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Multiple Model Forms in UQ & Opt ) =,

Discrete model choices for simulation of same physics

Potential Flow

A clear hierarchy of fidelity (from low to high)

« Exploit less expensive models to render HF practical
» Muiltifidelity Opt, UQ, inference

» Support general case of discrete model forms
» Discrepancy does not go to 0 under refinement
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An ensemble of peer models lacking clear preference

structure / cost separation: e.g., SGS models

« With data: model selection, inadequacy characterizatior
 Criteria: predictivity, discrepancy complexity

» Without (adequate) data: epistemic model

Hybrid RANS/LES

form uncertainty propagation =  Potential Flow Vo e
« Intrusive, nonintrusive 2
»  Within MF context: CV correlation - Ll
7 Averaged Navier- equ
= Stokes (RANS) RANS
: L : 3
Discretization levels / resolution controls & Hiybrid
» Exploit special structure: discrepancy - 0 = RANS/LES
at order of spatial/temporal convergence %
Large Eddy
* Simulation (LES)

Combinations for multiphysics, multiscale




MF UQ with Spectral Stochastic Discrepancy Models (i) o

High-fidelity simulations (e.g., RANS, LES) can be prohibitive for use in UQ
Low fidelity “design” codes often exist that are predictive of basic trends
Can we leverage LF codes w/i HF UQ in a rigorous manner? - global approxs. of model discrepancy
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Generalized model ) i,
management infrastructure

Ordered Simulation Fidelities Ordered UQ Fidelities
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Multilevel and Multifidelity Sampling Methods 7| Netora

N
Monte Carlo estimator: |0 :lZQi

2
-> analytic variance Var[Q]:%

Geometrical MLMC - targeting discretization levels

Multilevel Monte Carlo estimator
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[Giles, 2008]
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Control variate MC — targeting hierarchical model forms

QMCOV _ gMC _ g (GMG B [G])

[Ng & Willcox, 2014: G is LF model for Q]
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1D steady state diffusion (elliptic PDE) i)

Model forms: covar. kernel + positivit
——(a( .f)dH(x ‘9) 1, xe(0,1) ' Y

(cosine/off, exp/on) for diffusivity RF

Discretization levels: 5 (poly degree
for solution basis)

d
a(x: &) = ag(x) + exp [G.Z \//T@i(x)&] Dimensionality: 9  Qol: 3
i=1

Cost model: cubic in spatial, 10x kernel

1(0) = u(1) = 0,
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Mean Error

1D transient diffusion (parabolic PDE)

du(z, &, t) B

S —ag)

u(ma‘sa U) = UU(:‘B

U(m}f, t)lﬁﬂ = U

0% u(x, €, 1)

0 x2 =0,

1&)} RS [O:tF]

a>0,ze[0,L]=QCR

and £ cZcR?

Model forms:

2 (N, =3, 21)

Discretization levels: 4 per form (N,)
Dimensionality: 7
Cost model: linear in N, cubic in N,

Qol: 1
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Multilevel-Multifidelity UQ: Multilevel-control variate MC ) ot

MLCV MC - both model forms & discretization levels

* Apply control variate to discrepancy at each level:
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« Optimal CV parameter and LF sampling increment remain the same as before
« Multilevel sampling allocation becomes

Ly YHF I—IF I
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G. Geraci, E., G. laccarino, “A multifidelity control variate approach for the multilevel Monte
Carlo technique,” Center for Turbulence Research, Ann Res Briefs 2015, pp. 169—181.




Multilevel Control Variate MC: 1D transient diffusion () i _
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Improve ML estimator: replace MC avg w/ sparse PCE recovery () iim
Multilevel with parameterized estimator variance

N

Assume parameterized form for estimator variance V[ O] and derive optimal N,

2 L
A o 2
V10]=—2 N, ==fVar(¥)C, |52 Var(¥,)C}
N* :
7 €7 =0
L E., G. Geraci, J.D. Jakeman, “Multilevel Monte Carlo Hybrids Exploiting Multidelity
for pOS|t|Ve K and 7/ Modeling and Sparse Polynomial Chaos Estimation," SIAM UQ 2016, Lausanne.

Note: ydoes not affect relative sample allocation

« Given etarget and omitting > 1, N, may overshoot (greater MSE reduction
than targeted)
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Estimation/update of x (and yif ¢is important) |=
« For OLS/CS with cross validation, approximate
Var[Q] from k-fold results
*  0g? known from recovered PCE
« Update xacross level pairs for
each ML iteration
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7| Netora

MLMF Deployment for DOE/DOD

DARPA (EQUIPS)
SEQUOIA ScramjetUQ
High perf UCAV nozzle HiFIRE hypersonic test facility
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Sandia
Example: Deployment of MLCV MC for DARPA ) fa,
Context: 3D LES simulation of scramjets is extremely expensive and a significant
challenge for UQ; even more so for OUU.

Goal: Demonstrate UQ in moderately high D using only a “handful” of HF simulations,
by leveraging lower fidelity 2D models and coarsened 2D/3D discretizations

UQ Approach: MLCV algorithm described previously.

1

‘MC —— |
MLMC —— | 2D 3D
MLMF —— | d/8 | 5E-4  0.11
d/16 0.014 1
TABLE: Computational cost.
£ 01}
2D 3D
d/8 4,191 263
d/16 68 9
Optimal sample allocations based on
: : : relative cost, observed correlation
0.01 —_— between models, and observed
10 100 1000 10000 100000 1e+06

. variance distribution across levels
Equivalent HF runs

Impact: accurate stats for 3D LES in 24D using only 9 HF evals. (50 equiv HF)
Similar (in flight): MLMF OUU for scramjet; MLMF UQ and OUU for nozzle




Example: Deployment of MLCV MC for DARPA

Sandia
National
Laboratories

correlation Variance reduction [%]
Coarse | Fine Coarse | Fine
Py mean 0.997 | 0.761 93 50
" Py rms.mean 0.875 0.593 72 30
Mpmean 0.975 0.649 89 36
TKE,,can 0.824 0.454 64 17
Xmean 0450 | 0.714 19 44

TABLE: Correlations and variance reduction.

P 0,mean P 0,rms,mean Myean TKE nean Amean
P1
d/8 || 4.02554e-03 | 1.90524e-06 | 1.99236e-02 | 3.34905e-07 | 4.24520e-03
d/16 || 4.03350e-07 | 7.77838e-08 | 6.68974e-05 | 1.74847e-08 | 4.40048e-05
P1 updated
d/8 | 4.05795e-03 | 1.90612¢-06 | 1.60029e-02
d/16 || 2.85017e-04 | 7.36978e-07 | 2.07638¢-03 _

Table 2: Variance for the five Qols of the P1 unit problem.

é
T



Deployment of MLCV MC to Nozzle UQ

Triangles
Coarse 6,119
Medium 29,025
Fine 142,124

TABLE: Number of triangles.

(a) Coarse (b) Medium
LF HF
Coarse 0.016 0.053
Medium | N/A  0.253
Fine N/A 1.0

TABLE: Computational cost.

(¢) Fine

Sandia
National
Laboratories




Deployment of MLCV MC to Nozzle UQ ) e

001 |

Aggregate MSE (normalized)

0.001 s

Optimal sample allocations based on
relative cost, observed correlation
between models, and observed
variance distribution across levels

1  Target accuracy LF MF
Coarse || Coarse | Medium | Fine
0.01 21143 1757 20 20
0.003 69580 5775 36 20
0.001 212828 || 17715 109 34
7 Qol correlation
Thrust 9.9865e-01

Mech. stresses || 4.8106e-03 |
Thermal stresses | 3.7389%-01

10 100

1000 10000 100000
Equivalent HF runs

MLMC is effective across MF discretizations, CV is hampered by LF corr

Results leading to improvements in LF structural models + algorithm
refinements to adaptively manage (discard) models with low correlation




Deployment of MLCV MC to Nozzle UQ h) e

LF LF (updated)
correlation | Variance reduction [%] correlation | Variance reduction [%]
Thrust 0.997 91.42 0.996 94.2
Mechanical Stress 2.31e-5 2.12e-3 0.944 89.2
Thermal Stress 0.391 12.81 0.987 93.4

TABLE: Correlations and variance reduction for €%/ = 0.001.

0.1

8/80

0.01

~ MC (LF updated) —+—

MLMC (LF updated) —<—

MLMF (LF updated) —*—

MC ---+---

MLMC ------

MLMF -
.

10 100 1000 10000 100000

_ Equivalent HF runs _
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Deployment of ML PCE to Nozzle UQ

MC ——
MLMC —»— |
MLMF —s—

ML PCE '

Sandia
|‘I'| National
Laboratories

Optimal sample allocations based on
relative cost, variance distribution
across levels and k=2

10 100 1000 10000
Equivalent HF runs

100000

Target accuracy MF
1E-1 11 10 | 10
1E-3 118 | 10 | 10
1E-4 374 | 10 | 10
1E-5 1182 | 35 | 11
1E-6 4048 | 132 | 70

>

>

ML PCE shows more rapid convergence using coarse/medium/fine discretizations:
Exploits smoothness in moderate dimension
MC approaches expected to be competitive at higher dimension

Next steps: MLMF PCE, allowing integration of multiple model forms




Multilevel-Multifidelity UQ Summary Points () s

SEQUOIA/ScramjetUQ multifidelity / multilevel deployments have a rich
ensemble of model forms and discretization levels to explore
« Bringing several classes of approaches to bear, which are
expected to exhibit differing levels of robustness & efficiency

Multilevel sampling fmwk for cost-optimized variance reduction is quite general

« MLCV MC applies LF control variate for each HF level
e ML LHS: behavior of estimator variance is similar and ML results in

additional variance reduction that appears significant
* In cases where LHS outperforms MC, ML LHS similarly outperforms MLMC

* Naive implementation: additional refinements using incremental approaches
ML PCE: Adds optimal sample allocation to previous spectral stoch MF machinery.
Initial prototype appears promising, but multiple verifications/refinements in progress
» CS solver performance for large N, large candidate P (Vandermonde size)
+ CV and basis adaptation turned off for accelerated study of « values
- OMP may be overfitting, mutual coherence requires mitigation

In progress:
« Modified CV approach to improve correlations within MLCVMC

« Explore online estimation of the ML PCE variance conv. rate parameter (k)
« Expand ML PCE to include CV across fidelities (MLCV PCE)




Optimization Foundational Components for ML and MF:
« Trust Region Model Management (TRMM)
« Multigrid Optimization (MG/Opt)




. Sandia
Trust-Region Model Management i) Nt
Data Fit > Multifidelity > ROM

2

A = g row
b 4

V\ ]

// * Extended ROM

N

o
N &\\\\\\\\\\l S 77 /4

U

-2
-2 -1 0 1 2 -2 -1 0 1 2 -2 0
Data fit surrogates: Multifidelity surrogates: ROM surrogates:
* Global: polynomial regress., splines, » Coarser discretizations, looser conv. + Spectral decomposition (str. dynamics)
neural net, kriging/GP, radial basis fn tols., reduced element order - POD/PCA w/ SVD (CFD, image analysis)
* Local: 1st/2nd-order Taylor » Omitted physics: e.g., Euler CFD, .
ROMs in SBO

panel methods

Multifide”ty SBO « Key issue: parametric ROM
—E- ROM, S-ROM, tensor SVD

« Some simulation intrusion to re-project

+ Multipoint: TPEA, TANA, ...

Data fits in SBO

- Smoothing: extract global trend » HF evals scale better w/ des. vars.

* Requires smooth LF model

« DACE: number of des. vars. limited + TR progressions resemble

* May require design vect. mapping local, multipoint, or global

+ Local consistency should be
balanced with global accuracy » Correction quality is crucial




TRMM - Multifidelity Case 1) e

Algorithm 2 Compute correction
procedure COMPUTE_CORRECTION(x.., R, f,(x). fi,(x)
Ag, AL Ay, By By, B, =0
if (correction order = 0) then

Ap = fuulxe) — fiolRx,), By =
= end if
Sequence of trust regions i (corection order > 1) then
3 _ A1 = RV fiilx)] - V fiolRx), B = e R [V Aslxe)] - BV fio(Re)
end if
if (correction order = 2) then > -
A= R[Vzﬁi(xc)]RT V2 (Rx,) Algorithm 3 Apply correction
By = — L R[V2 ()| T — 5 procedure APPLY CORRECTION(E, R, fu(x). fia(x))
17 Rtk [ fiilxe ] T Rk o(¥) = Ap+ AT (X — Rx) + § (k- Rx.)" Az (¥ - Rx.)
~ 7zt |V oRxe) (RY fii(xe))' 4 B(X)= By + BT (¥ — Rxe) + 1 (1 — Re)” B, (x— Rx)
I end if if additive correction then
end procedure y=1
else if multiplicative correction then
y=0
else if combined correction then
0 Xp is from a previous iterate
F Bl e e oy N )
Algorithm 4 Compute trust region updates
procedure TR’("?; xt fix), fcuu(x]) )+ (1 — ) i @IB(E)
= S0 where Q) = MeritFn(lixt) and B(x') = Merithn(fcn(x) V) FeOH
if ¢ < 0 then
-11 Reject step: x;*' = x;

N
else
Accept step: x;*' =x{
if o* < eomrae then
aﬂ+] - ak Veontraa
else if Nerpmd < p* £ 2 — Negpang then
ﬂﬂ+] = ﬂk Vexpand
else
Al+] - A&
end if
end if
Apply A*! factor to global bounds to compute new TR bounds
If nested trust regions, truncate new TR bounds to parent bounds
end procedure

1
f-z
e

-2




SIAM J. Sc1. COMPUT. () 2005 Socciety for Industrial and Applied Mathematics
Vol. 26, No. 6, pp. 1811-1837

[ ] [ ] [ ] [ ] [ ]
Multigrid optimization
MODEL PROBLEMS FOR THE MULTIGRID OPTIMIZATION OF
(M G / O pt) SYSTEMS GOVERNED BY DIFFERENTIAL EQUATIONS*

ROBERT MICHAEL LEWIS! AND STEPHEN G. NASH?#

SIAM Review. © 2009 Soclety for Industrial and Applied Mathematics|
Vol. 51, No. 2, pp. 361-395

As in multilevel Monte Carlo, exploit
Multigrid Methods for PDE

discretization hierarchy within optimization/OUU: Optimization®
* Apply multigrid V cycle to hierarchy of optimal solns At Bora!
- Distinct from applying multigrid to KKT system o e
» Distinct from successive refinement of optimal solns
(employs bi-directional prolongation / restriction)

Recursively uses coarse resolution Algorithm 1 Multigrid Optimization
problems to generate search directions 1 procedure MGOPT(k, x*', £(5)(x), v(¥)
: : 2: if k=0 th
for f!ner-resolutlon solves | | 3 a0 argming ()~ [v9] x
* Line search used to compute fine-resolution 4; return x'¥
iterate lfror.n coarse-resolution search direction o """Epama“y sove: x¥) — argmin,  FM(x) — [v(M]" x
» Globalization enables provable convergence Di x{k=0 = R [x(¥]
1ve VLR 1) — v flk—1) (X‘ k—“) R [vf(k)(x‘ak))]
Special case of / component within o LT = MOOPT(l - 1" TR0, v
. 10: = ‘ Ve
generalized model management framework . g MP[)?H . <] Return
. . . X5 = X e
« Requires effective subproblem solver to 12 S NC
generate a new iterate at a particular level 3 endif
. . x . Len rocedure
« Leverages 15t and (quasi, finite diff.) 2nd- 2

order additive & combined corrections
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TRMM + MG/Opt for Multilevel-Multifidelity Hierarchies




MLMF 1: Nested Multigrid ) M

Algorithm 5 Nested Multigrid

procedure MLMFOPT1
. . . Initialize optimization at a lower fidelity and/or level:
* Outer iteration until convergence Partially solve: 42 = arg min, /7))
1
*  MFOPT: V cycle over model forms Ttz [ | Poa [ ] Pawax?
m=M-1 d=D-1
. . . t

* MLOPT: V cycle over discretizations for each form )

Xue1 = MFOPT(L, x,,, f""(x))
until convergence
return x,,
end procedure

s S - - I
1
Model (1, 2) Model (1, D) | 1l
- ]
.................. _F. R Algorithm 6 Recursive Multifidelity Optimization
procedure MFOPT(m, xg"‘”, FmDeyy
___________ R — if m = M then
- ' x™D = MLOPT(k, 1, x™", fimD(x))
Model (2, 2) Model (2, D) | o) corr
o - 1 neturn x

_____________________ R else
;E' Partially solve: 1™ = MLOPT(m, 1, ™V, fi5t"(x))
ﬁ (m+l l} [x(m 1)]
- c””l 1’(x) CORRECTION(J("" D, R, fo00), fo 1))

;m#—l )y N]FOP’I‘(f+ 1 x(m-il 1) f(m+l l)(x))
e— P ) [xg_m+l Ny (1m+l 1
return result of linesearch along direction e
OO "CoCobme | N oo e k end if
Model (M, 1) Model (M, 2) - Model (M, Dy)| | end procedure
> > > )
T e e e e Algorithm 7 Recursive Multilevel Optimization
Discretization procedure MLOPT(m, 1, xf]"'d], )y
if d = D,, then
- o= (m,d) _
: 1 : 1 : = arg min, féorr (x)
- Algorithm 1 L | Algonrhm 6 L I Algorithm 7 return ez
1
~# == Direction of information propagation ¢ SePartia]ly solve: x™) = argmin, £ (x)
(mxﬂ n_ [xim d’)] *
md+l) (m.d) m.d) m,d+1
o o e . o (x)= CORRECT ION(x R, (x), foad+(x))
* Partial optimization applied to every XD MLOPT(n,d + 1, 207470, £ ()
. . . (Nnd+l) (rmd+l)
discretization for every model form €= P[5 ] o
return result of linesearch along direction e

end if



MLMF 2: Trust Region Managed Multigrid

* Outer iteration until convergence
*  MLOPT: V cycle over discretizations for LF model

* RECTR: Update TR model form hierarchy for each d

Model (1, 1) Model (1, 2) Model (1, Dy) 1
4!
2 u 4
Model (2, 1) Model (2, 2) .- Model (2, D;)
4!
. | :

Algorithm 8 Trust Region Managed Multigrid
procedure MLMFOPT?2
repeat
Xn = Xny1
Xps1 = MLOPT(M, 1, x,, f™V(x))
for d = 1to Dy do
RECTR(m = 1: M, x0", x4 £0uD(x))
end for
until convergence
retfurn x|
end procedure

Fidelity

i - - - = \l
i | Model (M, 1) Model (M, 2) = Model (M, Dy) |
! > > > J
) Discretization
I==7
! | Algorithm 7 =p Trust region managed discrepancy correction

- == Direction of information propagation

* Partial optimization applied to every
discretization for LF model

Algorithm 9 Recursive Trust Region Updating
procedure RECTR(r = 1 :LEN, X7, X7, fl ..(X))
for r =len to 1 (bottom up: low to high || coarse to fine) do
if State, = new candidate x|, then
Test for new center: TR(x., x7, f+(x), f7(x))
end if
if State, = new center x/. then
Compute f~!(x7)
Compute CORRECTION(x”, R, £ (%), f7(x%))
if Converged(x’, fiot(x7), L', U™ ") then
x7~! = X (new candidate)
end if
end if

end for
for r = 1 to len (top down: high to low || fine to coarse) do

if State, = new center x’. then
Recompute CORRECTION(x”, R, f!(x%), f(x))
end if
if parent corrected then
Recur updated corrections for f7(x7)
end if
Reset State,
end for
end procedure




MLMF 3: Nested TRMM )

Algorithm 10 Nested Trust Region Model Management

* Outer iteration until convergence

* RECTR: Recur over discretizations for LF model pro:z::: MLMFOPTS
* RECTR: Update TR model form hierarchy for each d o atemin, £

RECTR(d = 1 : Dyy, x(M0w0 xM:Dw0) | plmad 1)

for d = 1to Dy do

Model (1, 1) Model (1, 2) Model (1. Dp)| 1 RECTR(m = 1 : M, x4, 30 pmad )
end for
4! until convergence
Y : Yy \d return X, |
Model (2, 1) Model (2. 2) Model (2, Dy) end procedure

-
Ve f—
Fidelity

'¢ » S JFtaatatate ittt -

Model (M, 1) Model (M, 2)

=
2
2
5

-l
-

Discretization

i | Numerical optimization =p Trust region managed discrepancy correction

L

~= =« Direction of information propagation

* Optimization applied only to LF model at coarse discretization

* Ordering of sweeps is not prescribed



Computational Experiments with Model Problems
« Target solution profile for steady state diffusion
* Minimize C for transonic airfoll




Steady State Diffusion: Achieve Prescribed Solution Profile | il

m(f,um}zé(umi—u)+f=ﬂ, xe(0,1),
HF u(0) =u(l) =0, .
o = 2+ cos(2mx) lrumfmlze f{w[ f)— u)dx
r I subject to  cp(fLu(f)) =10
Ciow(f> 1(f)) = dx (EME] +1=0, x<@1) ut = sinz(an) is the target solution
LK u(0) = u(1) =0,
Qi = 2 + COS(2irx).

— High-Fidelity —— High-Fidelity

0 — Low-Fideli — Low-Fideli
Ity 7 200 1 ty |
100
= -
D - .
—100 - |
—0.06 | | | | —200 | | | |
0 0.2 04 0.6 0.8 1 0 0.2 04 0.6 0.8 1
x X
a) ODE solution at initial guess b) Optimal f for both fidelities



MG/Opt for Multilevel

J(u—u*)?d

Coarse and fine discretizations (50, 100 pts)

for LF model form

Adjoint design gradients

Prolongation/restriction via Lagrange interp.
MATLAB Optimization Solvers (2)

Grid scalings (1D and 2D diffusion)

Solver cost scalings (linear, quadratic, cubic)

Inner Optimization —— Quasi-Newton w/ BFGS

T T
1 Level —— Actual fine—grid evaluations
2 Level —— Actual fine—grid evaluations
2 Level —— Equivalent fine-grid evaluations (linear)
— — — 2 Level —— Equivalent fine-grid evaluations (quadratic) {
—-— 2 Level —— Equivalent fine—grid evaluations (cubic) bl

2D diffusion

50

100
Fine—grid function evaluations

150 200 250 300

Jlu—u*)de

f('// — w2

Inner Optimization -— Quasi-Newton w/ BFGS

10 T T T T T T
1 Level — Actual fine—grid evaluations
2 Level —— Actual fine—grid evaluations
10° Er 2 Level —— Equivalent fine—grid evaluations (linear) J
Ell — — — 2 Level — Equivalent fine—grid evaluations (quadratic)|]
[ — - — 2 Level —— Equivalent fine—grid evaluations (cubic)
107 E

&

1D diffusion

10 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450
Fine—grid function evaluations
0 Inner Optimization —— Trust-Region Interior-Reflective Newton Method
10 T T T T T 3
1 Level — Actual fine—grid evaluations ]
2 Level — Actual fine—grid evaluations ]
2 Level — Equivalent fine—grid evaluations (linear) L
— — —2Level — Equivalent fine—grid evaluations (quadratic) |3
—-— 2 Level — Equivalent fine-grid evaluations (cubic) ]
1D diffusion
10°F 3
107 E E
107 3
10k E!
107 E
108 I I I I I

50

100

150 200
Fine—grid function evaluations

250

wW
(=]
o



) fees,

Steady State Diffusion

Initial formulation: nested multigrid

MATLAB Prototypes
om0 o

a) 1 fidelity and 1 level

Fine : -
High-Fidelity 229 | l, ______________________________________________ 3
b) 1 fidelity and 2 levels ¢) 2 fidelities and 2 levels f f : )
Fine Coarse Fine Coarse N M };,;}“5
High-Fidelity 112 146 High-Fidelity 65 8 @ Do
]_.—OW -Flde]_lt}" 26 29 — Algorithm 1 E:_-_-j Algorithm 3 E- -_-j Algorithm 4
Dakota: NPSOL & TRMM
LFevals HFevals Objective ‘
- 244 1.07e-07 °
80  1.56e-07 B

Single fidelity
Bi-Fidelity 1*-order 0163




Transonic Airfoil Design @ E‘.‘f?";u

Design: Hicks Henne shape fns

SU2 for transonic flow over a NACA 0012 airfoil
Mach number is 0.8

LF = Euler: Number of elements  Cost (sec) :
Coarse 4611 6 :
Medium 6.131 13 E —
Fine 32,626 66 %

HF = RANS: viscous C-grid with 140,768 cells (coarse)
or 319,859 cells (fine)

a) Euler fine grid, Cp = 0.0168 (baseline) b) RANS-SA coarse grid, Cp = 0.0254 (baseline)
__________________________________________________




Transonic Airfoil Design: Minimize Drag, Preserve Lift @E“?‘;ﬁ

Algorithm 9 Recursive Trust Region Updating
procedure RECTR(r = 1 :LeN, x[, ], f7 .. (x))
for r = len to 1 (bottom up: low to high || coarse to fine) do

if State, = new candidate x’, then
Test for new center: TR(x", X7, flil(x), f7.(x)

end if

if State, = new center x, then
Compute /7~ (x7)
Compute CORRECTION(xZ. R, f~'(x0). f(x])
if Converged(x’, flot(x7), L', U™') then

x- = x,. (new candidate)

minimize Cp(u(x))

subjectto Cr(u(x)) = Cp.

crans(x, u(x)) =0
— 001 <x<0.01

%

-2 -1 0 1 2 end if

end if
- 1 end for

3-level Recursive TRMM for Euler O et downs high o low | e 0 coase) do
if State, = new center x{. then

Recompute CORRECTION(x”, R, f™'(x0), f*(x0))

Coarse evals Mediumevals Fineevals Cp Cp end if
if parent corrected then
Reference NACA 0012 - — - 0.1034  0.8012 md‘?fw updated corrections for fZn(x;)
Single fidelity - — 2697| 0.06493 0.8012 Reset State,
TRMM 1 -order 20641 1874 197) 0.06920 0.8475 ende:fof::;m

Single-fidelity (NPSOL)




Multifidelity DUU Deployment for Robust Design [@J&=..

LF statistics: L1 sparse grid w/ Euler COARSE
HF statistics: L1 sparse grid w/ Euler MEDIUM

« 1storder consistent TRMM w/ numerical grads
« 7 random vars

« 21 B-spline + 8 thickness design vars

Trust region cycles
« 5 iterations accepted by filter method
* Tuning of FDSS & solver conv. in progress

Baseline

minimize V[T ]

subject to E[W ]|<W
E[T|>T
E[ [|Twl| ] £Tw
Elllo]|] <@

+bounds, linear cons.

Robust




Summary Remarks ) e,

The case for multilevel — multifidelity methods
» Push towards higher simulation fidelity can make opt, UQ, OUU untenable

« Multiple model fidelities and discretizations are often available that trade accuracy for
reduced computational cost

Towards recursive optimization schemes that exploit the full model ensemble

 MG/Opt and TRMM used as foundational algorithms for one hierarchy dimension

* Proposed MLMF approaches recurse across both multilevel + multifidelity dimensions:
* Nested MG/Opt, Trust-region managed multigrid, Nested TRMM

* Move beyond bi-fidelity: by exploiting richer model ensemble, computational effort can be
pushed down the hierarchy, supporting case of only a handful of HF fine-grid evaluations

MATLAB prototypes + Dakota production code being tested on model problems
» Steady state diffusion targeting a prescribed solution profile
« Transonic airfoil optimization targeting minimal drag for prescribed lift

 Initial results point to benefits in interfacing optimizers exclusively at LF/coarse levels
+ MG/Opt tends to spread evaluations more evenly across its hierarchy

«  TRMM approach interfaces optimizers only with the least expensive model, relying on more
expensive models only for validation and correction estimation

* Prototype of MLMF 1 = Production implementations of MLMF 2 & 3



Extra Slides




Emphasis on Scalable Methods for High-fidelity UQ on HPC (i) iima_

Key Challenges:
« Severe simulation budget constraints (e.g., a handful of HF runs) — ==
* Moderate to high-dimensional in random variables: O(10") to O(102) [post KLE]

« Compounding effects: ﬂ N
« Mixed aleatory-epistemic uncertainties (= nested iteration) "y 5
* Requirement to evaluate probability of rare events (e.g., safety criteria) 02 P o

0.0 -

* Nonsmooth responses (= difficulty with fast converging spectral methods) %0 02 o4 05 o8 10

Core (Forward) UQ Capabilities: 10 s —~

« Sampling methods: MC, LHS, QMC, et al. oofemmre ¥, L2
- Reliability methods: local (MV, AMV+, FORM, ...), global (EGRA, GPAIS, POFDarts) o-gaslEek *:°:
« Stochastic expansion methods: polynomial chaos, stochastic collocation wdege
» Epistemic methods: interval estimation, Dempster-Shafer evidence i ! !

0'?].0 0.z 0.4 0.6 0.8 1.0

Research Thrusts:

« Compute dominant uncertainty effects despite key challenges above ' e s mu
- Emphasize scalability and exploitation of structure g o'} Egémi:
« Adaptivity, Adjoints, Sparsity, Dimension reduction 12 =
« Compound efficiency, address complexity w/ component-based approach : 104:
« Multilevel-Multifidelity, Bayesian inference, Mixed A-E, OUU g T B

° POSItIOﬂ UQ for neXt generatlon arChIteCtUI’eS Equivalent Number of High-Fidelity Model Evaluations
« Concurrent sub-iteration, fault-tolerance, AMT generalizations




Elliptic PDE with FEM

dulr. w Qol is U(0.5, U.)).
%} =1, x € (0,1), u(0,w) =u(l,w) = 0] LF = coarse spatial
grid with 50 states.
k(r,w) =10.140.03 i vV A n () Yi(w), Yy ~ Uniform[—1, 1]|| Cp (2, 2") = exp [— ("L — "1")2] HF = fine spatial

" k=1 | | ' 0.2 grid with 500 states.

10" . r-NH..MH-& T rWOfk = 40'

—— [hﬁ{tv. w)

= Nhillio = 4
T

——a_

This is a particularly good case because it is
multilevel, rather than general multifidelity.
LF model is excellent predictor of HF results.

Ralative Ermrin S3d Dev
Pelative Ermrin Sad Dew

ﬁﬁg-w# Good LF models result in discrepancy with

10"

S o o one or more of the following properties:

* lower complexity than HF model (sparse grid)
—> faster conv rate (affects exponent)

* lower variance than HF model
—> reduction in initial error (affects leading const)

* more sparse than HF model (CS)
- fewer samples to recover coefficients

' 10° i 10*
Equivadent Mumber of High=Fidelity Model Evaluations

(a) Ppoints = 4 (b) Ppoints = 6

e Nhillo = & ¢ = Mhifio = 10
T T

Ralative Eror in Sad Dev

This existing multifidelity machinery is useful
both as a benchmark and as a foundation for
T e | Multilevel PCE approaches.

' 10° 1’
Equivalent Numbar of High-Fidaliy Modal Evalustions

(c) Ppoints = 8 (d) Ppoints = 10



Multifidelity UQ: VAWT Gust Response

CACTUS: Code for Axial and
Crossflow TUrbine Simulation

Low fidelity

Computed vortex filaments
in the wake of a VAWT

Vertical-axis Wind Turbine (VAWT)

Normalized PCE coefficients for blade impulse

10 T T T T T T T
O HF SGL=2
A delta SGL=2
*  Coeff Spectrum - LFsals
104 N + MF SGL=2,5 |
s
10° 1

=}

High fidelity DG formulation for LES

abs(spectral coefficient)
)
T

10 10 10° 10° —
Basis id (total-order basis)



Mean Error

Multilevel LHS: 1D steady state diffusion

Pick kxk=y=1 =

(same as MC)

Ny

2
€2

L
> (Var (Yi) Ci)'/?

k=0

Var (Yy)

Ce

|| =—PCE SGlev 1:5
| - 3= MF PCE SG MForm
| - A= MF PCE SG DLev
|| —©—MC
F| —¢—LHS
|+ #O= MLMC tol 107"°
| =% = ML LHS tol 107"
CVMC MForm tol 107*
CVMC DLev tol 10757*

10

2

10° 10*
Equivalent HF Simulations

10

Std Deviation Error

—D— PCE SGlev 1:5
[| + XF= MF PCE SG MForm
'| + A= MF PCE SG DLev
—-S— MC

g e | HS

L+ 0= MLMC tol 107175

F © =% = ML LHS tol 107"7°

CVMC MForm tol 10774

CVMC DLev tol 107274

2

10 10°

10'

Equivalent HF Simulations

10



Multilevel LHS: 1D transient diffusion / heat equation

L
1 — — 2 1/2 Var (Yg)
Pick kxk=y =1 2 |Nn=35|) Vama)?| =~
€ Cys
(same as MC) —
10° . . ; ; 10" . . . ; ;
b —P—PCE SG lev 1:8 —P—PCESGlev 1:8
¥ LHS —3— LHS
"0~ MLMC tol 107° 100 L - 0= MLMC tol 10715 |
(ML LHS tol 1077 CH=MLLHStol 10770 ]
10% | CVMC DLev tol 1072 || CVMC DLev tol 107> |
10° | ;
S
o L
o ? =
Ll 1 1 g 1
10 1 17 ®© 10 ¢ E
8 S z
= &) a
! o
] 7
éi\ 10° | ;
10° | g , ]
107'F ;
N,
Nl\ih\;p
10_1 ) I2 I3 1 I5 I6 10_2 ) 1 I3 I4 I5 I6
10 10 10 10 10 10 10 10 10 10 10 10 10

Equivalent HF Simulations

Equivalent HF Simulations



Multilevel Control Variate MC: 1D steady state diffusion

107

Mean Error

Lyy Var (YHF CHF W YHF
MLCV Y-corr: NEIF,* 32 Z ( ﬂrl(_f 2) I \/ HL arC(HF )
= =0 P
MLCV Q-corr; |nHF.* _ %{hf (Vﬂrl(ykﬁﬂ) G AS( k}) } J (1 — ﬁiﬁ) w
= k=0 HL £

MLCV MC (mag

enta) less effective for this problem

(LF model is less predictive; CV effectivity not enforced)

f| =—fp=— PCE SG lev 15

F| —©—MC

F| - =% = ML LHS tol 107"

' X— MF PCE SG MForm
+ A= MF PCE SG DLev
—3— LHS

=0 = MLMC tol 10715

CVMC MForm tol 107"*
CVMC DLev tol 107274
-0 =MLCVMC Ycorr tol 107174
-0 = MLCVMC Qcorr tol 107"

10
107
_ 107
S
L
s
% 10°
3
Q =—P— PCE SG lev 1:5
& MF PCE SG MForm

-7 ! -
1B X— MF PCE SG DLev

—-©— MC
= | HS

® H-O=MLMC tol 107
=% =ML LHS tol 10713
CVMC MForm tol 107"7*
CVMC DLev tol 107274
- == MLCVMC Ycorr tol 10777
<) = MLCVMC Qcorr tol 10774

10*
Equivalent HF Simulations

2

10 10°

10*
Equivalent HF Simulations

5 6 1 2

10 10°



Multilevel-Multifidelity OUU: MG/Opt + recursive TRMM

Trust-region model management
« targets hierarchy of model forms (now an arbitrary number)
« each opt cycle performed on corrected LF model

Multigrid optimization (MG/Opt)
 targets hierarchy of discretization levels
) . . . . . Algorithm 1 Multigrid Optimization
- multigrid V cycle to hierarchy of optimization solves 1 procedure MGOPT(k 1, 18(c), v4)
. coarse optim. generates search direction for fine optim. o T
- corrections + line search globalization = provable convergence o ,'f;?’[f?f'f‘;“[jg:?:*"gmi"* 700 = ()75
8: vik=1) = gty R T ek (xR
L o: XY = MGOPT(k — 1, x}:k_‘[‘, f‘i**“(x),}v'«"‘*3 )}
MLMF combining MG/Opt and TRMM 100 o= P[]
11: P X;:.I +ae
* both model forms and discretization levels 1
. s . 14: end procedure
* Flexible hybridization of
MG/Opt + recursive TRMM e B il ”l |M°de‘1“' 2]
implemented in Dakota | g |z i
S , . . £ N
T | = =

@ Sandia
Lj] National [ ¢}
(78 Laboratories ESERS



Inner Optimization -— Quasi-Newton w/ BFGS

10 T T
2 Level — Actual fine—grid evaluations

M O d e I I rO b I e I I l Q 2 10° Er 2 Level — Equivalent fine—grid evaluations (linear)

“‘\ — — — 2 Level — Equivalent fine—grid evaluations (quadratic)
- —-— 2 Level — Equivalent fine—grid evaluations (cubic)

T T T T
1 Level — Actual fine—grid evaluations

{01

i il j T
— lag— | — =T woh
i i iy o

Wil — w0

- o BT T

Optimdention Problen

i bl =
-1

subjoct tu el foulfl —

u' — Elui !

-8
10 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450
Fine—grid function evaluations
, Inner Optimization -— Quasi—-Newton w/ BFGS o Inner Optimization —— Trust—Region Interior—Reflective Newton Method
107 ¢ T T T T 3 10 ¢ T T T T T 3
1 Level —— Actual fine—grid evaluations L 1 Level — Actual fine—grid evaluations 9
S\ 2 Level — Actual fine—grid evaluations 1 [ 2 Level —— Actual fine—grid evaluations ]
roy 2 Level — Equivalent fine—grid evaluations (linear) ] 107 2 Level —— Equivalent fine—grid evaluations (linear) Ll
1072 3 R — — — 2 Level — Equivalent fine—grid evaluations (quadratic) E E — — — 2 level — Equivalent fine—grid evaluations (quadratic) 3
F W -—-— 2 Level — Equivalent fine—grid evaluations (cubic) ] r - —-— 2 Level —— Equivalent fine—grid evaluations (cubic) 1
J T 107 E
10F E £ ]
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| [ 10t 3
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Multilevel-Multifidelity Optimization — Initial Results

Initial formulation: nested multigrid

oo oo}

Model (1, 1) | Model (1, 2) | |M0del(1, L1)| 1
— )

\ ;

Fidelity

_______________________________________________

Model (F, 1) |Model (F, LF)l '

Discretization

=== ey
= Algorithm | | ) Algorithm 3 ] ! Algorithm 4
) L

~& =+ Direction of information propagation

d [ du
_(ﬂha

c-hi(f,u(f]}=dx )+f=ll xe(0,1),

w(0) =u(l)=20,
ay; = 2 + cos(2mx) + 0.4 sin(6mrx).

d{ d
cm(f,u(f]}za(amﬁ +f=0, xe(01),

w(0) =u(l)=0,

Aoy = 2 + COS(2mx).

minTmize j{u{ f)— u)dx
subject to  ep(f,u(f)) =0

u* = sin®*(2rx) is the target solution

: : - - 300 T T T -
—— High-Fidelity —— High-Fidelity
0 —— Low-Fideli —— Low-Fideli
el 200 el
100
B,
0+ .
—100 |
—200 1 | | |
0 0.2 04 0.6 0.8 1 0 0.2 04 0.6 0.8 1
x

x

a) ODE solution at initial guess b) Optimal f for both fidelities

a) 1 fidelity and 1 level

Fine

High-Fidelity 229

b) 1 fidelity and 2 levels c) 2 fidelities and 2 levels

Monschke, J. and E., "Multilevel-Multifidelity

Acceleration of PDE-Constrained Optimization."
AIAA SciTech 2017 (submitted).

Fine Coarse Fine Coarse
High-Fidelity 112 146 High-Fidelity 65 82
Low-Fidelity 26 29




Transonic Airfoil Design: Minimize Drag E‘.‘f?";u

Algorithm 7 Recursive Multilevel Optimization
procedure MLOPT(m, [, x(u""dj, fiﬁ(x))

MG/Opt (unconstrained) if d = Dy, then
" = arg min, fi"(x)
return x(l'"’d)
else (m.d) f( )
“ Partially solve: x\™* = argmin, fion (x)
minimize Cp(u(x)) At _p [xﬁlm,.n]
ford*D(x) = CORRECTION(X™?, R, 4, fio”(x), F™4+1(x))
subject to cgrans(x, u(x)) =0 XD = MLOPT(m.d + 1, x{™ ", D (x)

e= Pm,d' [I(Zmd+l) _ I(md+l)

1
return result of linesearch along direction e
end if
end procedure

High-Fidelity, Coarse 11
Low-Fidelity, Fine 23

d) RANS-SA coarse grid, Cp = 0.0111 (optimized)




