

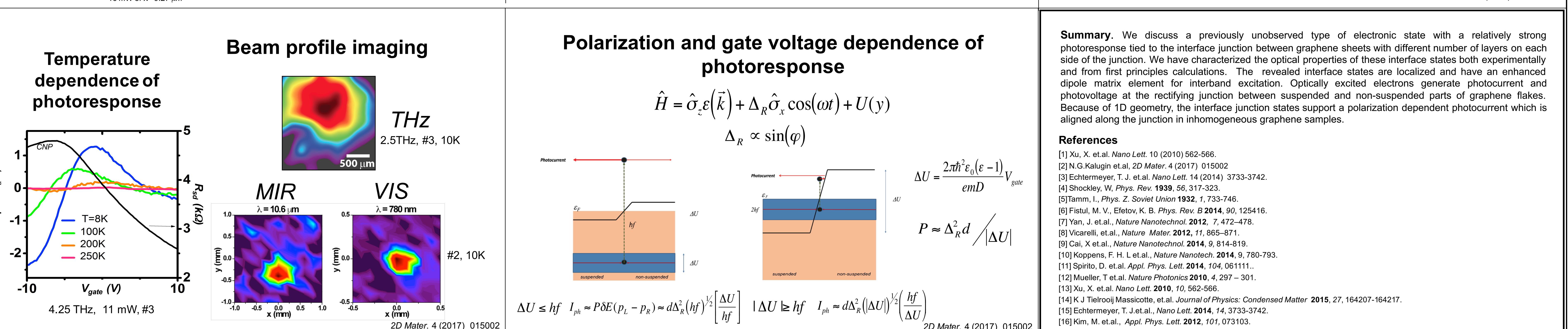
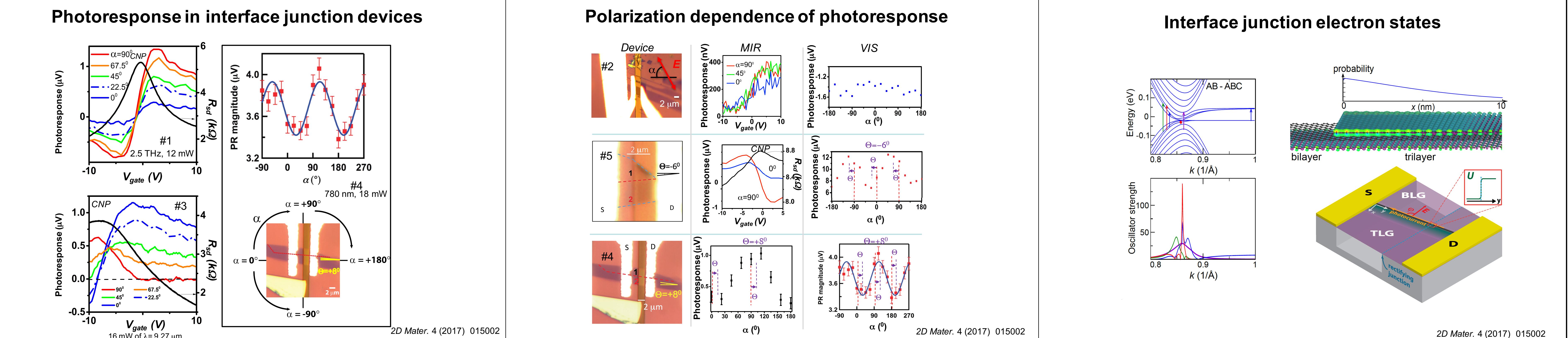
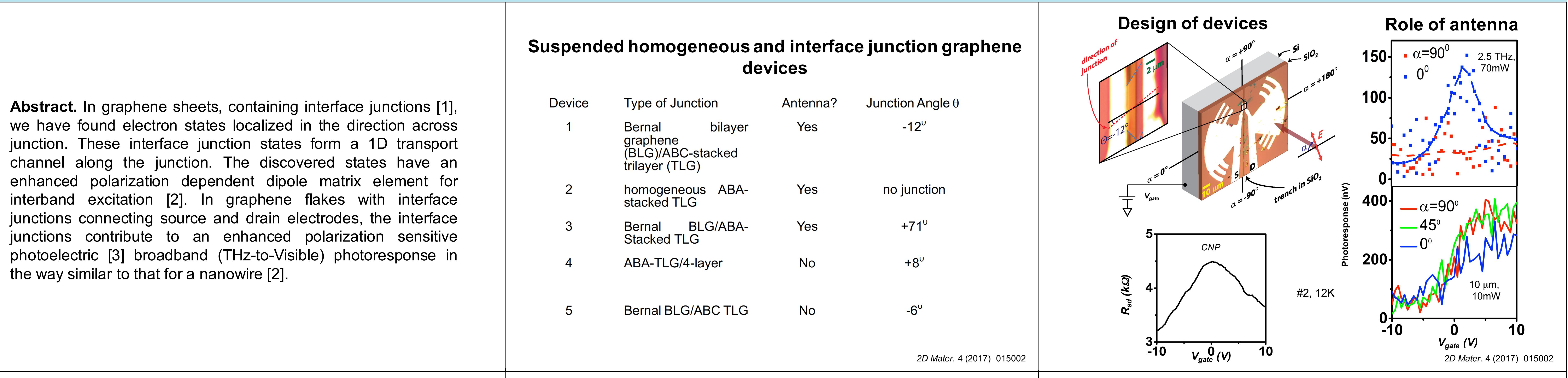
Interface junction states and broadband polarization-sensitive photoresponse in inhomogeneous graphene

Nikolai G. Kalugin¹, Lei Jing², Eric Suarez Morell³, Gregory C. Dyer⁴, Lee Wickey¹, Mekan Ovezmyradov¹, Albert D. Grine⁴, Michael C. Wanke⁴, Eric A. Shaner⁴, Chun Ning Lau², Luis E. F. Foa Torres⁵, Mikhail V. Fistul^{6,7} and Konstantin B. Efetov^{6,7}

¹New Mexico Tech, Socorro NM 87801, USA

²University of California-Riverside, Riverside CA 92521, USA

³Universidad Técnica Federico Santa María, Casilla 110-V, Valparaíso, Chile




⁴Sandia National Laboratories, Albuquerque, NM 87185, USA

⁵Universidad de Chile, Santiago, Chile

⁶Ruhr-University Bochum, D-44801 Bochum, Germany

⁷National University of Science and Technology MISIS, Moscow 119049, Russia

Graphene 2017
March 28- 31, 2017, Barcelona, Spain

Summary. We discuss a previously unobserved type of electronic state with a relatively strong photoresponse tied to the interface junction between graphene sheets with different number of layers on each side of the junction. We have characterized the optical properties of these interface states both experimentally and from first principles calculations. The revealed interface states are localized and have an enhanced dipole matrix element for interband excitation. Optically excited electrons generate photocurrent and photovoltage at the rectifying junction between suspended and non-suspended parts of graphene flakes. Because of 1D geometry, the interface junction states support a polarization dependent photocurrent which is aligned along the junction in inhomogeneous graphene samples.

References

- [1] Xu, X. et.al. *Nano Lett.* 10 (2010) 562-566.
- [2] N.G. Kalugin et.al. *2D Mater.* 4 (2017) 015002
- [3] Echtermeyer, T. J. et.al. *Nano Lett.* 14 (2014) 3733-3742.
- [4] Shockley, W. *Phys. Rev.* 1939, 56, 317-323.
- [5] Tamm, I. *Phys. Z. Soviet Union* 1932, 1, 733-746.
- [6] Fistul, M. V., Efetov, K. B. *Phys. Rev. B* 2014, 90, 125416.
- [7] Yan, J. et.al., *Nature Nanotechnol.* 2012, 7, 472-478.
- [8] Vicarelli, et.al., *Nature Mater.* 2012, 11, 865-871.
- [9] Cai, X. et.al., *Nature Nanotechnol.* 2014, 9, 814-819.
- [10] Koppens, F. H. L. et.al., *Nature Nanotech.* 2014, 9, 780-793.
- [11] Spirito, D. et.al. *Appl. Phys. Lett.* 2014, 104, 061111..
- [12] Mueller, T et.al. *Nature Photonics* 2010, 4, 297-301.
- [13] Xu, X. et.al. *Nano Lett.* 2010, 10, 562-566.
- [14] K J Tielrooij Massicotte, et.al. *Journal of Physics: Condensed Matter* 2015, 27, 164207-164217.
- [15] Echtermeyer, T. J. et.al., *Nano Lett.* 2014, 14, 3733-3742.
- [16] Kim, M. et.al., *Appl. Phys. Lett.* 2012, 101, 073103.