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Develop Lifecycle Analysis Framework for Additive Manufacturing
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* Predictive uncertainties result in large safety
factors, reduced lifetimes, and increased costs. 1

Margin/Uncertainty > » Our approach develops tools to reduce

. . uncertainty, increase understanding, and i
Design Life s lInielre i g Assembly and Service
enhance predictive capability. S
Service requirements may Multiphysics approaches for
dictate design iteration to assure  Crack Initiation, Growth and Failure fully coupled simulation of
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predictive uncertainties. Transition from crack mechanical loading, etc. to
The lifecycle analysis provides a \ initiation to failure is not predict performance
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requirements. microstructure and
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(includes unique service environments, such as hydrogen
embrittlement, corrosion, microstructural aging, etc)
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Grain structure is distinct from wrought materials, ;s

PP R SRS | | Wrrought 304L austenitic
SLM 0.5 k wr USRS i g stainless steel
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* AM microstructures depend on processing
conditions
« What is the effect on structural properties?
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Tensile response can compare favorably rh) i

to wrought materials laser-deposited
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» Laser-deposited and wrought materials show similar tensile
strength and ductility despite very different microstructures

* How does the fracture response compare?
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Comparison of DED 304L materials with W=
different pedigree
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» Strengthening in AM austenitic stainless steel is not well
understood

- Strength will likely impact fracture resistance




. St
Fatlgue and fracture measurements L
« Fatigue crack growth: da/dN + Compact tension geometry
. ASTM E647, constant load amplitude | -~ B~13mm =~
. (thickness) {}
 Fracture resistance: J W~ 26mm %
« ASTM E1820, elastic-plastic analysis (width)
using J-R curve determination ©
Fatigue test, then fracture test
stress RO performed on same sample

f=1Hz

» 3-point bend geometry
- B~ 6.3 mm (thickness)
- W~ 13 mm (width)
- S ~50 mm (span)

 Direct current potential difference (DCPD) method for

in-situ monitoring of crack position




Specimen designation and orientation h) i,

SLM: R1-3 SLM: R2-2

A: TS (4)

B: SL (4)

;i bﬁil(:tdirteg'tion | DED
= shortest dimension B: LT (4)
TS: T = crack plane A:TS (4) LT (3)
S = crack direction
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Testing in the H-precharged condition

* Thermal H-precharging

- Exposure to gaseous H2 until saturated with
hydrogen (~60 days)
- Pressure: 138 MPa
- Temperature: 300°C

- Hydrogen content ~140 ppm (wt)

 Testing in air after precharging with hydrogen

» Mechanical testing in H-precharged condition is similar
to in situ testing in high-pressure gaseous hydrogen for
tension, fatigue and fracture

- Must consider the H-solute hardening:
strength increase of 10-20%




Fatigue crack growth measurements
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* Fatigue crack growth rates of laser-deposited type
304L & 316L are consistent with wrought steels

« Hydrogen accelerates fatigue crack growth in laser-
deposited materials, unlike wrought materials




Laser-deposited materials display crack rh) i

blunting
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Fracture measurements
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Fracture resistance of
H-precharged AM 304L is:
- Similar to response of

austenitic stainless steels
welds

Lower fracture resistance
compared to forgings is

consistent with accelerated
fatigue crack growth

Lower strength results in
higher fracture resistance

(as expected)




Fracture measurements
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« Fracture resistance in air
can be significantly lower
than H-precharged forgings

« But generally, fracture
resistance in air is high
(not shown >200 MPa m'2)

* Low temperature appears
to significantly reduce
fracture resistance

- Work is under way to
substantiate

- Probably related to unique
microstructures




» Macroscopic defects
are associated with
interlayers of build
(when H-precharged)
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Fine fracture features consistent with H-

assisted fracture and mlcrostructure
SLM (TS)

« Hydrogen induces
boundary fracture
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Fine fracture features consistent with H- =

» Macroscopic defects
associated with
interlayers of build
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Mechanisms of fatigue and fracture may be @)=
similar to observations for welds

Y A2

ks . Cross sections just below the fracture surface
. from fracture tests of H-precharged
. 304L/308L welds show:
* Fracture of ferrite
* Fracture at v/ boundaries
» Void nucleation at ferrite

boundaries

Laser-deposited 304L

304L/308L
welds

Hydrogen-induced
damage in welded
austenitic stainless
Steels has been reported
to be associated with the
ferrite phase




Summary .

* Additively manufactured austenitic stainless steels
feature good combination of strength and fracture
resistance

 Combination of properties is inferior to forged material
e Quality AM materials are similar to welds

* Generally AM materials show greater sensitivity to
hydrogen-assisted fracture than wrought materials
* Mechanisms of hydrogen interactions appear

gualitatively similar to welded microstructures
* Unique microstructures of AM product may be more
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