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 Electron emission from cathode surfaces: 

• Turns on when electric field exceeds 240 kV/cm.    
[Di Capua and Pellinen, J. Appl. Phys. 50, 3713 (1979)]

• Prior to magnetic insulation, loss current is given by space-

charge limited emission.

• After magnetic insulation, electron flow current calculated as 

the average between the collisionless and collisional MITL-

electron-flow models. [Phys. Rev. ST Accel. Beams 9, 090401 (2006)]  
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A transmission-line-circuit model of the Z 

accelerator has been developed. 

 The circuit uses 0D, 1D, and 2D transmission line elements to 

model the entire accelerator from Z’s 36 Marxes to the insulator 

stack, MITL system, vacuum-post-hole convolute, and load.

 The model was implemented using the Bertha transmission line 

circuit code.  

 Simulations run in less than 30 seconds on a desktop computer. 

 The model is used for pre-shot analysis to design experiments 

and provide a prediction for the load-current time history, and 

post-shot analysis to provide a load-current measurement.

 We are presently developing a physics-based model of current 

loss within the Z vacuum section, to allow us to design loads with 

improved current delivery.

 The current loss model simulates electron emission from 

cathode surfaces, ion emission from anode surfaces, and the 

formation and evolution of electrode plasmas.
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The Z circuit model is consistent with experiments 

using a variety of inner MITL and load configurations.

 Measured and simulated insulator-stack currents agree to within 2%.

 Measured and simulated load-implosion times agree to within 2 ns.

The simulation results are insensitive to random error in the ion-diode model 

parameter optimization.

 Random error in the simulated load current and simulated implosion time was determined from simulations 

using parameters from multiple optimization runs.

 Simulated load current typically varied less than 2% (1σ) over 20 optimization runs.

Several ion diode model parameters were optimized using a 

particle swarm optimization technique 
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The model includes the following 

sources of current loss within the 

vacuum region of Z.
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 Ion emission from anode surfaces:

• Ions emission from an anode surfaces within the 

convolute and inner MITL after the temperature has 

increased by 400 K. [Cuneo, Ph.D. thesis, (1989); Sanford et al., 

J. Appl. Phys. 66, 10 (1989)]

• The anode-surface temperature increases due to ohmic

heating and energy deposition by MITL-flow electrons 

that impact the anode. [Knoepfel (2000); NIST ESTAR data] 

• Ion-current loss is assumed to be space-charge-limited, 

and is estimated using the non-relativistic Child-Langmuir 

expression. [Child, Phys. Rev. (1911); Langmuir, Phys. Rev. (1913)]

• The space charge limited ion current can be enhanced 

due to electron-flow charge that accumulates within the 

convolute and inner MITL. [Langmuir, Phys. Rev. (1929); 

Desjarlais, Phys. Rev. Lett. (1987)]

 Formation and evolution of electrode plasmas:

• Cathode plasma expansion rate of 1.1 cm/μs.                                                                                   
[Hutsel et al., SAND2014-17769 (2014)]  

• Anode plasma expansion within the convolute and inner 

MITL.
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MagLIF – 10-mm-tall liner 7.2 nH 3 mm

MagLIF – 7.5-mm-tall liner 6.4 nH 3 mm

Washington - MagLIF feed with a 

large-diameter heavy liner
5.4 nH 3 mm

Lincoln ETI 5.3 nH 4 mm

Low-inductance MagLIF ~5 nH 3-4 mm

Dynamic hohlraum 2.8 nH 6 mm

65-mm-diameter tungsten-wire 
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2.7 nH 7 mm

70-mm-diameter stainless-steel-

wire array
1.7 nH 6 mm

Inductive short-circuit load 1.5 nH 6 mm
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Block diagram of the Z circuit model 

 The optimization was used to determine 

several model parameters that were not 

constrained based on published data.  

 The optimized parameters determined the 

distribution of outer MITL electron flow current 

within the convolute and inner MITL, anode 

plasma velocities, and ion current 

enhancement. 

 The parameters were optimized to the overall 

stack current fit, stack current at stagnation, 

and stagnation timing from six Z shots.

 The results of the optimization are applied to 

all of the simulated Z shots.

circuit-model parameter
optimization

result

outer-MITL flow charge lost in the 

convolute
85%

outer-MITL flow charge accumulated in 

the convolute
4%

outer-MITL flow charge lost in the feed 10%

outer-MITL flow charge accumulated in 

the feed
1%

electron-impact angle (from anode 

normal)
82 degrees

anode-plasma-expansion velocity (feed) 3.7 cm/𝜇s

anode-plasma-expansion velocity 

(convolute)
17 cm/𝜇s

ion-charge enhancement constant 1.3
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