Electrical and X-ray diagnostics on the NSTec 2-MA dense plasma focus system
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Introduction ) 2=

= Sandia National Laboratories collaborated with NSTec to
field additional diagnostics on their 2-MA dense plasma
focus neutron source system

= |n a brief experimental series, we added voltage, current,
and X-ray diagnostics to the NSTec system

= We will show the electrical measurements, a basic analysis
of the data, and the preliminary X-ray results




The basics: Current and voltage UL

= A large DPF creates challenges for acquiring high-fidelity electrical

signals

= Slow rise time makes derivative (I-dot, V-dot) signals small

= Large current and slow rise time makes flux penetration into signal lines
significant and pervasive
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Current measurement with segmented

Rogowski coil
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Vacuum insulator

Current monitor housing

Current monitor is 8-
segment Rogowski
coil, which allows
some spatial
resolution and
common-mode noise
rejection



Voltage is measured with a resistive e
divider

 The resistors are
precision, low voltage- R e
coefficient devices that
have limited energy-
handling ability

« A capacitor limits energy
deposition in case of
delayed DPF current
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The voltage monitor data are processed
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= Droop correction for the DC-blocking capacitor requires only
component values and the waveform data

= Scale factor is: [ﬁ + 1 ]
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The monitor voltage waveform is
translated to the insulator position

= A transmission-line model accounts for displacement current
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Current and insulator voltage allows
inductance calculation
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We can further analyze the current
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It is possible to calculate the accreted plasma mass O

every shot with the voltage and current measurement

= A few lines of high-
level IDL routines allow
immediate mass
results

= This is about half of the
neutral gas fill density

= We expect that the
sheath is not purely
radial and that mass is
ejected

Accreted mass, mg
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The magnetic pressure at the anode is

) e,
twice the cathode pressure
= This will give an axial component to the
sheath and radial mass ejection
__.__:::5:;:5:;::::__; ————» Velocity

current




The mass calculation is sensitive to e
small changes in gas fill
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= We looked at two
nominally identical
shots, one at 4.5 Torr
and the other at 5 Torr

= The measured mass
difference (ratio 1.12)
agrees with the fill
pressure difference
(ratio 1.11)
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Electrode conditioning affects the  [@&s,
accreted mass

=== Conditioned

=== Jnconditioned

= Compare two
otherwise identical
experiments:

= The first discharge after
opening the chamber
(unconditioned)

Accreted mass, mg

= Several discharges later
(conditioned)

Axial distance, cm
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Preliminary time-integrated X-ray @&
data
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Pinhole camera one shot

Bent-crystal spectrometer two shots
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Conclusions ) 2=,

= We added calibrated diagnostics to the NSTEc dense plasma
focus with special attention to electrical noise

= We showed simple waveform calculations to yield insulator
voltage, inductance in vacuum, and plasma mass

= The plasma mass calculation is sensitive to ~10% changes in
neutral gas fill

= The plasma mass calculation shows large differences with
unconditioned electrodes

= Preliminary X-ray data shows adequate signals for
spectroscopy and pinhole images




