
SANDIA REPORT

SAND2O16-9212
Unlimited Release
Printed September 2016

Final LDRD Report: Using Linkography of
Cyber Attack Patterns to Inform
Honeytoken Placement

John C. Jarocki, Robert R. Mitchell III, Andrew N. Fisher

Prepared by

Sandia National Laboratories

Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation,

a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's

National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Sandia National Laboratories



Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone:
Facsimile:
E-Mail:
Online ordering:

(865) 576-8401
(865) 576-5728
reports@adonis.osti.gov
http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone:
Facsimile:
E-Mail:
Online ordering:

(800) 553-6847
(703) 605-6900
orders@ntis.fedworld.gov
http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

2



SAND2016-9212

Unlimited Release
Printed September 2016

Final LDRD Report: Using Linkography of Cyber
Attack Patterns to Inform Honeytoken Placement

John C. Jarocki

Cyber Enterprise Security Department

Sandia National Laboratories

P.O. Box 5800

Albuquerque, NM 87185-0799

jcjaroc@sandia.gov

Robert R. Mitchell III

Cyber Security Technologies Department

Sandia National Laboratories

P.O. Box 5800

Albuquerque, NM 87185-0813

rrmitch@sandia.gov

Andrew N. Fisher

Embedded Systems Analysis Department

Sandia National Laboratories

P.O. Box 5800

Albuquerque, NM 87185-1027

anfishe@sandia.gov

3



Abstract

The war to establish cyber supremacy continues, and the literature is crowded with strictly
technical cyber security measures. We present the results of a three year LDRD project using
Linkography, a methodology new to the field of cyber security, we establish the foundation neces-
sary to track and profile the microbehavior of humans attacking cyber systems. We also propose
ways to leverage this understanding to influence and deceive these attackers. We studied the sci-
ence of linkography, applied it to the cyber security domain, implemented a software package to
manage linkographs, generated the preprocessing blocks necessary to ingest raw data, produced
machine learning models, created ontology refinement algorithms and prototyped a web applica-
tion for researchers and practitioners to apply linkography. Machine learning produced some of
our key results: We trained and validated multinomial classifiers with a real world data set and
predicted the attacker's next category of action with 86 to 98% accuracy; dimension reduction
techniques indicated that the linkography-based features were among the most powerful. We also
discovered ontology refinement algorithms that advanced the state of the art in linkography in
general and cyber security in particular. We conclude that linkography is a viable tool for cyber
security; we look forward to expanding our work to other data sources and using our prediction
results to enable adversary deception techniques.

4



Acknowledgements

Thanks to Phil Bennett, Michael Bernard, Jeffrey Bigg, Marshall Daniels, Tyler Dean, David Dug-
gan, Carson Kent, Josh Maine, Marci McBride, Nick Peterson, Katie Rodhouse, Asael Sorenson,
Roger Suppona, Scott Watson and David Zage.

We acknowledge support for this work by the LDRD Program at Sandia National Laboratories.
Sandia National Laboratories is a multi-mission laboratory operated by Sandia Corporation for the
United States Department of Energy's National Nuclear Security Administration under Contract
DE-AC04-94AL85000.

5



This page intentionally left blank.



Contents

Preface 13

Summary 15

Nomenclature 16

1 Related Work 19

2 Original Goals 23

2.1 The Linkography Paradigm for Cyber Security  23

2.2 Technology Readiness Level   25

3 Unexpected Threads of Investigation 29

3.1 Behavior Modeling   29

3.2 Linkography Formalization   30

3.3 Subsessionization  30

3.3.1 Truth Data   31

3.3.2 Time Based Substringing   31

3.3.3 Source Based Substringing   32

3.3.4 Linkograph Entropy Based Substringing   32

3.3.5 Statistics Based Substringing   33

3.4 Abstractions   33

3.4.1 Static Cyber Attacker Abstraction  33

3.4.2 Static Cyber Defender Abstraction   34

7



3.5 Ontologies   34

3.5.1 Self Loop Ontology  34

3.5.2 Forward Progress Ontology   35

3.5.3 Algorithms   35

Ontology Extraction   36

Ontology Refinement   36

3.6 Protocol Analysis   37

3.7 Machine Learning   38

3.7.1 Features   38

3.7.2 Behavior Prediction  38

3.7.3 Dimension Reduction   38

3.8 Game Theory  40

3.8.1 Motivation   40

3.8.2 Components   41

3.8.3 Game Type   41

3.8.4 Instrumentation   41

3.8.5 Results  42

3.9 Countermeasures   44

3.9.1 Generating Countermeasures   44

3.9.2 Countermeasure Effectiveness   44

4 Accomplishments 47

4.1 Papers Written   47

4.1.1 Communications and Network Security (CNS) 2015   47

4.1.2 Computing and Communication Workshop and Conference (CCWC) 2017
(Submitted)   47

4.2 Presentations Given   48

8



4.2.1 CyberSci 2015  48

4.2.2 MITRE Denial and Deception for Cyber Defense Workshop  48

4.2.3 CyberSci 2016 (Accepted)   48

4.3 Artifacts Generated   48

4.3.1 LinkShop  48

grrcon_example  49

grrcon_example  49

hackTestFiles   49

labels.py   49

linkoCreate.py   49

linkoDraw.py   50

linkoSVG.py   50

markov . py   50

runTest .py   50

stats .py   50

4.3.2 Machine Learning Models   51

4.4 Collaborations Started   51

5 Conclusion 53

5.1 Lessons Learned   53

5.2 Future Work  54

References

Appendix

55

A Appendix: Ontology Refinement Algorithms 57

9



A.1 Brute Force Minimum Similarity Pseudocode 58

A.2 High Impact First Minimum Similarity Pseudocode 59

B Appendix: Functional Linkography 61

B.1 Motivations  62

B.2 Infrastructure  64

C Appendix: Deriving Markov Models 67

C.1 Introduction  67

C.2 Representation  67

C.3 Markov Interpretation  69

C.4 Uses  69

C.5 Markov Models of Sessions (Link-Predictor Model)  69

C.6 Markov Models of Sessions (Behavioral Model)  72

C.7 Link-Predictor Markov as a Next State Predictor  73

C.8 Distance Between Matrices  74

D Appendix: Map Reduce Algorithms 77

D.1 Optimal Ontology Map  78

D.2 Optimal Ontology Reduce 78

D.3 High Impact First Minimum Similarity Reduce  79

10



List of Figures

2.1 The overall paradigm.   23

2.2 Preprocessing flow detail.   24

2.3 Intrusion detection flow detail .  24

2.4 Create linkograph flow detail.   24

2.5 Behavior prediction flow detail  25

2.6 Ontology refinement flow detail .   25

2.7 Overall paradigm readiness .  25

2.8 Preprocessing flow readiness.   26

2.9 Intrusion detection flow readiness .  26

2.10 Create linkograph flow readiness.   26

2.11 Behavior prediction flow readiness  27

2.12 Ontology refinement flow readiness .   27

3.1 Self loop ontology  34

3.2 Forward progress ontology.   35

3.3 Behavior prediction results    39

3.4 Forward selection results.   39

3.5 Backward selection results.   40

3.6 Cyber shopping game .   43

11



List of Tables

3.1 Time based substringing results.  32

3.2 Source based substringing results 32

3.3 Linkograph entropy based substringing results. 33

3.4 Statistics based substringing results.  33

12



Preface

In 2011, University College London Bartlett School of Architecture Professor Alan Penn gave a
lunch hour lecture titled "Who enjoys shopping in IKEA?" [21] This video came to our attention
just as we were thinking about the problem of tracking progress of cyber attackers through a target
environment. The lecture introduced us to the idea of "space syntax" of geographic spaces such as
city streets or stores such as Ikea. With navigation of a store as an analogy for the progress of an
attacker, we realized we could ask questions like:

1. What part of the attack space can they see from their current vantage point?

2. Can we tell what they are "shoppine for or cause them to reveal this information?

3. Can we distract them, delay them, or convince them to "purchase" something else?

4. Can we control the intelligibility of the attack space in order to control the effectiveness of
the attack?

5. Finally, can we understand them at the microbehavioral level by analyzing the relatedness of
moves made?

As we were considering potential research topics that would allow us to examine these areas
and expose behavioral cues and responses during a sequence of cyber attack steps, we came across
the 2012 paper "Order, Structure and Disorder in Space Syntax and Linkography: Intelligibility,
Entropy, and Complexity Measures." [4] This paper introduced us to a discipline called linkog-
raphy that was released to the protocol analysis community by Gabriella Goldschmidt in 1990.
It also gave us the idea that a time series of cyber events (traversing the attack space) could be
represented as a series of moves (nodes) in a linkograph. El-Khouly and others [12] had already
experimented with using information theory, entropy, and other metrics to perform qualitative and
quantitative analysis of linkographs in the space syntax and design creativity fields.

With this information in hand, we had the basic materials to begin our research: We had a
protocol analysis methodology not previously used in the cyber domain (linkography), we had a
general model of a cyber attack as a series of moves through an attack space, and, we had the basic
metrics and methods for extracting quantitative data from data organized in linkographs.

We had a goal at the outset to create a system that would do four things: First, the system would
recognize the shape and scope of an attack in progress. Second, it would help us understand the
objectives, capabilities, and patterns of specific attackers. Third, the system would identify critical
moves during an active attack. Finally, it would place cues (we later coined the term honeycue) to
influence attacker behavior in real time.

13



While we have made good progress toward these goals, we discovered gaps both in the tools
and existing modeling techniques; this required our team to spend significant time and effort to
overcome. Rather than feeling discouraged by this extra work, we feel we have materially advanced
the state of the art for both linkography in general and its application to cyber security specifically.

Some of the areas we addressed include:

1. Formalization of linkography through new definitions and proofs,

2. Characterization of cyber attack steps at a consistent level of abstraction,

3. Deep exploration of entropy as a key measurement of creativity in linkographs,

4. Expansion of the concept of ontology in linkography to create a behavioral models,

5. Automated methods for refining an existing model to match captured activity,

6. Tools to enable human analysts to make adjustments to the refinement process.

The rest of this report will tell the story of our journey to create a scientific, repeatable, and
quantitative method for tracking microbehavioral activity of cyber attackers that still keeps the
human analyst in the loop. We have attempted to create a reusable framework that can be applied
in the context of network, web, database, operating system command, or system call level activity.

14



Summary

This report provides a survey of linkography-related literature, the original goals of the lab directed
research and development (LDRD), unanticipated research directions that spontaneously occurred,
a summary of accomplishments and proposals for future work.

15



Nomenclature

abstraction a set of categories for classifying raw data

backlink a relationship between a given linkograph node and an earlier one

classification a machine learning formulation that maps a data point onto a known category

cleanup one of the five abstraction classes we consider in this work

clustering a machine learning formulation that maps a data set onto a number of unknown cate-
gories

critical move a node in a linkograph that has a large number of links

derived linkograph a graph generated from a labeled data set and an ontology

dimension reduction a machine learning formulation that decreases the number of features

entropy a measure of the information content of an artifact

execute one of the five abstraction classes we consider in this work

feature a predictor, or input, of a machine learning model

forelink relationship between a given linkograph node and a later one

horizonlink the links present a given depth from the nodes or the links spanning a given distance
between nodes

link a relationship between two linkograph nodes

linkograph a labeled time series and the set of binary relationships between nodes

look one of the five abstraction classes we consider in this work

move a node in a linkograph; one of the five abstraction classes we consider in this work

nonparametric model a machine learning model that does not assume a certain relationship (e.g.,
linear or polynomial) between the features and the response

ontology an abstraction and a set of relations between its classes

parametric model a machine learning model that assumes a certain relationship (e.g., linear or
polynomial) between the features and the response

16



protocol analysis collecting a raw data set, organizing it into a dialog transcript and transforming
it into an abstract form

response the output of a machine learning model

session a block of time series data that is bracketed on either side by a time gap of one hour or
more

substring a contiguous ordered subset

subsequence an ordered subset that need not be contiguous

subsession a block of time series data that comprises a single tactical objective

supervised model a model trained with labeled, or truth, data (e.g., a classifier or regression
model)

T-code prefix free variable length code proposed by Mark Titchener

transfer one of the five abstraction classes we consider in this work

unsupervised model a model trained without labeled, or truth, data (e.g., a clustering model)

17



This page intentionally left blank.



Chapter 1

Related Work

This chapter provides a survey of prior work related to this LDRD.

In "Order, Structure and Disorder in Space Syntax and Linkography: Intelligibility, Entropy,
and Complexity Measures," [4] Tamer El-Khouly and Alan Penn make several points: First, the
time component distinguishes linkography from other forms of analysis. Also, linkography uses
real relative asymmetry (RRA) for a lot of its analysis, so it was not quite applicable to this LDRD.
Third, E1-Khouly provides a bit more information on the measurement of information and entropy.
Also, the authors explain more why small strings have inaccurate entropy due to the bounds of
the logarithmic integral used to calculate information and entropy. Finally, it is important to note
that subgraphs in a linkograph might not always intersect as they are part of different patterns of
actions/thoughts.

Later El-Khouly and Penn build on their previous work in "On an integrated analytical ap-
proach to describe quality design process in light of deterministic information theory" [3]: First,
the authors explore deterministic information theory by Titchener (T-code sets). They write, "the
challenge of this paper is to understand the transformation of ideas from one state to another can
be captured?' Third, El-Khouly computes T-complexity and T-entropy (which are based on T-
complexity) for each node in the linkograph as well as subgraphs. Next, the authors note that at
each node, you can either look at links going forward or links going backwards. Fifth, they observe
that subgraphs should be chunked based on number of nodes or time. The most interesting part is
that T-codes are designed to work at local levels, and not global.

In "The designer as a team of one?' [10] Gabriela Goldschmidt, creator of linkography, makes
several points: First, the paper defines link index as the proportion of links to moves. Also, a high
link index tends to be indicative of high productivity. This tends to imply moves that induce the
greatest number of links (also known as critical moves) should be analyzed further. Third, the
paper references Miller's Law (7 ± 2) [18] for the size of subgraphs to examine

Later, Goldschmidt summarizes linkography's history in her monograph [11]. The work cov-
ers decades of humans performing protocol analyses on audio transcripts, video transcripts and
interviews to create labeled time series and, in turn, linkographs.

Jeff Kan and John Gero have made a number of contributions to the literature [9], [12], [13],
[14], [15], [16]:

19



In particular, Gero [8] initially proposed the function-behavior-structure schema in AI Maga-
zine Volume 11 Number 4. This schema would later become the FBS ontology that has been widely
adopted in the design research community. The FBS ontology provides the categories of design
state spaces (Requirements, Function, Expected Behavior, Structure, Behavior derived from struc-
ture) and the design activities that transform the design objects between these state spaces. Our
work extends this concept and formalizes it for cyber security by defining an ontology as the set of
abstraction classes and the relation between those states. This ontology provides a general model
for cyber attack behavior in the same way that the FBS ontology does for design. In both cases, the
relations between the ontology states provide the rules for transforming a labeled time series into
a linkograph. We use the term abstraction to describe the set of classes or categories into which
distinct cyber attack moves can be binned. This abstraction is effectively a taxonomy for the type
of cyber attack data being modeled.

Gero, et al. [9] also propose a seven stage model of protocol analysis using linkography:

1. coding scheme definition

2. recording

3. transcription

4. segmentation and coding

5. coding analysis

6. link definition

7 linkograph analysis

However, a gap exists in the literature with respect to the automation of step six, link definition,
which makes results hard to reproduce. To date, most linkographs have been produced manually,
or at least required a subject matter expert to label nodes according to a static ontology. This is
an area where we have significantly advanced the field of linkography; our LinkShop code can
create a linkograph automatically given inputs of raw time series data and a nominal ontology.
Furthermore, if the ontology does not match expectations, a human analyst can provide feedback
to refine until it does.

Also, Pourmohamadi and Gero [22] propose Linkographer as a tool to aid in analyzing linko-
graphs. While this tool generates linkographs and linkograph statistics, it does so based on human-
defined links Linkographer visualizes and extracts information from the linkograph that the human
creates, but the human still performs the nebulous and time-consuming task of linking events. The
authors address step seven (linkograph analysis) of Gero, et al.'s [9] model. While Linkographer
is specific to the FBS ontology, our ontology extraction and refinement work adapts to abstraction
classes from any ontology.

Next, Kan and Gero discuss using cluster analysis, specifically the SPSS TwoStep cluster algo-
rithm, to automatically identify clusters in a linkograph in [14] and extract other information from
a linkograph in [15]. This addresses step seven (linkograph analysis) of Gero, et al.'s [9] model.

20



Later, in "Can entropy represent design richness in team designing?" [13] Kan and Gero intro-
duce the use of Shannon entropy. The authors say that linkography is the graphical representation
of design processes in terms of the links between design moves. They claim higher entropy indi-
cates richer idea generation. Kan and Gero observe that as the size of the linkograph grows, the
possible combinations grows rapidly, and they reason for needing theory-based measures.

Following this, in "Comparing entropy measures of idea links in design protocols," [12] Kan,
et al. build on [13]. This paper uses Shannon's entropy to compare multiple linkographs, assuming
a move in a linkograph is a manifestation of ideas and entropy indicates the idea development
potential. This paper explicitly shows their Shannon entropy formula. The authors claim backlinks
record a path that led to the generation of a move [10]; backlink entropy measures opportunity
for enhancement and response. On the other hand, forelinks bear evidence to a contribution to
the production of further moves; forelink entropy measures opportunity for creation and initiation.
Finally, horizontal links illustrate bias towards cohesive moves and saturation lower (closer to the
nodes) in the linkograph; horizontal link entropy relates local thought to big ideas. Link measures
tend to be inflated in fully saturated graphs. This invites the criticism that these linkographs may
actually be less novel (and Kan and Gero think so also). Basically, empty or complete graphs are
boring: Specifically, an empty or sparse linkograph suggests a non-converging process with no
coherent flow. On the other hand, a full linkograph suggests a fully integrated process with no
diversity. Kan, et al. view linkograph creation as a 2-stage manual process.

In their subsequent work titled "Acquiring information from linkography in protocol studies
of designing," [15] Kan and Gero looked at using Shannon entropy and clustering to understand
linkographs. The authors identified three patterns of moves: First a chunk is a group of moves
linked to themselves. Next, a web is a large number of links among a small set of nodes. Finally,
a sawtooth is a special sequence of linked moves. They define link index as the number of links
over the number of moves. Kan and Gero identify advantages of linkography: First, it is scalable:
structure is not tied to one individual or set of actions; linkographs illustrate multiple individuals
and events. Also, it is flexible: moves and links can be done at separate times. The authors identify
three core linkography tasks: First, segmentation is what we call tokenization. Next, coding is
creating links between moves or states. Finally, analysis is interpreting linkographs. They offer
an alternative interpretation of forelinks and backlinks• forelinks are initiations and backlinks are
responses. Computer-related linkographs have very different linkograph stmctures. The paper
states saturated linkographs with more than seven moves/states are very rare. We think this is the
case in the cognitive domain: Working memory and work have a different context in computing.

Finally, Kan and Gero continue their study of linkography in "About: Designing-Analysing
Design Meetings." [16] The authors observe that different coding schemes yield different graph
structures for the same design process. Also, they provide additional motivation for a general ontol-
ogy: "to develop a general coding scheme that yields high quality, uniform results, that maps well
to the behavior of designers, produces a deeper understanding of design thinking and activities and
can be applied across protocols independently of the domain and the number of participants. The
general coding scheme is based on an ontology of the domain of designing and as a consequence is
not an ad hoc development specific to a unique protocol but one that can be used uniformly across
design protocols independently of the specific design activity being studied and unrelated to the

21



number of participants in a design team."

Becattini, et al. [1] propose a framework based on OTSM-TRIZ [17] to automate protocol
analysis. OTSM and TRIZ are acronyms formed from transliterations of Russian terms meaning
"General Theory of Powerful Thinking" and "Theory of Inventive Problem Solving," respectively.
The authors' proposal addresses steps one (coding scheme definition) and seven (linkograph anal-
ysis) of Gero, et al.'s [9] model. While their study is tailored for protocol analyses of designers,
we have constructed a framework usable for any domain.

Fruchter [7] investigates RECALL, which is a tool that automatically indexes the audio and
video of a design session. This addresses steps two (recording), three (transcription) and four
(segmentation and coding) of Gero, et al.'s [9] model. RECALL is applicable specifically to the
design domain, while our investigation is germane to any activity.

Fisher, et al. [5] propose using linkography to characterize and disrupt cyber attackers. The
authors identify the labeled time series to linkograph transform (Gero, et al.'s [9] sixth step) as
an open question that we pursue in our ontology extraction and refinement work. In particular,
they cast attacker console commands into one of five categories: Look, Transfer, Move, Execute
or Cleanup. This allows the cyber security researcher to abstract the attacker's actions as a set of
console commands represented in a time series, with the five categories as labels. Fisher, et al.
propose using an ontology to convert the labeled time series into a linkograph in a scientific and
repeatable fashion. The resulting linkographs relate points in the labeled time series which allows
previously unrealized insights to emerge.

The work of Mitchell, et al. [19] was the logical progression of [5]. In it, the authors propose
a technique for adjusting an ontology over time. The existing ontology and a human-corrected
linkograph form the input for the algorithm.

22



Chapter 2

Original Goals

This chapter discusses the conceptual model that illustrates our, now clearer, picture of a linkog-
raphy based cyber security behavior modeling, detection, and response system. Our work on this
LDRD spans the full time domain and functional range of cyber security operations. We visualize
the complex network of data and logic that fills space with a hierarchy of flow diagrams. Because
some of the logic blocks in these figures are more complete than others, we augment the flow
diagrams with indications and discussions of each block's maturity.

2.1 The Linkography Paradigm for Cyber Security

Figures 2.1 - 2.6 illustrate the system that describes our concept of LDRD goals with the benefit of
three years of hindsight. The rectangles indicate blocks of logic and the parallelograms show data
at rest.

Figure 2.1 is the top level flow diagram comprising all inputs, outputs and processing we envi-
sion.

/ host and
network data

preprocessing

/ontology/

--/secratn/-

intrusion
detection

abstraction
refinement

ontology
refinement

retrain
models

—'/aleft/

—'/abtertZtrion/

Irceigy/

—'/nblecitctl:lrs/

alert
correlation

attacker
identification

behavior
prediction

—./n=lroter/

countermeasure
generation

Figure 2.1. The overall paradigm.

countermeasure
effectiveness —'iscore/

Figure 2.2 illustrates the transformation of raw sensor data into something the intrusion detec-
tion, abstraction refinement, ontology refinement and retraining flows can accept.

23



/ host and
network data

-11.-

sysmon
formatter

pcap
formatter

other
formatter

0 formatted
data

-).• subsessionize

Figure 2.2. Preprocessing flow detail.

-0.-
session/
data 

Figure 2.3 is very similar to the behavior prediction flow; the main difference is that the apply
model flow for the intrusion detection flow will be a binary classifier.

/ontology

/session
data

create
linkograph

—0- linkograph —). extract
features

—0/features/—*

Figure 2.3. Intrusion detection flow detail.

apply
model

—).-/ a left/

Figure 2.4 is a further decomposition of the create linkograph flow seen in the intrusion detec-
tion and behavior prediction flows.

/abstraction

/session
data

—)1.-
label
data

--)0-

ontologyk

create
linkograph

Figure 2.4. Create linkograph flow detail.

—>/ linkograph /

Figure 2.5 is very similar to the intrusion detection flow; the main difference is that the apply
model flow will be a multinomial classifier for the behavior prediction flow.

24



/ontology

/session
data

create
linkograph linkograph —D•

extract
features /features/—).

Figure 2.5. Behavior prediction flow detail.

Figure 2.6 illustrates how LDRD artifacts can anneal an ontology.

apply
model

—>/nenavior/

human
edits

better
linkograph

/linkograph/—*

refine
ontology

better
ontology

linkograph

/ontology/—

Figure 2.6. Ontology refinement flow detail.

2.2 Technology Readiness Level

The borders of the shapes in Figures 2.7 - 2.12 show our coverage of the LDRD goals and the
remaining gaps. Solid-bordered flows are complete, dash-bordered flows are partially complete
and dotted flows are opportunities for future work. The state of dash-bordered flows ranges from
an interesting thought experiment to a prototype that is almost complete.

The readiness of Figure 2.7 flows is governed by their decompositions:

preprocessing

r intrusion
detection 

abstraction 
refinement 

alertI '
—'/Z1LrDter//

alert/ .
correlation

attacker
identification —'/abtertZtrion/

ontologyk

/nehtwosotor dclata/„.
—.re:ast

ion
r/

ontology
refinement —w/ etter

o irOI:gy/
behavior
prediction

cougnetrzrrnaelasu re
—vlbehavior/—. t on

/
countermeasure/—. coeuf2et:t7:na:ore —vIscore/

retrainr
rnodels —'/rbneotctl:lrs/

Figure 2.7. Overall paradigm readiness.

In Figure 2.8, enc.py is a partial implementation of a flow for ingesting and formatting Mi-
crosoft Sysmon data. Technology adopters can implement the other format flows as long as they

25



produce output in the simple JavaScript Object Notation (JSON) format expected by the LinkShop
utilities. The subsessionize flow (subsessionize .py) is complete.

/ host and
network data

i sysmon
——).

formatter

* 
pcap

i formatter

-).
other

formatter

formatted
data

-,•• subsessionize

Figure 2.8. Preprocessing flow readiness.

-IP.
session
data

In Figure 2.9, the create linkograph and extract features (extractsessionFeatures.py) flows
are complete and shared with the behavior prediction flow.

/ontology

/session
data

create
linkograph

—)ylinkographh extract
features /—). features

Figure 2.9. Intrusion detection flow readiness.

apply
model

—*/alert/

In Figure 2.10, the labeling (label s . py) and linkograph creation (linkoCreate . py) flows are
complete.

/abstraction

/session
data

—Jo-
label
data

ontologyk

create
linkograph

—>/ linkograph /

Figure 2.10. Create linkograph flow readiness.

26



In Figure 2.11, the create linkograph and extract features (extractSessionFeatures.py)

flows are complete and shared with the intrusion detection flow. We have an R implementation

(multinomial_classification.R) for the apply model flow; porting this to Python (scikit-learn)

is straightforward.

/ontology

/sessionk
data 

create
linkograph linkograph

extract
features

I— 
apply I

—0- /features/ I !
behavior

I model _ 

Figure 2.11. Behavior prediction flow readiness.

All flows in Figure 2.12 are complete. Linkshop provides the editing capability, and

ontologyExtr action .py provides the implementation of the refine ontology flow.

human better
/linkograph /—* edits

linkograph
lin kog ra ph

refine
ontology

better
—)10.

ontology
/ontologyk

Figure 2.12. Ontology refinement flow readiness.

27



This page intentionally left blank.



Chapter 3

Unexpected Threads of Investigation

Our topic was completely new, and our work on this LDRD quickly exposed complications that
needed to be explored. We needed to do this in order to provide a solid foundation upon which we
could produce the results we originally envisioned. This chapter discusses:

1. Behavior Modeling

2. Linkography Formalization

3. Subsessionization

4. Abstractions

5. Ontologies

6. Real-World Protocol Analysis

7. Machine Learning

8. Game Theory

9. Countermeasures

3.1 Behavior Modeling

The team identified a shortage of behavior modeling at the tactical level. Most behavioralists are
focused on macrobehavior: the strategies of nation states or other large entities over the course
of days to years. In contrast, we are interested in microbehaviors, which are the actions of an
individual over the course of seconds to hours. The Linkography methodology we developed
closes this gap by providing a way to classify microbehavior steps using an abstraction (essentially
a taxonomy) and by relating those steps to each other in an ontology. The ontology becomes a
general behavioral model, but by examining specific attack data as linkographs, Markov models
can be derived to create a model for a specific actor or even a specific attack session. More details
on this process can be found in Appendix C.

29



3.2 Linkography Formalization

The team initially tried to build on existing linkography tools, but we found a lack of rigor in the
prior work. Team members addressed this by proposing the following definitions in the literature:

Formally, a linkograph can be defined as follows:

Definition 1 (Linkograph) A linkograph on N nodes (where N E N is a natural number) is a set
of ordered pairs, Y , such that

Yc././IN:={(i,l)10 i<j< N}.

The individual natural numbers 0 < i < N are nodes, and each ordered pair (i, j), with i < j, is a
link from node i to node j. In a link (i, j), node i is the initial node and node j is the terminal node.
.I7N is the set of all possible links whose initial node is at least 0 and whose terminal node is less
than N. A labeling is a function L :N<N Abs, where N<N is the set of natural numbers less than
N and Abs is a set of strings called abstraction classes.

Definition 2 (Ontology) An ontology, 0, is a pair (Abs, R) where Abs is a set of abstraction class
strings and R C Abs x Abs is the set of relations between the abstraction classes. The relation
(A,B) E R is written A B. A is the initial class and B is the terminal class. If A = B, the relation
is called a self-loop. The size of an ontology, lel, is the size of the set of abstraction classes:

101 , lAbsl.

Definition 3 (Derived Linkograph) Given an ontology, 0, and a labeling,
L : N<N —> Abs, the linkograph, Y , defined by

(i, j) E Y <=> L(i) L(j),

is the derived linkograph given 6 and L and is denoted by ,Z(0 ,L).

The complete collection of the definitions and proofs contributed by our team can be found in
[6].

3.3 Subsessionization

Linkographs of raw cyber attack moves can grow large very quickly. While large graphs can be
impressive to look at, our research showed that the statistical significance drops dramatically as
the length of a linkograph grows. We wanted to formalize the concept of breaking the linkographs
into windows, or sub-linkographs, of activity. This led us to the concept of subsessionization.
Sessionizing occurs before subsessionizing• sessionizing is substringing the input stream when 60
minute delays are encountered.

30



Subsessionizing the input stream (nominally console commands) is a key problem in cyber
shopping. The benefits of larger subsession sizes are that they have more context and higher en-
tropy. The drawbacks of larger subsessions are that a human will struggle to make sense of them
and complex (e.g., those that grow superlinearly with respect to subsession length) processing al-
gorithms will not perform well. On the other hand, the benefits of smaller subsessions are that
humans can infer their goal and high complexity algorithms will be viable. The drawbacks of
smaller subsession sizes are that less potentially enriching nodes will be present in these subses-
sions and the entropy of these subsessions will be lower.

In this activity, we identify the best way to subsessionize the input stream for further pro-
cessing. We organized subsessionization by two dimensions: The first dimension distinguishes
substringing (separating into contiguous strings) from subsequencing (separating into sequences
that only preserve the order of the input) techniques while the second dimension separates online
from offline strategies. We focused on substringing approaches: Although subsequencing is an
interesting approach, substringing the input stream is a step in this direction and should be studied
first. We followed this same intuition when pursuing ontology extraction on the way to ontology
refinement.

We studied substringing based on time delay, traffic endpoint, linkograph entropy and statistical
likelihood. An online strategy was a natural fit for time delay, traffic endpoint and linkograph
entropy based techniques. We used an offline strategy for the statistical likelihood based technique.

3.3.1 Truth Data

The data set we used for all evaluations is a sessionized 195 command excerpt from a real world
event in . xl sx format. Two humans examined session 4, comprising 101 commands, and identified
ideal partitionings. We considered these partitionings as our "truth data."

Reviewer one's partitioning comprised 7 subsessions of lengths 6, 17, 4, 3, 44, 1 and 26 and
durations 22, 5961, 10, 774, 8361, 0 and 1352 s. It has a length mean and variance of 14.4 nodes
and 251.0 nodes2 and a duration mean and variance of 2354.3 s and 11511462.9 s2.

Reviewer two's partitioning comprised 12 subsessions of lengths 6, 3, 8, 10, 3, 5, 7, 26, 7, 12,
5 and 9 and durations 22, 31, 2576, 807, 774, 42, 262, 2889, 199, 117, 206 and 131 s. It has a
length mean and variance of 8.4 nodes and 37.9 nodes2 and a duration mean and variance of 671.3
s and 1000809.2 S2.

3.3.2 Time Based Substringing

The intuition behind time based substringing is that human actors will break after achieving some
tactical objective to evaluate the results and choose their next goal. This algorithm substrings
upon encountering a delay that surpasses the maximum delay parameter. Based on reviewer one's
partitioning, the optimal maximum delay is slightly larger than 15 minutes. Based on reviewer

31



two's partitioning, the optimal maximum delay falls between 7 and 15 minutes. Table 3.1 shows
how this approach performed.

Table 3.1. Time based substringing results.

Maximum Substring
Count

Length
Mean

Length
Variance

Duration
Mean (s)

Duration
Variance (s2)Delay (s)

420
900

l 800

15
8
4

6.7
12.6
25.2

24.5
225.4
762.2

194.7
890.6

3131.2

34808.0
1307130.8
7483475.6

3.3.3 Source Based Substringing

Source based substringing supposes that a subsession should comprise all contiguous communi-
cation from a source address. This is really a strawman approach because it does not withstand
scrutiny. First, if two actors are working a victim simultaneously, the source will flap between the
two: subsequencing is the answer to this problem (cf. Section 5.2). Second, if a single actor is
using a redirector, the subsessions should span address changes to avoid losing coherence. Third,
if a single actor not using a redirector compromises a host for the duration of a campaign, their
strategic objective will comprise many tactical goals that can be more effectively analyzed sepa-
rately. This algorithm substrings upon encountering a source address change in the time series.
These results match the reviewer one's partitioning statistics exactly. Unfortunately, we cannot
count on the availability of source data. Table 3.2 shows how this approach performed.

Table 3.2. Source based substringing results.

Substring
Count

Length
Mean

Length
Variance

Duration
Mean (s)

Duration
Variance (s2)

7 14.4 251.0 2354.3 11511462.9

3.3.4 Linkograph Entropy Based Substringing

The intuition behind entropy based substringing is that linkograph entropy will rise when a sub-
session spans two distinct activities. This algorithm substrings when the linkograph entropy for a
subsession surpasses the maximum entropy parameter. These results are interesting: although we
can't oversubsessionize (i.e., there is no way to get more than 6 substrings), the results are reason-
able over a wide range of maximum entropy (i.e., the interval from 0 to 0.6). Although these results
approach reviewer one's partitioning, there is a significant residual separating the optimal entropy
based substringing results from reviewer two's partitioning. Table 3.3 shows how this approach
performed.

32



Table 3.3. Linkograph entropy based substringing results.

Maximum
Entropy

Substring
Count

Length
Mean

Length
Variance

Duration
Mean (s)

Duration
Variance (s2)

0.001
0.5
0.9

6
6
3

16.8
16.8
33.7

715.0
716.6
1826.3

2328.3
2644.8
6711.0

14602237.1
13453651.4
32494332.0

3.3.5 Statistics Based Substringing

The basic idea is to find the largest acceptable subsession inside a session, and then apply the
algorithm recursively to the nodes to the left of (earlier in) the subsession and to the nodes to the
right (later). In case multiple subsessions of the same size are acceptable, the one with the best fit
is chosen. In case all fits have equal quality, the earliest subsession is chosen. For a subsession to
be acceptable, it must fulfill three criteria:

1. It must not force a runt subsession to the left or right.

2. The entropy of the subsession linkograph must be within one standard deviation of the mean
entropy for subsession linkographs of the same length.

3. The subsession must not contain disconnected linkographs.

Although these results approach reviewer one's partitioning, there is a significant residual sep-
arating the statistics based substringing results from reviewer two's partitioning. Table 3.4 shows
how this approach performed.

Table 3.4. Statistics based substringing results.

Substring
Count

Length
Mean

Length
Variance

Duration
Mean (s)

Duration
Variance (s2)

7 14.4 481.6 2711.7 4963418.6

3.4 Abstractions

This section comprises the Static Cyber Attacker and Defender abstractions.

3.4.1 Static Cyber Attacker Abstraction

look (e.g., list directory contents or display network configuration)

33



transfer (e.g., upload or download)

move (e.g., change directories or relocate a file system artifact)

execute (e.g., run a program)

cleanup (e.g., delete a file system artifact or stop a process)

3.4.2 Static Cyber Defender Abstraction

individual research [e.g., studying network ( . pcap), host ( . evt x) and open (Internet) sources]

annotate [e.g., update Sandia Cyber Omni Tracker (SCOT)]

collaborate (e.g., Skype)

remediate (e.g., implement firewall rule)

3.5 Ontologies

This section comprises the self loop ontology, forward progress ontology and ontology related
algorithms.

3.5.1 Self Loop Ontology

Access

Figure 3.1. Self loop ontology.

34



The self loop ontology is a simple, straightforward rule set that is useful for framing examples
and bootstrapping an ontology refinement activity. For these purposes, the null (no interclass
relations) and complete (all interclass relations) are alternatives to the self loop ontology. Figure
3.1 illustrates the self loop ontology. The idea is that activity of one abstraction class is related to
other activities of the same class.

3.5.2 Forward Progress Ontology

Figure 3.2. Forward progress ontology.

The forward progress ontology was created to track the steps followed by a typical attacker
when making progress toward an objective and cleaning up. The ontology has links only for
transitions that indicate that the attack is progressing. There are no self-loops, because repeated
attack steps could be seen as "compressible" or not the optimal sequence of steps. For example,
from a Look the attacker could progress through a Transfer, Execute, or Move step. Likewise, a
Look followed directly by Cleanup would not indicate forward progress. Figure 3.1 illustrates the
forward progress ontology.

3.5.3 Algorithrns

In an ideal world, the human cyber shopper would produce an ontology that perfectly characterizes
the actions of any cyber attacker. Furthermore, the cyber threat would be homogeneous (with all
attackers behaving the same) and static (where adversary behavior does not change over time).

35



Unfortunately, the first proposition is unlikely, and the second is naive. While cyber shoppers may
struggle to produce the perfect ontology, they can produce accurate linkographs. The algorithms
in this subsection provide techniques to transform a linkograph into an ontology (extraction) and,
based on linkographs, polish a working ontology (refinement). The practitioner can bootstrap the
refinement algorithms we propose with an arbitrary ontology: for example, the self loop, null or
complete ontology or a cyber shopper's best effort at the perfect ontology (e.g., forward progress).
From the beginning, our goal was to find a refinement algorithm. However, an extraction algo-
rithm was a clear step towards that goal because the formulation is simpler; specifically, extraction
requires fewer parameters.

Ontology Extraction

We describe the formulation for an extraction algorithm as: L O.

Simple Extraction Simple extraction is the most naive of approaches. The basic idea is to begin
with the null ontology, iterate over every link in the linkograph and add the link's relation to the
ontology if it is not present.

Threshold Extraction Threshold extraction improves on simple extraction: this algorithm only
adds the link's relation to the ontology if it is present in the linkograph more often than not. For
example, if there are five opportunities to link an A to a B class node in a linkograph, and three
or more of those links are present, then the threshold extraction algorithm adds the relation to the
ontology.

Ontology Refinement

We describe the formulation for an extraction algorithm as: L, O —> O. There are two metrics
of interest with this formulation: accuracy and similarity. Accuracy measures how closely a
linkograph derived from an ontology matches the precursor linkograph. Similarity measures how
closely a precursor ontology (0) matches an output ontology (0'); we calculate this measurement
as 1 / (1 +L(O, a)) where L() is modified (inserts and deletes only) Levenshtein distance. We seek
to maximize accuracy and similarity. We approach this multi-objective optimization problem by
setting a threshold for one metric (similarity) and maximizing the other (accuracy).

Greedy Refinement The greedy refinement algorithm is iterative. During each iteration, the
algorithm determines the best rule to add to and the best rule to remove from the ontology. Unless
both of these options lower the accuracy of the ontology, the algorithm then adds or removes the
better of the two. The greedy refinement algorithm repeats this process until the ontology does not
change during an iteration. It is an open question whether or not this algorithm is guaranteed to
converge.

36



Brute Force Minimum Similarity The brute force minimum similarity algorithm is recursive.
If the maximum change parameter is greater than zero, the algorithm iterates over all rules. During
each iteration, the accuracy of the ontology with the rule added to or removed from the ontology
is calculated, and the algorithm is invoked with the provisional ontology and maximum changes
decremented. Unless both of these accuracies are lower than the best accuracy, the best ontology
and accuracy are replaced by the better of the two. Appendix A contains pseudocode for this
algorithm

High Impact First Minimum Similarity The basic idea is to improve brute force minimum
similarity by trying high-impact rules first. We sort the label pairs based on applicability/frequency
and iterate over them in decreasing order. Appendix A contains pseudocode for this algorithm.

Windowed Refinement The basic idea is to consider all length k substrings of the input linko-
graph. For each sublinkograph, we add or subtract at most one rule. This is the one rule that
increases the accuracy of the notional derived linkograph the most. If there is no rule that in-
creases the accuracy of the notional derived linkograph, the ontology is not changed based on that
sublinkograph.

Converging Windowed Refinement The basic idea is to invoke the windowed refinement al-
gorithm repeatedly, using the results from the previous run, until the results do not change. It is an
open question whether or not this algorithm is guaranteed to converge.

3.6 Protocol Analysis

This section comprises our protocol analysis method and results.

Generally speaking, protocol analysis is the practice of collecting a raw data set, organizing
it into a dialog transcript and transforming it into an abstract form, such as a linkograph, from
which to extract information. Many disciplines have used this technique to characterize individual
or group activities.

To perform the protocol analysis of a Windows console session, an analyst began with the first
entry and searched the rest of the session for another entry with the same command (e.g., dir).
Then the analyst searched the rest of the session for another entry with one of the same parameters
(e.g., http: //www. foo.com/). The analyst repeated these two searches for each subsequent entry.

As expected, we found that the time required to apply this technique grew as the square of the
number of entries. While it takes seconds for an analyst to extract the linkograph for a session with
a few entries, it takes hours for an analyst to extract the linkograph for a session with one hundred
entries.

37



We performed a protocol analysis on all of the Windows console sessions in an example cy-
ber attack dataset. We used these linkographs to exercise the ontology refinement algorithms we
discussed previously in this chapter.

3.7 Machine Learning

This section comprises features, behavior prediction and dimension reduction. We used ten fold
cross validation in determining all accuracies.

3.7.1 Features

Our machine learning models consider 25 features: node count, critical node count, Cartesian
summary (mean, sum and range for x and y), percentage of links (actual link count / possible link
count), entropy, T-complexity, link index (link count / node count), graph differences, entropy de-
viation, mean link coverage, top cover, session start time (of day), session length, mean command
delay and behavior ratio (one each for access, look, transfer, move, execute and cleanup).

15 of these features are linkograph metadata, and ten come directly from the raw data.

A11 but four of these features are continuous. This informs the set of applicable machine learn-
ing techniques.

3.7.2 Behavior Prediction

We created machine learning models to predict the next behavior of a cyber attacker. Specifically,
we instrumented multinomial classifiers using logistic regression, linear discriminant analysis, K-
nearest neighbors (KNN) and support vector machine techniques. For a given behavior, the accura-
cies of all five techniques were similar. However, for a given technique, the models predicted each
of the five behaviors with different accuracies. While the most accurate technique, KNN, predicts
cleanup actions with 98.3% accuracy, it predicts look actions with only 85.7% accuracy. Figure
3.3 visualizes these results.

3.7.3 Dimension Reduction

Using the accuracies from the earlier behavior prediction work for supervision, we pursued di-
mension reduction. There are two basic approaches to dimension reduction: feature selection and
feature extraction. We pursued feature selection because it is more intuitive and allows the practi-
tioner to cull the raw data set. We chose two feature selection techniques: forward and backward
selection. Forward selection suggests using three predictors for look (look ratio, move ratio and t

38



• Look
— • Transfer
• Move
• Execute
• Cleanup

cl?
a

_
O

O
O

Accuracy versus Technique and Behavior (R)

10CV LR 10CV LDA 10CV KNN 10CV SVM

Technique

Figure 3.3. Behavior prediction results.

complexity) prediction, one predictor for transfer (node count), move (move ratio), execute (node
count) and cleanup (mean link coverage) prediction. Figure 3.4 visualizes these results.

forward selection look prediction

10 15

number of predictors

forward selection execute prediction

number of predictors

forward selection transfer prediction

10 15

numberof predictors

forward selection cleanup prediction

10 15

number of pradIctors

foneard selection mow prediction

Figure 3.4. Forward selection results.

39

10 15

numbero1preclIctors



Backward selection suggests using seven predictors for look (node count, critical node count,
.)?, Ex, range of x, y, Ey) prediction, one predictor for transfer (node count), execute (node count)
and cleanup (critical node count) prediction and four predictors for move (node count, critical node
count, z and Ex) prediction. Figure 3.5 visualizes these results.

backward selection look prediction backward selection transfer prediction

110 5

number et predictors

20

backward selection execute prediction

1!!

10 15

number of predictors

3.8 Game Theory

3.8.1 Motivation

5 10 15

number of predictors

20

backward selection cleanup prediction

5 10 15

number of predictors

20

Figure 3.5. Backward selection results.

backward selection move prediction

10

number of preOldors

ZO

We pursue a game theoretic approach to cyber shopping for two reasons: First, we want to inform
our decision whether or not to apply a countermeasure. This decision decomposes into two sub-
problems: identifying critical steps which are opportunities to apply countermeasures and choosing
the countermeasure to recommend or schedule. In a parallel effort, the countermeasure framework
is being specified and designed. When that work is stable, we will apply our game theoretic
model to autonomously schedule or interactively recommend countermeasures. Second, we want
to improve our behavior prediction accuracy; in turn, this will increase our ability to anticipate the
attacker's next move; if we face a sophisticated adversary, they will likely play the optimal strategy.
We will use a hierarchical approach to predict adversary behavior. One hierarchical approach is to
trust the prediction of the machine learning model if is sufficiently confident. Otherwise, we will
revert to what the optimal strategy predicts the adversary will do. Another hierarchical approach is
to use machine learning to predict the next move and then use the game theoretic model to deter-

40



mine whether or not to apply a countermeasure. Finding Nash equilibria (optimal strategies) will
advance both of these goals by identifying the best plays for the defender and attacker.

3.8.2 Components

The four components of a game are players, information, actions and payoffs. Players are the
autonomous actors in the game; they choose actions based on information and realize a payoff
at the end. The attacker and the defender are the players in our game. Information provides the
players some criteria upon which to choose an action. The attacker knows the address (layer two
and three), platform (hardware, OS and applications) and state (registry, file system and database)
of defender nodes. The defender knows the attacker actions, the source of attacker input and the
destination of exfiltration. Actions are the mechanism by which the players advance the game. The
attacker may look, transfer, move, execute or cleanup. The defender may attempt to disrupt the
attacker or remain passive. Disrupting the attacker means interfering with the attacker action; this
includes denial, delay or corruption. Payoffs characterize the success of each player at the game.
Our conceptual model of the game is an attacker moving through a maze. A positive payoff for the
attacker corresponds with shortening the distance between the attacker and the exit of the maze. On
the other hand, a positive payoff for the defender corresponds with increasing the distance between
the attacker and the exit of the maze.

3.8.3 Game Type

We propose a non-cooperative, asymmetric, zero-sum, sequential, imperfect information game.
Due to the lack of mutual trust or a trusted agent, the game is non-cooperative. The set difference
between the attacker and defender actions provides the asymmetry of the game. The game is
zero sum because the shared payoff resource is the progress the attacker makes toward their final
goal: One step forward for the attacker is one step closer to failure for the defender. Relaxing this
constraint to constant-sum or abandoning it completely is a real possibility. The game is sequential
because the defender's only method to act is in countering (or not) any move the attacker makes
Although the attacker may be able to defeat some of the defender's deception, they will not do
so all of the time. This is an imperfect information game because at least some of the time, the
attacker will not act with complete knowledge of the defender's actions.

3.8.4 Instrumentation

It is not usual for game theoretic models to have a multicomponent payoff for each player. There
are two components to payoff: progress units (PU) and intelligence units (IU). PUs indicate
progress toward completing the information operation (I0). IUs indicate intelligence gained about
the adversary. For the least worst strategy, we equate PU and IU to yield:

For the correct attacker action, if the defender passes, the attacker payoff is 1.

41



For the correct attacker action, if the defender attempts to disrupt and is successful, the attacker
payoff is -1.

For the correct attacker action, if the defender attempts to disrupt and fails, the attacker payoff
is 1.

For the incorrect attacker action, if the defender passes, the attacker payoff is -1.

For the incorrect attacker action, if the defender attempts to disrupt and is successful, the at-
tacker payoff is -1.

For the incorrect attacker action, if the defender attempts to disrupt and fails, the attacker payoff
is 1.

The following figure illustrates this formulation instrumented in Gambit: Red, blue and green
artifacts correspond with the Attacker, Defender and Chance, respectively.

3.8.5 Results

Gambit offers several techniques to compute equilibria. This section summarizes the results of
each.

gambit-enumpure yields five Nash Equilibria within two seconds. There is one for each of
the attacker choices: the defender should disrupt if the attacker made the correct choice and pass
otherwise.

gambit-enurnpoly did not complete after twenty four hours.

gambit-enummixed did not complete after twenty four hours.

gambit-gnm yields multiple Nash Equilibria after 72 rninutes. The format is strange (like
gambit-ipa).

gambit-ipa produces a strange format (like gambit-gnm) within two seconds.

gambit-lcp yields one Nash Equilibrium in 13 seconds. The attacker should choose cleanup
and the defender should disrupt if the attacker made the correct choice and disrupt otherwise.

gambit-lp yields one Nash Equilibrium within a second. The attacker should choose look and
the defender should choose pass; this is non-intuitive.

gambit-liap yields no equilibria in 11 seconds.

gambit-simpdiv did not complete after twenty four hours.

gambit-logit yields many equilibria within two seconds. The equilibria seem to converge with
the attacker choosing each action with probability 0.2 and the defender always disrupting if the

42



look

correct

O. 2:1

<\\\\ ncorrecc

0.8

correct

/0.2

2

2:3

transfer

incorrec

0.8 2:10

success •
disrupt< 1/2

fail

1/2

pass •

• 1.

success •

disrupt ‹.../.° 1/2

fail

T

pass  •

success

disrupt 1/2

C:5 fail

 •

1/2

1 -1

• 1 1

• 1.

success •

disrupt <0.'4..1/2 .

"

- -I 1

▪ 1

success

disrupt 1/2

C:8 fail

1/2

success

disrupt 1/2 f.

l

1/2

disrupt

C:11

-I 1 • 1 1

disrupt

C:12

pass

disrupt

C:14

pass 

disrupt

C:15

pass

•

 •

 •

 •

i T

-1
T

.1
i T

success •

:■ 1/2

fail

1/2  •

success •
1/2

fail

1/2

success

1/2

fail

1/2

 •

 •

 •

success •

1/2

fail • 11 is

1/2

Figure 3.6. Cyber shopping game.

43



attacker makes the correct choice and passing otherwise.

3.9 Countermeasures

We propose that good countermeasures do two essential things: First, they tease out threat intelli-
gence by prompting the attacker to show their techniques and tools. Second, good countermeasures
waste the adversary's resources: for example, operators having to make additional moves, analysts
studying bogus products and computers cryptanalyzing random data.

We propose that a countermeasure can go wrong for one of two reasons: First, generating or de-
ploying it wastes defender resources without providing any benefit. Second, a bad countermeasure
will spook the adversary and might alert them to being instrumented.

3.9.1 Generating Countermeasures

We propose the following list of countermeasures as a starting point for a future research project
or implementation challenge:

file deletion implementation will actually snapshot and delete

network disconnect implementation could involve net u s e /delete

privilege reduction implementation could involve icacls

console delay introduce artificial delays into the console session—implementation could involve
wmic process setpriority

file substitution more complicated, but greater potential confusion—if we anticipate the attacker is
about to download or read a file, we snapshot and replace it with something else—this could
be context sensitive: detect the file type and use an appropriate replacement—the replacement
could be canned or generated dynamically

corrupt directory listing implementation could involve replacing dir to a modified version that
hides or changes the apparent size of the file or directory of interest

3.9.2 Countermeasure Effectiveness

We propose the following measures of countermeasure effectiveness:

1. A longer than normal delay before the next command could indicate confusion.

44



2. The repetition of an earlier command may indicate the adversary reorienting themselves.

3. A disoriented adversary may retreat (e.g., backing up a directory or logging out of a host).

4. Selection of a countermeasure that specifically cannot be "burne& simply by revealing its
use to the adversary.

There are a number of things that concern the adversary that it is not clear how to measure:

1. Institutional attribution

2. Personal attribution: "I don't want to be extradited!"

3. Losing a foothold (persistence)

4. Changing terrain (e.g., due to moving target defense or evolution)

45



This page intentionally left blank.



Chapter 4

Accomplishments

Important measurements of basic research effectiveness are received citations, peer-reviewed pub-
lications and delivered seminars. Generated artifacts can indicate the effectiveness of applied re-
search. Formed relationships are germane to both. We hope to receive many citations in the fu-
ture, but presently, this chapter discusses the remaining four metrics: papers written, presentations
given, artifacts generated and collaborations started.

4.1 Papers Written

4.1.1 Communications and Network Security (CNS) 2015

Andrew Fisher and John Jarocki traveled to Florence, Italy in September 2015 to present "Using
Linkograph to Understand Cyberattacks." This paper [5] provided an overview of linkography
applied to cyber security, a cyber security abstraction and an ontology based on that abstraction to
derive linkographs. We believe this is the first paper in the literature to apply linkography to cyber
security.

4.1.2 Computing and Communication Workshop and Conference (CCWC)
2017 (Submitted)

We submitted "Linkography Ontology Refinement and Cybersecurity" to CCWC 2017. If ac-
cepted, Robert Mitchell will travel to Las Vegas, Nevada in January 2017 to present it. This paper
[19] provided algorithms for refining an ontology based on human-corrected linkographs. The
examples in this paper dealt with cyber security in particular, but the results are germane to the
linkography community at large.

47



4.2 Presentations Given

4.2.1 CyberSci 2015

The technical program committee of CyberSci 2015 invited Robert Mitchell to present his recent
work. Robert traveled to Fairfax, Virginia in October 2015 to present "Dimension Reduction
for Cyber Attack Detection and Analysis." This talk summarized the classification, dimension
reduction and clustering work the team accomplished with regard to predicting the behavior of
adversaries and generating abstractions.

4.2.2 MITRE Denial and Deception for Cyber Defense Workshop

Robert Mitchell traveled to McLean, Virginia in July 2016 to present a poster titled "Linkography
Based Cyber Security." This poster covered our dynamic adversary modeling with a human in
the loop, technology transfer plan, machine learning results, ontology refinement algorithms and
subsessionization techniques, as well as linkography basics.

4.2.3 CyberSci 2016 (Accepted)

Robert Mitchell will travel to Fairfax, Virginia in October 2016 to summarize the results of this
LDRD.

4.3 Artifacts Generated

4.3.1 LinkShop

LinkShop is our name for the collection of python libraries, command line utilities, and web ap-
plication code that we created to perform experiments and produce results for this project. While
this is clearly a researcher playground, we also believe the LinkShop tools to be directly useful to
cyber analysts for developing models and visualizing attack data.

Our Python linkography package is available in our linkshop Git repository. Readers should
contact the authors to gain access to this repository.

48



grrcon_example

The LinkShop web application is an interactive tool for dynamically creating, modifying and an-
alyzing linkographs. The tool provides functionality for reading JSON formatted data, labeling
commands according to provided abstraction rules, creating linkographs via an initial ontology,
and analyzing linkographs using metrics like Shannon entropy. The analyst can then manually
add and remove links in linkographs. A new ontology can be extracted automatically or modified
directly by the analyst.

Linkshop is built using python3, ThriftPy, Node.js with Express, and D3.

grrcon_example

Contains the supporting files for running an example using data from the 2012 GrrCON Network
Forensics Challenge grrcon-encoded. j son to an svg-html and postscript representation. More
information about the example can be found in the exampleReadme . txt in this folder.

hackTestFiles

These are scripts and files that were used to test linkoCreate . createLinko,
linkoCreate .writeLinkoJson, linkoCreate .readLinkoJson and labels . labelCommands.
They are not official tests.

labels.py

labelCommands takes a JavaScript Object Notation (JSON) command file and a JSON label file
and creates a label object and optionally a JSON file. See the docstring for more details.

linkoCreate.py

Linkograph is the class definition of the linkograph object. A Linkograph extends a list to allow
for adding attributes. The only default attribute is a list of the labels.

writeLinkoJson handles writing a Linkograph to JSON files.

readLinkoJson handles reading a Linkograph from a JSON file.

readLinkoCSV creates a Linkograph from a CSV file.

createLinko creates a Linkograph from a label object JSON and a rule JSON.

49



linkoDraw.py

linkoDrawEPS creates a postscript file from a Linkograph.

linkoSVG.py

linkoDrawSvG creates a Scalable Vector Graphics (SVG) representation from a Linkograph.

markov.py

createMarkov creates a Markov model of the linkograph.

runTest.py

This is a script for running the unit tests.

stats.py

Statistics functions for analyzing linkographs.

totalLinks gives the number of possible links for a linkograph.

totalLabels gives the frequency of each label.

percentageOfEntries gives the percentage of lines with each label.

links counts the number of links.

linkCount counts the number of links in a list passed. This function is a helper function for
other functions.

linkTotal calculates the total possible links along a line. This function is a helper function
for other functions.

percentage0fLinks gives the percentage of links

graphEntropy gives the Shannon Entropy for the linkograph.

shannonEntropy is the bare Shannon entropy function.

linkEntropy calculates forelink and backlink entropies.

50



4.3.2 Machine Learning Models

Our machine learning models are available in the machineLearning directory of our Git reposi-
tory. Readers should contact the authors to gain access to this repository.

4.4 Collaborations Started

1. Massachusetts Institute of Technology (MIT) Lincoln Laboratory's Cyber Systems and Op-
erations Group

2. Army Research Lab (ARL)

3. Department 1463 Cognitive Sciences and Systems

4. Department 6114 Military and Energy Systems Analysis

5. Department of the Navy

6. Naval Research Laboratory (NRL)

7. MITRE

Robert met Alexia Schulz and Michael Kotson from Massachusetts Institute of Technology
(MIT) Lincoln Laboratory's Cyber Systems and Operations Group at CyberSci 2015. Afterwards,
Alexia invited Robert to give a talk at MIT Lincoln Laboratory. John and Andrew met Michael
Kotson previously at CNS 2015. MIT Lincoln Laboratory's Cyber Systems and Operations Group
is a potential research partner.

Robert met Kyra Comroe and Lawrence Knachel from Army Research Lab (ARL) at CyberSci
2015. John met Kyra Comroe at a technical exchange meeting shortly before CyberSci 2015. ARL
is a potential research partner and technology transfer recipient/benefactor.

Asmeret Bier from Department 1463 was internally referred to our LDRD to enhance her work.
This collaboration resulted in an FY 2017 LDRD idea (with Nadine Miner). Asmeret is a potential
research partner.

Nadine Miner from Department 6114 was internally referred to our LDRD to enhance her
work. This collaboration resulted in an FY 2017 LDRD idea (with Asmeret Bier). Nadine is a
potential research partner.

Robert met Daniel Ricci from the Department of the Navy at the MITRE Workshop. The
Department of the Navy is a potential technology transfer recipient/benefactor.

Robert met Joseph Langley from Naval Research Laboratory at the MITRE Workshop. Joseph
sits at the Joint Base Anacostia-Bolling location and is a potential research partner.

51



We had multiple discussions with Adam Pennington from MITRE over the course of three
years that helped inform our perspective, and we passed him a copy of the CNS paper in 2015.

52



Chapter 5

Conclusion

5.1 Lessons Learned

Our team learned many lessons during our three year journey. This caused us to realize that our
task list continued to "expand at the middle over the lifetime of the project. Eventually we decided
to create the "system" diagram as illustrated earlier in this report to capture what we worked on,
continue to work on, and know we need to do but have yet to start.

A lesson that appears obvious now, in hindsight, is that applying a method, such as linkography,
from a completely different research domain requires taking significant time to align terminology
and methods to a new domain. In our case, we needed to provide some terminology and formal
definitions to enable researchers to utilize linkography for cyber attack analysis. Since we want to
do this work at scale, in an automated fashion, we also needed to create software to ingest data,
normalize it to JSON, produce results, and provide a user interface for researchers to interact with.
Because we have tried very hard to keep all of our terminology, methodology, and code as general
as possible, we believe the result is a useful to the wider linkography community as well as cyber
security.

Existing models of cyber attack behavior focus on high level activities such as reconnaissance,
exploitation, delivery, or command and control. The classes of actions at this level of abstraction
encompass entire ecosystems of activity. As such, they are not close enough to the real data for us
to make important, real-time decisions. In fact, we learned quickly that human defined abstractions
often do not even maintain a constant level of abstraction. Since we did not want to restrain future
research, even our own, to a static level or set of abstractions, we decided to create a system that is
flexible enough to operate at whatever level is appropriate.

With our gained insights into the power of adding flexibility, we came to the conclusion that
a way to "evolve the artifacts of linkography was also needed: namely the abstraction and the
ontology. This thread of research led us to discover multiple ways to refine an existing ontology
until it matched a provided data set. True to our objectives of creating a transparent analytic system
that allowed a human-in-the-loop, our method has the ability to learn from the input of a human
analyst. We also identified the need to create a similar process for evolution of the abstraction
classes, but our time ran out to tackle this body of work.

53



5.2 Future Work

We ended our subsessionization investigation with substringing techniques which allows us to
break the input from one actor into objectives. In order to deconflict simultaneous actors, we will
pursue subsequencing approaches to subsessionization.

Our current body of work assumes the input flow comes from a malicious user. We will provide
linkograph based intrusion detection in order to filter data from legitimate users.

We will aggregate alerts using machine learning classification or clustering models based on
linkograph features. This will benefit the workflow of incident responders by organizing their data.

We will create honeycues to enable cyber deception operations.

Using Bomb Damage Assessment as a metaphor, we will measure the effectiveness of honey-
cues. This data will feed game theoretic modeling we will continue.

Our current body of work considers Windows console data. We believe our results are gener-
alizable and will apply linkography to other data sets (e.g. web server and database logs).

We will perform protocol analyses in support of cyber security training (e.g., TracerFIRE RE-
COIL) and create a cyber security decision support agent.

54



References

[1] Niccol Becattini, Gaetano Cascini, and Federico Rotini. An OTSM-TRIZ Based Framework
Towards the Computer-Aided Identification of Cognitive Processes in Design Protocols. In
John S. Gero and Sean Hanna, editors, Design Computing and Cognition, pages 99-117.
Springer International Publishing, 2015.

[2] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing on large clus-
ters. Communications of the ACM, 51(1):107-113,2008.

[3] Tamer El-Khouly and Alan Penn. On an integrated analytical approach to describe quality
design process in light of deterministic information theory. In Proc. of DCC, 2012.

[4] Tamer El-Khouly and Alan Penn. Order, Structure and Disorder in Space Syntax and Linkog-
raphy: Intelligibility, Entropy, and Complexity Measures. In Proc. of SSS, 2012.

[5] Andrew Fisher, Kent Carson, David Zage, and John Jarocki. Using Linkography to Under-
stand Cyberattacks. In IEEE Conference on Communications and Network Security, Flo-
rence, Italy, September 2015.

[6] Andrew Fisher, David Zage, and John Jarocki. Towards a Formalization of Linkography.
Technical Report SAND2016-8942R, Sandia National Laboratories (SNL), Albuquerque,
NM, USA, 2016.

[7] Renate Fruchter. Bricks & bits & interaction. In New Frontiers in Artificial Intelligence,
pages 35-42. Springer, 2001.

[8] John S Gero. Design prototypes: a knowledge representation schema for design. AI Maga-
zine, 11(4):26-36,1990.

[9] John S Gero, Jeff WT Kan, and Morteza Pourmohamadi. Analysing design protocols: De-
velopment of methods and tools. In Proceedings of the 3rd International Conference on
Research into Design Engineering, Bangalore, India, January 2011.

[10] Gabriela Goldschmidt. The designer as a team of one. Design Studies, 16:189-209,1995.

[11] Gabriela Goldschmidt. Linkography: Unfolding the Design Process. The MIT Press, 2014.

[12] Jeff W.T. Kan, Zafer Bilda, and John S. Gero. Comparing entropy measures of idea links in
design protocols. In Design Computing and Cognition. Springer, 2006.

[13] Jeff W.T. Kan and John S. Gero. Can entropy represent design richness in team designing?
In Proc. of CCAADRIA, 2005.

55



[14] Jeff W.T. Kan and John S. Gero. Design behaviour measurement by quantifying linkography
in protocol studies of designing. Human behaviour in designing, 5:47-58, 2005.

[15] Jeff W.T. Kan and John S. Gero. Acquiring information from linkography in protocol studies
of designing. Design Studies, 29:315-337,2008.

[16] Jeff W.T. Kan and John S. Gero. About: Designing-Analysing Design Meetings, chapter
Using the FBS ontology to capture semantic design information in design protocol studies,
pages 213-229. CRC Press, 2009.

[17] Nikolai Khomenko and Dmitry Kucharavy. OTSM-TRIZ problem solving process: solutions
and their classification. In Proceedings of TRIZ Future Conference, pages 6-8, Strasbourg,
France, November 2002.

[18] George A Miller. The magical number seven, plus or minus two: Some limits on our capacity
for processing information. Psychological review, 63(2):81, 1956.

[19] Robert Mitchell, Andrew Fisher, Scott Watson, and John Jarocki. Linkography Ontology Re-
finement and Cybersecurity. In Computing and Communication Workshop and Conference,
Las Vegas, NV, USA, January 2017.

[20] Terence Parr. The Definitive ANTLR 4 Reference. Pragmatic Bookshelf, 2nd edition, 2013.

[21] Alan Penn. Who enjoys shopping in IKEA? https://youtu.be/NkePRXxli9D4. Accessed:
2016-09-08.

[22] Morteza Pourmohamadi and John S. Gero. LINKOgrapher: An analysis tool to study design
protocols based on FBS coding scheme. In Proc. of ICED, 2011.

56



57



Appendix A

Appendix: Ontology Refinement
Algorithms

A.1 Brute Force Minimum Similarity Pseudocode

Algorithm 1 Brute Force Minimum Similarity

1: a' <— calculateaccuracy(o, 1 g)
2: o' copy.deepcopy(o)
3: if 0 < m then
4: abstractionclasses createabstractionclasses(lg)
5: for initial in abstractionclasses do

6: for terminal in abstractionclasses do
7: pair (initial, terminal)
8: op copy.deepcopy(o)
9: if initial in o then
10: if terminal in o[initial] then
11: 00 subtractrelation(oo, pair)
12: else
13: 00 addrelation(oo, pair)

14: end if
15: else

16: 00 addrelation(oo, pair)

17: end if

18: a0 calculateaccuracy(oo, 1 g)
19: o 1 , al recurse(lg, 00, m - 1)
20: if ao > a' then
21: o 00

22: a' <— ao
23: end if

24: if a 1 > a' then
25: 0 01

26: al al
27: end if

28: end for

29: end for

30: end if 58

3 1 : return o' , a'



A.2 High Impact First Minimum Similarity Pseudocode

Algorithm 2 High Impact First Minimum Similarity

1: a' <— calculateaccuracy(o, lg)
2: d <— copy.deepcopy(o)
3: if 0 < m then
4: abstractionclasses <— createabstractionclasses(lg)
5: pairlist []
6: for initial in abstractionclasses do
7: for terminal in abstractionclasses do
8: pairlist.append((initial, terminal))
9: end for
10: end for
11: sortedpairlist 4— sortpairlist(pairlist, lg)
12: for pair in sortedpairlist do
13: 6 <— copy.deepcopy(d)
14: if pair[0] in b then
15: if paid]] in b[pair[0]] then
16: 6 subtractrelation(6, pair)
17: else:
18: 6 addrelation(b, pair)
19: end if
20: else:
21: 6 addrelation(6, pair)
22: end if
23: 11 <— calculateaccuracy(b, lg)
24: if d > d then
25: m -= 1

26: a' a
27: oi 6
28: if 0 == m then
29: break
30: end if
31: end if
32: end for
33: end if
34: return o' , a'

59



This page intentionally left blank.



Appendix B

Appendix: Functional Linkography

The current approach to abstraction classes is to label commands according to a set of regular
expressions that define membership in a particular category. The labeling process is to determine
if one of the regular expressions matches an event and apply the corresponding abstraction class
label. Aside from it being tedious to construct the regular expression, this approach has a further
drawback of being centered around the notion of string matching. However, other methods of
labeling are possible. For example, one could imagine selecting a few key events and giving the
same label to every event within a given Levenshtein distance. Another approach is to give the
same label to events that process a file in the same directory.

The current approach to ontologies is to consider them graphs with vertices that are abstraction
classes and directed edges that are the relations between the abstraction classes. The relations in
the ontology determine the linking used to produce a linkograph. For example, a relation A —> B
in the ontology means that every event labeled A is linked to every subsequent event labeled B.
This strategy does not allow a fine grained method of determining the links. For example, maybe
we only want to link two events that are processing a particular file. It is not easy to accomplish
this type of link in the current approach. One technique would be to create an abstraction class that
labels every event that processes that file and have a self-loop for that abstraction class.

The basic idea for the new approach is to use functions for determining the abstraction class
labeling and functions for determining the linking. Thus, instead of a regular expression that
determines which abstraction class an event belongs to, the event is passed to a function that
processes it to determine what the appropriate label should be. This function could be anything.
For example, the Levenshtein distance method mentioned above can be realized by having a list of
the key events and writing a function that determines the distance from them. Every event within
a given distance is given the same label.

For ontologies, the function approach would be to allow functions to process the labels for each
pair of nodes in the linkograph and then determine whether they should be linked. These functions
can be allowed to process any additional type of data that is desired, for example, the file being
processed. With this idea, the processed file problem raised above can be solved by using the file
being processed as a parameter and linking the nodes with events that process the same file.

61



B.1 Motivations

The main point of the abstraction class and ontology systems is to determine how to create links
in a linkograph. Since the ontology portion is the piece that actually does the linking, this piece
should be considered first. In other words, determining the labeling and assigning relations enable
the system to determine the linking. So at a higher level, the labeling and relations provide the
information needed by the system to allow it to use its linking decision process. From this per-
spective, we see that the abstraction classes filter the events into a form that the linking mechanism
can process to create links. Previously, the events were separated according to different categories
of function. However, as illustrated above, it may also be useful to separate the events according to
the files that they process. And what should be done with compound events? In order for a system
to be able to answer these questions, it needs to be able to break up each event into the appropriate
chunks. To separate the events according to different categories of function, we need to split up the
event based on the function parameters. For example, the arguments should be separated. To han-
dle labeling according to the files being processed, the event needs to be filtered for any arguments
that involve a file. To handle compound events, the input needs to be split up into its constituent
events.

We have just described the need to be able to take an event and split it according to things like
commands and arguments, files processed and constituent events. Thus, the question is what type
of information needs to be separated out from the event in order to enable a subsequent linking
function to do its job. So, what is needed first is a parser combined with a collection of data types
to tag portions of the event with. For example, to handle the cases up to this point, we would want
the parser to split compound events into constituent events, identify the command portion, identify
the arguments portion, and determine if the event processes any files. Thus, instead of having a
label at the end, we would have an object with tags (possibly a tree of tags) that identify key bits
of information like the command, files, network address and so on. A linking function would take
this object, filter it according to the type of data that it cares about, and determine whether the link
should exist. In the linking on file processed example, the corresponding linking function would
filter on files processed and determine if the two events should be linked

Does this direction mean that abstraction classes are gone as we know them? Not really. Cur-
rently the tool can label an event according to a type of command and apply a label based on the
file. For example, the process of linking all events that process the same files can nearly be done
now. For each file in the sequence of events you are interested in, you write a regular expression
that recognizes that file regardless of any other commands or arguments. You then create an on-
tology that uses self-loops to create relations from these file abstraction classes to themselves. So
this proposal is not something new but rather brings to the forefront an idea that was always under
consideration. In bringing this idea out, it can become a proper part of the tool flow.

With this more broad notion of abstraction, what we would have is a collection of views of the
data that can identify groups of events together according to the content of the tags. So, one view
can be to filter on having the same tagged file that the event processes. Another view could filter
on just having a file process tag. Hierarchy in the abstractions can be coarser or finer views that
separate certain abstraction classes or combine them. In this framework, combining abstraction

62



classes amounts to combining the functions on the rules and splitting abstraction classes amounts
to creating functions that separate the events.

If we use functions to combine and separate abstraction classes, how can we have a system that
allows a user to do this? One possible answer comes back to the tag parsing. You could allow a
user to identify which tags of an event string they are interested in and allow certain methods for
combining them. For example, a user could start with determining that they only care about tags
for the command name. Then they combine the tags together by identifying abstraction classes of
events they are interested in. Next they see that events of one abstraction class have file redirection
and they want to bin them in a different abstraction class. If file redirection is part of the tagging
system, the user would identify that they care about the file redirection. In turn they would create a
new way of combining the tags by having the rule for one abstraction class include checking for a
redirection tag and not consider the event to be in that abstraction class if a redirection tag is found.
In addition, the original rule would have the system check for a redirection tag and consider the
event some other abstraction class if the redirection command is found. Next, the user may decide
that they want to separate the abstraction class into directory structure and network subclasses.
They would then change the rule on the events and say that directory-oriented events belong to
one abstraction class and network-oriented events belong to another. Perhaps they want to split
the network abstraction class according to the which events are looking at the same IP address.
The user would then add an additional condition to the rule grouping network events that looks at
the network tag and ensures that the network tag is the same. The key for enabling this type of
process is to have an underlying system that tags the event appropriately and provides rich enough
functions for the user to combine the tags. One of the most important abilities such a scheme
requires is to eventually separate every event into its own abstraction class. This ability provides
the finest splitting of the events possible, which demonstrates that the linking rules have maximum
precision.

By tagging the events and allowing methods to split the events according to these tags, we
provide the ability to combine and split abstraction classes that the linking rules process. However,
the linking rules can be allowed to process these same tags directly. So, what becomes the point of
abstraction classes and how do they relate to the linking rules? In one sense, they can be orthogonal.
Abstraction classes can be a way of labeling the events to get a high level understanding on what
is going on or to combine and split nodes to abstract or refine the linkograph nodes. On the other
hand, abstraction classes can be used to aggregate events to simplify the linking rules. So, if one
is writing a linking rule that says, "I want all events of this type to be linked to all events of this
other type;' then this situation would be a candidate for abstracting these two types of events. So,
in relation to linking rules, abstraction classes would be a means of removing the tag information
that is unimportant to the linking rule, or to collapse or expand groups of nodes that a user wishes
to be considered a single event or several. Thus, in the end, the linking rules also require the events
to be tagged in an appropriate way and to have an ability to combine the tags. The results of such
rules would be to create a link instead of considering the events to be the same abstraction class.

63



B.2 Infrastructure

The above motivation introduces the idea of having three main pieces to the construction and
presentation of a linkograph: parsing, functional abstraction and functional ontology.

B.2.1 Parsing

The core aspect of the parsing phase is to identify artifacts of events that will be used by the prac-
titioner to define rules for viewing and linking. Its job is to break the events up into immediately
accessible chunks that the views and ontology functions can process. For example, a view needs
to be able to query the result of the parser for things like the command being used. So this compo-
nent needs to be an event parser that will create a parse tree of the event that identifies the relevant
chunks. It would also be helpful if the parser was adaptable to allow a user to identify new artifacts
for recognition. This may be ambitious, but it should be possible for a developer to add additional
nodes to the parse tree. A possible direction is to use something like ANTLR [20], which is a
system designed to build parsers for a user based on a grammar. It is possible to make this process
dynamic, so the user would add a grammar rule, ANTLR would compile a new parser, and the new
parser would provide the requested artifacts.

An additional constraint on the result of the parser is that compound events packed as a single
event should be separated. For example, if a for loop is identified, the constituent events should be
separated out.

B.2.2 Functional Abstraction

The next part is to manipulate how events are grouped, which is identifying abstractions. Abstrac-
tions should have three main abilities, to identify all events that meet a certain criteria, to combine
events, and to split events that were combined. The first operation is what we do now. The second
two operations would change the number of nodes in a linkograph. For example, if you see a par-
ticular set of three events together acting on the same file, then you want to identify these events as
a single operation. This can be done by identifying that type of operation as one abstraction class,
but it is more elegant to combine the events into a single node. In order to accomplish these tasks,
the user should have the ability to create an abstraction layer and identify a set of rules based on
the tags to identify which events should be combined, split or labeled the same. The system should
be able to achieve both extremes of combining all events as a single node and splitting any event
into many nodes. Similarly, labeling should be able to go from labeling all events as the same to
providing a unique label for each distinct event. At the end, the abstraction layers are essentially
decision processes where the user prescribes a set of conditions for event identification.

64



B.2.3 Functional Ontology

The linking rules should be able to provide links between two events based on the tags and the
abstraction layer. They are programmable decision processes. For example, consider two events
in the context of a networking abstraction layer: If the first event belongs to one abstraction class
and the second event belongs to another abstraction class, then link the two together if they both
process file names that are within an edit distance of 3.

65



This page intentionally left blank.



Appendix C

Appendix: Deriving Markov Models

C.1 Introduction

Using Markov models to help understand the behavior in a linkograph is nothing new. The tool
LINKOgrapher [22] can generate both the first order and second order Markov models based on
the FBS ontology. Gero, et al. [9] use Markov models to predict the probability of design issues
coming after each other in strict time-order sequence. We propose the use of Markov models to
model the behavior of the actor producing the events being analyzed.

C.2 Representation

Markov models, specifically first order models, have two common representations: as a graph and
as a matrix (called a transition matrix). An example of a graphical representation is the following.

67



Figure C.1. Markov Model example.

In this sort of representation, the edges give the probability of moving from the present state
to the next state indicated by the arrow. So, there is a 57% for moving from state Execute to state
Cleanup.

Cleanup Execute Look Move Transfer

Cleanup 1.0 0.0 0.0 0.0 0.0
Execute 0.57 0.29 0.0 0.14 0.0

Look 0.0 0.0 0.63 0.17 0.20
Move 0.25 0.0 0.5 0.08 0.17

Transfer 0.46 0.46 0.0 0.0 0.08

In the transition matrix, the row indicate the initial state and the column indicates the termi-
nal state. For example, in row Execute and column Cleanup, the entry is 0.57, corresponding to
Execute —> Cleanup in the graphical representation.

Often the graphical view is preferred for illustrative purposes and the matrix view is preferred
for calculations.

68



C.3 Markov Interpretation

The LinkShop markov package has two different types of Markov models that it can construct:
link-predictor and behavioral. With the link-predictor Markov model, a probability of 0.57 for
Execute —> Cleanup means that if the current node has an abstraction class label of Execute, then
there is a 57% chance that there is a later node labeled Cleanup. That is, there is a 57% chance
that there is a link connecting the current node with label Execute to a later node with label
Cleanup somewhere in the linkograph. With the behavioral Markov model, a probability of 0.57
for Execute —> Cleanup means that if the current node has an abstraction class label of Execute,
then there is a 57% chance that the very next node has a label of Cleanup.

C.4 Uses

Two of the most obvious uses of Markov models are: as a profile of the transition behavior of a
sequence of events and as a method for producing events. The utility of these uses have not been
fully explored, yet. However, a couple of observations can be made.

• Using Markov models to profile the next transition is the same as using them to predict the
next state. Thus, using Markov models in this way is a less sophisticated approach to finding
the next behavior than the Machine Learning approach.

• It is not useful to use Markov models to both produce a sequence of events as actors and use
them to profile such sequences of events. This type of use is circular, the profiling Markov
model will converge to the producing Markov model.

C.5 Markov Models of Sessions (Link-Predictor Model)

The models in this section were constructed using the LinkShop tool markov . py, dot 2 svg . py and
Inkscape. For example, the following code takes a linkograph in a file l inko . j s on, constructs the
Markov model using the link-predictor method, and prints the Markov model as a Graph Descrip-
tion Language (DOT), Scalable Vector Graphics (SVG) and Portable Network Graphics (PNG)
file.

69



# Construct a markov model from linko.json and print in dot format

markovMatrix.py -d -m link-predictor -o markovModel.dot linko.json

# Convert the dot version to an svg version

dot2svg.py markovModel.dot markovModel.svg

# Convert the svg to a png

inkscape -e markovModel.png markovModel.svg

Figure C.2. Creating a link-predictor model in LinkShop.

Multiple labels are allowed in this example (a condition we later realized should not be al-
lowed). Each of the states that are present in the model represent an abstraction class that appears
as a label in the linkograph. Transition percentages are limited to two decimal places.

For the sake of brevity, only the derived models for sessions 1, 32 and 53 are displayed here.
The rest are available from the team wiki or by request from the authors.

Figure C.3. Session 1.

).52

Figure C.4. Session 32. Figure C.5. Session 53.

The overall Markov model is derived from a combination of all the sessions.

70



1.3

Figure C.6. Overall link-predictor Markov model.

The model can be represented as the following link-predictor transition matrix. The columns
and rows are the abstraction classes: Cleanup, Execute, For, Look, Move, Net_Start and Transfer.

0.14 0.08 0.0 0.26 0.51 0.0 0.0
0.02 0.13 0.0 0.28 0.55 0.0 0.01
0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.02 0.1 0.0 0.4 0.46 0.0 0.02 (C.1)
0.02 0.11 0.0 0.33 0.51 0.0 0.01
0.02 0.13 0.0 0.3 0.53 0.0 0.01
0.02 0.15 0.0 0.27 0.54 0.0 0.02

Figure C.7. Link-predictor transition matrix.

71



C.6 Markov Models of Sessions (Behavioral Model)

The following figures are first order Markov models for the same three sessions examined in the
link-predictor section, but constructed using the behavioral model. These models were again con-
structed using ma rkovMat rix . py, dot 2 svg . py and Inkscape. However, this time markovMatrix . py
was invoked with the argument -m behavioral.

Figure C.8. Session 1.

47

.62

Figure C.9. Session 32. Figure C.10. Session 53.

The following is the behavioral Markov model derived from the combination of all 53 sessions.

Figure C.11. Overall behavioral Markov model.

72



Here is the corresponding transition matrix for the behavioral model. The columns and rows
are: Cleanup, Execute, For, Look, Move, Net_Start and Transfer.

0.44 0.0 0.0 0.27 0.29 0.0 0.0 -
0.01 0.34 0.0 0.2 0.42 0.01 0.01
0.0 0.0 0.0 0.5 0.5 0.0 0.0
0.01 0.06 0.0 0.68 0.24 0.0 0.01 (C.2)
0.02 0.13 0.0 0.25 0.57 0.0 0.02
0.0 0.18 0.0 0.09 0.55 0.18 0.0
0.0 0.04 0.0 0.18 0.32 0.0 0.45

Figure C.12. Behavioral transition matrix.

C.7 Link-Predictor Markov as a Next State Predictor

The following figure provides a measure of how well the Link-Predictor Markov models do in
predicting the next state. The top figure gives the maximum entry-wise difference, in absolute
value, between the link-predictor Markov models and the behavioral Markov models. The mid-
dle figure gives the minimum entry-wise difference, in absolute value, between the link-predictor
Markov models and the behavioral Markov models. The last figure gives the number of states in
the Markov model: that is, the number of abstraction classes that appear as a label in the linko-
graph. The Markov models that use all the sessions are in these graphs as Session 0. Note that in
both the top and middle figures, transitions are ignored that have a zero probability in both models.

73



ll

Maximum Difference Between Link-Predictor and Behavioral Markov

14 15 16 8 19 20 21 22 23 24 25 26 27 28 29
Session nurnber

3. 3, 40 41 62 43 44 45 40 443 49 50 51 5.2 53

1 2 3 4 5 6 7 8 9 10 11 12 13

Minimum Difference BetWeen Unk-PrediCtOr and Behavioral Markov

14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Session number

32 33 34 35 36 37 38 39 40 41 42 03 44 45 46 47 48 49 50 51 52 53

Number of Labels that Appear in the Unkograph.

0 1 2 3 4 5 6 I 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 30 35 36 37 38 39 40 41 42 03 44 45 46 47 48 49 50 51 52 53
Session number

From these graphs, we see that the maximum difference that occurs between transitions in the
link-predictor model and the behavioral model can be high, for both a small number of abstraction
class labels and a large number of abstraction class labels. For example, Session 5 has a maximum
difference of 1.0 with only two labels and Session 46 has maximum difference of 1.0 with five
labels. Note that since we are dealing with probabilities, 1.0 is the largest difference possible. On
the other hand, the difference can be zero, for both a small number of abstraction class labels and a
large number of abstraction class labels. For example, Session 2 has a minimum difference of 0.0
with only one label, and Session 46 has a minimum difference of 0.0 with five labels. Thus, we see
that it is possible for the link-predictor Markov model to be a good indicator for some transitions
and a poor indicator for others.

C.8 Distance Between Matrices

Another way to get an idea of how different the link-predictor Markov models are from the be-
havioral Markov models, we can consider the distance between the corresponding matrix repre-
sentations given by some common norms. The next two figures show the distance between the
link-predictor Markov model and the behavioral Markov model for each session. From top to bot-
tom and left to right, the distances are with respect to the Frobenius norm, Infinity norm, L 1 norm
and L2 norm. Again Session 0 is the Markov model for all events.

74



1.5

0 0

Frobenius Difference Between Link-Predictor and Behavioral Markov

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

Sessron number

infinity Norm Difference Between Link-PrediCtOr and Behavioral Markov

0 0

9 10 11 12 13 14 15 16 18 19 20 21 22 23 20 25 26 27 28 29 30 31 32
Sesslon number

5 36 39 40 41 42 43 44 45 46 47 48 49 50 51 52 5

L1 Norm Difference Between Link-PrediCtO and Behavioral Markov

o

0 5

0 0

0 1 9 10 11 12 13 10 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 00 41 42 03 04 45 46 07 48 49 50 51 5
Session number

L2 Norm Difference Between Link-Predictor and Behavioral Markov

2

0 8

0 6

0 4

0 2

0 0

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 38 39 40 41 42 43 44 45 46 47 dB 49 50 51 52 53

Session number

7✓



This page intentionally left blank.



Appendix D

Appendix: Map Reduce Algorithms

Notation and assumptions:

• 0 = (Abs,R) is an ontology with abstraction classes Abs and relations R.

• F : {0,1, . . . ,N —1} —> Abs is a labeling.

• LD is the derived linkograph using ontology O and labeling F.

• LT is a target linkograph on N nodes.

• Optimal or best ontology is relative to the accuracy metric.

In determining the ontology OF that gives the derived linkograph, LD, that best approximates
LT, it is not necessary to calculate the accuracy every time a relation is considered for removal
or addition. It is enough to calculate the overlinks and underlinks associated with each relation
A —> B. In other words, the accuracy may change as relations are added or removed, but for a
given relation A —> B, which accuracy is better between adding or removing A —> B is the same
independent of the other possible relations. Thus, each relation can be processed simultaneously
to determine which should be added or removed. Moreover, the full accuracy does not need to be
calculated, only the two sets S (A,B) = possible links (n, m) with F (n) = A, F (m) = B, and (n, m) in
LT and Sb (A,B) = possible links (n, m) with F (n) = A, F (m) = B and (n, m) not in LT . From these
two sets, the overlinks and underlinks can be derived, given whether the relation A —> B is in or not
in the ontology. In fact, the determination of whether to add or remove A —> B can be determined
by checking the relative size of S (A,B) and Sb(A,B). If S (AA is larger, then add A —x B. If Sb(A,B) is
larger, then remove A —> B.

Although it is enough to calculate S (A,B) and Sb(A,B), there is not really a savings in terms of
complexity to replacing the accuracy calculation with finding these sets. The reason is that the
cost of calculating the two sets is the same as the cost of calculating the accuracy; in both cases,
every link needs to be considered. However, the runtime can be improved in two ways. The first
is to replace the first accuracy calculation with finding the sets S (A,B) and Sb(A,B) and to replace
the accuracy calculations in the loop with set cardinality comparison. This process requires one to
only pay the accuracy cost once, which means that the cost of the algorithm in terms of the number
of nodes N, reduces to a single cost at the beginning This savings in runtime comes at a cost of

77



additional memory for saving the sets. The second method to improve runtime is to exploit the
parallelism. In this direction, we consider a MapReduce [2] type methodology.

The idea is to split the links processed by a node according to the abstraction classes in the
ontology and use these to form the records in the MapReduce methodology. Specifically, split the
set of all possible links for LT into the set of links (n, m) where n has a particular label under the
labeling F . So, the records are (A, *) := (n, m) E MN1L(n) = A where MN is the maximal linkograph
on N nodes, that is, the set of possible links The Map function will then process these records and
emit a count ( (A, B), (s (A,B), sb(A,B))) that provides a key (A,B) on the labels for a link and a count

(7 5 (A ,B) 7 sb(A,B)) for the size of S(A,B) and Sb (A,B). The Reduce function handles summing s(A,B) and
sb (A,B). With these sums, we can calculate the Boolean value S > Sb which determines whether
the relation A B should or should not be in the ontology.

In the following algorithms: A indicates the abstraction class of the initial node, B indicates
the abstraction class of the terminal node, F is the labeling, and O is the ontology.

D.1 Optimal Ontology Map

Algorithm 3 Optimal Ontology Map

1: function MAP(A, linkograph, F , links) 1). links: the set of possible links in linkograph whose
initial node is in A

2: for link in links do
3: terminalNode <— terminal node of link
4: if link in linkograph then
5: EMIT((A, F (terminalNode)), (1, 0))
6: else
7: EMIT((A, F (terminalNode)), (0, 1))
8: end if
9: end for
10: end function

D.2 Optimal Ontology Reduce

Algorithm 4 Optimal Ontology Reduce

1: function REDucE(A, B, partialCountInLinkograph, partialCountNotInLinkograph)
2: for all input ((A, B), (partialCountInLinkograph, partialCountNotInLinkograph)) do
3: S (A,B) += partialCountInLinkograph
4: sb (A,B) += partialCountNotInLinkograph
5: end for
6: EMIT((A, B), S(A,B) > SI) (A,B))
7: end function

78



D.3 High Impact First Minimum Similarity Reduce

Algorithm 5 High Impact First Minimum Similarity Reduce

1: function REDUCE(A, B, partialCountInLinkograph, partialCountNotInLinkograph, O)
2: for all input ((A, B), (partialCountInLinkograph, partialCountNotInLinkograph)) do
3: S += partialCountInLinkograph
4: Sb += partialCountNotInLinkograph
5: end for
6: if S > Sb then
7: if A B not in ontology then
8: EMIT((A, B), (0, ,B) sb (AA))

9: else
10: EMIT((A, B), (1,5(A,B) + sb (A,B)))
11: end if
12: else if S < Sb then
13: if A —x B in 0 then
14: EMIT((A, B), (0,5(A,B) + SI) (AA))
15: else
16: EMIT((A, B), 5' (AA sb (AA))

17: end if
18: else
19: EMIT((A, B), (0,5'(A,B) + sb (A,B)))
20: end if
21: end function

79



DISTRIBUTION:

1 MS 0359

1 MS 0899

D. Chavez, LDRD Office, 1911

Technical Library, 9536 (electronic copy)



v1.40

81



Sandia National laboratories

82


