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PROBLEMS OF INTEREST




DNS and LES
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Figure: Mach 2.0 boundary layer DNS w/ p = 7 high- Figure: Coarse mesh misses profile

order elements on coarse mesh

=  Emphasizes explicit calculations
= Requires high resolution and low dissipation
= Most useful to inform uncertainties in engineering analyses

= Also useful for model development 5
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DES and WMLES ) =
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Figure: Turbulent flow around store in cavity

= Scale necessitates wall modeling

= Need to accurately predict acoustic load

= Direct engineering applicability

= Requires RANS solution and implicit time integration



Geometric Complexity ) £,

= Need to reduce mesh generation time
= Different methods have different quality requirements
= High-order unstructured requires smooth elements, but supports non-smooth mesh

= Unstructured has a more natural path to adaptivity
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FSI and Moving Meshes ) .
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= Some problems require two-way coupling
= Often must combine low-order structure with high-order fluid




Efficiency and Robustness .

= Efficiency
= Strong argument for high-order in DNS
= Lots of arguments about high-order in LES
= Seemingly little success in DES for high-order

= What does robustness mean?
= Doesn’t blow up
= Doesn’t give unrealizable answers (expansion shocks, etc.)
= Doesn’t exhibit excessive spurious oscillations
= Gives better answers with mesh refinement

= How do we get there?
= Use the math Luke!
= _.and pray with RANS equations



VIEWS ON STABILITY AND OTHER
REQUIREMENTS
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llustrative Example .

O+ 0, f (u) = Opg(u, Oyu),

uZ
f (u) - ?7 g (’l;l;, a:i;u) - :uaa;u

= What do we care about?
= Doesn’t blow up and converges (stability)

= Satisfies Rankine-Hugoniot shock relation

zt d.’% zr 1 9 9
[f (’U»)L; dt [ULEE — 2 (u:z:;*‘ U, ) dt (ua:,ir Uy )

= Satisfies the entropy condition

2 3
8,8 + 8, F(u) = 8, (%) +0, ("—) <0




lllustrative Example

Ou+ Oy f (u) = Org(u, Ozu),

u2

flu) = 5 g(u, O,u) = po,u
up(r) = uspi()

1

~
/ ¢i;O0yu;dV + f $i0x f (up)dV =¢W@m¢jujml_]

- [ dudmo.psusav

How do we ensure stability of the nonlinear term?
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lllustrative Example

How do we ensure stability (and entropy) of the nonlinear term?
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[ uids )V = %
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Exact Integration

w

f PiprurO:Qju;dV — f Ui P PrurOpju;dV =

Artificial Viscosity

3l

/ $:0,; f (u;)dV + / OupifiypydV — [ wshiDoch; f () AV + / O, brttsfiybydV > - )

Summation-by-parts
1 1 u?

g([‘lu]ij + [uglij) u; — Ui (lguli; + [uglij) u; = £

’[quﬁiaz = Giala, [[u‘ﬂ]am = UpGai
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llustrative Example UL

Opu+ Oy f (u) = Org(u, Ozu),

u2

f (U) - E) g (’U,, @mfll:) - Mamu

= Satisfying Rankine-Hugoniot
= Prove it directly using weak form solution
= Use integration by parts

(S 1) + [ sy

10
i+, (S

= Be sure to keep everything in the space—need exact quadrature

= For SBP operators, prove it on strong form using Lax-Wendroff
Theorem

Pu,+Af =0 fi=filtice, . uine),  filv,...,0) = f(v)

POy + P A =[x — i fr + PO — 4, f
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lllustrative Example &,

= Stability
= Nonlinear energy/entropy condition on advective term bounds
solution in L2

= Ensures errors do not grow nonlinearly

= Weak solution
= Want to ensure if we converge, we converge to weak solution
= Wrong shock speeds have bad implications

= Entropy Stability
= Ensures a weak solution is the physically realizable solution
= Satisfies the second law of thermodynamics
= Can be satisfied locally
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OUR APPROACH
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) B

High-Order Collocation Elements
| etV + [ 0050wV = 6 + 6 + 6 — [ 0,88 0 julu)dv

Pou+ Quf, = gl + gl + g + QTC%D,@.W

= Entropy conservation correction (no integral form)
95 ) = = larlij fe(uy) — ‘[%flgmﬂijljv 95f ;S)ﬂm = [gplia éS)(uiaua)
g(S) = Ol — [Qk]:'k]
= Entropy stable inter-element penalty
g =i Ny — W Lo + el Al (e [8]000)
Hre i l51 — I OYe + Il Al (50 [0
B f O, = U (s ul), el Al = ol Al [, [11,07)
g = [L, F, 11 — [L{FL + [L [AlJL + [R, F 11 — [REFIL + [Ry A1
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High-Order Collocation Elements @
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Entropy Stability UL

S = —ps F, = —pu;s w! =0,8

Suu - Sfm gTSﬂmg >0 V{f 7£ 0

fu - fwwm fw - ‘ij éij = CjjWy = éﬁ, ga:;éijfwj > 0

atu + aa:iﬁ(u) - amicijamju
0,50+ 0,50, fi(u) = 0,50,,¢;;0,,u

0,S + 0, F; = w' 0,60, w = Oy, (w' é;0,,w) — Opw" &;0,,w

d [sav+ [ Fasi= [ w'e,dwds,— [ o.ute0,wav
dt Jo 0 o0 ! o !
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Entropy Stability
%LSdV+/mﬁ;-dSi§0

= Satisfy entropy conservation by construction

w' [QpFi]l = 1T QuF, = Fy|, — Fi,

= Sufficient condition is to satisfy locally
Wl (FOF — fOR B

fin= Z Z Z(Ifkf k (Wa ) (we —we)" f if,S) (ue, ur) = Yp — Yy

=i+l =1
= Need diagonal norm for time term
w?pijatuj = ]L,pz]@tg(u])
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Discontinuity Capturing UL

= Artificial viscosity based on Hughes, Mallet, and Shakib

o (Lu)" (Lu) ’
o= whu + O, w” g, 0w

|7}, " Lu]
fl. = max o
o (wTu+ 9, w7 g, 0, w)?

M, = Tadia’g(ﬂc)ﬁ

Lu = Ou+ ApOyu — 0,60, w, O = —0y, fr + 05,60, w
Lu = A0y u — Oy, fi

= Need to Regularize
= Project onto linear element
= Take elemental max per node

= Linearly interpolate back onto high-order element .



Discontinuity Capturing ) b

= Artificial viscous term

/m 1™ 11D, 570(1;)dSs — L Dsthig™ 10D, 50 (1) AV

/m ¢igﬁmM8mm¢jW(Uj)de — /;%awtqﬁiggmM'@mmcﬁjw(uj)dV

= Entropy Stability

f(’)ﬂ ¢iw (ui)Tgfmﬁuwamm (ﬁj w (uj )dS£ - L awed)iw (ui)Tglmﬂwuamm ¢j w (uj )dv

/ w(u;) ¢ zm‘Mamm(ﬁjW(Uj)dS{ — / (%tqﬁiw(ui)ngmM(?mmqﬁjw(uj)dV
o9 Q
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Discontinuity Capturing .
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Discontinuity Capturing UL

Pressure
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Pressure
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Persson and Peraire Linear Residual Matrix
28




Discontinuity Capturing UL

DCO Viscosity DCO Viscosity
17956406 17952406
E 1.6e+6 E1 646
—12e46 — 126+
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Persson and Peraire Linear Residual Matrix
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Continuous Formulation ) 2=,

= |nitially discontinuous nodes have identical solution

u(zy) = u(zr) = u(z:)

= Add residuals such that discontinuous nodes have same
residuals

= Condense identical residuals

Owu(xr) = Owu(xg) = Owu(x;)

= Maintains entropy stability
= Most useful for mesh motion
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Continuous Formulation
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Accuracy Degradation UL

= “Conventional” scheme shows design order on smooth
meshes

= Source terms (MMS) are underintegrated and show less than
design order

= Canonically bad meshes also show degradation of accuracy

Cartesian

Mesh L1 error L1 rate Linf error Linf rate
1 1.74E-007 5.92E-004

2 1.16E-008 3.90 7.30E-005 3.01

3 7.13E-010 4.02 5.11E-006 3.83

4 4.15E-011 4.10 3.98E-007 3.68
TQuad

Mesh L1 error L1 rate Linf error Linf rate
1 1.25E-006 5.02E-003

2 8.68E-008 3.84 1.16E-003 2.10

3 5.66E-009 3.93 1.62E-004 2.84

4 3.68E-010 3.94 1.52E-005 3.41
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Other Formulations ) e

x=—-1y=1 x=1y=1
® = - o
® [ [ [
Conventional
[ ] [ [ L
@ @ ® ®
x=-1y=-1 x=1Ly=-1
x=-1y=1 x=1y=1 x=-1y=1 x=1y=1
o o—9 6—6—o6—0
o [ [ oo o o 00
® O o 0
o o e o0
Fully Generalized
Staggered e @ ¢
Do o o 00
® O o 0
o o o Qe o o o0
c0—o e—o o——60—%©
x=-1y=-1 x=1Ly=-1 x=-1y=-1 x=1Ly=-1




Other Formulations
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Conventional

L2 error

3.17E-005
1.19E-006
6.12E-008
2.66E-009

Fully Staggered

L2 error
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2.07E-007
6.82E-009
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Generalized

L2 error

8.32E-006
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1.04E-008
3.66E-010

L2 rate
474

4.28
4.52

L2 rate
5.60

4.93
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L2 rate
4.71

4.94
4.83
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Other Formulations )=,

= Based on exact diagonal mass matrix

= “Fixes” rely on moving solution points to Legendre-Gauss points
= Does Lax-Wendroff work with staggering
i+ IP'Af =0
P Py + "PIPAf = P, + y"Af =0, PL=I"P

"%Tf)@t +P'Af =ty — i fi + %Tﬁatﬁh —, f

= Does it make a difference for real problems?
= For p =1, it matters
= For p =3, it may matter
= For p =7inturbulent flow, probably doesn’t matter
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Moving Geometry .

= Solve ALE equations

8t(J u) + 8&@ (G&Mfg — &,;a:gakgu) = @wkamégﬂ%w
3tj — %ﬂ%ﬁm = 0, 3@&]@@ == 0, (= 1, 2, 3

Qe = Jam{k
= Solve linear elasticity for mesh

Or,; (ANexrdij + 2pe;5) = f;

max(v)

/lei

E|:ch —
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‘ Sandia

Geometry Fitting .

e Surface Fitting

Surface Fit
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Moving Geometry ) =,

Cylinder in
inviscid crossflow
in a 3D channel Velocity Magnitude

6.219e-01 150 299 448 5.970e+02
Coarse (N IWII [ ] ]
simulation shows
oscillating
cylinder doesn'’t
exhibit any
spurious
behavior

M=0.5
P=2
A=0.25m
D=10m
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Sandia

Fluid-Structure Interaction e

= Time steps are sufficiently small for accuracy
= No need for sub-iterations between physics solvers

Advance | Transfer:
timestep o owt ey, v

1

Solve structure
Rs(u"t u™,a™ fith) =0

Solve mesh motian
]:'{)g»‘/lr(x“"’“,u'”“"1 ) =20

Transfer fluid N Solve fluid
forces: fF(tn ) T Re(g T g X X)) =0

Sierra/SD K / Sierra/Aero

- b o | . e | '_
Predictor: up™ = ul + agAta + aq At (G} —up )




Fluid-Structure Interaction

Laboratories
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ENTROPY STABILITY AND RANS
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RANS (]

SST K-Omega
p puy, 0 0
( pU; \ { puiug + poi, \ ( Oik + Tik \ ( 0 \
pE | +0., | puE+wp | =0, Up(Top + o) + KO, T | + —0,;0,,u; + [3* pkw
ka P’Ufkk (M + g)awkk Uijﬁmju,- — ﬂ*pkw
\ pw ) \  puw ) \ (1 + prer ) O, w /] \ V400, u; — [ pw’ )

( 0 \
P PU 0 0
A puity, + poi, —9 0 n a2
pE 2 pukE -+ urp Ty ug('rgk + 05];;) + I‘f,@ka pc 8 — f (_l{)
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\ +%620mj 00, v }

g

43
-



RANS

SST K-Omega
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Entropy Stability and RANS =

= (Can satisfy:
= Symmetrize equations
= Convex entropy variables
= Compatible with DCO stability

= Don’t know:
= Actual bounds
= How to deal with LW-satisfying form of energy for SST

= How to show boundedness of source terms
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Linear Solvers (]

= Fluid solver
= Block SGS
= Block ILUO
= Uses Trilinos/Tpetra and Trilinos/Ifpack2

= Elasticity Solver
= Multigrid
= SGS on fine, high-order mesh




Linear Solvers ) 2=,

solve F'(qg) =0 Ag,

iterate Aﬁneéqk = —F(qk), ¢ = ¢" + 6¢F

Am@m =} \/ T =+ Rﬂy

Acoarsey = Rb

Acoarse = RAg,




Future Needs ==

= More on shock capturing

= Reacting flows

= More on linear/nonlinear solvers

= LES models for high-order methods

= More friendly turbulence models or different solution
approaches

= hp-Adaptivity

= Comparisons to SBP finite-difference




Future Directions at Sandia

= Solve real problems

Move toward wall-modeled LES
Simulation time comparison to “optimal” low order methods

Continue addressing workflow issues

= Requires application framework to do it right

Need exact same physics routines

Hard to make valid comparison between codes

Need flexibility to code each algorithm optimally

Take disruptive changes from many core as opportunity

Requires serious investment/commitment




