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Motivation
• Can’t run LES of all the flows we care about

• RANS:

• Linear eddy viscosity models often give wrong results

• Non-linear eddy viscosity models are often hard to 
converge

• Can we use machine learning to enable adaptive 
physics modeling: turn on correction terms only where 
they’re needed?



Background: Eddy Viscosity Models

• Linear Eddy Viscosity Models (LEVM)
• Simple, stable, cannot capture Reynolds stress anisotropy

• Non-linear Eddy Viscosity Models
• Up to 5th order have been proposed

• Less numerically stable, but can better capture Reynolds stress 
anisotropy

• Quadratic Eddy Viscosity Model (QEVM) implemented into in-
house incompressible flow solver



Background: Scalar Flux Models

• Gradient Diffusion Hypothesis (GDH)
• Simple, stable, unable to capture scalar flux anisotropy

• Generalized Gradient Diffusion Hypothesis (GGDH)
• Less stable, better able to capture scalar flux anisotropy

• We want to turn use LEVM/GDH in most regions of the 
flow, only turn on QEVM/GGDH where they’re needed



What is Machine Learning?
• Data-driven algorithms to discern patterns and make predictions on 

big, high-dimensional data

• Linear regression, support vector machines, neural networks



Random Forest Algorithm
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Using Machine Learning to Predict when 
the LEVM assumptions are wrong:
• Ling and Templeton (2015) developed a machine learning 

classifier to predict when the Reynolds stress anisotropy 
is high

• Makes a prediction at each point in the flow

• Cross-validated over a data base of flows
• Accuracy of 89% in detecting regions of high Reynolds stress 

anisotropy

fML



Zonal Implementation

• Use Machine Learning (ML) classifier to trigger RANS 
model corrections 

• Used Gaussian filter to smooth fML to give smooth 
transitions



Case Study: Turbulent Duct Flow

• Re = 3500 from Pinelli et al.



Zonal Mask: fML





Updating Zonal Mask



Results with Updated Zonal Mask



Conclusions from Duct Flow Case Study

• The zonal approach with the original ML mask was not 
able to reproduce the proper strength or extent of the 
secondary flows

• With a modified mask that encompassed regions of lower 
anisotropy, the zonal approach resulted in stronger, bigger 
secondary flows

QEVM Zonal, ML mask Zonal, updated mask



Case Study: Flow over a Wavy Wall
• Re = 7400, DNS from Rossi et al.

Contours of velocity magnitude



Zonal Mask: fML







Convergence



Conclusions from Wavy Wall Case Study 

• Zonal approach successfully reproduced accuracy of full 
QEVM/GGDH approach, with improved numerical stability

• Zonal approach provided improved predictions, even 
outside the corrected zone



Overall Conclusions

• Presented general framework for adaptive physics 
modeling
• Can use data-driven classifiers to trigger model corrections where 

they’re needed

• Specific correction is open-ended

• We presented results for QEVM correction, but could use a 
machine learning correction, or LES, or any other higher fidelity 
model in these regions


