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A clear hierarchy of fidelity (from low to high)
• Exploit less expensive models to render HF practical

• Multifidelity Opt, UQ, inference
• Support general case of discrete model forms

• Discrepancy does not go to 0 under refinement

Multiple Model Forms in UQ & Opt
Discrete model choices for simulation of same physics

Discretization levels / resolution controls
• Exploit special structure: discrepancy  0 

at order of spatial/temporal convergence

Combinations for multiphysics, multiscale

An ensemble of peer models lacking clear preference 
structure / cost separation: e.g., SGS models
• With data: model selection, inadequacy characterization

• Criteria: predictivity, discrepancy complexity
• Without (adequate) data: epistemic model 

form uncertainty propagation
• Intrusive, nonintrusive

• Within MF context: CV correlation



• High-fidelity simulations (e.g., RANS, LES) can be prohibitive for use in UQ

• Low fidelity “design” codes often exist that are predictive of basic trends

• Can we leverage LF codes w/i HF UQ in a rigorous manner?  global approxs. of model discrepancy

MF UQ with Spectral Stochastic Discrepancy Models

Nlo >> Nhi

discrepancy

Adaptive sparse grid multifidelity algorithm:
• Gen. sparse grids for LF & discrepancy levels
• Greedy selection from grids: max QoI/Cost
• Refine discrepancy where LF is less predictive

Compressed sensing multifidelity algorithm: 
• Target sparsity within the model discrepancy



Generalized model 
management infrastructure
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Multilevel and Multifidelity Sampling Methods

Geometrical MLMC – targeting discretization levels

[Giles, 2008]

Monte Carlo estimator:                           analytic variance Var[Q̂]
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Control variate MC – targeting hierarchical model forms

[Ng & Willcox, 2014: G is LF model for Q]
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1D steady state diffusion (elliptic PDE)
Model forms: covar. kernel + positivity 
(cosine/off, exp/on) for diffusivity RF

Discretization levels: 5 (poly degree 
for solution basis)

Dimensionality: 9 QoI: 3

Cost model: cubic in spatial, 10x kernel



1D transient diffusion (parabolic PDE)

Model forms: 2 (Nm = 3, 21)
Discretization levels: 4 per form (Nx)
Dimensionality: 7 QoI: 1
Cost model: linear in Nm, cubic in Nx

Centered 
Parameter 

Study



Multilevel-Multifidelity UQ: Multilevel-control variate MC

MLCV MC – both model forms & discretization levels

• Apply control variate to discrepancy at each level:

• Optimal CV parameter and LF sampling increment remain the same as before

• Multilevel sampling allocation becomes

MLCV Y-corr:

G. Geraci, E., G. Iaccarino, “A multifidelity control variate approach for the multilevel Monte 
Carlo technique,” Center for Turbulence Research, Ann Res Briefs 2015, pp. 169—181.
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Multilevel Control Variate MC: 1D transient diffusion

MLCV MC (blue) is effective; LF/HF correlation at level 0 dominates

MLCV Y-corr:

MLCV Q-corr:



Improve ML estimator: replace MC avg w/ sparse PCE recovery
Multilevel with parameterized estimator variance

Assume parameterized form for estimator variance  and derive optimal Nl

V[Q̂]
Q

2

N 

for positive  and 

Note: does not affect relative sample allocation
• Given target and omitting , Nl may overshoot (greater MSE reduction 

than targeted)

Estimation/update of  (and  if  is important)
• For OLS/CS with cross validation, approximate

from k-fold results
• Q

2 known from recovered PCE
• Update  across level pairs for 

each ML iteration
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Identical process as for MF PCE with CS, but now with optimal Nl

E., G. Geraci, J.D. Jakeman, “Multilevel Monte Carlo Hybrids Exploiting Multidelity
Modeling and Sparse Polynomial Chaos Estimation," SIAM UQ 2016, Lausanne.



Multilevel PCE Regression: SS diffusion

Single and multi-fidelity CS compared to multilevel CS

Best for  > 1  move forward with online  estimation



MLMF Deployment for DOE/DOD

EFRC WastePD (SciDAC QUEST)

DARPA (EQUiPS)
SEQUOIA ScramjetUQ

High perf UCAV nozzle HiFIRE hypersonic test facility

A2e HFM Wind (EERE)



Context: 3D LES simulation of scramjets is extremely expensive and a significant 
challenge for UQ; even more so for OUU. 

Goal: Demonstrate UQ in moderately high D using only a “handful” of HF simulations, 
by leveraging lower fidelity 2D models and coarsened 2D/3D discretizations

UQ Approach: MLCV algorithm described previously.

Example: Deployment of MLCV MC for DARPA

Impact: accurate stats for 3D LES in 24D using only 9 HF evals. (50 equiv HF)

Similar (in flight): MLMF OUU for scramjet; MLMF UQ and OUU for nozzle

Optimal sample allocations based on 
relative cost, observed correlation 

between models, and observed 
variance distribution across levels
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Example: Deployment of MLCV MC for DARPA



Deployment of MLCV MC to Nozzle UQ



Deployment of MLCV MC to Nozzle UQ

MLMC is effective across MF discretizations, CV is hampered by LF corr

Results leading to improvements in LF structural models + algorithm 
refinements to adaptively manage (discard) models with low correlation

Optimal sample allocations based on 
relative cost, observed correlation 

between models, and observed 
variance distribution across levels



Deployment of MLCV MC to Nozzle UQ



Deployment of ML PCE to Nozzle UQ

ML PCE shows more rapid convergence using coarse/medium/fine discretizations: 
➢ Exploits smoothness in moderate dimension
➢ MC approaches expected to be competitive at higher dimension

Next steps: MLMF PCE, allowing integration of multiple model forms

Optimal sample allocations based on 
relative cost, variance distribution 

across levels and = 2



Multilevel-Multifidelity UQ Summary Points

SEQUOIA/ScramjetUQ multifidelity / multilevel deployments have a rich 
ensemble of model forms and discretization levels to explore

• Bringing several classes of approaches to bear, which are 
expected to exhibit differing levels of robustness & efficiency

Multilevel sampling fmwk for cost-optimized variance reduction is quite general
• MLCV MC applies LF control variate for each HF level
• ML LHS: behavior of estimator variance is similar and ML results in 

additional variance reduction that appears significant
• In cases where LHS outperforms MC, ML LHS similarly outperforms MLMC
• Naïve implementation: additional refinements using incremental approaches

• ML PCE: Adds optimal sample allocation to previous spectral stoch MF machinery. 
Initial prototype appears promising, but multiple verifications/refinements in progress

• CS solver performance for large N, large candidate P (Vandermonde size)
• CV and basis adaptation turned off for accelerated study of  values 

 OMP may be overfitting, mutual coherence requires mitigation

In progress: 
• Modified CV approach to improve correlations within MLCVMC
• Explore online estimation of the ML PCE variance conv. rate parameter ()
• Expand ML PCE to include CV across fidelities (MLCV PCE)



Optimization Foundational Components for ML and MF:
• Trust Region Model Management (TRMM)
• Multigrid Optimization (MG/Opt)



Trust-Region Model Management

Data Fit

Data fit surrogates:
• Global: polynomial regress., splines, 

neural net, kriging/GP, radial basis fn

• Local: 1st/2nd-order Taylor

• Multipoint: TPEA, TANA, …

Data fits in SBO
• Smoothing: extract global trend

• DACE: number of des. vars. limited

• Local consistency should be 
balanced with global accuracy

Multifidelity surrogates:
• Coarser discretizations, looser conv. 

tols., reduced element order

• Omitted physics: e.g., Euler CFD, 
panel methods

Multifidelity SBO
• HF evals scale better w/ des. vars.

• Requires smooth LF model

• May require design vect. mapping

• Correction quality is crucial

 Multifidelity

ROM surrogates:
• Spectral decomposition (str. dynamics)

• POD/PCA w/ SVD (CFD, image analysis)

ROMs in SBO
• Key issue: parametric ROM

– E- ROM, S-ROM, tensor SVD

• Some simulation intrusion to re-project

• TR progressions resemble 
local, multipoint, or global

 ROM

• Extended ROM
• Local
• Multipoint

• Spanning ROM
• Tensor SVD



TRMM – Multifidelity Case

Sequence of trust regions



Multigrid optimization 
(MG/Opt)

As in multilevel Monte Carlo, exploit 
discretization hierarchy within optimization/OUU:
• Apply multigrid V cycle to hierarchy of optimal solns

• Distinct from applying multigrid to KKT system
• Distinct from successive refinement of optimal solns

(employs bi-directional prolongation / restriction)

Recursively uses coarse resolution 
problems to generate search directions
for finer-resolution solves
• Line search used to compute fine-resolution 

iterate from coarse-resolution search direction
• Globalization enables provable convergence

Special case of / component within 
generalized model management framework 
• Requires effective subproblem solver to 

generate a new iterate at a particular level 
• Leverages 1st and (quasi, finite diff.) 2nd-

order additive & combined corrections

Dive

Return



TRMM + MG/Opt for Multilevel-Multifidelity Hierarchies



MLMF 1: Nested Multigrid

• Outer iteration until convergence

• MFOPT: V cycle over model forms

• MLOPT: V cycle over discretizations for each form

• Partial optimization applied to every 
discretization for every model form



MLMF 2: Trust Region Managed Multigrid

• Outer iteration until convergence

• MLOPT: V cycle over discretizations for LF model

• RECTR: Update TR model form hierarchy for each d

• Partial optimization applied to every 
discretization for LF model



MLMF 3: Nested TRMM

• Outer iteration until convergence

• RECTR: Recur over discretizations for LF model

• RECTR: Update TR model form hierarchy for each d

• Optimization applied only to LF model at coarse discretization

• Ordering of sweeps is not prescribed



Computational Experiments with Model Problems
• Target solution profile for steady state diffusion
• Minimize CD for transonic airfoil



Steady State Diffusion: Achieve Prescribed Solution Profile

HF

LF



MG/Opt for Multilevel

• Coarse and fine discretizations (50, 100 pts) 
for LF model form

• Adjoint design gradients

• Prolongation/restriction via Lagrange interp.

• MATLAB Optimization Solvers (2)

• Grid scalings (1D and 2D diffusion)

• Solver cost scalings (linear, quadratic, cubic)

1D diffusion

1D diffusion2D diffusion



Steady State Diffusion

Initial formulation: nested multigrid
MATLAB Prototypes

Dakota: NPSOL & TRMM



Transonic Airfoil Design

SU2 for transonic flow over a NACA 0012 airfoil
Mach number is 0.8

LF = Euler: 

HF = RANS: viscous C-grid with 140,768 cells (coarse) 
or 319,859 cells (fine)

Design: Hicks Henne shape fns



Transonic Airfoil Design: Minimize Drag, Preserve Lift

3-level Recursive TRMM for Euler

Single-fidelity (NPSOL) Multifidelity TRMM



Multifidelity DUU Deployment for Robust Design

LF statistics: L1 sparse grid w/ Euler COARSE
HF statistics: L1 sparse grid w/ Euler MEDIUM
• 1st-order consistent TRMM w/ numerical grads
• 7 random vars
• 21 B-spline + 8 thickness design vars

Trust region cycles
• 5 iterations accepted by filter method
• Tuning of FDSS & solver conv. in progress

+bounds, linear cons.

Baseline Robust



Summary Remarks

The case for multilevel – multifidelity methods

• Push towards higher simulation fidelity can make opt, UQ, OUU untenable

• Multiple model fidelities and discretizations are often available that trade accuracy for 
reduced computational cost

Towards recursive optimization schemes that exploit the full model ensemble

• MG/Opt and TRMM used as foundational algorithms for one hierarchy dimension

• Proposed MLMF approaches recurse across both multilevel + multifidelity dimensions:

• Nested MG/Opt,   Trust-region managed multigrid,   Nested TRMM

• Move beyond bi-fidelity: by exploiting richer model ensemble, computational effort can be 
pushed down the hierarchy, supporting case of only a handful of HF fine-grid evaluations

MATLAB prototypes + Dakota production code being tested on model problems

• Steady state diffusion targeting a prescribed solution profile 

• Transonic airfoil optimization targeting minimal drag for prescribed lift

• Initial results point to benefits in interfacing optimizers exclusively at LF/coarse levels

• MG/Opt tends to spread evaluations more evenly across its hierarchy

• TRMM approach interfaces optimizers only with the least expensive model, relying on more 
expensive models only for validation and correction estimation

• Prototype of MLMF 1  Production implementations of MLMF 2 & 3



Extra Slides



Emphasis on Scalable Methods for High-fidelity UQ on HPC

Key Challenges:

• Severe simulation budget constraints (e.g., a handful of HF runs)

• Moderate to high-dimensional in random variables: O(101) to O(102)  [post KLE]

• Compounding effects:

• Mixed aleatory-epistemic uncertainties ( nested iteration)

• Requirement to evaluate probability of rare events (e.g., safety criteria)

• Nonsmooth responses ( difficulty with fast converging spectral methods)

Core (Forward) UQ Capabilities:

• Sampling methods: MC, LHS, QMC, et al.

• Reliability methods: local (MV, AMV+, FORM, …), global (EGRA, GPAIS, POFDarts)

• Stochastic expansion methods: polynomial chaos, stochastic collocation

• Epistemic methods: interval estimation, Dempster-Shafer evidence

Research Thrusts:

• Compute dominant uncertainty effects despite key challenges above

• Emphasize scalability and exploitation of structure

• Adaptivity, Adjoints, Sparsity, Dimension reduction

• Compound efficiency, address complexity w/ component-based approach

• Multilevel-Multifidelity, Bayesian inference, Mixed A-E, OUU

• Position UQ for next generation architectures 

• Concurrent sub-iteration, fault-tolerance, AMT generalizations



Elliptic PDE with FEM
QoI is u(0.5, ω). 

LF = coarse spatial 
grid with 50 states.

HF = fine spatial 
grid with 500 states. 

rwork = 40.

Good LF models result in discrepancy with 
one or more of the following properties:

• lower complexity than HF model (sparse grid) 
 faster conv rate (affects exponent)

• lower variance than HF model
 reduction in initial error (affects leading const)

• more sparse than HF model (CS)
 fewer samples to recover coefficients

This is a particularly good case because it is 
multilevel, rather than general multifidelity. 
LF model is excellent predictor of HF results.

This existing multifidelity machinery is useful 
both as a benchmark and as a foundation for 
multilevel PCE approaches.



Multifidelity UQ: VAWT Gust Response

Vertical-axis Wind Turbine (VAWT)

CACTUS: Code for Axial and 
Crossflow TUrbine Simulation

Computed vortex filaments 
in the wake of a VAWT

Low fidelity

High fidelity DG formulation for LES

 

Coeff Spectrum



Multilevel LHS: 1D steady state diffusion

Pick  = = 1 
(same as MC)



Multilevel LHS: 1D transient diffusion / heat equation

Pick  = = 1 
(same as MC)



Multilevel Control Variate MC: 1D steady state diffusion

MLCV MC (magenta) less effective for this problem
(LF model is less predictive; CV effectivity not enforced)

MLCV Y-corr:

MLCV Q-corr:



DARPA EQUiPS 12-month Review, Sept 22, 2016

Multilevel-Multifidelity OUU: MG/Opt + recursive TRMM

Trust-region model management

• targets hierarchy of model forms (now an arbitrary number)

• each opt cycle performed on corrected LF model

Multigrid optimization (MG/Opt)

• targets hierarchy of discretization levels

• multigrid V cycle to hierarchy of optimization solves

• coarse optim. generates search direction for fine optim.

• corrections + line search globalization  provable convergence

MLMF combining MG/Opt and TRMM

• both model forms and discretization levels

• Flexible hybridization of 
MG/Opt + recursive TRMM

• Prototype code now 
implemented in Dakota



DARPA EQUiPS 9 month Review, June 30, 2016

Model Problem (Q2)



Multilevel-Multifidelity Optimization – Initial Results

Monschke, J. and E., "Multilevel-Multifidelity
Acceleration of PDE-Constrained Optimization." 
AIAA SciTech 2017 (submitted).

Initial formulation: nested multigrid



Transonic Airfoil Design: Minimize Drag

MG/Opt (unconstrained)


