-critical” conditions
CRE. in modern combustion

"Classic engine spray injection:
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Emerging “trans-critical” conditions
In modern combustion

 Classic engine spray injection
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A\ Emerging “trans-critical” conditions
CRE; in modern combustion
| 1 |
g S Kn < 0.1
“Trans-Critical” injection in future engines Il?a:tese;n?erlgézﬁ g el
- Discovery that spray injection not valid 4+ = sicd
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Emerging “trans-critical” conditions

In modern combustion

““Trans-Critical” injection in future engines
- Discovery that spray injection not valid

Chamber

Developed
“Trans-Critical” Jet Simulation
No (!) Breakup or

Drop Formations

~

QImage courtesy of J.C. Oefelein
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2\ Emerging “trans-critical” conditions
CRL; in modern combustion

| 1 |
. . . - - . Diesel E'l‘gi“e Diffusi};r? ;o?ﬁ:nated
| “Trans-Critical” injection in future engines Late Injection Mixing Regime
- Discovery that spray injection not valid A+ =7
- Spray models become questionable chamber
In efficient virtual engine design Pressure | |
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2\ Emerging “trans-critical” conditions
y CRE in modern combustion
// | 1 | |
Diesel El"l ine 204
~ “Trans-Critical” injection in future engines Al Late Imecgtlon T
- Discovery that spray injection not valid ]
- Spray models become questionable chamber
In efficient virtual engine design Pressure | |
- Future engine design trends toward ——
trans-critical conditions “Irans- Crltlcal” Injection
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Emerging “trans-critical” conditions
In modern combustion

ﬁ’l’rans-Critical ”Injection in future engines
- Discovery that spray injection not valid
- Spray models become questionable chamber
In efficient virtual engine design
- Future engine design trends toward
trans-critical conditions

Pressure |

Research challenge:

(a) Understanding & predicting
trans-critical conditions

(b) Development of high-speed &
high-fidelity imaging for validation

(c) Development of suitable injection
simulations
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Collaborative theoretical &
experimental research

Theory: Understanding trans-critical fuel injections using
meso-scale science techniques

Imaging: Developing microscopic high-speed imaging for
validation
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, C’/\f@F Combustion Research Facility

A DOE Collaborative Research Facility dedicated to
energy science and technology for the twenty-first century

e Leadership in combustion research since 1980
» 8200-m? office and laboratory facility

e 36 highly specialized labs
— Laser-based diagnostics
— Combustible and toxic gas handling
— Computer-controlled safety system

e Dedicated computational facility
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A\ Fundamental Combustion Science

CRE Research at the CRF

CHRYSLER

Predictive Combustion Models Cementary

Optlcal DiagnOStiCS Chemical Kinetics

I

)

LJL‘. i

— WLUAM

Direct Numerical
Simulation (DNS)

Mechanism Reduction &
Uncertainty Quantification
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A Fundamental Combustion Science
CRE Research at the CRF

CHRYSLER
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2N Fundamental Combustion Science
CRE

Research at the CRF
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2N Fundamental Combustion Science
CRE, Research at the CRF
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A\ Meso-scale capillary theory for
CRE molecular gas-liquid interfaces

Basic Energy Sciences

6 I I I I 1 I I
| _ _ _ Clobal Thermal Bquilibrium__ __
T=410.93 K
Classic Vapor Liquid or ]
Spray Atomization Phase Phase = CH4
S 4r ;
)
2
g 3r | p=150 bar
s 0=4.59 mN/m
R I % o |
Two-Phase zo CioHao
Interface 1r "
(T=const)

0 1 2 3 4 5 6 7 8
Distance [nm]
Meso-scale capillary theory:
— Consistent with high-fidelity Monte Carlo & Molecular Dynamics simulations!
— Efficiency instrumental in developed engineering tool
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A\ Real-fluid multi-component
( ‘ .
CRE thermodynamics & transport

Eric Lemmon, NIST, Boulder

- U Helmholtz energy (A) equation of state

A
RT
All thermodynamic properties derivable from A

= a%(8,7) +a" (0, 7)

50

N-Dodecane

40

Q Applies to (arbitrary) liquid & gas mixtures £
at all relevant pressures and temperatures =
(incl. near-critical and supercritical) E 2

Critical Point
(658.1,18.17

» Contrast to previous frameworks:
Exhibits unique & desirable behavior over 0 emperature (K]
entire two-phase regime of fluid densities
(including meta-stable, unstable regions)
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A\ From molecular dynamics to
CRE classic two-phase theory & spray atomization
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Basic Energy Sciences

QlIsothermal interface regardless of temperature
difference

Qinterface: State of global thermal equilibrium
— Helmholtz free energy is minimal !

— Mean-field equation only valid for minimal free energy!
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2\ From molecular dynamics to

CRE classic two-phase theory & spray atomization
Basic Energy Sciences

| -

) " Qlsothermal interface regardless of temperature
y= °F 150 difference
= U 1140 o
5 of |5, 7 lInterface: State of global thermal equilibrium
5 4 <~ — Helmholtz free energy is minimal !
H T=410.93 K 1120 £ . : . .
g -6 % — Mean-field equation only valid for minimal free energy
(¥ 1110 &
Gl 2
2 10} P 1+
E 1 dl j _ _
S, (EXawiEg-s0-5 ] g _
e 4, Justifies assumptions in two-phase theory:
o b2z 3 4 5 6 7T 8 > Calculations of true critical points of mixtures

Distance [nm]

» Evaporation & heating laws
> Surface tension forces

» Atomization & evaporation
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CRE

Fundamental changes in
Interfacial molecular dynamics

iIsothermal systems
dF < —=8d1"— pdV

Chemical Potential [10% J/mol]

Basic Energy Sciences

U Helmholtz energy only minimized in

4
|
0
-2}
4}

T=410.93 K 1120
J
10} - inDQj :100
14— o g

0 1 2 3 4 5 6 7 8

Distance [nm)]
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2\ Fundamental changes in
CRE Interfacial molecular dynamics
Basic Energy Sciences

U Helmholtz energy only minimized in 7+ T 80

iIsothermal systems = °F 150
dF < —SdT — pdV = 0 {140
=2 1130 &
O With interfacial temperature profile: = 4 o
Helmholtz energy no longer be minimized! % | [T=41093K 1120 2
1. Fundamental egn. becomes invalid =Nl 1110 &
2. Breakdown of classic two-phase relations\g\

10\ D 1100

3. Spray & drop dynamics no longer apply

Chemi

80

1 2 3 4 5 6 7 8
Distance [nm)]

28

COMBUSTION RESEARCH FACILITY @ Sandia National Laboratories



Ey—

2N Fundamental changes in
CRE interfacial molecular dynamics
Basic Energy Sciences
O Helmholtz energy only minimized in e~ |
isothermal systems = 150
dF < —SdT — pdV = {140
= 130 &
O With interfacial temperature profile: = oy
Helmholtz energy no longer be minimized! % | [T=41095K 1120 2
1. Fundamental eqn. becomes invalid =Nl {110 £
2. Breakdown of classic two-phase relations g | 5 1100
3. Spray & drop dynamics no longer apply g Af
(€] -12¢ LeH 4 > 190
14——1_4’1/_7&‘7”". .
01 2 s 5 6 7 80

U Temperature profile over length scale
derivable from theory & ab-initio simulation

Ny Molecular

Distance [nm)]

Structure
®s
[Q—TiVZTJ:> %?ﬁiﬁ N L
ot 0Cyp $ % 9 0C) 7
g el If interface thicker than AL,
interface disrupts!

— “Trans-Critical’ ndition

— 29
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| 2N Imaging: Microscopic high-speed imaging for validation
 CRE. c. Crua (University of Brighton) & L.M. Pickett (Sandia CRF)

Vehicle Technologies Office

- Q Long-distance microscopic imaging system

High-speed
C-MOS camera

a) High-speed camera Infinity
K2-DistaMax

b) Microscope (8x magnification)

Injector

c) Blue light emitting LED for Field
background illumination lens
Field ‘

lens

Condenser lens

» 2.5 um/pixel resolution LED

&

» 15,000 frames/sec time resolution

30
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C/J/\E?\QF Two-phase interface calculations
y N & experimental validation

d Careful comparison of imaging & simulation

dLiquid n-dodecane C,, (T=363 K) into gaseous nitrogen at different conditions

544 s ASI |

“Low” Pressure (30 bar)

Vapé)r ' : ' Ir,iquidICOl‘(’ S ?
600+ : PR =
- :
™. 500F | : =
E ,_% " Y : A
2, 400} 1 ~-21 Drop
g - cloud
Z 300f Th Interface T
) — *T” Thickness _=;- '
200f - El 4
100F I § g
T1=428 K, p=30 bar =
0 1 2 3 _4_5 6 7 Z
Vapor-Liquid Interface [nm] = -
—lsothermal Interface s -2 Drop
Classic two-phase theory valid cloud 31
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A\ Two-phase interface calculations
CKE & experimental validation

d Careful comparison of imaging & simulation

HdLiquid n-dodecane C;, (T=363 K) into gaseous nitrogen at different conditions

433 us ASI

=14

“High” Pressure (60 bar)

3.0 .
Qref,QOW
I oL,C,, O‘K
'?2.5_ | ™
2 |
o= | 14
%2.0' 0C,, : !
£ v } | At predicted conditions:
Brsh [ ek No drops detectable anywhere
g | S S S S S
A . al ' 1
g, L0 |
L [0v,C., P0ref10% I .
P T=567.3 K, p=60 bar 0 ’:

0 1 2 3 4 5 6 7
Distance [nm)]

—
L

Radial distance [mm|]

1
b2

—Non-isothermal Interface
Two-phase theory invalid —Trans-critical jet

=5l

T T T T T T T T
_ 6 7 3, 9 10, . 11 12 13
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Results & outcome

(a) Predictive & affordable model for trans-critical fuel
Injections

(b) Paradigm change in gas turbines, liquid rockets &
diesel engines
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| C/’»\;eF Regime diagram of liquid injection
a Predictive & affordable model
100 1.0 ——
- e
iy 80 0.8
2. 70
L
% 60 — 0.6 ~
& =
5: 50 g/
g 40 0.4
g
= 30
Z 90 0.2
10
0.0

400 600 800 1000 1200 1400
Nitrogen Temperature [K]

L Meso-scale interface simulations predict transition conditions
between classic sprays and trans-critical jets 34
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CRE Consequences to IC engines & gas turbines
3.5 T \ T T
Diesel Ellflgine Diffusi};rrmI :o(r)r.\:nated
: Late Injection Mixing Regime
a) Gasoline injection develops as 3.0r =1
classic spray
L. 2.5} -
Q |
- =H | Gas Turbine

b) Atrelevant conditions & contrary & | Injection

to conventional wisdom £ 2.0p | ;
% |
: : : & l __

» Diesel engine & gas turbine & 15| swperrita i Ki<0.l |
injection not as classic spray butas ¢ Vg i -
“trans-critical” jet 3 Y bocheging

R EEEE—  Se R

Gasoline Engine
Direct Injection

» Classic industry modeling tools also
become questionable 0.5 Kn>0.1

Classical Atomization
& Spray Regime

Supercritical
Chamber

Tvln \perature

0 0.5 1.0 1.5 20 25

Loy
Reduced Gas Temperature —
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CRE Consequences to liquid rockets

600 S—

i Superc;tfc;cRegime
> TranS-Cl’lthaJ Jet for LOX-GHZ % 500— Envelope offclassical spr;l\'.\".: —
rOCketS = dense-fluids, orfsupercritical fluids ? T >
5 ; Ad=1C
£ 400 ! .
» For new hydrocarbon systems & 7 s
contrary to conventional wisdom & 30l \ o B
+ i i
N C . : = :
» Liquid rocket injection as classic 2 900k Kn=0.1] |
g |
< 1

spray, not “trans-critical” jet — \\
Classical Atomization |
: : - 10O _ & Seray Regime
» Widely-applied modeling tools also s .

become questionable {Tc., =325 K]

300 400 500 600 700 800 900
Oxygen Temperature, K
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Perspectives & outlook

(a) Integration of advances into industry CFD

(b) Exert control over injections independent of
“trans-critical” conditions

37
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CRE

CRE Development of industry simulation tools

U State-of-the-art simulation tools can
treat both extremes of classic sprays
& “trans-critical” jets

Such simulation methods differ

g re a‘t I y Temperature

(363 — 900 K)

» Future research:
Develop simulation tools to
seamlessly treat both extremes in
unified framework

38
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A\ Utilizing our fundamental understanding:
CRE Control injection regardless of “trans-critical conditions”

6 T T T T T
Fundamental molecular understanding of two-phase ~ r---=#= 228 upi o
interfaces: - _,/\CH ‘
> Interfacial molecular dynamics “swarm” to g 4f 4
minimize Helmholtz free energy £yl oo
» Resulting density & species profile distributions g | [r=459 mN/m
manifest in spray atomization & evaporation ; 2l o
il
ldea: We aim to control which thermodynamic A
potential, besides Helmholtz energy, is minimized! SR B

Distance [nm]

High-pressure trans-critical jet

-

Proof of concept at high pressures:

» Previously: High-pressure conditions lead to
“trans-critical” jet dynamics

» Control with isothermal boundary layer:
Dynamics “switch” to spray atomization

39

COMBUSTION RESEARCH FACILITY @ Sandia National Laboratories



q
A\ Utilizing our fundamental understanding:
UL Control injection regardless of “trans-critical conditions”

6

Fundamental molecular understanding of two-phase ~ r---=#= 228 upi o
interfaces: - ,,/\CH ‘
> Interfacial molecular dynamics “swarm” to g 4f 4

minimize Helmholtz free energy £yl oo
» Resulting density & species profile distributions g | [r=459 mN/m

manifest in spray atomization & evaporation ; 2l o

il

ldea: We aim to control which thermodynamic A
potential, besides Helmholtz energy, is minimized! SR B

Distance [nm]

High-pressure trans-critical jet

Proof of concept at high pressures:

» Previously: High-pressure conditions lead to
“trans-critical” jet dynamics

Same pressure classic spray

» Control with isothermal boundary layer:
Dynamics “switch” to spray atomization

COMBUSTION RESEARCH FACILITY
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CRE Summary & Conclusions
¢

f I, Mixture preparation key element in future clean & efficient combustion
’ technology

Il.  Advanced power & propulsion systems move toward “trans-critical”
conditions where liquid injection is poorly understood

Ill. Gas-liquid interface dynamics revealed by meso-scale simulation &
high-speed macroscopic imaging

I\V. Capability developed to predict liquid injection dynamics

V. Under some relevant conditions, predictions led to paradigm change for
IC engines, gas turbines & liquid rockets

V1. Future work seeks to develop advanced simulation models and,
ultimately, aims to control injection dynamics

41
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