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What is DARMA? W=

DARMA is a C++ abstraction layer
for asynchronous many-task (AMT) runtimes

Goals:

1. Enable Sandia ATDM application scientists to explore
a variety of underlying runtime system technologies

2. Facilitate the expression of coarse-grained tasking




Sandia
2015 study to assess leading AMT runtimes led to DARMA ) el

Aim: inform Sandia’s technical roadmap for next generation codes

= Broad survey of many AMT runtime systems
= Deep dive on Charm++, Legion, Uintah

= Programmability: Does this runtime enable
efficient expression of ATDM workloads?

= Performance: How performant is this
runtime for our workloads on current
platforms and how well suited is this runtime
to address future architecture challenges?

= Mutability: What is the ease of adopting this
runtime and modifying it to suit our code
needs?
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Sandia
2015 study to assess leading AMT runtimes led to DARMA ) el

Aim: inform Sandia’s technical roadmap for next generation codes

= Conclusions ——

SANDIA REPORT
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Goal 1: Enabling exploration of a variety of

runtime system technologies via a unified API




Application developers use a single API for expressing () i,
coarse-grained tasks

Common AP Front End API
across runtimes (Application User)

Translation Layer

Common API Back End API

(Specification for Runtime)

across runtimes

Goal 1) Enabling exploration of a variety of runtime system technologies via a unified API




Application code is translated into a series of backend () i
o Laboratories
API calls to an AMT runtime

Common AP Front End API
across runtimes (Application User)

Translation Layer

Common API Back End API

(Specification for Runtime)

across runtimes

Not all runtimes provide
the same functionality

Goal 1) Enabling exploration of a variety of runtime system technologies via a unified API




Application code is translated into a series of backend () i
o Laboratories
API calls to an AMT runtime

Common AP Front End API
across runtimes (Application User)

Translation Layer

Common API Back End API

(Specification for Runtime)

across runtimes

Challenge: design a back
end API that maps to a
variety of runtimes

Goal 1) Enabling exploration of a variety of runtime system technologies via a unified API




Considerations when developing a backend API that ) e,
maps to a variety of runtimes

= AMT runtimes often operate with a directed acyclic graph (DAG)

= Captures relationships between application data and inter-dependent tasks

Pl

[
b

Goal 1) Enabling exploration of a variety of runtime system technologies via a unified API




Considerations when developing a backend API that
maps to a variety of runtimes

= AMT runtimes often operate with a directed acyclic graph (DAG)

= Captures relationships between application data and inter-dependent tasks

= DAGs can be annotated to capture additional information

= Tasks’ read/write usage of data

= Task needs a subset of data ? T x
t1 t2 t3
A /\
subset
reads ;
t4 t5

th

Goal 1) Enabling exploration of a variety of runtime system technologies via a unified API




Considerations when developing a backend API that ) e,
maps to a variety of runtimes

AMT runtimes often operate with a directed acyclic graph (DAG)

= Captures relationships between application data and inter-dependent tasks

DAGs can be annotated to capture additional information

= Tasks’ read/write usage of data

= Task needs a subset of data d2
- _ . . d1 d3 d4
= Additional information enables runtime ﬁ / \ /
to reason more completely about t1 t2 t3
= When and where to execute a task Q = /
= \WWhether to load balance 46 d2* subset
= Existing runtimes leverage DAGs with reads\ ) l

varying degrees of annotation t4 tS

Goal 1) Enabling exploration of a variety of runtime system technologies via a unified API




DARMA passes data-task dependency information to () i,
the runtime which builds and executes the DAG e

Common API Front End API
across runtimes (Application User)

Translation Layer

Common API Back End API

(Specification for Runtime)

across runtimes

Captures data-task
dependency information

—

Runtime controls construction and
execution of the DAG

Goal 1) Enabling exploration of a variety of runtime system technologies via a unified API




Goal 2: Facilitating the expression of coarse-
grained tasking




DARMA front end abstractions are co-designed with () i,
Sandia ATDM application scientists e

Common API Front End API
across runtimes (Application User)

Translation Layer

Common API Back End API

(Specification for Runtime)

across runtimes

—

Provide abstractions to simplify
capturing of data-task dependencies

Goal 2) Facilitating the expression of coarse-grained tasking 1




DARMA introduces a set of abstractions that enable =)
local and distributed tasking

= Asynchronous smart pointers wrap user data
= darma::AccessHandle<T>
= darma::AccessHandleCollection<T>

= DARMA tasks

= darma::create_work
= darma::.create_concurrent_work

Goal 2) Facilitating the expression of coarse-grained tasking 15




DARMA introduces a set of abstractions that enable =)
local and distributed tasking

= Asynchronous smart pointers wrap user data
= darma::AccessHandle<T>
= darma::AccessHandleCollection<T>

= DARMA tasks

= darma::create_work
= darma::.create_concurrent_work

Goal 2) Facilitating the expression of coarse-grained tasking 16




Asynchronous Smart Pointers enable extraction of =)
concurrency in a data-race-free manner

darma::AccessHandle<T> enforces sequential semantics: it uses the order
in which data is accessed in your program and how it is accessed
(read/write/etc.) to automatically extract concurrency

Permission Level Permission Type

None Scheduling

A task with scheduling permission can
create deferred tasks that can access
Read the data at the specified permission level.

J

{3
v

Write o Imn.1edlate o

A task with immediate permission can
dereference the AccessHandle<T> and
use it according to the permission level.

Reduce

B

Goal 2) Facilitating the expression of coarse-grained tasking 17




A task is a block of deferred work that executes ) i
sequentially

Tasks can be recursively nested within each other to generate
more subtasks

C++ Lambdas C++ Functors
darma::create work( struct MyFun {
[=1{ void operator()(...) {
/*do some work*/ /* do some work */
} }
) ; b

darma::create work<MyFun>(...)

This is the C++ 11 syntax for writing Functors are for larger blocks of code
an anonymous function that captures that may be reused and migrated by
variables by value. the backend to another memory space.

Goal 2) Facilitating the expression of coarse-grained tasking 18




Example: Putting tasks and data together ) B

Example Program

AccessHandl e<i nt > nmy_dat a;

darnma: : create_wor k([ =]{
ny_dat a. set _val ue(29);

)

darma: : creat e_wor k(
reads(my_data), [=]{

}
)

cout << ny_data.get_val ue();

darma: : creat e_wor k(
reads(my_data), [=]{

}
)

cout << ny_data.get_val ue();

darma: : create_wor k([ =]{
ny_dat a. set _val ue(31);

)

DAG (Directed Acyclic Graph)

Modify
nmy_dat a

Semantics ny_data ny_dat a

> N0
Modify
| ny_dat a /

T hese two tasks are concurrent
and can be run in parallel by a
DARMA backend!

Goal 2) Facilitating the expression of coarse-grained tasking

19




Sandia ATDM applications drive requirements and e
developers play active role in informing front end API

= Application feature requests
= Sequential semantics
= MPI interoperability

= Node-level performance portability layer interoperability (Kokkos)
= Collectives

= Runtime-enabled load-balancing schemes

= API has evolved based on application developer usage and
feedback

Goal 2) Facilitating the expression of coarse-grained tasking -




Using DARMA to inform Sandia’s technical
roadmap

21




Currently there are three back ends in various stages of () i,
development

Common API Front End API
across runtimes (Application User)

Translation Layer

Common API Back End API

(Specification for Runtime)

across runtimes

fully
distributed development
tool

prototype

Using DARMA to inform Sandia’s ATDM technical roadmap -




2017 study: Explore programmability and performance
of the DARMA approach in the context of ATDM codes
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Multiscale Proxy
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Multi Level Monte
Carlo Uncertainty
Quantification Proxy

Using DARMA to inform Sandia’s ATDM technical roadmap

23




Performance benchmarks explore how AMT runtime ) i,
overheads can be masked by several factors

= Kernels and proxies will evolve throughout 2017

= |n the meantime simple benchmarks enable studies on
= Task granularity
= Qverlap of communication and computation
= Runtime-managed load balancing

= Tests performed on Mutrino
= Haswell partition of Trinity testbed

= These early results are being used to identify and address
bottlenecks in preparation for studies with kernels/proxies

Using DARMA to inform Sandia’s ATDM technical roadmap "



Stencil benchmark is not latency tolerant and highlights (g sae

runtime overheads when task-granularity is small

Strong scaling, Jacobi 2D benchmark Total Cells
1.1B, Charm++
1.1B, DARMA
1.1B, MPI

4.3B, Charm++
4.3B, DARMA
4.3B, MPI

17.2B, Charm++
17.2B, DARMA

(no asynchronous iterations)
T T

10°}

ITTIITIT

10t}

™~

Time per iteration (s)
=
o

17.2B, MPI

64 128 256 512 1024 2048
# of Cores

Using DARMA to inform Sandia’s ATDM technical roadmap

| At this scale, each
| iteration is less than
| 5ms long.



Increased asynchrony in application enables runtime to )
overlap communication and computation

Strong scaling, Jacobi 2D benchmark Total Cells

1.1B, Charm++
1.1B, DARMA
4.3B, Charm++
4.3B, DARMA
17.2B, Charm++
17.2B, DARMA

(asynchronous iterations = 10)
T T

ITIIIT

107t}

Time per iteration (s)

| Scalability improves
with asynchronous
1072} iterations. Requires

' | only minor changes to
/| DARMA code.

" 64 128 256 512 1024 2048
# of Cores

Using DARMA to inform Sandia’s ATDM technical roadmap




DARMA'’s programming model enables runtime- ) e,
managed, measurement-based load balancing

Strong scaling, Particle 2D benchmark

100 iterations

2D Newtonian particle
simulation that starts
highly imbalanced.

Total Time (s) / Number of Iterations

10°} .

256 512 1024 2048
# of Cores

Using DARMA to inform Sandia’s ATDM technical roadmap -



DARMA'’s programming model enables runtime- =)
managed, measurement-based load balancing

B LB LB LB

- Time ———————————————————» 1655

100%
c | |
L |
5 7 I\ 7 I\ 7 I\
N | 1.74s/iter § 1.66s/iter 1.70s/iter 1.54s/iter 1.47s/iter |@1.41s/iter
g Before LB | AfterLB Before LB | After LB Before LB [l After LB
@ | Initial Load
s Imbalance
& |
S

S
o

The load balancer incrementally runs as particles migrate and the work distribution changes.

Using DARMA to inform Sandia’s ATDM technical roadmap -



DARMA'’s programming model enables runtime- ) e,
managed, measurement-based load balancing

Strong scaling, Syntethic LB benchmark
60 iterations, load varying every 20 iterations

L—
LB Type

Charm++ Hierarchical LB
DARMA Hierarchical LB
MPI Imbalanced

MPI Ideal/Perfect LB

I11

Load balancing does
not require changes to
the code.

Total Time (s) / Number of Iterations

O
256 512 1024 2048
# of Cores

Using DARMA to inform Sandia’s ATDM technical roadmap -



Summary: DARMA seeks to accelerate discovery of best (@ sas
practices

= Application developers

= Use a unified interface to explore different runtime system
technologies

= Directly inform DARMA’s user-level API via co-design
requirements/feedback
= System software developers

= Acquire a synthesized set of requirements via the backend
specification

= Directly inform backend specification via co-design feedback
= Can experiment with proxy applications written in DARMA

= Sandia ATDM is using DARMA to inform its technology
roadmap in the context of AMT runtime systems

30
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Smart pointer collections can be mapped across =)
memory spaces in a scalable manner

AccessHandleCollection<T, R> is an extension to AccessHandle<T> that
expresses a collection of data

Every element in the collection
contains a yector<double>

AccessHandleCollection<vector<double>, RangelD> mycol =
darma::initial access collection(

1ndex_range = RangelD(10) RangelD is a potentially user-defined

); (or domain-specific) index range, a
C++ object that describes the extents
of the collection along with providing a

mycol corresponding index class for accessing
an element.
Id‘ Id‘ Id&\\ Each indexed element is an
e e e & ~ AccessHandle<vector<double>>

Goal 2) Facilitating the expression of coarse-grained tasking 2




Tasks can be grouped into collections that make =)
concurrent forward progress together

Task collections are a scalable abstraction to efficiently launch
communicating tasks across large-scale distributed systems

create concurrent work<MyFun>( struct MyFun {

index range = RangelD(5) void operator()(IndexlD 1) {
) int me = i.value;
/* do some work */
}
This call to create _concurrent _work };

launches a set of tasks, the size of which is

specified by an index range, Range1D. that

is passed as an argument. Each element in the task collection is
passed an ITndex1D within the range,
used by the programmer to express
communication patterns across elements
in the collection.

Goal 2) Facilitating the expression of coarse-grained tasking 23




Sandia
Putting task collections and data collections together (MY &=,

Example Program Generated DAG
auto mycol = initial_access _collection(
i ndex_range = Range1D( 10) (._\\ Modify
) i , mycol
create_concurrent wor k<MyFun>( | Sequentlal Scalable Graph
rrycol_, index_raﬁge = Range1D(10)k/:, Semartics T Refinement
); |
'i > Modify
create_concurrent wor k<MyFun>( | ny col
mycol , index_range = Range1D(10)4"
) i
A mapping must exist between the // Modify ‘ ‘ - ‘
data index ranges and task index range. .’ nmy col
In this case, since the three ranges are
identical in size and type, a one-to-one Modify
identity map is automatically applied. nycol T
Index O Index 1 Index 9

Goal 2) Facilitating the expression of coarse-grained tasking




Tasks in different execution streams can communicate
via publish/fetch semantics

Execution Stream A Potential DAG 1
AccessHandl e<int> nmy_data = .
initial_access<int>("nmy_key”); n;{iig?a
darma::create_work([=]{
my_dat a. set _val ue(29); //1» ‘\\
1) Read Copy
dat a
nmy_dat a. publ i sh(versi on="a"); RE ny_dat a
\ / AN
darma: :create_work([=]{ A N
nmy_dat a. set _val ue(31); Modify i Read
1) my_dat a l my_dat a
Execution Stream B i
AccessHandl e<i nt> other_data = |
read_access(”ny_key”, version="a"); If the read_access ison another
B node it might be send across the
darma: : create_wor k([ =]{ network.

cout << ot her_data. get_val ue();

1)

other_data = nul |l ptr;

Goal 2) Facilitating the expression of coarse-grained tasking
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Tasks in different execution streams can communicate
via publish/fetch semantics

Execution Stream A Potential DAG 2
AccessHandl e<i nt> ny_data = .
initial_access<int>("my_key”); Modify
my_dat a
darma::create_work([=]{
my_dat a. set _val ue(29); //1» ‘\\
1) Read Read
dat a
nmy_dat a. publ i sh(versi on="a"); - ny_dat a
darma::create_work([=]{ \ / A
nmy_dat a. set _val ue(31); Modify i
Ik my_dat a |
Execution Stream B |
AccessHandl e<i nt> other_data = |
read_access(”ny_key”, version="a"); If the read_access ison the same
node a back end runtime can generate
darma: :create work([=]{ an alternative DAG without the transfer.

cout << ot her_data. get_val ue();

1)

other_data = nul |l ptr;

Goal 2) Facilitating the expression of coarse-grained tasking

36



Tasks in different execution streams can communicate
via publish/fetch semantics

Execution Stream A Potential DAG 2
AccessHandl e<i nt> ny_data = .
initial_access<int>("my_key”); Modify
my_dat a
darma::create_work([=]{
my_dat a. set _val ue(29); //1» ‘\\
1) Read Read
dat a
nmy_dat a. publ i sh(versi on="a"); - ny_dat a
darma::create_work([=]{ \ / A
nmy_dat a. set _val ue(31); Modify i
Ik my_dat a |
Execution Stream B |
AccessHandl e<i nt> other_data = |
read_access(”ny_key”, version="a"); If the read_access ison the same
node a back end runtime can generate
darma: :create work([=]{ an alternative DAG without the transfer.

cout << ot her_data. get_val ue();

1)

other_data = nul |l ptr;

Goal 2) Facilitating the expression of coarse-grained tasking
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A mapping between data and task collections ) e,

o o B Laboratories
determines access permissions between tasks and data
auto nycol = initial_access_collection<int>(
i ndex_range = Range1D( 10) ( __________ Identity map between these data and
Y T T T e _ tasks. Thus, index i has local access to
create_concurrent _wor k<MyFun>( ___——""  dataindexi .
mycol, index_range = Rangel1D(10) & — |
); ,
struct MyFun { ,'I
voi d operator () ( /
I ndex1D i, AccessHandl eCol | ection<int> col  /
) | /
int me =i.value, nx =i. rrax_va] ue; /// Any other index must be read Us-ng
o read_access, which actually may be
auto nmy _elm= col[i].local access(); K _ _ aremote or local operation depending
//"” on the backend mapping, but is always
my_el m publ i sh(version="x"); 4 _ adeferred operation.
auto neighbor = me-1 <0 ? nx : ne-1; k"/
auto other_elm = col [ nei ghbor].read _access(version="x");
create_wor k([ =]{
cout << “neighbor =" << other_el mget_value() << endl;
1)
}
1
Goal 2) Facilitating the expression of coarse-grained tasking -




Stencil benchmark is not latency tolerant and highlights
runtime overheads when task-granularity is small

Time per iteration (s)

Using DARMA to inform Sandia’s ATDM technical roadmap

Weak scaling, Jacobi 2D benchmark Cells per Core
(no asynchronous |terat|ons) ¢ 1.0M, Charm++
% 1.0M, DARMA
A R R 1 ; 4 1.0M, MPI
4 4.2M, Charm++
#—4§ 4.2M, DARMA
—48 4.2M, MPI
— 16.8M, Charm++
— 16.8M, DARMA
4 16.8M, MPI
——— —— ——
= —— — — —
. e At th|§ sc§le, each
— > ' <1 iteration is less than
- o | 5ms long.
| = —— —— —— —— —— ¢ |
64 128 256 512 1024 2048
# of Cores



Increased asynchrony in application enables runtime to )

overlap communication and computation

1.0M, Charm++
1.0M, DARMA
4.2M, Charm++
4.2M, DARMA
16.8M, Charm++
16.8M, DARMA

—

Weak scaling, Jacobi 2D benchmark Cells per Core
(asynchronous iterations = 10) [
* — —— —— —k x S
1071 |

—4

==

=
©
[
©
©

2 B — - = - ——
3]
o
Q
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102} “J
o —— —— —O— ——— —o——9C
® O O— —— — Oo—0
64 128 256 512 1024 2048
# of Cores

Using DARMA to inform Sandia’s ATDM technical roadmap

Scalability improves with
asynchronous iterations.
Requires only minor

changes to DARMA code.



