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PROBLEMS OF INTEREST
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DNS and LES
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 Emphasizes explicit calculations

 Requires high resolution and low dissipation

 Most useful to inform uncertainties in engineering analyses

 Also useful for model development

Figure: Mach 2.0 boundary layer DNS w/ p = 7 high-
order elements on coarse mesh

Figure: Coarse mesh misses profile



DES and WMLES
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 Scale necessitates wall modeling

 Need to accurately predict acoustic load

 Direct engineering applicability

 Requires RANS solution and implicit time integration

Figure: Turbulent flow around store in cavity



Geometric Complexity

 Need to reduce mesh generation time

 Different methods have different quality requirements

 High-order unstructured requires smooth elements, but supports non-smooth mesh

 Unstructured has a more natural path to adaptivity
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FSI and Moving Meshes

 Some problems require two-way coupling

 Often must combine low-order structure with high-order fluid
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Plate

 = 500



Efficiency and Robustness

 Efficiency
 Strong argument for high-order in DNS

 Lots of arguments about high-order in LES

 Seemingly little success in DES for high-order

 What does robustness mean?
 Doesn’t blow up

 Doesn’t give unrealizable answers (expansion shocks, etc.)

 Doesn’t exhibit excessive spurious oscillations

 Gives better answers with mesh refinement

 How do we get there?
 Use the math Luke!

 …and pray with RANS equations
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VIEWS ON STABILITY AND OTHER 
REQUIREMENTS
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Illustrative Example
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 What do we care about?
 Doesn’t blow up and converges (stability)

 Satisfies Rankine-Hugoniot shock relation

 Satisfies the entropy condition



Illustrative Example

How do we ensure stability of the nonlinear term?
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Illustrative Example

How do we ensure stability (and entropy) of the nonlinear term?

Exact Integration

Artificial Viscosity

Summation-by-parts
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Illustrative Example
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 Satisfying Rankine-Hugoniot
 Prove it directly using weak form solution

 Use integration by parts

 Be sure to keep everything in the space—need exact quadrature

 For SBP operators, prove it on strong form using Lax-Wendroff
Theorem



Illustrative Example

 Stability
 Nonlinear energy/entropy condition on advective term bounds 

solution in L2

 Ensures errors do not grow nonlinearly

 Weak solution
 Want to ensure if we converge, we converge to weak solution

 Wrong shock speeds have bad implications

 Entropy Stability
 Ensures a weak solution is the physically realizable solution

 Satisfies the second law of thermodynamics

 Can be satisfied locally
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OUR APPROACH
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High-Order Collocation Elements
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� = −1, � = −1 � = 1, � = −1

� = 1, � = 1� = −1, � = 1

� = −1, � = −1 � = 1, � = −1

� = 1, � = 1� = −1, � = 1

Enrich to p = 3



High-Order Collocation Elements

 Entropy conservation correction (no integral form)

 Entropy stable inter-element penalty
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High-Order Collocation Elements
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Entropy Stability
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Entropy Stability

 Satisfy entropy conservation by construction

 Sufficient condition is to satisfy locally

 Need diagonal norm for time term
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Discontinuity Capturing

 Artificial viscosity based on Hughes, Mallet, and Shakib

 Need to Regularize
 Project onto linear element

 Take elemental max per node

 Linearly interpolate back onto high-order element
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Discontinuity Capturing

 Artificial viscous term

 Entropy Stability

26



Discontinuity Capturing
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p = 3



Discontinuity Capturing
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Persson and Peraire Linear Residual Matrix

p = 2



Discontinuity Capturing
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Persson and Peraire Linear Residual Matrix



Continuous Formulation

 Initially discontinuous nodes have identical solution

 Add residuals such that discontinuous nodes have same 
residuals

 Condense identical residuals

 Maintains entropy stability

 Most useful for mesh motion
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Continuous Formulation
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Accuracy Degradation

 “Conventional” scheme shows design order on smooth 
meshes

 Source terms (MMS) are underintegrated and show less than 
design order

 Canonically bad meshes also show degradation of accuracy

32

Cartesian
Mesh L1 error L1 rate Linf error Linf rate
1 1.74E-007 5.92E-004
2 1.16E-008 3.90 7.30E-005 3.01
3 7.13E-010 4.02 5.11E-006 3.83
4 4.15E-011 4.10 3.98E-007 3.68

TQuad
Mesh L1 error L1 rate Linf error Linf rate
1 1.25E-006 5.02E-003
2 8.68E-008 3.84 1.16E-003 2.10
3 5.66E-009 3.93 1.62E-004 2.84
4 3.68E-010 3.94 1.52E-005 3.41



Other Formulations
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� = −1, � = −1 � = 1, � = −1

� = 1, � = 1� = −1, � = 1

� = −1, � = −1 � = 1, � = −1

� = 1, � = 1� = −1, � = 1

� = −1, � = −1 � = 1, � = −1

� = 1, � = 1� = −1, � = 1

Conventional

Fully 
Staggered

Generalized



Other Formulations
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Conventional
Mesh L2 error L2 rate
1 3.17E-005
2 1.19E-006 4.74
3 6.12E-008 4.28
4 2.66E-009 4.52

Fully Staggered
Mesh L2 error L2 rate
1 1.01E-005
2 2.07E-007 5.60
3 6.82E-009 4.93
4 2.46E-010 4.79

Generalized
Mesh L2 error L2 rate
1 8.32E-006
2 3.19E-007 4.71
3 1.04E-008 4.94
4 3.66E-010 4.83

p = 4



Other Formulations

 Based on exact diagonal mass matrix
 “Fixes” rely on moving solution points to Legendre-Gauss points

 Does Lax-Wendroff work with staggering

 Does it make a difference for real problems?
 For p = 1, it matters

 For p = 3, it may matter

 For p = 7 in turbulent flow, probably doesn’t matter
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Moving Geometry

 Solve ALE equations

 Solve linear elasticity for mesh
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Geometry Fitting
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• Surface Fitting
• p = 3

Faceted Surface Fit



Moving Geometry
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Moving Geometry
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Cylinder in 
inviscid crossflow
in a 3D channel

Coarse 
simulation shows 
oscillating 
cylinder doesn’t 
exhibit any 
spurious 
behavior

M = 0.5
P = 2
A = 0.25 m
D = 1.0 m



Fluid-Structure Interaction
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 Time steps are sufficiently small for accuracy
 No need for sub-iterations between physics solvers

Predictor:



Fluid-Structure Interaction
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ma cv ku  vkt

v(0)  u(0)  0

u(t) edt acos(t) bsin(t)  v (t  )



ENTROPY STABILITY AND RANS
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RANS
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SST K-Omega

Spalart Allmaras



RANS
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SST K-Omega

Spalart Allmaras



Entropy Stability and RANS

 Can satisfy:
 Symmetrize equations

 Convex entropy variables

 Compatible with DCO stability

 Don’t know:
 Actual bounds

 How to deal with LW-satisfying form of energy for SST

 How to show boundedness of source terms
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DES
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p = 3, SA DES



DES
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p = 3, SA DES



Linear Solvers

 Fluid solver
 Block SGS

 Block ILU0

 Uses Trilinos/Tpetra and Trilinos/Ifpack2

 Elasticity Solver
 Multigrid

 SGS on fine, high-order mesh
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Linear Solvers
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Future Needs

 More on shock capturing

 Reacting flows

 More on linear/nonlinear solvers

 LES models for high-order methods

 More friendly turbulence models or different solution 
approaches

 hp-Adaptivity

 Comparisons to SBP finite-difference
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Future Directions at Sandia

 Solve real problems
 Move toward wall-modeled LES

 Simulation time comparison to “optimal” low order methods

 Continue addressing workflow issues

 Requires application framework to do it right
 Need exact same physics routines

 Hard to make valid comparison between codes

 Need flexibility to code each algorithm optimally

 Take disruptive changes from many core as opportunity

 Requires serious investment/commitment
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