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• Scientific computation often involves running computationally intense 
simulations on HPC

• Goal is to find interesting events (e.g., auto-ignition, cyclones)

• Critical events  Current HPC Simulation strategy for detection of events 
and anomalies involves saving data to disk at regular intervals. 

• Overhead for I/O is large
• Writing everything is too expensive

• Writing at infrequent intervals may lead to missed events, or loss of ciritical information

• Lost information can only be regained by rerunning the simulations and adjusting the save 
interval.

Problem
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• Develop efficient distributed machine learning and anomaly 
detection algorithms to enable intelligent data capture.

• These algorithms will be used to determine localized events of 
interest in situ, and the data will be selectively saved at the 
relevant time steps and spatial locations.

• The machine learning techniques will be implemented and 
validated on two test cases: auto-ignition in a combustion 
simulation and extreme weather prediction in a climate 
simulation. 

Research Goals
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Primary Components

3/31/2017 5

Machine
Learning

High
Performance
Computing

Scientific
Computing



• Modeled using S3D

• 17 state variables
• 12 species concentrations

• 3 velocity components

• Temperature

• Pressure

• Temperature profile prescribed

as a sum of sines

Auto-Ignition
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• Test-case : Idealized tropical cyclones

• National Center for Atmospheric 
Research’s (NCAR) and Department 
of Energy (DOE) supported 
Community Atmosphere Model version 
(CAM 5).

• Horizontal resolutions of ~100 km and 
~25 km

• Atmosphere only

Climate Modeling
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Idealized model 
captures most of the 
interesting aspects 
that we are trying to 
detect with ML

Climate Modeling (cont.)
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• Anomaly/Change-point Detection

• Desired algorithm attributes
• Generalizability

• Unsupervised

• Low communication overhead

• Online capability for streaming data

Machine Learning
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• Built a suite of pre-existing and newly implemented algorithms 
suitable for integration/experimentation

Machine Learning (cont.)
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PCA
Kernel Density Estimation
Velocity Density Estimation

Density Estimation Trees
Local Outlier Factors

SVM
K-Means
Various distances

Isolation Forests
Isolation Nearest Neighbor Ensembles
Random Subspace Forests
Density Estimation Forest



• S3D
• Scalable parallel direct numerical simulation reacting flow solver used throughout 

Sandia and the DoE

• Developers created new in-situ capability in S3D
• Embedded Python interpreter
• Allows us to execute interpreted code in-situ with full MPI capability

• Allows tight integration with the combustion team
• Early and deep integration eliminated the need for Mantevo Mini-Apps

High Performance Computing
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• Preliminary experiments on auto-ignition and climate models
• Began in parallel with HPC interface development

• Using pre-generated data, down-sampled in time

• Moderately successful with existing algorithms
• Density estimation-related techniques are not as robust as needed

• Features spanning multiple mesh points and feature drift aren’t handled 
well

• Modified ensemble methods to reduce communication 
(sparse/performance-based updating)

Experiments
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• Use Kernel Density Estimation (KDE) to 
determine a probability density function 
(PDF) over the state variables on a 
processor

• Use Ensemble of Decision Trees (EDT) 
Regressor to predict the PDF given the 
state variables

• Extract feature importance metrics (FIM) 
from the ensemble

• Compare the FIM
• Across processors (spatial, M1)
• Across time steps (temporal, M2)

Feature Importance Event Detection Algorithm (FIEDA)
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Auto-Ignition Results
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FIM for regions on the onset of ignition



Auto-Ignition Results (cont.)
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M1 and M2 
values across 
the 5 regions 
and 12 time 
steps

Spiking in both 
M1 and M2 
for Region 1



Auto-Ignition Results (cont.)
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The color gradient 
shows the M2 metric 
applied to the 
temperature profiles.

The M2 values for 
Region 1 are 
continually high.



Climate Results
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Vorticity over timeState variable contours



Climate Results (cont.)
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Climate Results show similar effects, with the cyclone being 
detected spatially in the center of the domain.



• Generated rich test cases within auto-ignition and climate 
modeling through tight collaboration with our domain experts

• Established vehicle for In-Situ machine learning tests on actual 
scientific simulations using real hardware

• Domain experts/developers actively engaged in making this possible

• S3D is widely used, increasing the potential applicability of this 
research

• Performed preliminary experimentation in both domains which 
led to our creation of a new event detection algorithm

• Preliminary results show great promise

• Many areas for innovation

Summary
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• Explore more anomaly detection algorithms

• Explore FIM comparison (distance operators, pdf generation, 
etc.)

• Begin in-situ experiments

• Explore integration into CAM 5

Next Steps
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• “Using Feature Importance Metrics to Detect Events of Interest 
in Scientific Computing Applications.” Submitted to KDD, 2017

• “In-Situ Machine Learning for Intelligent Data Capture on 
Exascale Platforms.” Poster presentation at the 2017 Energy 
and Climate Executive Advisory Board Meeting

Publications/Presentations
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