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Abstract 
Digital in-line holography (DIH) is a laser diagnostic technique that can be used to measure particle sizes, velocities 
and positions in sprays and other multiphase flows. Understanding the biases, error sources and limitations of DIH are 
critical to designing processing algorithms and making accurate quantitative measurements. Here, work focuses spe-
cifically on the biases which arise whenever there is a non-constant correlation between particle size and particle 
velocity. Due to the limited data throughput of digital sensors, one often has to choose between high-temporal resolu-
tion with a limited spatial resolution (image pixel count) or high-spatial resolution with limited temporal resolution. 
As shown here, when particle sizes are sampled in space with insufficient frame rates for particle tracking through 
time, the measured particle size distribution is biased toward particle sizes classes which travel slower and reside 
within the field-of-view longer. Such biases due to size-velocity correlations have been previously reported for many 
spray diagnostics and are shown here to be equally applicable to DIH. Using simulations and experiments, corrections 
are proposed and validated which reduce these biases using a measurement of the mean particle size to velocity cor-
relation. Finally, it is proposed to combine a high-spatial resolution measurement with a simultaneous temporally 
resolved measurement. As demonstrated here, this allows for a relatively large particle size dynamic range, which is 
corrected for size-velocity biases. 
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Introduction 
Accurate statistics of disperse particles in liquid sprays 
and other multiphase flows is essential for understand-
ing the underlying processes and for generating pre-
cise models. In order to investigate these statistics, a 
wide range of optical and collection based measure-
ment techniques have been developed. Detailed re-
views of the various methods are provided by 
Lefebvre [1], Bachalo [2], Tropea [3], Gouesbet and 
Gréhan [4], and Xu [5], among many others. Each 
technique has specific advantages while also suffering 
from measurement uncertainty and biases which must 
be carefully considered in order to achieve accurate re-
sults. 

Digital In-line Holography (DIH) is a somewhat 
recent addition to this suite of multiphase flow diag-
nostics [6]. In DIH a coherent laser beam propagates 
through the particle field. Resulting diffraction pat-
terns are imaged as the hologram. Following record-
ing, the digital hologram is numerically refocused 
along the optical depth via solution of the diffraction 
integral equation. The result is a 3D image of the orig-
inal particle field. With automatic data processing rou-
tines, in-focus particle sizes and shapes are measured 
at their original depth [7-12]. By quantifying many 
particles from one or more holograms, statistics of the 
underlying particle field can be measured. 

As an example, Figure 1(a) shows one hologram 
image of particles from the breakup of a water column 
in the convective flow behind a shockwave. Further 
details on the experimental configuration and results 
are given in subsequent sections of this paper and 
some other initial work [13-15]. Diffraction patterns 
from individual particles are clearly observed. This 
image can be numerically refocused throughout depth 
as demonstrated by Figure 1(b), which shows the refo-
cused results at the approximate center of the particle 
field (optical depth, z = 80 mm). Finally, using the 
methods discussed in [7, 9, 10, 12], individual 3D par-
ticle positions, in-focus sizes, and velocities are auto-
matically quantified as shown in Figure 1(c). 

Like all measurement techniques, DIH suffers 
from certain measurement uncertainty and biases. 
Much previous work has shown that positional uncer-
tainty is significantly higher in the optical depth direc-
tion due to the limited angular aperture from which the 
depth is reconstructed [16, 17]. Additional work has 
demonstrated that positional as well as particle size 
uncertainty is also a strong function of the chosen pro-
cessing methodologies [12]. Finally, as is clearly 
demonstrated in Figure 1, DIH is further challenged 
when particles appear to overlap one another within 
the field of view. This has led Malek et al. [18] and 
others to define an apparent shadow density, above 
which the uncertainty from overlapping particles is too 
severe for practical measurements. 

 

Figure 1. Example DIH results from the experiments 
discussed here. (a) raw hologram image from the 2× 
FOV, (b) numerically refocused to z = 80 mm, and 
(c) particle positions, sizes, and velocities tracked 

from the DIH video results. The test conditions begin 
with a 1 mm diameter column subjected to 30 m/s 

convective flow, giving a Weber number We = 12.6. 
Cameras were placed 22 mm downstream from the 

initial water column. 

While these sources of uncertainty are certainly 
important and warrant further investigation, in many 
practical flow measurements the additional measure-
ment biases which arise from size-velocity correla-
tions are equally or possibly more important. How-
ever, perhaps due to the somewhat more abstract man-
ner in which this phenomenon affects measurement 
accuracy, it has been the authors’ experience that un-
certainty in measured particle size distributions due to 
size-velocity correlations are the least well-understood 
or acknowledged in the recent literature. 

As an introduction, consider the simple case illus-
trated in Figure 2. Here, two droplet generators are as-
sumed to each produce one drop per second. The top 
droplet generator produces large drops moving at ve-
locity v0, while the bottom generator produces a stream 
of smaller drops moving at 2v0. Due to the difference 
in velocities, the larger, slower droplets are spaced at 
half the distance of the smaller, faster droplets. When 
a snapshot of this particle field is recorded at the down-
stream distance shown, there are twice as many large 



droplets within the field-of-view compared to small 
droplets. Measurements such as this, which quantify 
particle statistics from snapshot images, are common 
in the literature including the authors’ own use of DIH 
[8, 11]. However, when such techniques are used to 
estimate boundary conditions, perhaps for input to 
spray simulations, this measure of the particle field is 
often not the desired quantity. Rather, the rate of drop-
let production is more typically desired. For the cur-
rent example, if the correlation between droplet size 
and velocity is not measured or known, then the imag-
ing results would incorrectly imply a flow rate of big 
drops twice that of small drops. 

 

Figure 2. Conceptual illustration of the effects of 
size-velocity correlations. Here both generators pro-

duce drops at the same rate, yet the spatial concentra-
tion of larger droplets is higher due to their slower 

velocity. 

In many spray applications, aerodynamic drag 
tends to affect droplets of different size classes at dis-
similar rates. As a result, correlations between mean 
droplet size and velocity are common, and as dis-
cussed by Lefebvre [1] and many others, biases in par-
ticle size distributions due to size-velocity correlations 
have long been recognized to affect many spray meas-
urement techniques. Here, we review the effects of 
size-velocity correlations on DIH measurements and 
discuss opportunities to extend the DIH technique for 
improved accuracy and size dynamic range. The work 
begins with a review of the simple theory for correct-
ing size-velocity correlations, which is shown to be 
equally applicable to DIH results. Following this, the 
theory is applied to some practical experimental re-
sults and conclusions are discussed. 

Before proceeding, it is noted that much of the 
discussion here is equally valid for any image based 
particle measurement techniques. With widespread 
availability of digital cameras, high-speed recording, 
and image processing techniques, image based particle 
sizing has become common. Whether or not holog-
raphy methods are used to extend imaging to 3D, all 
image based methods have the potential to suffer from 
the size-velocity correlation biases discussed here. 

 
Experimental configuration 

The experimental results presented here are taken 
from the investigation of the breakup of a liquid col-
umn in a shock-induced cross-flow as discussed in 
[13-15]. As illustrated in Figure 3, a gas-phase shock 

tube is used to produce an approximately one dimen-
sional shock-wave which propagates through the test 
section. Immediately before firing of the shock tube, a 
slow moving, laminar jet (column) of water is estab-
lished within the test section. After firing, strong con-
vective flow behind the shock-wave creates aerody-
namic forces which tend to distort and eventually frag-
ment the water column. 

To capture DIH images, the 532 nm output from 
a continuous laser (Coherent Verdi V6) is spatially fil-
tered and collimated before passing through the test 
section. Resulting diffraction patterns are recorded 
with two high-speed cameras (Photron SA-Z). One 
camera uses a ~6× magnification objective and records 
at the maximum pixel resolution (1024×1024 pixels) 
with corresponding frame rate of 20,000 fps. Unfortu-
nately, at this relatively high magnification, individual 
particles traverse through the field-of-view (FOV) 
within a few frames (typically 3-4 frames depending 
on particle velocities). Given the other sources of un-
certainty in DIH, particle residence times are found to 
be insufficient to accurately track individual particles 
as a function of time and record their velocity. To ad-
dress this, the second camera is configured with a 
lower magnification objective (~2×), resulting in a 
larger FOV. In addition, this camera records a sub-set 
of the total pixels (640×260 pixels) which enables a 
faster record rate of 100,000 fps. With this, particle 
residence times are found to be sufficient for accurate 
tracking and velocity measurements. In summary, the 
experiment consists of two simultaneous DIH record-
ings, one with a 3.6×3.6 mm FOV at 20,000 fps with 
ultimate pixel resolution of 3.5 m and a second with 
8.0×3.3 mm FOV at 100,000 fps with ultimate pixel 
resolution of 12.5 m. 

 

Figure 3. Experimental configuration with spatially 
resolved camera (6× magnification) and temporally 

resolved camera (2× magnification). 

 



 

Figure 4. Example DIH results from the spatially re-
solved cameras (6× FOV) recorded at approximately 

the same instant as the 2× data in Figure 1. 

 
Data processing to extract particle information 

from the DIH videos is summarized here and has been 
discussed in more detail elsewhere [7, 13-15]. First, all 
individual frames from both the 2× and 6× are pro-
cessed using the methods in [9, 10, 12] to measure the 
3D position and in-focus sizes and morphologies of 
each discrete particle. For example, Figure 4 shows the 
results from one frame of the 6× FOV at approxi-
mately the same instant as Figure 1. Next the 2× data 
is further processed using the methods in [7] to attempt 
to track individual particles through the FOV. If com-
pletely successful, the result is a 3D quantification of 
individual particle trajectories, which begin and end at 
the instant when the particle enters and leaves the 
FOV, respectively. In this manner, each individual 
particle is tracked once and only once and can be as-
signed a mean diameter and three-component velocity. 
(The image in Figure 1(c) shows a snapshot of the 2× 
results which have been processed in this manner.) 

From the experimental videos, with select images 
summarized in Figure 1 and Figure 4, the raw meas-
ured particle size distributions are constructed as 
shown in Figure 5. Figure 5(a) compares the particle 
size probability distribution functions (PDF) by num-
ber between the 6× and 2× FOVs, while Figure 5(b) 
show the probability density weighted by the volume 
within each bin. In both cases, it is clear that the prob-
ability densities from the two FOVs do not perfectly 
agree. For one, the 6× FOV allows for measurement of 
smaller particles, and therefore contains data within a 
larger size dynamic range. The limited size dynamic 

range of the 2× DIH (or any image based measure-
ment) is particularly stark due to the use of the high-
speed cameras with a limited pixel window for fast 
record rates. Later in this work, some methods are pro-
posed which combing data from the two FOVs to ef-
fectively expand the size dynamic range for accurate 
measurements. 

 

Figure 5. Comparison of the raw particle size proba-
bility densities measured from the two experimental 
FOVs. (a) weighted by count, and (b) weighted by 
volume. The experiments contained Nt = 30,598 

tracked particles for the 2× FOV and Ns = 10,230 cor-
related (un-tracked) particles from the 6× FOV from 
two experimental instances at the same conditions. 

 

 

Figure 6. Size-velocity correlation measured from 
the 2× temporally resolved FOV. 

 
Even more important to the current discussion, the 

probability densities from the two FOVs also differ 



due to the effects of the size-velocity correlation. Fig-
ure 6 shows a scatter plot of the measured particle sizes 
versus x-velocity from the 2× FOV. As expected, the 
largest drops tend to be traveling the slowest due to 
their relatively slower acceleration by aerodynamic 
drag. In contrast, data from the 6× FOV is compiled 
by treating individual frames as independent measure-
ments (without regard to velocity) The large, slower 
drops reside over a larger duration within the 6× FOV. 
Therefore, the large drops appear to be over counted 
compared to the 2× results. This is particularly evident 
in the volumetric size distribution in Figure 5(b). 

In what follows, some simple theory is presented 
to correct for these biases. First simulations are used 
to verify accuracy when all other sources of uncer-
tainty are removed. Following this, corrections are ap-
plied to the experimental results and shown to improve 
the agreement between the FOVs. 

 
Theory 

In [1] Lefebvre distinguishes between spatial 
sampling and temporal sampling. Spatial sampling re-
fers to a diagnostic which measures all of the particles 
within a FOV at an instant in time, while temporal 
sampling quantifies all of the particles that pass 
through a fixed measurement volume over time. Here, 
the raw 6× DIH results, wherein every frame is pro-
cessed independently, is an example of spatial sam-
pling, while the 2× results, including particle tracking 
over time, is an example of temporal sampling. 

Lefebvre [1] summarizes the difference between 
the two results and their conversion as follows: 

 
“If all drops in a spray travel at the same velocity, 
the results obtained by spatial and temporal sam-
pling are identical. If not, the spatial drop size dis-
tribution may be converted into the temporal dis-
tribution by multiplying the number of drops of a 
given velocity by that velocity [1].” 
 

This is equivalent to weighting the spatially sampled 
result by the inverse of the residence time of each par-
ticle within the measurement volume. Assuming the 
extent of the measurement volume is constant for all 
drop sizes, this is further equivalent to multiplying the 
probability of each drop size class by the mean veloc-
ity of the particles in that size class. 

To illustrate the application of this theory, simu-
lations are first considered such that all other potential 
sources of experimental uncertainty are removed. For 
clarity, a relatively simple particle field is considered. 
First, N particles were randomly sampled from bi-
modal log-normal number distributions of the form, 
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where d is the particle diameter in micrometers, ω is 
the relative weight, σ is the standard deviation and μ is 
the mean, both on the natural log scale. The a distribu-
tion is composed of smaller particles and the b distri-
bution is composed of larger particles. 

Due to aerodynamic drag, particle velocities from 
the component at larger diameters are expected to be 
slower than the component at smaller diameters. This 
size-velocity correlation is imposed on the particles 
based on their diameter, providing x-velocities for 
each particle. Here, the functional form of the mean 
size-velocity correlation is chosen as 
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where d has units of micrometers and vx has units of 
m/s. Additional variation can be incorporated with the 
velocity of the particle to more accurately simulate ex-
perimental measurements.   

The paths for the particles are next generated by 
providing a random starting frame and a random start-
ing y-height, both sampled from uniform distributions. 
The simulations run for a total of Fmax frames at 20,000 
fps. The resulting size and position data are then re-
sampled in two ways. The first dataset maintains all 
the simulated frames but has a cut-off for a minimum 
particle size of dmin = 50 m, producing temporally re-
solved data. The second set of data maintains all the 
particles but down-samples the number of frames by a 
factor of 10, producing spatially resolved data. Both 
these cases show extreme versions of the experimental 
conditions listed in the previous section. 

The temporally resolved data is then passed into a 
custom particle-tracking algorithm, which determines 
the velocity of particles by comparing two consecutive 
frames and matching particles with their nearest neigh-
bor in the next frame and checking that the particle di-
ameters are similar. The algorithm also allows for 
preferential velocity directions and velocity limits, 
which improves processing speeds and accuracy. Pro-
vided that no additional noise or quantization is intro-
duced, the particle density is not too high and that par-
ticles do not intermittently enter and exit the field of 
view, the tracking efficiency is 100% and the algo-
rithm runs in a matter of seconds. Lastly, the data are 
processed to create measured probability distributions 
for temporally resolved ft(d) and spatially resolved 
fs(d) data. 

For simulation A, two distinct particle size distri-
butions are simulated and no additional variation is 
added to the size-velocity correlation in order to better 
illustrate the key biases. It is important to note that a 



distribution of particle sizes is necessary in order to 
produce a size-velocity correlation fit. Figure 7(a) 
shows a single frame from simulation A with N = 5000 
and Fmax = 1000. Although the weight between the two 
particle sizes is 50%, there appear to be more large 
particles in the frame because they are traveling 
slower. 

Figure 7(b) shows the specified size-velocity cor-
relation as well as the velocity of the tracked particles 
from the temporally resolved data. A fit is generated 
from the temporally resolved distribution that is very 
similar to the original size-velocity correlation. How-
ever, because the temporally resolved data only con-
tains particles larger than dmin, the fit values for ݒො௫ሺ݀ሻ 
of the same form as the imposed size-velocity correla-
tion were found to be C1 = -11.9, C2 = 0.177, and C3 = 
41.1, which are slightly different from the original cor-
relation in Table I. The accuracy of the fit improves 
with increasing N and decreasing dmin. 

The imposed underlying, measured and corrected 
particle number PDFs are compared in Figure 7(c).  
The temporally resolved data contains no particles 
smaller than dmin, which results in uniformly higher 
probabilities for all the particles sizes. The spatially re-
solved distribution, on the other hand, shows lower 
probabilities for smaller particles and larger probabil-
ities for larger particles. Larger, slower drops are over-
sampled due to their longer residence times within the 
FOV. It is important to note that this would be true 
even if the spatially resolved results were sampled at a 
lower effective record rate such that no particle resides 
within the FOV for more than one frame, as is some-
times incorrectly suggested to remove size-velocity bi-
ases. Both distributions are clearly biased in different 
ways. 

 

Table I: Conditions for Simulation A 

Property Value Property Value 
σa 0.4 ln(μm) ω 0.5 
μa 3.5 ln(μm) C1 -16 
σb  0.05 ln(μm) C2 0.15 
μb  6.0 ln(μm) C3 46  
 

 

Figure 7.  Simulation A results showing (a) one 
frame from the dataset, (b) the size-velocity distribu-
tion, (c) the particle size number PDF and (d) the er-
ror between the true underlying number PDF com-
pared to the measured and corrected number PDFs. 

The spatially resolved distribution can be used to 
correct for the size-velocity bias by multiplying the 
PDF by the velocity fit generated by the temporally 
resolved distribution, following the suggestion by 
Lefebvre [1]. Assuming that an appropriate velocity 
function that matches well with the underlying mean 
size-velocity correlation is selected and a good fit is 
obtained, the corrected spatially resolved PDF is, 
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The resulting distribution is almost identical to the un-
derlying distribution, as illustrated by Figure 7(d). 

Next, the temporally resolved distribution is 
matched to the corrected spatially resolved distribu-
tion using, 
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The corrected temporally resolved distribution is also 
similar to the underlying PDF with near-zero error for 
the valid size range larger than dmin. With no errors in 
tracking, the corrected PDF errors decrease with in-
creasing N, decreasing dmin, and improved fitting to the 
true size-velocity correlation. 

In many instances in the literature, the character-
istic mean diameters are reported. The mean diameters 
are defined as, 
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The number population mean is defined as D10, the 
surface area weighted mean (or Sauter mean) is de-
fined as D32 and the volume weighted mean is defined 
as D43. When these statistics are measured from spa-
tially resolved data, corrections must also be applied 
such that, 
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Where ݒො௫ሺ݀௜ሻ/ݒො௫തതത	 is the velocity estimate normalized 
by the average estimated velocity. This correction al-
lows for accurate comparisons of droplet statistics.   
 

Table II: Conditions for Simulation B 

Property Value Property Value 
σa 0.4 ln(μm) ω 0.2 
μa 3.0 ln(μm) C1 -16 
σb  0.53 ln(μm) C2 0.15 
μb  5.0 ln(μm) C3 46  

 
 

 

Figure 8. Simulation B results showing (a) one frame 
from the dataset, (b) the size-velocity distribution, (c) 

the particle size number PDF and (d) the error be-
tween the true underlying number PDF compared to 

the measured and corrected number PDFs. 

 
A bi-modal particle size distribution and size-ve-

locity correlation that are more similar to experimental 
data is demonstrated with Simulation B. The test con-
ditions are N = 10000 and Fmax = 1000 with additional 
values listed in Table I. In this simulation, there is a 



larger quantity of small particles that cannot be re-
solved with the temporally resolved camera. An addi-
tional, normally distributed variation is added to the 
particle velocity such that particles with higher aver-
age velocities have more variation. A size-velocity 
correlation is developed using this data, as shown in 
Figure 8(b), and the fitted values to the temporally re-
solved distribution were C1 = -16.2, C2 = 0.147, and 
C3 = 45.9, which are very similar to the input size-ve-
locity correlation listed in Table II. This fit is used to 
correct the spatially resolved distribution resulting in a 
good match with the original underlying distribution 
as shown in in Figure 8(c) and (d). 

Furthermore, the volume PDFs can be compared, 
as shown in Figure 9. Because larger particles carry 
more volume per particle, the temporally resolved vol-
ume PDF generally matches the underlying volume 
PDF well. The corrected spatially resolved distribution 
matches well for particles larger than dmin as well as 
particles smaller than dmin. These results show the va-
lidity of the proposed correction method. 
 

 

Figure 9. Simulation B results showing (a) the parti-
cle volume PDF and (d) the error between the true 
underlying volume PDF compared to the measured 

and corrected volume PDFs. 

 
Experimental results 

The previous section develops simple methods to 
correct size-velocity biases and validates the method 

via application to simulated results where all other 
sources of uncertainty are removed. Here, the same 
methods are applied to the experimental results sum-
marized in Figure 1. 

As was done in the previous section, the correla-
tion between measured particle size and velocity is 
first determined from the temporally resolved (2×) 
FOV. The mean size-velocity relation appears to fol-
low a power-law function, giving the best-fit curve 
shown in Figure 6 with fit constants C1 = -55.9, 
C2 = 0.046, and C3 = 83.2. This relation is used to find 
the corrected 6× probability density shown in Figure 
10(a). Finally, this is used to estimate the percentage 
of the total drops which fall within the limited size dy-
namic range of the 2× FOV, resulting in the scaled 2× 
probability densities. 

Compared to the un-corrected PDFs in Figure 5, 
it is clear that the number and volume PDFs from the 
temporally and spatially resolved measurements 
match much better. The remaining differences be-
tween the two distributions from 40 to 600 μm could 
be attributed to the clipping of particles near the edges 
of the FOV. Unlike the simulation where the diameter 
is known, the experimental measurements may esti-
mate a smaller particle diameter if the particle is 
clipped. The 6× distribution may show more clipping 
due to its smaller field of view, thereby measuring 
more smaller particles in the 40 to 200 μm range and 
fewer particles in the 200 to 600 μm range. 

 

Figure 10.  Application of size-velocity corrections 
to experimental results (a) the raw and corrected 

number PDFs, and (b) volume PDFs. 



Table III: Characteristic Mean Diameters 

Distribution dmin D10 D32 
Measured 2×  39.3 μm 89.9 μm 195 μm 
Measured 6×  12.2 μm 44.6 μm 423 μm 
Corrected 6× ~0 μm 38.5 μm 278 μm 
 
The characteristic mean diameters can also be 

measured and compared in Table III. The measured 2× 
and 6× characteristic mean diameters are very differ-
ent, mostly due to the difference in the smallest diam-
eter than can be measured dmin. By correcting the 6× 
values, which in theory creates a correction to the true 
underlying distribution where there is no minimum di-
ameter (effectively dmin = 0), the characteristic mean di-
ameters from the 6× FOV decrease. The higher order 
mean diameter, D32, begins to approach the value 
measured with the 2× FOV. 

This experimental implementation shows how the 
correction method can be applied to real data. The fi-
nal corrected 6× probability density represents a more 
accurate, high dynamic range measurement of the 
droplets generated by the shock-induced crossflow 
condition. 

 
Conclusions 

Biases due to size-velocity correlations are a com-
mon issue in many spray measurement techniques. 
This work specifically focuses on the distinction be-
tween temporally tracked particle measurements ver-
sus spatially collected data that has not been correlated 
over time.  

All experimental data considered here are taken 
from high-speed digital in-line holography (DIH) 
measurements, although many of the conclusions are 
applicable to any image based particle measurement. 
In general, it is confirmed that when particles of dif-
ferent size classes travel at dissimilar velocities, spa-
tially collected particle distributions are biased toward 
slower particles with longer effective residence times. 
When it is possible to measure the mean relation be-
tween particle size and particle velocity, as is done 
here, then these biases can be removed by weighting 
the distribution by the mean velocity of each size class. 

When using modern high-speed cameras to per-
form DIH it is often necessary to trade spatial resolu-
tion (image pixel count) to achieve the desired tem-
poral resolution. To address, this it is proposed here to 
combine a second simultaneous DIH measurements at 
lower temporal resolution but higher spatial resolu-
tion. By assuming constant particle statistics over the 
measurement time and extrapolating measured size-
velocity correlations, it is demonstrated that size-ve-
locity biases can be removed from the high spatial res-
olution (low temporal resolution) data. 

Here, both fields-of-view were recorded using 
high-speed cameras. However, these same methods 
could be applied to many other image based particle 
measurements. For example, size-velocity correlations 
are easily measured using common, double-pulsed la-
sers and cameras (e.g. [8, 11]). If desired the proposed 
correction methods could be applied to convert the 
spatially sampled results in those works to average 
temporally correlated statistics. In cases where suffi-
cient temporal and spectral resolution can be obtained, 
this work also shows that it is preferable to apply par-
ticle tracking to the video data in order to get accurate 
particle statistics, as uncorrelated snapshots contain 
size-velocity biases. 
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