SAND2017-3108C

DATA-DRIVEN ADAPTIVE PHYSICS
MODELING FOR TURBULENCE
SIMULATIONS

Julia Ling and Andrew KurzawskKi
June 2017

Sandia
National
Laboratories

Funding for this work was provided by the Sandia LDRD program, and its support is gratefully acknowledged. Sandia National Laboratories is a multi-program
laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's

National Nuclear Security Administration under contract DE-AC04-94AL85000.




Motivation
- Can’t run LES of all the flows we care about

- RANS:
- Linear eddy viscosity models often give wrong results
- Non-linear eddy viscosity models are often hard to
converge

- Can we use machine learning to enable adaptive
physics modeling: turn on correction terms only where

they’'re needed?
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Background: Eddy Viscosity Models

- Linear Eddy Viscosity Models (LEVM)

- Simple, stable, cannot capture Reynolds stress anisotropy
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- Non-linear Eddy Viscosity Models
- Up to 5" order have been proposed

- Less numerically stable, but can better capture Reynolds stress
anisotropy

- Quadratic Eddy Viscosity Model (QEVM) implemented into in-
house incompressible flow solver
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Background: Scalar Flux Models

- Gradient Diffusion Hypothesis (GDH)

- Simple, stable, unable to capture scalar flux anisotropy
LS
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- Generalized Gradient Diffusion Hypothesis (GGDH)

- Less stable, better able to capture scalar flux anisotropy
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- We want to turn use LEVM/GDH in most regions of the
flow, only turn on QEVM/GGDH where they’re needed
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What is Machine Learning?

Data-driven algorithms to discern patterns and make predictions on
big, high-dimensional data

Linear regression, support vector machines, neural networks
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Random Forest Algorithm

X2 < 0.4
X< 0.2 X< 0.2
Y=1 X< 0.5 Y=1 Y=0




Using Machine Learning to Predict when
the LEVM assumptions are wrong:

- Ling and Templeton (2015) developed a machine learning
classifier to predict when the Reynolds stress anisotropy
IS high
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- Makes a prediction at each point in the flow

- Cross-validated over a data base of flows

- Accuracy of 89% in detecting regions of high Reynolds stress
anisotropy



Zonal Implementation

- Use Machine Learning (ML) classifier to trigger RANS
model corrections

- Used Gaussian filter to smooth f,, to give smooth
transitions
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Case Study: Turbulent Duct Flow

- Re = 3500 from Pinelli et al.

(a) DNS (Ref.?8) (b) RANS, LEVM
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Zonal Mask: fy,
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(a) DNS (Ref.28) (b) RANS, LEVM

(c) RANS, QEVM (d) RANS, Zonal QEVM
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Updating Zonal Mask
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Results with Updated Zonal Mask
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Conclusions from Duct Flow Case Study

- The zonal approach with the original ML mask was not
able to reproduce the proper strength or extent of the
secondary flows

- With a modified mask that encompassed regions of lower
anisotropy, the zonal approach resulted in stronger, bigger
secondary flows

QEVM Zonal, ML mask Zonal, updated mask




Case Study: Flow over a Wavy Wall

- Re = 7400, DNS from Rossi et al.

Contours of velocity magnitude
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Zonal Mask: fy,

Mask of fyr used for zonal implementation of QEVM and GGDH.
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Convergence
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Conclusions from Wavy Wall Case Study

- Zonal approach successfully reproduced accuracy of full
QEVM/GGDH approach, with improved numerical stability

- Zonal approach provided improved predictions, even
outside the corrected zone



Overall Conclusions

- Presented general framework for adaptive physics
modeling

- Can use data-driven classifiers to trigger model corrections where
they're needed

- Specific correction is open-ended

- We presented results for QEVM correction, but could use a
machine learning correction, or LES, or any other higher fidelity
model in these regions



