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What is DARMA?

DARMA is a C++ abstraction layer 
for asynchronous many-task (AMT) runtimes

Goals:
1. Enable Sandia ATDM application scientists to explore 

a variety of underlying runtime system technologies
2. Facilitate the expression of coarse-grained tasking
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2015 study to assess leading AMT runtimes led to DARMA
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 Broad survey of many AMT runtime systems

 Deep dive on Charm++, Legion, Uintah

 Programmability: Does this runtime enable 
efficient expression of ATDM workloads?

 Performance: How performant is this 
runtime for our workloads on current 
platforms and how well suited is this runtime 
to address future architecture challenges?

 Mutability: What is the ease of adopting this 
runtime and modifying it to suit our code 
needs?

Aim: inform Sandia’s technical roadmap for next generation codes



2015 study to assess leading AMT runtimes led to DARMA
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 Conclusions
 AMT systems show great promise
 Gaps in requirements for Sandia 

applications
 No common user-level APIs
 Need for best practices and standards

 Survey recommendations led to DARMA
 C++ abstraction layer for AMT runtimes
 Requirements driven by Sandia ATDM 

applications
 A single user-level API
 Support multiple AMT runtimes to begin 

identification of best practices

Aim: inform Sandia’s technical roadmap for next generation codes
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Goal 1: Enabling exploration of a variety of 
runtime system technologies via a unified API



Application developers use a single API for expressing 
coarse-grained tasks
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Application code is translated into a series of backend 
API calls to an AMT runtime
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Considerations when developing a backend API that 
maps to a variety of runtimes
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 AMT runtimes often operate with a directed acyclic graph (DAG)
 Captures relationships between application data and inter-dependent tasks
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 AMT runtimes often operate with a directed acyclic graph (DAG)
 Captures relationships between application data and inter-dependent tasks

 DAGs can be annotated to capture additional information
 Tasks’ read/write usage of data
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maps to a variety of runtimes

11

 AMT runtimes often operate with a directed acyclic graph (DAG)
 Captures relationships between application data and inter-dependent tasks

 DAGs can be annotated to capture additional information
 Tasks’ read/write usage of data

 Task needs a subset of data

 Additional information enables runtime                                            
to reason more completely about 
 When and where to execute a task

 Whether to load balance

 Existing runtimes leverage DAGs with                                       
varying degrees of annotation
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DARMA passes data-task dependency information to 
the runtime which builds and executes the DAG
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Goal 2: Facilitating the expression of coarse-
grained tasking



DARMA front end abstractions are co-designed with 
Sandia ATDM application scientists
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DARMA introduces a set of abstractions that enable 
local and distributed tasking

 Asynchronous smart pointers wrap user data

 darma::AccessHandle<T>

 darma::AccessHandleCollection<T>

 DARMA tasks

 darma::create_work

 darma::create_concurrent_work
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Asynchronous Smart Pointers enable extraction of 
concurrency in a data-race-free manner

darma::AccessHandle<T> enforces sequential semantics: it uses the order 
in which data is accessed in your program and how it is accessed 
(read/write/etc.) to automatically extract concurrency
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A task is a block of deferred work that executes 
sequentially

Tasks can be recursively nested within each other to generate 
more subtasks
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Example: Putting tasks and data together
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Example Program

AccessHandl e<i nt > my_dat a;

dar ma: : cr eat e_wor k( [ =] {
  my_dat a. set _val ue( 29) ;
} ) ;

dar ma: : cr eat e_wor k(
  r eads( my_dat a) ,  [ =] {
    cout  << my_dat a. get _val ue( ) ;
  }
) ;

dar ma: : cr eat e_wor k(
  r eads( my_dat a) ,  [ =] {
    cout  << my_dat a. get _val ue( ) ;
  }
) ;

dar ma: : cr eat e_wor k( [ =] {
  my_dat a. set _val ue( 31) ;
} ) ;

Modify
my_dat a

Read
my_dat a

Read
my_dat a

Modify
my_dat a

DAG (Directed Acyclic Graph) 

These two tasks are concurrent
and can be run in parallel by a 
DARMA backend!

Sequential
Semantics



Sandia ATDM applications drive requirements and 
developers play active role in informing front end API

 Application feature requests

 Sequential semantics

 MPI interoperability 

 Node-level performance portability layer interoperability (Kokkos)

 Collectives

 Runtime-enabled load-balancing schemes

 API has evolved based on application developer usage and 
feedback
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Using DARMA to inform Sandia’s technical 
roadmap



Currently there are three back ends in various stages of 
development
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Using DARMA to inform Sandia’s ATDM technical roadmap



2017 study: Explore programmability and performance 
of the DARMA approach in the context of ATDM codes
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Electromagnetic 
Plasma Particle-
in-cell Kernels

Multiscale Proxy

Multi Level Monte 
Carlo Uncertainty 
Quantification Proxy



Performance benchmarks explore how AMT runtime 
overheads can be masked by several factors

 Kernels and proxies will evolve throughout 2017

 In the meantime simple benchmarks enable studies on
 Task granularity 

 Overlap of communication and computation

 Runtime-managed load balancing

 Tests performed on Mutrino
 Haswell partition of Trinity testbed

 These early results are being used to identify and address 
bottlenecks in preparation for studies with kernels/proxies
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Stencil benchmark is not latency tolerant and highlights 
runtime overheads when task-granularity is small 

Using DARMA to inform Sandia’s ATDM technical roadmap

At this scale, each 
iteration is less than 
5ms long. 



Increased asynchrony in application enables runtime to 
overlap communication and computation

Using DARMA to inform Sandia’s ATDM technical roadmap

Scalability improves 
with asynchronous 
iterations.  Requires 
only minor changes to 
DARMA code.



DARMA’s programming model enables runtime-
managed, measurement-based load balancing
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2D Newtonian particle 
simulation that starts 
highly imbalanced. 



DARMA’s programming model enables runtime-
managed, measurement-based load balancing
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The load balancer incrementally runs as particles migrate and the work distribution changes. 



DARMA’s programming model enables runtime-
managed, measurement-based load balancing
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Using DARMA to inform Sandia’s ATDM technical roadmap

Load balancing does 
not require changes to 
the code.  



Summary: DARMA seeks to accelerate discovery of best 
practices 

 Application developers
 Use a unified interface to explore different runtime system 

technologies

 Directly inform DARMA’s user-level API via co-design 
requirements/feedback 

 System software developers
 Acquire a synthesized set of requirements via the backend 

specification

 Directly inform backend specification via co-design feedback

 Can experiment with proxy applications written in DARMA

 Sandia ATDM is using DARMA to inform its technology 
roadmap in the context of AMT runtime systems
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Backup Slides



Smart pointer collections can be mapped across 
memory spaces in a scalable manner
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AccessHandleCollection<T, R> is an extension to AccessHandle<T> that 
expresses a collection of data



Tasks can be grouped into collections that make 
concurrent forward progress together
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Task collections are a scalable abstraction to efficiently launch 
communicating tasks across large-scale distributed systems



Putting task collections and data collections together
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aut o mycol  = i ni t i al _access_col l ect i on(
  i ndex_r ange = Range1D( 10)
) ;

cr eat e_concur r ent _wor k<MyFun>(
  mycol ,  i ndex_r ange = Range1D( 10)
) ;

cr eat e_concur r ent _wor k<MyFun>(
  mycol ,  i ndex_r ange = Range1D( 10)
) ;

Example Program

Sequential
Semantics

Modify

mycol

Modify

mycol

Generated DAG

Scalable Graph
Refinement

. . .

. . .

Modify

mycol

Modify

mycol

Index 0 Index 1 Index 9

A mapping must exist between the
data index ranges and task index range.
In this case, since the three ranges are
identical in size and type, a one-to-one
identity map is automatically applied.



Tasks in different execution streams can communicate 
via publish/fetch semantics
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Execution Stream A

AccessHandl e<i nt > my_dat a =
  i ni t i al _access<i nt >( ” my_key” ) ;

dar ma: : c r eat e_wor k( [ =] {
  my_dat a. set _val ue( 29) ;
} ) ;

my_dat a. publ i sh( ver si on=” a” ) ;

dar ma: : c r eat e_wor k( [ =] {
  my_dat a. set _val ue( 31) ;
} ) ;

Execution Stream B

AccessHandl e<i nt > ot her _dat a =
  r ead_access( ” my_key” ,  ver si on=” a” ) ;

dar ma: : c r eat e_wor k( [ =] {
  cout  << ot her _dat a. get _val ue( ) ;
} ) ;

ot her _dat a = nul l pt r ;

Modify
my_dat a

Modify
my_dat a

Read
my_dat a

Copy
my_dat a

Read
my_dat a

Potential DAG 1

If the r ead_access is on another
node it might be send across the
network.

Goal 2) Facilitating the expression of coarse-grained tasking
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Execution Stream A

AccessHandl e<i nt > my_dat a =
  i ni t i al _access<i nt >( ” my_key” ) ;

dar ma: : c r eat e_wor k( [ =] {
  my_dat a. set _val ue( 29) ;
} ) ;

my_dat a. publ i sh( ver si on=” a” ) ;

dar ma: : c r eat e_wor k( [ =] {
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} ) ;

Execution Stream B

AccessHandl e<i nt > ot her _dat a =
  r ead_access( ” my_key” ,  ver si on=” a” ) ;

dar ma: : c r eat e_wor k( [ =] {
  cout  << ot her _dat a. get _val ue( ) ;
} ) ;

ot her _dat a = nul l pt r ;

Modify
my_dat a

Modify
my_dat a

Read
my_dat a

Read
my_dat a

Potential DAG 2

If the r ead_access is on the same
node a back end runtime can generate
an alternative DAG without the transfer.

Goal 2) Facilitating the expression of coarse-grained tasking
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A mapping between data and task collections 
determines access permissions between tasks and data
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aut o mycol  = i ni t i al _access_col l ec t i on<i nt >(
  i ndex_r ange = Range1D( 10)
) ;
c r eat e_concur r ent _wor k<MyFun>(
  mycol ,  i ndex_r ange = Range1D( 10)
) ;

s t r uct  MyFun {
  voi d oper at or ( ) (
    I ndex1D i ,  AccessHandl eCol l ect i on<i nt > col
  )  {
     i nt  me = i . val ue,  mx = i . max_val ue;
     
     aut o my_el m = col [ i ] . l ocal _access( ) ;
       
     my_el m. publ i sh( ver s i on=” x” ) ;
     
     aut o nei ghbor  = me- 1 < 0 ? mx :  me- 1;
     aut o ot her _el m = col [ nei ghbor ] . r ead_access( ver si on=” x” ) ;
     c r eat e_wor k( [ =] {
       cout  << “ nei ghbor  = ”  << ot her _el m. get _val ue( )  << endl ;
     } ) ;
  }
} ;

Ident ity map between these data and
tasks. Thus, index i  has local access to
data index i .

Any other index must be read using 

r ead_access , which actually may be
a remote or local operation depending
on the backend mapping, but is always 
a deferred operat ion.

Goal 2) Facilitating the expression of coarse-grained tasking



Stencil benchmark is not latency tolerant and highlights 
runtime overheads when task-granularity is small 

Using DARMA to inform Sandia’s ATDM technical roadmap

At this scale, each 
iteration is less than 
5ms long. 



Increased asynchrony in application enables runtime to 
overlap communication and computation

Using DARMA to inform Sandia’s ATDM technical roadmap

Scalability improves with 
asynchronous iterations. 
Requires only minor 
changes to DARMA code.


