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Abstract

Digital in-line holography (DIH) is a laser diagnostic technique that can be used to measure particle sizes, velocities
and positions in sprays and other multiphase flows. Understanding the biases, error sources and limitations of DIH are
critical to designing processing algorithms and making accurate quantitative measurements. Here, work focuses spe-
cifically on the biases which arise whenever there is a non-constant correlation between particle size and particle
velocity. Due to the limited data throughput of digital sensors, one often has to choose between high-temporal resolu-
tion with a limited spatial resolution (image pixel count) or high-spatial resolution with limited temporal resolution.
As shown here, when particle sizes are sampled in space with insufficient frame rates for particle tracking through
time, the measured particle size distribution is biased toward particle sizes classes which travel slower and reside
within the field-of-view longer. Such biases due to size-velocity correlations have been previously reported for many
spray diagnostics and are shown here to be equally applicable to DIH. Using simulations and experiments, corrections
are proposed and validated which reduce these biases using a measurement of the mean particle size to velocity cor-
relation. Finally, it is proposed to combine a high-spatial resolution measurement with a simultaneous temporally
resolved measurement. As demonstrated here, this allows for a relatively large particle size dynamic range, which is
corrected for size-velocity biases.



Introduction

Accurate statistics of disperse particles in liquid sprays
and other multiphase flows is essential for understand-
ing the underlying processes and for generating pre-
cise models. In order to investigate these statistics, a
wide range of optical and collection based measure-
ment techniques have been developed. Detailed re-
views of the various methods are provided by
Lefebvre [1], Bachalo [2], Tropea [3], Gouesbet and
Gréhan [4], and Xu [5], among many others. Each
technique has specific advantages while also suffering
from measurement uncertainty and biases which must
be carefully considered in order to achieve accurate re-
sults.

Digital In-line Holography (DIH) is a somewhat
recent addition to this suite of multiphase flow diag-
nostics [6]. In DIH a coherent laser beam propagates
through the particle field. Resulting diffraction pat-
terns are imaged as the hologram. Following record-
ing, the digital hologram is numerically refocused
along the optical depth via solution of the diffraction
integral equation. The result is a 3D image of the orig-
inal particle field. With automatic data processing rou-
tines, in-focus particle sizes and shapes are measured
at their original depth [7-12]. By quantifying many
particles from one or more holograms, statistics of the
underlying particle field can be measured.

As an example, Figure 1(a) shows one hologram
image of particles from the breakup of a water column
in the convective flow behind a shockwave. Further
details on the experimental configuration and results
are given in subsequent sections of this paper and
some other initial work [13-15]. Diffraction patterns
from individual particles are clearly observed. This
image can be numerically refocused throughout depth
as demonstrated by Figure 1(b), which shows the refo-
cused results at the approximate center of the particle
field (optical depth, z =80 mm). Finally, using the
methods discussed in [7, 9, 10, 12], individual 3D par-
ticle positions, in-focus sizes, and velocities are auto-
matically quantified as shown in Figure 1(c).

Like all measurement techniques, DIH suffers
from certain measurement uncertainty and biases.
Much previous work has shown that positional uncer-
tainty is significantly higher in the optical depth direc-
tion due to the limited angular aperture from which the
depth is reconstructed [16, 17]. Additional work has
demonstrated that positional as well as particle size
uncertainty is also a strong function of the chosen pro-
cessing methodologies [12]. Finally, as is clearly
demonstrated in Figure 1, DIH is further challenged
when particles appear to overlap one another within
the field of view. This has led Malek et al. [18] and
others to define an apparent shadow density, above
which the uncertainty from overlapping particles is too
severe for practical measurements.

Figure 1. Example DIH results from the experiments

discussed here. (a) raw hologram image from the 2x
FOV, (b) numerically refocused to z = 80 mm, and
(c) particle positions, sizes, and velocities tracked

from the DIH video results. The test conditions begin
with a 1 mm diameter column subjected to 30 m/s

convective flow, giving a Weber number We = 12.6.
Cameras were placed 22 mm downstream from the

initial water column.

While these sources of uncertainty are certainly
important and warrant further investigation, in many
practical flow measurements the additional measure-
ment biases which arise from size-velocity correla-
tions are equally or possibly more important. How-
ever, perhaps due to the somewhat more abstract man-
ner in which this phenomenon affects measurement
accuracy, it has been the authors’ experience that un-
certainty in measured particle size distributions due to
size-velocity correlations are the least well-understood
or acknowledged in the recent literature.

As an introduction, consider the simple case illus-
trated in Figure 2. Here, two droplet generators are as-
sumed to each produce one drop per second. The top
droplet generator produces large drops moving at ve-
locity vy, while the bottom generator produces a stream
of smaller drops moving at 2v,. Due to the difference
in velocities, the larger, slower droplets are spaced at
half the distance of the smaller, faster droplets. When
a snapshot of this particle field is recorded at the down-
stream distance shown, there are twice as many large



droplets within the field-of-view compared to small
droplets. Measurements such as this, which quantify
particle statistics from snapshot images, are common
in the literature including the authors’ own use of DIH
[8, 11]. However, when such techniques are used to
estimate boundary conditions, perhaps for input to
spray simulations, this measure of the particle field is
often not the desired quantity. Rather, the rate of drop-
let production is more typically desired. For the cur-
rent example, if the correlation between droplet size
and velocity is not measured or known, then the imag-
ing results would incorrectly imply a flow rate of big
drops twice that of small drops.

e ee ee:

o> e— e— *~— *~—

Camera Snapshot

Figure 2. Conceptual illustration of the effects of
size-velocity correlations. Here both generators pro-
duce drops at the same rate, yet the spatial concentra-
tion of larger droplets is higher due to their slower
velocity.

In many spray applications, aerodynamic drag
tends to affect droplets of different size classes at dis-
similar rates. As a result, correlations between mean
droplet size and velocity are common, and as dis-
cussed by Lefebvre [1] and many others, biases in par-
ticle size distributions due to size-velocity correlations
have long been recognized to affect many spray meas-
urement techniques. Here, we review the effects of
size-velocity correlations on DIH measurements and
discuss opportunities to extend the DIH technique for
improved accuracy and size dynamic range. The work
begins with a review of the simple theory for correct-
ing size-velocity correlations, which is shown to be
equally applicable to DIH results. Following this, the
theory is applied to some practical experimental re-
sults and conclusions are discussed.

Before proceeding, it is noted that much of the
discussion here is equally valid for any image based
particle measurement techniques. With widespread
availability of digital cameras, high-speed recording,
and image processing techniques, image based particle
sizing has become common. Whether or not holog-
raphy methods are used to extend imaging to 3D, all
image based methods have the potential to suffer from
the size-velocity correlation biases discussed here.

Experimental configuration

The experimental results presented here are taken
from the investigation of the breakup of a liquid col-
umn in a shock-induced cross-flow as discussed in
[13-15]. As illustrated in Figure 3, a gas-phase shock

tube is used to produce an approximately one dimen-
sional shock-wave which propagates through the test
section. Immediately before firing of the shock tube, a
slow moving, laminar jet (column) of water is estab-
lished within the test section. After firing, strong con-
vective flow behind the shock-wave creates aerody-
namic forces which tend to distort and eventually frag-
ment the water column.

To capture DIH images, the 532 nm output from
a continuous laser (Coherent Verdi V6) is spatially fil-
tered and collimated before passing through the test
section. Resulting diffraction patterns are recorded
with two high-speed cameras (Photron SA-Z). One
camera uses a ~6x magnification objective and records
at the maximum pixel resolution (1024x1024 pixels)
with corresponding frame rate of 20,000 fps. Unfortu-
nately, at this relatively high magnification, individual
particles traverse through the field-of-view (FOV)
within a few frames (typically 3-4 frames depending
on particle velocities). Given the other sources of un-
certainty in DIH, particle residence times are found to
be insufficient to accurately track individual particles
as a function of time and record their velocity. To ad-
dress this, the second camera is configured with a
lower magnification objective (~2x), resulting in a
larger FOV. In addition, this camera records a sub-set
of the total pixels (640%260 pixels) which enables a
faster record rate of 100,000 fps. With this, particle
residence times are found to be sufficient for accurate
tracking and velocity measurements. In summary, the
experiment consists of two simultaneous DIH record-
ings, one with a 3.6x3.6 mm FOV at 20,000 fps with
ultimate pixel resolution of 3.5 um and a second with
8.0x3.3 mm FOV at 100,000 fps with ultimate pixel
resolution of 12.5 pm.
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Figure 3. Experimental configuration with spatially
resolved camera (6% magnification) and temporally
resolved camera (2x magnification).
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Figure 4. Example DIH results from the spatially re-
solved cameras (6x FOV) recorded at approximately
the same instant as the 2x data in Figure 1.

Data processing to extract particle information
from the DIH videos is summarized here and has been
discussed in more detail elsewhere [7, 13-15]. First, all
individual frames from both the 2x and 6% are pro-
cessed using the methods in [9, 10, 12] to measure the
3D position and in-focus sizes and morphologies of
each discrete particle. For example, Figure 4 shows the
results from one frame of the 6x FOV at approxi-
mately the same instant as Figure 1. Next the 2x data
is further processed using the methods in [7] to attempt
to track individual particles through the FOV. If com-
pletely successful, the result is a 3D quantification of
individual particle trajectories, which begin and end at
the instant when the particle enters and leaves the
FOV, respectively. In this manner, each individual
particle is tracked once and only once and can be as-
signed a mean diameter and three-component velocity.
(The image in Figure 1(c) shows a snapshot of the 2x
results which have been processed in this manner.)

From the experimental videos, with select images
summarized in Figure 1 and Figure 4, the raw meas-
ured particle size distributions are constructed as
shown in Figure 5. Figure 5(a) compares the particle
size probability distribution functions (PDF) by num-
ber between the 6x and 2x FOVs, while Figure 5(b)
show the probability density weighted by the volume
within each bin. In both cases, it is clear that the prob-
ability densities from the two FOVs do not perfectly
agree. For one, the 6x FOV allows for measurement of
smaller particles, and therefore contains data within a
larger size dynamic range. The limited size dynamic

range of the 2x DIH (or any image based measure-
ment) is particularly stark due to the use of the high-
speed cameras with a limited pixel window for fast
record rates. Later in this work, some methods are pro-
posed which combing data from the two FOVs to ef-
fectively expand the size dynamic range for accurate
measurements.
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Figure 5. Comparison of the raw particle size proba-
bility densities measured from the two experimental
FOVs. (a) weighted by count, and (b) weighted by
volume. The experiments contained N; = 30,598
tracked particles for the 2x FOV and N;= 10,230 cor-
related (un-tracked) particles from the 6x FOV from
two experimental instances at the same conditions.
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Figure 6. Size-velocity correlation measured from
the 2x temporally resolved FOV.

Even more important to the current discussion, the
probability densities from the two FOVs also differ



due to the effects of the size-velocity correlation. Fig-
ure 6 shows a scatter plot of the measured particle sizes
versus x-velocity from the 2x FOV. As expected, the
largest drops tend to be traveling the slowest due to
their relatively slower acceleration by aerodynamic
drag. In contrast, data from the 6x FOV is compiled
by treating individual frames as independent measure-
ments (without regard to velocity) The large, slower
drops reside over a larger duration within the 6x FOV.
Therefore, the large drops appear to be over counted
compared to the 2x results. This is particularly evident
in the volumetric size distribution in Figure 5(b).

In what follows, some simple theory is presented
to correct for these biases. First simulations are used
to verify accuracy when all other sources of uncer-
tainty are removed. Following this, corrections are ap-
plied to the experimental results and shown to improve
the agreement between the FOVs.

Theory

In [1] Lefebvre distinguishes between spatial
sampling and temporal sampling. Spatial sampling re-
fers to a diagnostic which measures all of the particles
within a FOV at an instant in time, while temporal
sampling quantifies all of the particles that pass
through a fixed measurement volume over time. Here,
the raw 6x DIH results, wherein every frame is pro-
cessed independently, is an example of spatial sam-
pling, while the 2x results, including particle tracking
over time, is an example of temporal sampling.

Lefebvre [1] summarizes the difference between
the two results and their conversion as follows:

“If all drops in a spray travel at the same velocity,
the results obtained by spatial and temporal sam-
pling are identical. If not, the spatial drop size dis-
tribution may be converted into the temporal dis-
tribution by multiplying the number of drops of a
given velocity by that velocity [1].”

This is equivalent to weighting the spatially sampled
result by the inverse of the residence time of each par-
ticle within the measurement volume. Assuming the
extent of the measurement volume is constant for all
drop sizes, this is further equivalent to multiplying the
probability of each drop size class by the mean veloc-
ity of the particles in that size class.

To illustrate the application of this theory, simu-
lations are first considered such that all other potential
sources of experimental uncertainty are removed. For
clarity, a relatively simple particle field is considered.
First, N particles were randomly sampled from bi-
modal log-normal number distributions of the form,
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where d is the particle diameter in micrometers, w is
the relative weight, o is the standard deviation and u is
the mean, both on the natural log scale. The a distribu-
tion is composed of smaller particles and the & distri-
bution is composed of larger particles.

Due to aerodynamic drag, particle velocities from
the component at larger diameters are expected to be
slower than the component at smaller diameters. This
size-velocity correlation is imposed on the particles
based on their diameter, providing x-velocities for
each particle. Here, the functional form of the mean
size-velocity correlation is chosen as

vx(d) = CldCZ + C3’

where d has units of micrometers and v, has units of
m/s. Additional variation can be incorporated with the
velocity of the particle to more accurately simulate ex-
perimental measurements.

The paths for the particles are next generated by
providing a random starting frame and a random start-
ing y-height, both sampled from uniform distributions.
The simulations run for a total of F,,, frames at 20,000
fps. The resulting size and position data are then re-
sampled in two ways. The first dataset maintains all
the simulated frames but has a cut-off for a minimum
particle size of dyin = 50 pm, producing temporally re-
solved data. The second set of data maintains all the
particles but down-samples the number of frames by a
factor of 10, producing spatially resolved data. Both
these cases show extreme versions of the experimental
conditions listed in the previous section.

The temporally resolved data is then passed into a
custom particle-tracking algorithm, which determines
the velocity of particles by comparing two consecutive
frames and matching particles with their nearest neigh-
bor in the next frame and checking that the particle di-
ameters are similar. The algorithm also allows for
preferential velocity directions and velocity limits,
which improves processing speeds and accuracy. Pro-
vided that no additional noise or quantization is intro-
duced, the particle density is not too high and that par-
ticles do not intermittently enter and exit the field of
view, the tracking efficiency is 100% and the algo-
rithm runs in a matter of seconds. Lastly, the data are
processed to create measured probability distributions
for temporally resolved fi(d) and spatially resolved
fs(d) data.

For simulation A, two distinct particle size distri-
butions are simulated and no additional variation is
added to the size-velocity correlation in order to better
illustrate the key biases. It is important to note that a



distribution of particle sizes is necessary in order to
produce a size-velocity correlation fit. Figure 7(a)
shows a single frame from simulation A with N = 5000
and Fiae = 1000. Although the weight between the two
particle sizes is 50%, there appear to be more large
particles in the frame because they are traveling
slower.

Figure 7(b) shows the specified size-velocity cor-
relation as well as the velocity of the tracked particles
from the temporally resolved data. A fit is generated
from the temporally resolved distribution that is very
similar to the original size-velocity correlation. How-
ever, because the temporally resolved data only con-
tains particles larger than d,, the fit values for ¥, (d)
of the same form as the imposed size-velocity correla-
tion were found to be C; =-11.9, C,=0.177, and C; =
41.1, which are slightly different from the original cor-
relation in Table I. The accuracy of the fit improves
with increasing N and decreasing di.

The imposed underlying, measured and corrected
particle number PDFs are compared in Figure 7(c).
The temporally resolved data contains no particles
smaller than d,,, which results in uniformly higher
probabilities for all the particles sizes. The spatially re-
solved distribution, on the other hand, shows lower
probabilities for smaller particles and larger probabil-
ities for larger particles. Larger, slower drops are over-
sampled due to their longer residence times within the
FOV. It is important to note that this would be true
even if the spatially resolved results were sampled at a
lower effective record rate such that no particle resides
within the FOV for more than one frame, as is some-
times incorrectly suggested to remove size-velocity bi-
ases. Both distributions are clearly biased in different
ways.

Table I: Conditions for Simulation A

Property Value Property Value
Oa 0.4 In(um) w 0.5
Ua 3.5 In(um) C -16
Cb 0.05 In(um) C 0.15
Ub 6.0 In(um) C; 46
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Figure 7. Simulation A results showing (a) one
frame from the dataset, (b) the size-velocity distribu-
tion, (c) the particle size number PDF and (d) the er-

ror between the true underlying number PDF com-
pared to the measured and corrected number PDFs.

The spatially resolved distribution can be used to
correct for the size-velocity bias by multiplying the
PDF by the velocity fit generated by the temporally
resolved distribution, following the suggestion by
Lefebvre [1]. Assuming that an appropriate velocity
function that matches well with the underlying mean
size-velocity correlation is selected and a good fit is
obtained, the corrected spatially resolved PDF is,
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The resulting distribution is almost identical to the un-

derlying distribution, as illustrated by Figure 7(d).
Next, the temporally resolved distribution is

matched to the corrected spatially resolved distribu-

tion using,

fe(d) = s¢ fi (),

st = i o (@) / i fildy).
d;

di=dmin =dmin

where

The corrected temporally resolved distribution is also
similar to the underlying PDF with near-zero error for
the valid size range larger than d,;,. With no errors in
tracking, the corrected PDF errors decrease with in-
creasing N, decreasing di», and improved fitting to the
true size-velocity correlation.

In many instances in the literature, the character-
istic mean diameters are reported. The mean diameters
are defined as,

1
P\p—qg
D = (Z d; )p q
pq q .
T d

The number population mean is defined as Dy, the
surface area weighted mean (or Sauter mean) is de-
fined as D3 and the volume weighted mean is defined
as Dy;. When these statistics are measured from spa-

tially resolved data, corrections must also be applied
such that,

. (deﬁx(di)@)ﬁ
P \2dl 0.(d) /D)

Where ,.(d;) /D, is the velocity estimate normalized
by the average estimated velocity. This correction al-
lows for accurate comparisons of droplet statistics.

Table II: Conditions for Simulation B

Property Value Property Value
Ca 0.4 In(um) w 0.2
Ha 3.0 In(um) C -16
Ob 0.53 In(um) ) 0.15
Up 5.0 In(um) Cs 46
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Figure 8. Simulation B results showing (a) one frame
from the dataset, (b) the size-velocity distribution, (c)
the particle size number PDF and (d) the error be-
tween the true underlying number PDF compared to
the measured and corrected number PDFs.

A bi-modal particle size distribution and size-ve-
locity correlation that are more similar to experimental
data is demonstrated with Simulation B. The test con-
ditions are N = 10000 and F),..x = 1000 with additional
values listed in Table I. In this simulation, there is a



larger quantity of small particles that cannot be re-
solved with the temporally resolved camera. An addi-
tional, normally distributed variation is added to the
particle velocity such that particles with higher aver-
age velocities have more variation. A size-velocity
correlation is developed using this data, as shown in
Figure 8(b), and the fitted values to the temporally re-
solved distribution were C;=-16.2, C,=0.147, and
C3=45.9, which are very similar to the input size-ve-
locity correlation listed in Table II. This fit is used to
correct the spatially resolved distribution resulting in a
good match with the original underlying distribution
as shown in in Figure 8(c) and (d).

Furthermore, the volume PDFs can be compared,
as shown in Figure 9. Because larger particles carry
more volume per particle, the temporally resolved vol-
ume PDF generally matches the underlying volume
PDF well. The corrected spatially resolved distribution
matches well for particles larger than d,.., as well as
particles smaller than d;,. These results show the va-
lidity of the proposed correction method.
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Figure 9. Simulation B results showing (a) the parti-
cle volume PDF and (d) the error between the true
underlying volume PDF compared to the measured

and corrected volume PDFs.

Experimental results
The previous section develops simple methods to
correct size-velocity biases and validates the method

via application to simulated results where all other
sources of uncertainty are removed. Here, the same
methods are applied to the experimental results sum-
marized in Figure 1.

As was done in the previous section, the correla-
tion between measured particle size and velocity is
first determined from the temporally resolved (2x)
FOV. The mean size-velocity relation appears to fol-
low a power-law function, giving the best-fit curve
shown in Figure 6 with fit constants C;=-55.9,
C,=10.046, and C; = 83.2. This relation is used to find
the corrected 6x probability density shown in Figure
10(a). Finally, this is used to estimate the percentage
of the total drops which fall within the limited size dy-
namic range of the 2x FOV, resulting in the scaled 2x
probability densities.

Compared to the un-corrected PDFs in Figure 5,
it is clear that the number and volume PDFs from the
temporally and spatially resolved measurements
match much better. The remaining differences be-
tween the two distributions from 40 to 600 um could
be attributed to the clipping of particles near the edges
of the FOV. Unlike the simulation where the diameter
is known, the experimental measurements may esti-
mate a smaller particle diameter if the particle is
clipped. The 6x distribution may show more clipping
due to its smaller field of view, thereby measuring
more smaller particles in the 40 to 200 um range and
fewer particles in the 200 to 600 pm range.
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Figure 10. Application of size-velocity corrections
to experimental results (a) the raw and corrected
number PDFs, and (b) volume PDFs.



Table III: Characteristic Mean Diameters

Distribution Aonin Dy D3,

Measured 2% 393 um 899 um 195 pum
Measured 6% 122 um  44.6 um 423 pm
Corrected 6 ~Opm  38.5um 278 um

The characteristic mean diameters can also be
measured and compared in Table III. The measured 2x
and 6x characteristic mean diameters are very differ-
ent, mostly due to the difference in the smallest diam-
eter than can be measured d.i,. By correcting the 6x
values, which in theory creates a correction to the true
underlying distribution where there is no minimum di-
ameter (effectively d,i, =0), the characteristic mean di-
ameters from the 6x FOV decrease. The higher order
mean diameter, Ds;, begins to approach the value
measured with the 2x FOV.

This experimental implementation shows how the
correction method can be applied to real data. The fi-
nal corrected 6x probability density represents a more
accurate, high dynamic range measurement of the
droplets generated by the shock-induced crossflow
condition.

Conclusions

Biases due to size-velocity correlations are a com-
mon issue in many spray measurement techniques.
This work specifically focuses on the distinction be-
tween temporally tracked particle measurements ver-
sus spatially collected data that has not been correlated
over time.

All experimental data considered here are taken
from high-speed digital in-line holography (DIH)
measurements, although many of the conclusions are
applicable to any image based particle measurement.
In general, it is confirmed that when particles of dif-
ferent size classes travel at dissimilar velocities, spa-
tially collected particle distributions are biased toward
slower particles with longer effective residence times.
When it is possible to measure the mean relation be-
tween particle size and particle velocity, as is done
here, then these biases can be removed by weighting
the distribution by the mean velocity of each size class.

When using modern high-speed cameras to per-
form DIH it is often necessary to trade spatial resolu-
tion (image pixel count) to achieve the desired tem-
poral resolution. To address, this it is proposed here to
combine a second simultaneous DIH measurements at
lower temporal resolution but higher spatial resolu-
tion. By assuming constant particle statistics over the
measurement time and extrapolating measured size-
velocity correlations, it is demonstrated that size-ve-
locity biases can be removed from the high spatial res-
olution (low temporal resolution) data.

Here, both fields-of-view were recorded using
high-speed cameras. However, these same methods
could be applied to many other image based particle
measurements. For example, size-velocity correlations
are easily measured using common, double-pulsed la-
sers and cameras (e.g. [8, 11]). If desired the proposed
correction methods could be applied to convert the
spatially sampled results in those works to average
temporally correlated statistics. In cases where suffi-
cient temporal and spectral resolution can be obtained,
this work also shows that it is preferable to apply par-
ticle tracking to the video data in order to get accurate
particle statistics, as uncorrelated snapshots contain
size-velocity biases.
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