
EXFISCRLE
COMPUTING
PROJECT

ECP-U-2018-XXX

Milestone M1 Report: HBM2/3 Evaluation on Many-core CPU

WBS 2.4, Milestone ECP-MT-1000

ECP Hardware Evaluation Memory Working Group)1

June 8, 2018

U.S. DEPARTMENT OF Office of
ENERGY Science

National Nuclear Security Administrafion

SAND2018-6370R

DOCUMENT AVAILABILITY

Reports produced after January 1, 1996, are generally available free via US Department of
Energy (DOE) SciTech Connect.

Website http://www.osti.gov/scitech/

Reports produced before January 1, 1996, may be purchased by members of the public
from the following source:

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
Telephone 703-605-6000 (1-800-553-6847)
TDD 703-487-4639
Fax 703-605-6900
E-mail infoOntis.gov
Website http://www.ntis.gov/help/ordermethods.aspx

Reports are available to DOE employees, DOE contractors, Energy Technology Data
Exchange representatives, and International Nuclear Information System representatives
from the following source:

Office of Scientific and Technical Information
PO Box 62
Oak Ridge, TN 37831
Telephone 865-576-8401
Fax 865-576-5728
E-mail reports@osti.gov
Website http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an agency
of the United States Government. Neither the United States Government
nor any agency thereof, nor any of their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manufacturer,
or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States Government or
any agency thereof.

ECP-U-2018-XXX

ECP Milestone Report

Milestone M1 Report: HBM2/3 Evaluation on Many-core CPU

WBS 2.4, Milestone ECP-MT-1000

Office of Advanced Scientific Computing Research
Office of Science

US Department of Energy

Office of Advanced Simulation and Computing
National Nuclear Security Administration

US Department of Energy

June 8, 2018

Sandia National Laboratories is a multimission laboratory managed and operated by National Technol-
ogy & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International
Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract
DE-NA0003525.

Sandia
National
Laboratories

Exascale Computing Project (ECP) iii ECP-MT-1000

ECP Milestone Report

Milestone M1 Report: HBM23 Evaluation on Many-core CPU

WBS 2.4, Milestone ECP-MT-1000

APPROVALS

Submitted by:

Gwen Voskuilen, Alfredo Gimenez, Ivy Peng, Shirley Moore, Maya
Gokhale
ECP-MT-1000

Concurrence:

Date

Simon Hammond Date
ECP Hardware Evaluation

Approval:

Dan Hoag Date
Federal Project Administrator

Exascale Computing Project (ECP) iv ECP-MT-1000

1. INTRODUCTION

High Bandwidth Memory (HBM) will be a prominent feature in the exascale memory landscape, potentially
having a larger role than DDRx as the primary on-node memory. HBM is a DRAM stacking technology
that vertically stacks multiple DRAM dies and directly connects them with through-silicon vias (TSVs).
Fundamentally, HBM and DDR use the same DRAM technology, but their architectures differ. Both support
multiple (up to 8) independent channels to access the memory. However, one way that HBM differs from
conventional DDR is the width of its interface; each HBM channel uses a 128-bit wide I/0 interface and each
connection can operate at a data rate of up to 2Gbps per wire. This extremely wide, parallel interface is the
key technique used by HBM to deliver such high bandwidth rates. Total bandwidth of a single HBM2 channel
can reach 32GB/s with a stack capable of delivering 256GB/s. The access latency of HBM is comparable to
that of conventional DDR DRAM technology.

HBM3, expected to be available in the 2019/2020 timeframe, will double the density of the individual
memory dies from 8Gb to 16Gb and will allow for more than eight dies to be stacked together in a single chip,
with up to 64GB of memory capacity possible. HBM3 will feature twice the peak bandwidth: HBM2 offers
256GB/s of bandwidth per stack and HBM3 will double that to 512GB/s while remaining in a similar power
envelope. When employing multiple stacks, the total amount of memory bandwidth available per socket
could be several terabytes per second by 2023.

The key question that arises for ECP is to what degree applications might benefit from HBM3's increased
bandwidth. In order to benefit, applications must be able to utilize the increased bandwidth. In general,
maximum sustained bandwidth can be achieved through sufficient concurrent demand to saturate the memory
bus, typically through a combination of prefetch and demand cache misses. Irregularity in a memory access
pattern can prevent useful prefetching. Although this problem can be mitigated by increasing independent
thread concurrency, the application must have enough parallelism so that the thread count can be increased
enough to utilize the bandwidth. Architectural factors also affect bandwidth utilization. HBM3's increased
memory bandwidth must be balanced by the bandwidths in the cache hierarchy and by the network-on-chip
(NoC) bandwidth. If these bandwidths are under-provisioned, then it may be impossible for the CPU to
generate enough concurrent requests to saturate the memory bus regardless of demand from application level
parallel execution threads.

In HIHE01-1, "Evaluate a PathForward/Facilities memory-relevant performance study/analysis," we
conducted a focused study on the performance differences between HBM2 and HBM3 as revealed through
execution of representative benchmarks. We used measurements on an existing many-core system, Knight's
Landing (KNL), to calibrate simulator settings, and then performed Structural Simulation Toolkit (SST)
simulations of KNL-like CPUs that access future high bandwidth memories. This report documents our
findings.

2. METHODOLOGY

As stated above, the goal of this study is to evaluate the performance difference between HBM2 and HBM3
for DOE applications in the context of many-core architectures. Because HBM3 is not yet available, we
use simulation to evaluate its performance and calibrate the simulation using the Knight's Landing (KNL)
architecture as a baseline many-core model. Starting from an existing architecture enables a more realistic
simulation as we can extrapolate from known architectural parameters. The KNL architecture integrates
MCDRAM, an HMC variant, rather than HBM2. The two memory technologies are similar in latency and
bandwidth, enabling us to reasonably calibrate the simulation even though the hardware uses a different
technology.

To simulate the KNL-like CPU, we use the Structural Simulation Toolkit (SST) [1]. SST is a parallel
discrete-event simulation framework which enables users to combine simulators for cache, memory, processors,
etc. to build up complex architectures such as KNL. We begin with a description of the benchmarks used in
this study and then discuss the calibration and simulation methodology in Sections Z` and

Exascale Computing Project (ECP) 1 ECP-MT-1000

EtC)P

2.1 BENCHMARKS

To stress the memory system capabilities, we selected three well-known memory-intensive benchmarks with
different memory access patterns: STREAM, HPCG, and XSBench.
STREAM [0] is a standard benchmark that measures the peak memory bandwidth available on an architecture
for four simple multithreaded kernels. STREAM uses OpenMP to perform thread-parallel iterations over
large arrays in each kernel, effectively forcing the hardware to access data from memory rather than cache.
The four kernels have perform slightly different computations:

1. Copy streams through an array, copying it to another.

2. Scale has the same memory access pattern as Copy, but multiplies the read value by a constant before
writing it.

3. Add sums two values from two arrays and writes to a third.

4. Triad is identical to Add but scales the first read value before performing the sum and write.

STREAM may be configured to run the set of kernels multiple times to obtain more samples, and after
collecting them, STREAM reports the amount of data read and written divided by the fastest run time for
each kernel, effectively providing an upper-bound on the available memory bandwidth for each. Because
STREAM's kernel access patterns are extremely simple and regular, they represent a best-case scenario for
memory-bandwidth bound codes.
HPCG [3] is an open-source benchmark developed as an alternative to High Performance LINPACK (HPL)
for ranking HPC systems. It mimics a multi-grid conjugate gradient (CG) solver for sparse systems. CG
solvers are widely used in scientific applications for solving systems of linear equations for which the matrix is
symmetric and positive-definite. An iterative implementation of a CG solver attempts to find an approximate
solution of x for the given equation Ax = b, where A and b are known. The iterative procedure starts from
an initial guess of x, denoted x0, gradually moving toward the solution by minimizing the residual, which
measures the distance from the solution. Preconditioners are often used to accelerate this procedure by
transforming the system into another system with more favorable convergence properties.
HPCG does a fixed number (default 50) of CG solver iterations. Each iteration runs a symmetric

Gauss-Seidel preconditioner kernel, ComputeMG, followed by multiple invocations of three main functions,
ComputeDotProduct, ComputeWAXPBY, and ComputeSPMV. Both ComputeMG and ComputeSPMV
demonstrate irregular data access patterns over sparse data structures. Other functions exhibit regular data
access patterns. With the exception of ComputeMG, the functions are parallelized with OpenMP in the
reference implementation. Thus, ComputeMG dominates execution time due to its serial implementation.
XSBench [®] is a proxy for the Monte Carlo particle transport simulation code OpenMC. XSBench emulates
the most time-consuming portion of OpenMC, which involves a high volume of thread-parallel random lookups
to a large table with little intervening compute. Thus, it exhibits low locality and a high last-level cache miss
rate.

Table shows the default parameters for each benchmark. All benchmarks use 256 threads. To simulate
these applications in a reasonable timeframe (i.e., less than 24-48 hours), we simulate just a representative
portion of the benchmarks, reducing the problem size as needed, and simulate only the main computation, as
described in the Simulation column. We validate the scaled down problem sizes by comparing to performance
on hardware. Because simulation is a controlled environment with precise statistic tracking, it is less
susceptible to performance variability due to outside effects such as operating system noise than the hardware
platform.

The Simulation—fast column lists parameters that are considerably faster to simulate but yield similar
simulated results to the Simulation parameters. In the following sections, we use Simulation parameters
for calibration and Simulation—fast parameters for the HBM analysis. For XSBench, the Simulation and
Simulation—fast parameters are the same.

2.2 KNIGHT'S LANDING EMPIRICAL MEASUREMENTS

To calibrate the simulated architecture, we ran identical problems on the simulator and native KNL hardware
and compared equivalent performance metrics. We targeted the RZ Oz testbed at LLNL, which features two

Exascale Computing Project (ECP) 2 ECP-MT-1000

E tg) I= elf.FISCRLE
CcapuTirAG
x•REIJECT

Table 1: Default and simulated benchmark parameters

Benchmark Parameter Default Simulation Simulation—fast
Array size 100M 100M 10M

STREAM Memory footprint 2.2 GB 2.2 GB 229 MB
Iterations 10 2 2

HPCG
Input 272x272x136 88x88x88,

272x272x136
88x88x88

Memory footprint 8 GB 0.5 GB, 8 GB 0.5 GB
Other modification Simulate first iteration of CG loop only, as iterations behave similarly
Dataset large large

XSBench
Lookups
Memory footprint

15M
5.3 GB

1M
5.3 GB

Other modification Simulate cross-section (XS) lookups only

KNL nodes with MCDRAM. The MCDRAM may either be used in "flat" mode where allocations explicitly
target either DRAM or MCDRAM or in "cache& mode where the MCDRAM is essentially treated like a
last-level cache shared between all cores. To evaluate solely the performance of the stacked memory subsystem,
all our experiments target flat mode and allocate memory exclusively in MCDRAM.

In the calibration study, we measured core bandwidth and memory bandwidth. Core bandwidth is the
effective total bandwidth seen by the executing cores, regardless of whether memory accesses were satisfied
by caches or memory. Memory bandwidth, on the other hand, is a measure of the MCDRAM memory
controller's traffic. By collecting both metrics, we are able to distinguish between memory access time spent
in caches and in MCDRAM, and thus infer what fraction of the application benchmark's memory accesses
actually access MCDRAM.
Core Bandwidth, specifically, is the sum of the sizes of all memory micro-operations (reads or writes) issued
by all cores. We collect core bandwidth by tracing all instructions that involve memory micro-operations using
Intel's PIN tool [5], extracting the read and write sizes of each operation, and summing them up at runtime.
We invoke this measurement for specific regions of code, time the same region without instrumentation,
and divide the read and write sizes by the uninstrumented time. This way, we obtain accurate counts of
bytes read and written at the tradeoff of excessive instrumentation overhead and also collect accurate timing
without overhead.

While this metric gives the precise bandwidth used by the issued core instructions, it does not precisely
capture data movement within the cache and memory system. Accessed data is often smaller than the
cacheline size, in which case sparse accesses incur high memory bandwidth overhead to bring in a full cacheline
while denser, data-local accesses may require just a single cacheline transfer. Furthermore, request-for-access
(RFO) and other software prefetch operations are counted as memory micro-operations, redundantly counting
accesses to prefetched data (i.e., the access is counted twice - once for the prefetch and once for the actual
access).
Memory Bandwidth captures memory data movement as the number of bytes read from and written to
MCDRAM per second. We collect memory bandwidth using uncore hardware counters for the Embedded
DRAM Controller (EDC), the MCDRAM's memory controller I. These counters enable separate measurement
of cacheline reads and writes to MCDRAM. We sum the reads and writes, multiply by the cacheline size of
64 bytes, and divide by the time for different code regions. While measuring counters incurs relatively low
overhead, we again measure time on the unmodified application to mitigate any possible perturbation.

For highly memory-bound applications such as STREAM and applications bound by data contention
beyond the last-level cache, memory bandwidth accurately reflects application performance. However,
the memory bandwidth of cache-bound and compute-bound applications does not necessarily reflect their
performance as they are unable to effectively stress the memory system. For these applications, core bandwidth
more accurately reflects performance.

1 We configure and collect the memory counters using the MemOry Bandwidth (MOB) tool developed at LLNL, which
communicates with a privileged daemon to obtain uncore counters securely.

Exascale Computing Project (ECP) 3 ECP-MT-1000

E (E

2.3 SST SIMULATION

We used the Structural Simulation Toolkit (SST) to model the KNL architecture with HBM2 and HBM3 in
place of MCDRAM. SST integrates numerous cycle-level simulation models for processors, on-chip networks,
caches, memories, and other architectural features. Figure 0 shows the simulated KNL architecture. The
overall layout is a 6x6 mesh with a directory slice and processor tile at each mesh stop. Along the top and
bottom are eight HBM stacks (in contrast to the MCDRAM of actual KNLs), and six DDR4 channels appear
along the left and right. For this study, we focus on HBM only and ignore the DDR4 channels.

Directory
Slice

C. L2

L1 L1

PPP PPP
Figure 1: Knight's Landing Architecture. The overall layout is shown on the
left; the right shows a zoomed in view of each mesh stop. (HT: hardware thread)

To simulate the above architecture, we use the following SST models.

1. Cores — Ariel. CPU model which uses Intel's PIN [5] binary instrumentation library to dynamically
collect a natively running executable's instruction stream.

2. Caches — MemHierarchy and Cassini. MemHierarchy provides coherent cache models. Cassini adds a
stride prefet cher.

3. Directories — MemHierarchy. MESI directory.

4. Network-on-Chip — Kingsley. Mesh NoC model with input-buffered routers and an XY-routing
algorithm.

5. HBM — CramSim. CramSim provides detailed models of various DRAM-based memory technologies
including HBM2. CramSim was developed and validated by IBM as part of Fast Forward 2.

Table g lists the major simulation parameters used. To simulate HBM2, we use CramSim's default HBM2
configuration. This configuration leverages the HBM2 pseudo-channel mode. Because the HBM3 JEDEC
specification is not finalized, we model HBM3 by extrapolating from HBM2. In particular, HBM3 is expected
to double bandwidth while maintaining similar latency. Thus, to model HBM3, we use the CramSim HBM2
model with double the channels (16 instead of 8), half the rows (to keep overall capacity constant), and all
other parameters identical. Although HBM3 is also projected to increase capacity, the benefit of capacity is
much clearer than the benefit of bandwidth (i.e., determining that an application is memory capacity bound
is much more straightforward than determining to what degree it is memory-bandwidth bound). Therefore,
we focus on HBM3's bandwidth increase for this study.

While the parameters in Table g reflect current KNLs, we observe that because KNL's bandwidth is
network-on-chip (NoC) limited, this configuration is unable to fully make use of HBM2 bandwidth. Therefore,
we use this configuration for calibration only and define two additional configurations for the HBM comparison:
Baseline and Optimized. We refer to the original configuration as the Calibration configuration.

As shown in Table 1, Baseline eliminates KNL's NoC bandwidth limitation by raising the NoC bandwidth
to twice (HBM2) and three times (HBM3) that of the Calibration configuration. To determine these

Exascale Computing Project (ECP) 4 ECP-MT-1000

E (C)

Table 2: Simulation parameters for calibrating the KNL model

CPU

Frequency
Cores
Issue
Outstanding
requests
Page size

1.4GHz
72, 4 hardware threads/core
2 instructions/cycle
12

4KB

Cache subsystem

L1 Cache

Coherence
Cache line
Frequency
Configuration
Latency
MSHR
Bandwidth

MESI
64B
1.4GHz
Private, 32KB, 8-way set associative, LRU replacement
5
12 entries
2 requests per cycle

L2 Cache

Frequency
Configuration

Latency
MSHR
Bandwidth

1.4GHz
Semi-private (shared by two cores), 1MB, 16-way set associative,
LRU replacement, inclusive

48 entries
64B response/cycle

Network-on-Chip

Topology

Flit
Frequency
Link bandwidth
(control)
Link bandwidth
(data)
Input buffers

6x6 mesh. Four parallel networks: 3 control (request, ack, inv/fetch),
1 data
36B for data network, 8B for control networks
1.7GHz
12.7 GB/s

57 GB/s

4 packets (Control: 32B, Data: 288B)

Directory

Configuration
Frequency
Latency
MSHR

Distributed at 34/36 mesh stops. 2 per HBM, 3 per DDR channel
1.7GHz
8 cycles
128 entries

HBM Memory Controller Frequency 475MHz

HBM (per stack)

Frequency
Capacity
Channels
Bandwidth
Banks
Rows
Access
Timing parame-
ters
Bank policy
External address
mapping
Internal address
mapping
Outstanding
requests

1GHz
2GB
8 channels, 2 pseudo-channels(pCh)/channel
2 GB/s
4 bank groups of 4 banks each
16384
32B
nRAS=33, nCL=20, nRP=14, nRTP=4, nRFC=350, nBL=2,
nWR=16, nRTW=18
Open
Addresses interleaved across HBM stacks at cacheline granularity

row : col(n-1) : bank : bank group : pChannel : col(0) : burst

1024

DDR4 Not used in this study

Exascale Computing Project (ECP) 5 ECP-MT-1000

EAC)'1=

Table 3: Simulation parameter changes for the Baseline and Optimized configu-
rations. The Calibration column shows reference values from Table 2

Parameter Calibration Baseline— Baseline— Optimized
HBM2 HBM3

CPU
Issue (instr./cycle)
Outstanding requests

2 2 2 16
12 12 12 24

L1 Cache
MSHR entries 12 12 12 24
Bandwidth (request/cycle) 2 2 2 Unlimited

L2 Cache
MSHR 48 48 48 64
Bandwidth (request/cycle) 1 1 1 Unlimited
Frequency (GHz) 1.7 3.4 5.1 6.8

Network-on-Chip Control Link bandwidth (GB/s) 12.7 25.3 38 50.7
Data Link bandwidth (GB/s) 57 114 171 228

Directory MSHR entries 128 128 128 512

HBM

Channels 8 8 16 8/16
PseudoChannels / Channel 2 2 2 2
Bandwidth (GB/s) 256 256 512 256/512
Rows 16384 16384 8192 16384/8192

parameters we ran STREAM and swept integer multipliers of KNL's NoC bandwidth until STREAM's
performance saturated. As such, the Baseline NoC settings are upper limits, not necessarily tight bounds.
The third configuration, Optimized, improves the bandwidth and concurrency available from the cores and
caches, enabling better use of HBM3. As with the HBM2 to HBM3 modifications, Optimized avoids changing
latency parameters. To evaluate the effect of architectural changes and HBM3 independently, we run this
configuration with both HBM2 and HBM3.

2.4 CALIBRATING THE KNL SIMULATION MODEL

We established the initial simulation parameters by gathering publicly available information on the KNL and
making best guesses where necessary. We then compared performance metrics gathered from the simulated
model with HBM2 to KNL hardware equipped with MCDRAM, and iterated on the parameters, benchmarks,
and performance counter collection until we were confident that our simulated architecture was reasonably
consistent with hardware. Here, we present the final comparison after completing the calibration.

Overall, SST is able to model KNL closely, but not exactly. Some KNL hardware details are not
publicly available, for example, hardware prefetching internals, and other architecture-specific details are not
configurable through the SST models used, e.g., datatype-specific cache load latency differences. Further, the
SST CPU model is "optimistic" where concurrency is concerned the CPU ignores instruction dependencies,
and the caches are perfectly banked so accesses will not conflict unless they access the same address.

The comparison in this section helps us fine tune configuration parameters of the SST models and quantify
the differences between the simulated model with HBM2 and existing KNL hardware with MCDRAM.

KNL hardware experiments were primarily performed on an LLNL testbed RZ Oz that uses early beta
KNL hardware, and our SST configuration simulates a production KNL system with better performance. For
reference, we observed up to a 40% improvement in performance metrics when running on later hardware
(the Bowman testbed at SNL). As our measurement infrastructure requires root permission (not available
on Bowman) we used RZ Oz for the measurements shown below, and simply note that the bandwidth and
elapsed time are frequently lower than current KNLs.
STREAM calculates bandwidth by dividing the size of the arrays it streams through by the time taken to
do so. Thus, the bandwidth reported is essentially the effective data access bandwidth and closely resembles
our core bandwidth metric. For large arrays, which spill out of last-level cache, the STREAM bandwidth also
reflects the memory bandwidth metric relatively well.

Using the Default and Simulation benchmark parameters listed in Table I for hardware and simulation,
respectively, we compare hardware and simulation on STREAM's reported bandwidth, core bandwidth, and
memory bandwidth. As shown in Figure g, nearly all measurements between hardware and SST differed
by a factor of approximately 10%, and relative differences were retained between simulation and hardware.

Exascale Computing Project (ECP) 6 ECP-MT-1000

E /) .lIRSCRLE
aomPunrvG
,n0JCC7

Triad

Add

Scale

Copy

Triad

Add

Scale

Copy

Triad

SCale

Copy

0 100 200 300 400 500 0 20 40 60 80 100 120 140 160 0 100 200 300 400 500 600 700 800 900

• SST Core Read Bandwidth • Hardware Core Read Bandwidth • SST Core Write Bandwidth • Hardware Core Write Bandwidth • STREAM Reported Total Bandwidth • SST Core Total Bandwidth

• 1/2 Hardware Core Read Bandwidth • 1/2 Hardware Core Write Bandwidth • Flardwa re Core Total Bandwidth • 1/2 Hardware Core Total Bandwidth

(a) Core bandwidth: Read (left), Write (middle), Combined bandwidth compared to STREAM-reported results
(right)

Triad

Add

Scale

Copy

Triad

Add

Scale

Copy

Triad

Scale

Copy

50 100 150 200 250 300 0 20 40 60 80 100 120 140 160 0 50 100 150 200 250 300 350 400

• SST HBM2 Read Bandwidth • Hardware MCDRAM Read Bandwidth • SST HBM2 Write Bandwidth • Hardware MCDRAM Write Bandwidth • SST HBM2 Total Bandwidth • Hardware MCDRAM Total Bandwidth

(b) MCDRAM and HBM2 memory bandwidths: Read (left), Write (middle), Combined (right)

Figure 2: STREAM core and memory bandwidths compared between hardware,
simulation, and STREAM-reported results

The difference is due to SST's optimistic treatment of concurrency and the hardware's less-than-optimistic
performance. The exception is Copy, where the compiler recognizes the computation and invokes a processor-
specific implementation of memcpy. On KNL, this invocation uses software prefetches (RFO instructions),
which cause the Core Bandwidth to include both accesses and prefetches (Figure 2a). We therefore also show
the core bandwidth scaled by half, which effectively eliminates the prefetch instructions. The simulator is
running on a different processor (Skylake) and invokes a different memcpy optimization in this case. As such,
while the kernel is nominally the same, the exact instructions executed differ, leading to different results
between hardware and simulation.

Overall, the hardware's total core bandwidth matched STREAM's reported bandwidth almost identically,
and SST's results matched closely as well (Figure 2a, right). For both hardware and simulation, the read and
write memory bandwidth measurements (Figure 2b) did not quite match STREAM's reported bandwidth,
indicating differences due to cache bandwidth and cacheline size as opposed to memory micro-operation
access sizes.

We performed similar calibrations using HPCG and XSBench. In these cases, the differences between
SST simulation and KNL hardware were more significant. In HPCG, the highest differences were in subrou-
tines that took very little time and had few memory references. Performance trends for memory-intensive
subroutines and serial code remained similar. In XSBench, the differences were not consistent with problem
size. The detailed comparison breakdown is shown in Appendix A.

Overall, the calibration process helped tune the KNL CPU parameters. We felt confident that increasing
bandwidths and other simulation parameters from the initial configuration will reflect real performance gains
(or lack thereof) reasonably well.

3. RESULTS

In this section we analyze the performance impact of HBM3 on each benchmark. As described in the
previous section, we evaluate the performance of HBM2 and HBM3 on two configurations: Baseline and

Exascale Computing Project (ECP) 7 ECP-MT-1000

ELOF exPIGCM,G
COMPUTING
PROJECT

600

500

m 400
(.7

t 300

c 200

100

0 1111 1111 1111

Copy Scale Add

•HBM2 • FIBM2-opt • HBM3 EFIBM3-opt

Triad

(a) Bandwidth as reported by STREAM

1.8

0.1.6

-0 -1 40
0
0-'

1 2
to
a 1

iz 0.8

:2 0.6

0.4

Uj 0.2

0
Copy Scale Add

•Baseline • Optimized

Triad

(b) Execution time speedup for HBM3 over HBM2

Figure 3: STREAM bandwidth and speedup for the Baseline (HBM2, HBM3)
and Optimized (HBM2-opt, HBM3-opt) configurations

Optimized. Recall that compared to the Calibration configuration, Baseline increases the NoC bandwidth to
2X (for HBM2) and 3X (for HBM3) of the KNL's. With this increase, the NoC is not the limiting factor
in performance. Optimized additionally adds significant concurrency and bandwidth improvements to the
cores and caches (Table 3), including higher outstanding request and cache miss limits, wider buses, and
more cache accesses per cycle. Section 0.4 more deeply explores NoC performance and the impact of the
Optimized configuration's parameters.

3.1 STREAM

In contrast to Section Z4 where we configured STREAM with 100M element arrays, this section uses 10M
element arrays. The smaller size enables faster simulation with similar results.

We begin by examining the bandwidths reported by STREAM. Figure 3a shows the bandwidth in GB/s
along the Y-axis for the different architectures and STREAM kernels (X-axis). Comparing the baseline and
optimized KNL architectures with HBM2 (HBM2 and HBM2-opt), it is evident from the small 14% difference
that the baseline KNL architecture is already well optimized for bandwidth-limited applications such as
STREAM. This is expected as KNL was designed for MCDRAM which supports a similar bandwidth to
HBM2. Replacing the HBM2 with HBM3 (third bar) leads to moderate average performance improvements
of 41% and 24% compared to HBM2 and HBM2-opt, respectively. This implies that for bandwidth-limited
applications, HBM3 has the potential to provide benefit. Still, STREAM does not come close to making use
of the full 2X bandwidth improvement provided by HBM3. The HBM3-opt bar shows the impact of removing
many of the core and cache bandwidth limits. This configuration achieves a 96% improvement on average,
compared to the baseline HBM2. We conclude therefore that while HBM3 alone, with significant NoC
bandwidth improvements, does benefit STREAM, HBM3's full potential cannot be realized unless substantial
improvements are made throughout the architecture. Figure 01:.l confirms this conclusion. The figure shows
the execution time speedup (Y-axis) for HBM3 compared to HBM2 on each kernel and architecture (X-axis).
We calculate speedup as the ratio between the execution times of HBM2 and HBM3 for each of baseline
and optimized KNL configurations, i.e., TL2/TL3. The left set of bars, Baseline, indicate that without
architectural changes, replacing HBM3 with HBM2 yields a moderate 28-47% speedup. By contrast, HBM3
improves execution time on the optimized architecture by a much larger 69-77%.

Figures and 4b show the simulated CPU and memory (HBM) bandwidths, respectively, for the same
architectures and kernels shown in the previous figure. Note that the CPU bandwidth differs from that
reported by STREAM because the CPU bandwidth includes non-array accesses and, for Copy, software
prefetches. As expected, the negligible reuse of the STREAM arrays implies similar bandwidth between
HBM and CPU, while for Copy, the prefetch requests incur nearly double the number of accesses, roughly
doubling CPU bandwidth. Still, neither HBM2 nor HBM3 comes close to the total available bandwidth.
Even the HBM2-opt configuration running Triad uses just 439GB/s of the available 2TB/s. The HBM3-opt
configuration fares worse, consuming only 758GB/s of its 4TB/s across the eight HBM channels. This raises
a question as to whether further optimizations can improve bandwidth utilization, even for the HBM2 case.

4a

Exascale Computing Project (ECP) 8 ECP-MT-1000

P

_1200 800

`.4.) 1000 -;-";' 700
co 600 0°3
0 800 —500

7
_c 600 f, 400

_g 400 O 1 300

1 1 111111112, 1
2 200

I Ilillillilli i i

2 200
2 loo03 o o

R 1'8- `-')2 § R 1,1 2m -clo c '12 -65" &) Oc 1 R 1,1 ‘-.) r,
2 o

2cs, O.'? "CI N 15. &., It C SI " 0 .. 'CI
o 2 9 o 2 9 9m c:i oo ,-, oo (.;, co A co c.;, co A co c., co A C 0 N A C a N c4, ,4, c. N C 0

x 2 x x 2 x 2 i x 2 x 2 x 22 1 2 2 1 2 2 1 2 2 2
m co m oo co co m co co co co m co co
I i I I I I I I I I I I I I

Copy Scale Add Triad Copy Scale Add

• Read • Write • Read • Write

(a) CPU bandwidth (b) HBM bandwidth

Figure 4: STREAM: Read and write bandwidths for HBM2 and HBM3 in the
baseline and optimized KNL configurations.

Overall, we conclude that HBM3 performs moderately well with the baseline configuration, and very well
with the optimized architecture. However, we are concerned that attaining the kind of processor enhancements
needed to support HBM3 will be challenging. In Section 0.4, we tighten the bounds on the HBM3-opt
parameters to provide deeper insight into the scale of improvements that will be necessary.

3.2 HPCG

In this section, we report SST simulation results for the problem size nx = 88, ny = 88, and nz = 88,
which has a 540 MB memory fooptrint. We first report the total simulated memory bandwidth for the four
configurations and the projected speedup. Then, we break down the CPU and HBM bandwidths into their
read and write components.

Recall that HPCG has a number of different functions, each of which has a distinct memory access
patterns. Because the preconditoner function, ComputeMG dominates execution time, we present results in
this section broken down by function. Table 4 shows the function invocations for a single HPCG iteration
and provides shorter labels fl-f7 used in the following figures.

Table 4: List of the main equations, their respective function calls, and their
dominant data access patterns in one CG iteration of HPCG.

S/N Equation Function Access Pattern
fl Gauss-Seidel preconditioner ComputeMG Irregular
f2 p = beta * p z ComputeWAXPBY Regular
f3 rtz = r * z ComputeDotPro duct Regular
f4 Ap = A * p ComputeSPMV Irregular
f5 alpha = p * Ap ComputeDotPro duct Regular
f6 x = x + alpha * p and r = r — alpha * Ap ComputeWAXPBY(x2) Regular
f7 normr = r * r ComputeDotPro duct Regular

Figure presents the measured memory bandwidth for each configuration. The highest total memory
bandwidth reaches 568 GB/s in the optimized configuration with HBM3. In contrast to STREAM, we note
that optimized HBM2 performs much better than baseline HBM3. In fact, HBM2 in the optimized setup
shows the second highest performance in all functions, indicating that the baseline architecture does not enable
HPCG to fully exploit HBM2 bandwidth. Under the optimized processor configuration, HBM3 achieved
from 1% to 28% higher bandwidth than HBM2 in each function. However, in the baseline configuration, we
observe minimal speedup from HBM3 compared to HBM2, improving bandwidth over HBM2 by just 1% to
6%. From the performance gap between HBM3 and HBM2 in the two processor architectures, we conclude
that HPCG is very sensitive to processor architecture when using HBM3.

Exascale Computing Project (ECP) 9 ECP-MT-1000

1.40600
• HBM2

• HBM2-opt 1.30
500 ■ HBM3

• HBM3-opt 1.20

1.10400

L.7 1.00
_c 300•-•

O. 41 0.90_
111

12 200 0.80

0.70
100

0.60

0 0.50
fl f2 f3 f4 f5

Function

(a) Total memory bandwidth

f6 f7

Figure 5: Performance comparison for
and HBM3 in the baseline and optimized

E cid=
noJc,7

• Baseline

• Optimized

fl f2 f3 f4

Function

f5 f6 f7

(b) Execution time speedup for HBM3 over HBM2

HPCG's main functions using HBM2
KNL configuration.

Figure I5bl presents the execution time speedup when using HBM3 compared to HBM2 for the two processor
setups. The most significant execution time reduction is 28%, achieved on the Optimized configuration for f4.
In contrast, fl, which has a similar data access pattern, shows only 1% and 2% improvements in Baseline and
Optimized, respectively. The low impact of HBM3 on fl is likely due to its single-threaded implementation.
There is not enough concurrency in fl to saturate the memory bandwidth from the core to the memory
system. The contrast between fl and f4 highlights the importance of concurrency for exploiting HBM3
performance.

In the baseline configuration (blue bars in Figure 5b), functions fl — f6 achieved speedups of 1%-7%
when using HBM3. With the optimized configuration, the speedups ranged from 5% to 28%. f7 shows
the least improvement mainly due to its good data locality (its last level cache miss rate is 2.7% from SST
simulations) that makes it nearly memory insensitive. Functions f2, f3, f5, and f6 exhibit regular data
access patterns enabling the cache prefetchers to effectively bridge the bandwidth gap from the different HBM
generations. One important insight is that optimizing the core side configuration is critical to enabling a
memory-sensitive function like f4 to benefit from HBM3. Without optimization on the core side, f4 achieved
only 7% speedup with HBM3. After optimizing the NoC bandwidth and number of MSHRs, f4 achieved a
28% speedup. Future sensitivity analysis is needed to provide more accurate insights on the specific core
modifications that applications similar to f4 will benefit from (with or without HBM3).

To evaluate the gap from the peak performance, we also break down bandwidth usage by read and write,
and report core bandwidth in Figure Q. Function f4 exhibits the highest read bandwidth for both core
and memory, reaching 812 (Figure 6a) and 546 GB/s (Figure 6c) on the optimized HBM3 configuration.
Comparing to STREAM's bandwidth under the same configuration, HPCG reaches a high utilization of
the sustainable memory bandwidth in the system. Other functions exhibit relatively lower read bandwidth
than f4, ranging from 153 GB/s to 344 GB/s in core bandwidth (single-threaded fl exhibits 7 GB/s). f4
(ComputeSPMV) has mostly irregular data accesses in both the Gauss-Seidel kernel and sparse matrix-vector
multiplication. The performance improvement of f4 indicates that memory-sensitive applications with similar
characteristics can substantially benefit from the high bandwidth of HBM3 when there is enough concurrency
on a suitable processor architecture.

The write bandwidth from core and memory, however, differs in distribution as shown in Figure I6bl and
Figure NI In particular, functions f2 and f6 exhibit high core write bandwidths, reaching 119 and 152
GB 1 s, respectively, in the optimized HBM3 configuration. Both f2 and f6 call function ComputeWAXPBY
which has more write accesses relative to other functions. The highest write bandwidth from memory comes
from f4 (Figure 6d), indicating that more dirty cache lines are written back in this function than in other
functions. Note that f4 (ComputeSPMV) actually has a lower write ratio than f2 and f6. The difference
in core and memory write bandwidths indicates that functions like ComputeSPMV stress not only read
bandwidth but also write bandwidth because they need to evict more dirty cache lines to bring in new data.

Exascale Computing Project (ECP) 10 ECP-MT-1000

E (c ,..V.,17tJVG

,-10JECT

900

800

700

S 600

500

400

t 300

8 200

100

0

• HBM2 (original)
• HBM3 (original)
HBM2 (optimized)

▪ HBM3 (optimized)

fl f2 f3 f4

Function

f5 f6

160

140

120

f, 100

4
80

60

S 40

77 20

• HBM2 (original)
• HBM3 (original)
HBM2 (optimized)
HBM3 (optimized) m

o 0 0 6 3 MK\ 33 33 33

(a) CPU read bandwidth (GB/s)
600 25
• HBM2 (original)

• HBM3 (original)

HBM2 (optimized)

HBM3 (optimized)

500

f, 400

E

2

300

200

100

0 -
f 1 f2 f3 f4

Function

f5

(c) HBM read bandwidth (GB/s)

f6 f7

fl f2 f3 14 f5 f6

Function

(b) CPU write bandwidth (GB/s)

• HBM2 (original)

• HBM3 (original)

S. 20 HBM2 (optimized)

io* HBM3 (optimized)

415

4 10

E

5

o. 0

11

f7

f2 f3 f4 f5 f6 f7

Functlon

(d) HBM write bandwidth (GB/s)

Figure 6: CPU and memory bandwidth in HPCG main functions using HBM2

and HBM3 for the baseline and optimized KNL configurations.

Exascale Computing Project (ECP) 11 ECP-MT-1000

Etclp elf RSCRLE
CO,PuTiNG
0.ROJECT

35

u") • 25
o
20

2 15co
0_10

• 5

0 1 1
HBM2 HBM2-opt HBM3 HBM3-opt

(a) Performance of XSBench measured as the lookup
rate in millions/second

1.4
0.
-3 1.2

0_

0.2
Lt.!

1
cn
a) ' 0 8E
E 0.6

t 0.4
0

0 —
Baseline Optimized

(b) Execution time speedup of
HBM3 compared to HBM2 for
each architecture

Figure 7: XSBench lookup rate and speedup for the Baseline (HBM2, HBM3)
and Optimized (HBM2-opt, HBM3-opt) configurations

In summary, HPCG demonstrates the advantage of HBM3 over HBM2 for memory-sensitive functions
like ComputeSPMV and also moderate improvements in other memory-intensive functions. To fully unleash
the benefits of HBM3, the application needs to provide enough concurrency. Finally, core side modifications,
such as higher NoC bandwidth and larger MSHR banks, are critical for fully exploiting the performance
benefits of HBM3.

3.3 XSBENCH

We now evaluate the performance of XSBench's cross-section lookup computation with next-generation HBM.
Figure Tal shows the lookup rate, measured as millions of lookups per second, for XSBench executing on
each simulated architecture. Comparing HBM2 and HBM3, it is evident that HBM3 alone benefits XSBench
very little, improving lookup rates by just 9%. In contrast, the optimized architecture significantly improves
performance over the baselines for both HBM2 and HBM3, by 71% and 86%, respectively.

This occurs because the baseline architecture does not support enough concurrency to hide the latency
induced by XSBench's intensive random memory access pattern, even for HBM2. In contrast to STREAM,
XSBench has a very high cache miss rate (i.e., 78% L2 miss rate versus 53% for STREAM), putting
significantly higher pressure on non-memory resources like MSHRs. Thus adding HBM3 to the optimized
architecture enables a larger benefit (18%) than adding it to the baseline architecture (9%).

Overall, the optimized architecture with HBM3 increases the lookup rate by 109% compared to the HBM2
baseline. From this graph, it is clear that for HBM3 to benefit XSBench-like applications, significant core,
cache, and network enhancements need to be made.

Further, the execution time speedups shown in Figure rn:.l confirm that HBM3 gives little benefit to
XSBench. With the optimized architecture, HBM3 improves execution time by a very modest 18%, while for
the baseline architecture the benefit is even smaller, at just 9%.

Figures I84 and I8bl show the CPU and HBM bandwidth, respectively, achieved by the various architectures.
As expected from the previous result, HBM3 uses very little bandwidth beyond HBM2, while HBM2-opt and
HBM3-opt significantly outperform their respective baselines. HBM read bandwidths are higher than CPU
bandwidths due to the random access pattern's lack of spatial locality—on a miss, the HBM provides a 64B
cacheline but the core does not access the entire line. Further, the disparity in write bandwidth between
CPU and HBM occurs because the majority of XSBench's writes are to the same few memory addresses. To
prevent the compiler from optimizing out XSBench's primarily read-only lookup function, the benchmark
copies the function's return values to a small array, overwriting the array for each function call. Hence, while
a number of writes occur from the CPU's perspective, the HBM incurs very few writebacks of dirty cache
blocks.

Exascale Computing Project (ECP) 12 ECP-MT-1000

350 600

300 500

250
co
0
—200
_c

O3 400
o

g 300
3 150

c 200
co 100 co

50 100

0 0 1
HBM2 HBM2-opt HBM3 HBM3-opt HBM2 HBM2-opt HBM3 HBM3-opt

• Read • Write • Read • Write

(a) CPU bandwidth (b) HBM Bandwidth

Figure 8: XSBench: Read and write bandwidths for HBM2 and HBM3 in the

baseline and optimized KNL configurations.

3.4 SENSITIVITY TO NETWORK, CORE, AND CACHE OPTIMIZATIONS

From the preceding results, it is evident that HBM3 has moderate to no benefit without significant improve-
ments to the core, cache, and network architectures. In this section, we seek to better quantify some of these
improvements. For brevity, we evaluate only for STREAM and look at the best performing architecture—
HBM3-opt. First, we evaluate sensitivity to NoC bandwidth and then perform some experiments to determine
tighter upper bounds on the parameters that were changed for the optimized architecture.

3.4.1 Network-on-Chip Bandwidth Sensitivity

Figure 9 shows the reported bandwidths for each STREAM kernel (Y-axis) as network-on-chip (NoC)
frequency is increased along the X-axis. We report NoC frequency and not bandwidth because KNL's four
networks have the same clock frequency but different bandwidths, depending on their flit size. A flit is the
unit of data transferred each cycle; generally, transferring a packet requires one or more flits. Bandwidth is
simply the product of flit size and NoC frequency. While one could increase the flit size to achieve higher
bandwidth, increasing beyond the size of a packet implies either wasted bandwidth or extra complexity to
transfer multiple packets in parallel. Hence we study the impact of increasing NoC frequency, keeping flit size
constant. As reported in Table g, the data network uses a 36B flit size, equal to half a data packet, whereas
the three control networks use 8B flits, corresponding to a full control packet. Figure 9 indicates that the
NoC frequency has a considerable effect on STREAM's performance. Between the baseline KNL frequency of
1.7GHz and about 5GHz, every 500MHz increase in clock rate yields a 50GB/s improvement in the STREAM
numbers. This is substantial, considering that a 500MHz clock improvement theoretically yields a 51GB/s
bandwidth improvement, but only 34GB/s of that bandwidth goes towards transferring data payloads. While
achieving network clock rates of 5GHz will be extremely challenging, other NoC improvements may help
bridge the gap. For example, improvements around better network management, congestion control, and
routing algorithms might contribute to higher bandwidth. This study highlights the need for comprehensive
NoC research to faciliate high-bandwidth memory systems.

3.4.2 Tightening the Optimized KNL Parameters

The optimized KNL architecture makes considerable bandwidth improvements to the core and cache subsystem.
The parameters were chosen either to double the amount of throughput available in the baseline KNL, mirroring
the doubling of HBM bandwidth, or to be unlimited so as to form an upper bound on performance. To
identify more realistic upper limits, in this section we look at the effect of tightening the parameters. To that
end, we ran STREAM on the HBM3-opt architecture, reducing each optimized parameter independently.
These parameters can be divided into two groups - those that affect the rate of data movement between

Exascale Computing Project (ECP) 13 ECP-MT-1000

_ 1.1

E 1c a)

E tz 0.9

N ,a5 0.8

E a 0.7

_c 0.6

-0 E- '0 5

—

700

600
",
co 500
(.7
r 400

73 300

-E2 200

m 100

0

1 2 3 4 5 6 7

Network Frequency (GHz)

Figure 9: STREAM bandwidth as a function of network frequency (bandwidth)

4 2 1

Thread L1 L2

O En 0.9

FD EU.8

E a• 0.7

c c 0.6

'E 0.53-0 E
8 4 4 2 1

co
as o

▪ 0 CD CV
CNI

Thread

V' 0 CO Cs4
Csl 8 (43

L1 L2
Number of requests and responses per cycle Number of outstanding requests

(a) Rate parameters (b) Volume parameters

Figure 10: Sensitivity to optimized parameters measured as bandwidth normal-
ized to the HBM3-opt configuration. For each configuration, only the minimum
normalized bandwidth across all four kernels is reported. The black line shows the
performance of the baseline HBM3-base configuration for the worst performing
kernel (Copy).

Csl CD OD
LO Cs1

In

Directory

memory levels, and those that affect the volume of requests in flight. Figure illa shows the parameters
affecting the data movement rate as they vary between the optimized and baseline values. It is clear that
varying these parameters has little effect on the overall performance, and in fact, issue rates equal or similar
to the baseline case are sufficient. In contrast, Figure 0.0b shows the parameters supporting a higher volume of
requests in flight, namely the number of outstanding requests allowed per thread and the number of MSHRs
per cache and directory. Note that our simulation approximates hardware threads by modeling them as
independent cores which share an L1. Therefore, 20 outstanding requests per thread is roughly equivalent to
an 80 entry load-store queue in a conventional architecture where the resource is shared across hardware
threads. As shown in Figure I10b1, STREAM's performance is much more sensitive to the volume of requests
in flight. Overall, Figure IIJ shows the effect of combining the baseline data movement parameters with the
optimized data volume parameters. We call this case, Tight and compare to the Baseline and Optimized
configurations. As the figure shows, Tight is comparable to Optimized. Still, because STREAM is the least
sensitive to the optimized architecture among the three benchmarks studied, Tight likely forms a lower upper
bound with the actual scope of optimizations needed to support HBM3 falling somewhere between the Tight
and Optimized configurations. We leave further exploration of the architecture for future work, but note that
even the tightened parameters may be hard to achieve. Larger MSHR and load-store queues incur higher
latency, energy, and area costs which may not be feasible.

Exascale Computing Project (ECP) 14 ECP-MT-1000

E 1 c RSCRLE
aomPunrvG
'0JCCT

600

500

0 400

1,-s, 300

200

coco 100

0

I I MI I MI I
I I II I I I I

I 1 I I I 1
Copy Scale Add Triad

• Baseline •Tight • Optimized

Figure 11: STREAM bandwidth for the baseline, optimized, and tightened
parameter sets

4. CONCLUSION AND RECOMMENDATIONS

The purpose of this study was to evaluate the performance benefit of next-generation HBM3 compared
to HBM2 for many-core CPU architectures. HBM3 is expected to arrive on the market in the 2019/2020
timeframe, and while the JEDEC specification has not been finalized, it is currently expected to provide
double the bandwidth (to 512GB/s) at similar latency to HBM2. It is also expected to provide higher capacity.
In this study, we focused on the performance benefit from the increased bandwidth, not capacity. We expect
that increased capacity will benefit applications that already show benefit from MCDRAM on KNL. The
performance impact of higher bandwidth is less clear.

To evaluate the effect of doubling HBM2 bandwidth, we calibrated and simulated a KNL architecture
running three benchmarks: STREAM, HPCG, and XSBench. These benchmarks were selected because
they put high pressure on the memory system with irregular memory access patterns and high ratios of
memory accesses to compute. We chose the KNL architecture as a baseline because it is representative of
the many-core approach to CPUs, and we are able to calibrate our model against existing KNL systems.
For throughput-oriented architectures such as GPUs, which support extremely high bandwidth for specific
classes of kernels, the results may not hold. Through the calibration we found that for bandwidth-bound
codes, the SST model was accurate, but because the CPU and cache models are optimistic with respect to
concurrency, the simulation is less accurate for latency-bound code where instruction dependencies limit
available concurrency. Note that this inaccuracy means the simulation is more likely to overestimate than
underestimate performance gains with HBM3.

Overall, the major observations we made in this study are:

1. The current KNL architecture, simulated HBM2, and simulated HBM3 are all limited by network-on-chip
(NoC) bandwidth.

2. With the NoC bandwidth limitation removed, HBM3 provides modest benefit in the best, bandwidth-
bound, case (STREAM), and very little benefit for the other cases where latency and instruction
dependencies limit concurrency.

Based on these observations, we make the following recommendations:

1. HBM3 should only be employed if other improvements are made to increase the NoC bandwidth and
number of outstanding memory requests supported by the hardware.

2. Increasing NoC bandwidth and number of supported outstanding memory requests should take prece-
dence over increasing the bandwidth of the memory architecture.

3. Increasing HBM capacity will likely improve performance for memory-bound applications more than
increasing HBM bandwidth.

Thus, we conclude that HBM3 alone, in the absence of substantial improvements to the node architecture,
will yield little performance benefit. In that case, the increased capacity should be seen as the primary

Exascale Computing Project (ECP) 15 ECP-MT-1000

E.(c),,F

advantage of HBM3. If capacity does not improve between HBM2 and HBM3, and resources are limited, we
further recommend that improvements to the node architecture take precedence over pursuing HBM3.

ACKNOWLEDGEMENTS

We thank Kento Sato (sato5@llnl.gov) for his development effort on creating the PIN utility for tracing memory
micro-operations and Kathleen Shoga (shoga1Allnl.gov) for her effort extending the MemOry Bandwidth
(MOB) utility to collect uncore memory bandwidth counters from MCDRAM on KNL systems. SST has many
contributors, but we would like to extend special thanks to Scott Hemmert (kshemme@sandia.gov) who devel-
oped and refined the Kingsley network-on-chip model for this study and Clay Hughes (chughesasandia.gov)
who performed some of the early SST/KNL validation studies.

Exascale Computing Project (ECP) 16 ECP-MT-1000

E.(C)1=

REFERENCES

[1] A. F. Rodrigues, K. S. Hemmert, B. W. Barret, C. Kersey, R. Oldfield, M. Weston, R. Risen, J. Cook,
P. Rosenfeld, E. CooperBalls, and B. Jacob. The structural simulation toolkit. SIGMETRICS Perform.
Eval. Rev., 38(4):37-42, 2011.

[2] STREAM: Sustainable memory bandwidth in high performance computers.
edu/strearal. Accessed: 2018-04-16.

https://www.cs.virginia

[3] Jack Dongarra, Michael A Heroux, and Piotr Luszczek. HPCG benchmark: a new metric for ranking
high performance computing systems. Knoxville, Tennessee, 2015.

[4] John R Tramm, Andrew R Siegel, Tanzima Islam, and Martin Schulz. Xsbench-the development and
verification of a performance abstraction for monte carlo reactor analysis. The Role of Reactor Physics
toward a Sustainable Future (PHYSOR), 2014.

Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney, Steven Wallace,
Vijay Janapa Reddi, and Kim Hazelwood. Pin: Building Customized Program Analysis Tools with
Dynamic Instrumentation. In ACM Sigplan Notices, volume 40, pages 190-200. ACM, 2005.

[5]

Exascale Computing Project (ECP) 17 ECP-MT-1000

%,SEHLE

-10_1=7

A. HARDWARE VS. SIMULATION PERFORMANCE RESULTS

A.1 HPCG

HPCG hardware and simulation execution time matched closely for function ComputeMG, which represented
98+% of the run. Memory bandwidths were within 7% of each other, and SST core bandwidth was about 20%
higher than hardware, which is not unreasonable considering the difference in instructions invoked between
KNL hardware and SST on a different architecture. The remaining functions differed significantly but ran for
little time (75-2000 us) and produced too little data to provide conclusive results.

Table 5: List of the main equations, their respective function calls, and their
dominant data access patterns in one CG iteration of HPCG.

S/N Function Hardware Time (us) Simulated Time (us)
fl ComputeMG 636385.85 644933.77
f2 ComputeWAXPBY 1252.56 98.37
f3 ComputeDotProduct 371.35 75.06
f4 ComputeSPMV 1981.6 1005.46
f5 ComputeDotProduct 860.18 83.14
f6 ComputeWAXPBY(x2) 524.11 169.05
f7 ComputeDotProduct 864.91 86.28

HPCG Function: ComputeMG

SST HBM2 Bandwidth

Hardware MCDRAM Bandwidth

SST Core Bandwidth

Hardware Core Bandwidth

0 0.5 1 1.5 2 2.5 3 3.5 4

• Read • Write

Figure 12: Core and memory bandwidth metrics for HPCG function fl,
ComputeMG

Exascale Computing Project (ECP) 18 ECP-MT-1000

A.2 XSBENCH

In XSBench, the ratio of core to memory bandwidths matched closely between hardware and simulation, as
did memory traffic quantities except core writes. However, execution time was overestimated by simulation
by a factor of 2.25x for problem sizes with stable performance results. The self-reported performance metric,
lookups/second, reached a stable value of around 15K for problem sizes of 100K and above in simulation. In
hardware, lookups/second stabilized at 1M+ lookups at around 6.6K. XSBench involves a significantly higher
degree of concurrency and instruction dependencies than STREAM or the ComputeMG function in HPCG.

Table 6: XSBench runtimes and reported lookups/sec in hardware and simulation

Problem Size Metric Hardware Simulated
100K lookups Runtime 79 ms 6.69 ms
1M lookups Runtime 152 ms 67.53 ms
100K lookups Lookups/Sec 1,261,777 15,056,256
1M lookups Lookups/Sec 6,585,566 14,818,913

SST HBM2 Bandwidth

Hardware MCDRAM Bandwidth

SST Core Bandwidth

Hardware Core Bandwidth

0.00 50.00 100.00 150.00 200.00 250.00

• Read • Write

Figure 13: Core and memory bandwidth metrics for XSBench

Exascale Computing Project (ECP) 19 ECP-MT-1000

