
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Status of the DARMA Asynchronous Many

Task Abstraction Layer

Janine C. Bennett, Jonathan Lifflander, David S.
Hollman, Jeremiah Wilke, Hemanth Kolla, Aram
Markosyan, Nicole Slattengren, Robert L. Clay (PM)

Lawrence Livermore National Laboratory

Feb 8, 2017

Unclassified

SAND2017-1430C

What is DARMA?

DARMA is a C++ abstraction layer
for asynchronous many-task (AMT) runtimes

Goals:
1. Enable Sandia ATDM application scientists to explore

a variety of underlying runtime system technologies
2. Facilitate the expression of coarse-grained tasking

2

2015 study to assess leading AMT runtimes led to DARMA

3

 Broad survey of many AMT runtime systems

 Deep dive on Charm++, Legion, Uintah

 Programmability: Does this runtime enable
efficient expression of ATDM workloads?

 Performance: How performant is this
runtime for our workloads on current
platforms and how well suited is this runtime
to address future architecture challenges?

 Mutability: What is the ease of adopting this
runtime and modifying it to suit our code
needs?

Aim: inform Sandia’s technical roadmap for next generation codes

2015 study to assess leading AMT runtimes led to DARMA

4

 Conclusions
 AMT systems show great promise
 Gaps in requirements for Sandia

applications
 No common user-level APIs
 Need for best practices and standards

 Survey recommendations led to DARMA
 C++ abstraction layer for AMT runtimes
 Requirements driven by Sandia ATDM

applications
 A single user-level API
 Support multiple AMT runtimes to begin

identification of best practices

Aim: inform Sandia’s technical roadmap for next generation codes

5

Goal 1: Enabling exploration of a variety of
runtime system technologies via a unified API

Application developers use a single API for expressing
coarse-grained tasks

6
Goal 1) Enabling exploration of a variety of runtime system technologies via a unified API

Application code is translated into a series of backend
API calls to an AMT runtime

7
Goal 1) Enabling exploration of a variety of runtime system technologies via a unified API

Application code is translated into a series of backend
API calls to an AMT runtime

8
Goal 1) Enabling exploration of a variety of runtime system technologies via a unified API

Considerations when developing a backend API that
maps to a variety of runtimes

9

 AMT runtimes often operate with a directed acyclic graph (DAG)
 Captures relationships between application data and inter-dependent tasks

d1
d2

d3 d4

d5

d6
d7

t1 t2 t3

t4 t5

subset

reads

Goal 1) Enabling exploration of a variety of runtime system technologies via a unified API

Considerations when developing a backend API that
maps to a variety of runtimes

10

 AMT runtimes often operate with a directed acyclic graph (DAG)
 Captures relationships between application data and inter-dependent tasks

 DAGs can be annotated to capture additional information
 Tasks’ read/write usage of data

 Task needs a subset of data
d1

d2
d3 d4

d5

d6
d2*

t1 t2 t3

t4 t5

subset

reads

Goal 1) Enabling exploration of a variety of runtime system technologies via a unified API

Considerations when developing a backend API that
maps to a variety of runtimes

11

 AMT runtimes often operate with a directed acyclic graph (DAG)
 Captures relationships between application data and inter-dependent tasks

 DAGs can be annotated to capture additional information
 Tasks’ read/write usage of data

 Task needs a subset of data

 Additional information enables runtime
to reason more completely about
 When and where to execute a task

 Whether to load balance

 Existing runtimes leverage DAGs with
varying degrees of annotation

d1
d2

d3 d4

d5

d6
d2*

t1 t2 t3

t4 t5

subset

reads

Goal 1) Enabling exploration of a variety of runtime system technologies via a unified API

DARMA passes data-task dependency information to
the runtime which builds and executes the DAG

12
Goal 1) Enabling exploration of a variety of runtime system technologies via a unified API

13

Goal 2: Facilitating the expression of coarse-
grained tasking

DARMA front end abstractions are co-designed with
Sandia ATDM application scientists

14
Goal 2) Facilitating the expression of coarse-grained tasking

DARMA introduces a set of abstractions that enable
local and distributed tasking

 Asynchronous smart pointers wrap user data

 darma::AccessHandle<T>

 darma::AccessHandleCollection<T>

 DARMA tasks

 darma::create_work

 darma::create_concurrent_work

15
Goal 2) Facilitating the expression of coarse-grained tasking

DARMA introduces a set of abstractions that enable
local and distributed tasking

 Asynchronous smart pointers wrap user data

 darma::AccessHandle<T>

 darma::AccessHandleCollection<T>

 DARMA tasks

 darma::create_work

 darma::create_concurrent_work

16
Goal 2) Facilitating the expression of coarse-grained tasking

Asynchronous Smart Pointers enable extraction of
concurrency in a data-race-free manner

darma::AccessHandle<T> enforces sequential semantics: it uses the order
in which data is accessed in your program and how it is accessed
(read/write/etc.) to automatically extract concurrency

17
Goal 2) Facilitating the expression of coarse-grained tasking

A task is a block of deferred work that executes
sequentially

Tasks can be recursively nested within each other to generate
more subtasks

18
Goal 2) Facilitating the expression of coarse-grained tasking

Example: Putting tasks and data together

19
Goal 2) Facilitating the expression of coarse-grained tasking

Example Program

AccessHandl e<i nt > my_dat a;

dar ma: : cr eat e_wor k([=] {
 my_dat a. set _val ue(29) ;
}) ;

dar ma: : cr eat e_wor k(
 r eads(my_dat a) , [=] {
 cout << my_dat a. get _val ue() ;
 }
) ;

dar ma: : cr eat e_wor k(
 r eads(my_dat a) , [=] {
 cout << my_dat a. get _val ue() ;
 }
) ;

dar ma: : cr eat e_wor k([=] {
 my_dat a. set _val ue(31) ;
}) ;

Modify
my_dat a

Read
my_dat a

Read
my_dat a

Modify
my_dat a

DAG (Directed Acyclic Graph)

These two tasks are concurrent
and can be run in parallel by a
DARMA backend!

Sequential
Semantics

Sandia ATDM applications drive requirements and
developers play active role in informing front end API

 Application feature requests

 Sequential semantics

 MPI interoperability

 Node-level performance portability layer interoperability (Kokkos)

 Collectives

 Runtime-enabled load-balancing schemes

 API has evolved based on application developer usage and
feedback

20
Goal 2) Facilitating the expression of coarse-grained tasking

21

Using DARMA to inform Sandia’s technical
roadmap

Currently there are three back ends in various stages of
development

22
Using DARMA to inform Sandia’s ATDM technical roadmap

2017 study: Explore programmability and performance
of the DARMA approach in the context of ATDM codes

23
Using DARMA to inform Sandia’s ATDM technical roadmap

Electromagnetic
Plasma Particle-
in-cell Kernels

Multiscale Proxy

Multi Level Monte
Carlo Uncertainty
Quantification Proxy

Performance benchmarks explore how AMT runtime
overheads can be masked by several factors

 Kernels and proxies will evolve throughout 2017

 In the meantime simple benchmarks enable studies on
 Task granularity

 Overlap of communication and computation

 Runtime-managed load balancing

 Tests performed on Mutrino
 Haswell partition of Trinity testbed

 These early results are being used to identify and address
bottlenecks in preparation for studies with kernels/proxies

24
Using DARMA to inform Sandia’s ATDM technical roadmap

Stencil benchmark is not latency tolerant and highlights
runtime overheads when task-granularity is small

Using DARMA to inform Sandia’s ATDM technical roadmap

At this scale, each
iteration is less than
5ms long.

Increased asynchrony in application enables runtime to
overlap communication and computation

Using DARMA to inform Sandia’s ATDM technical roadmap

Scalability improves
with asynchronous
iterations. Requires
only minor changes to
DARMA code.

DARMA’s programming model enables runtime-
managed, measurement-based load balancing

27
Using DARMA to inform Sandia’s ATDM technical roadmap

2D Newtonian particle
simulation that starts
highly imbalanced.

DARMA’s programming model enables runtime-
managed, measurement-based load balancing

28
Using DARMA to inform Sandia’s ATDM technical roadmap

The load balancer incrementally runs as particles migrate and the work distribution changes.

DARMA’s programming model enables runtime-
managed, measurement-based load balancing

29
Using DARMA to inform Sandia’s ATDM technical roadmap

Load balancing does
not require changes to
the code.

Summary: DARMA seeks to accelerate discovery of best
practices

 Application developers
 Use a unified interface to explore different runtime system

technologies

 Directly inform DARMA’s user-level API via co-design
requirements/feedback

 System software developers
 Acquire a synthesized set of requirements via the backend

specification

 Directly inform backend specification via co-design feedback

 Can experiment with proxy applications written in DARMA

 Sandia ATDM is using DARMA to inform its technology
roadmap in the context of AMT runtime systems

30

31

Backup Slides

Smart pointer collections can be mapped across
memory spaces in a scalable manner

32
Goal 2) Facilitating the expression of coarse-grained tasking

AccessHandleCollection<T, R> is an extension to AccessHandle<T> that
expresses a collection of data

Tasks can be grouped into collections that make
concurrent forward progress together

33
Goal 2) Facilitating the expression of coarse-grained tasking

Task collections are a scalable abstraction to efficiently launch
communicating tasks across large-scale distributed systems

Putting task collections and data collections together

34
Goal 2) Facilitating the expression of coarse-grained tasking

aut o mycol = i ni t i al _access_col l ect i on(
 i ndex_r ange = Range1D(10)
) ;

cr eat e_concur r ent _wor k<MyFun>(
 mycol , i ndex_r ange = Range1D(10)
) ;

cr eat e_concur r ent _wor k<MyFun>(
 mycol , i ndex_r ange = Range1D(10)
) ;

Example Program

Sequential
Semantics

Modify

mycol

Modify

mycol

Generated DAG

Scalable Graph
Refinement

. . .

. . .

Modify

mycol

Modify

mycol

Index 0 Index 1 Index 9

A mapping must exist between the
data index ranges and task index range.
In this case, since the three ranges are
identical in size and type, a one-to-one
identity map is automatically applied.

Tasks in different execution streams can communicate
via publish/fetch semantics

35

Execution Stream A

AccessHandl e<i nt > my_dat a =
 i ni t i al _access<i nt >(” my_key”) ;

dar ma: : c r eat e_wor k([=] {
 my_dat a. set _val ue(29) ;
}) ;

my_dat a. publ i sh(ver si on=” a”) ;

dar ma: : c r eat e_wor k([=] {
 my_dat a. set _val ue(31) ;
}) ;

Execution Stream B

AccessHandl e<i nt > ot her _dat a =
 r ead_access(” my_key” , ver si on=” a”) ;

dar ma: : c r eat e_wor k([=] {
 cout << ot her _dat a. get _val ue() ;
}) ;

ot her _dat a = nul l pt r ;

Modify
my_dat a

Modify
my_dat a

Read
my_dat a

Copy
my_dat a

Read
my_dat a

Potential DAG 1

If the r ead_access is on another
node it might be send across the
network.

Goal 2) Facilitating the expression of coarse-grained tasking

Tasks in different execution streams can communicate
via publish/fetch semantics

36

Execution Stream A

AccessHandl e<i nt > my_dat a =
 i ni t i al _access<i nt >(” my_key”) ;

dar ma: : c r eat e_wor k([=] {
 my_dat a. set _val ue(29) ;
}) ;

my_dat a. publ i sh(ver si on=” a”) ;

dar ma: : c r eat e_wor k([=] {
 my_dat a. set _val ue(31) ;
}) ;

Execution Stream B

AccessHandl e<i nt > ot her _dat a =
 r ead_access(” my_key” , ver si on=” a”) ;

dar ma: : c r eat e_wor k([=] {
 cout << ot her _dat a. get _val ue() ;
}) ;

ot her _dat a = nul l pt r ;

Modify
my_dat a

Modify
my_dat a

Read
my_dat a

Read
my_dat a

Potential DAG 2

If the r ead_access is on the same
node a back end runtime can generate
an alternative DAG without the transfer.

Goal 2) Facilitating the expression of coarse-grained tasking

Tasks in different execution streams can communicate
via publish/fetch semantics

37

Execution Stream A

AccessHandl e<i nt > my_dat a =
 i ni t i al _access<i nt >(” my_key”) ;

dar ma: : c r eat e_wor k([=] {
 my_dat a. set _val ue(29) ;
}) ;

my_dat a. publ i sh(ver si on=” a”) ;

dar ma: : c r eat e_wor k([=] {
 my_dat a. set _val ue(31) ;
}) ;

Execution Stream B

AccessHandl e<i nt > ot her _dat a =
 r ead_access(” my_key” , ver si on=” a”) ;

dar ma: : c r eat e_wor k([=] {
 cout << ot her _dat a. get _val ue() ;
}) ;

ot her _dat a = nul l pt r ;

Modify
my_dat a

Modify
my_dat a

Read
my_dat a

Read
my_dat a

Potential DAG 2

If the r ead_access is on the same
node a back end runtime can generate
an alternative DAG without the transfer.

Goal 2) Facilitating the expression of coarse-grained tasking

A mapping between data and task collections
determines access permissions between tasks and data

38

aut o mycol = i ni t i al _access_col l ec t i on<i nt >(
 i ndex_r ange = Range1D(10)
) ;
c r eat e_concur r ent _wor k<MyFun>(
 mycol , i ndex_r ange = Range1D(10)
) ;

s t r uct MyFun {
 voi d oper at or () (
 I ndex1D i , AccessHandl eCol l ect i on<i nt > col
) {
 i nt me = i . val ue, mx = i . max_val ue;

 aut o my_el m = col [i] . l ocal _access() ;

 my_el m. publ i sh(ver s i on=” x”) ;

 aut o nei ghbor = me- 1 < 0 ? mx : me- 1;
 aut o ot her _el m = col [nei ghbor] . r ead_access(ver si on=” x”) ;
 c r eat e_wor k([=] {
 cout << “ nei ghbor = ” << ot her _el m. get _val ue() << endl ;
 }) ;
 }
} ;

Ident ity map between these data and
tasks. Thus, index i has local access to
data index i .

Any other index must be read using

r ead_access , which actually may be
a remote or local operation depending
on the backend mapping, but is always
a deferred operat ion.

Goal 2) Facilitating the expression of coarse-grained tasking

Stencil benchmark is not latency tolerant and highlights
runtime overheads when task-granularity is small

Using DARMA to inform Sandia’s ATDM technical roadmap

At this scale, each
iteration is less than
5ms long.

Increased asynchrony in application enables runtime to
overlap communication and computation

Using DARMA to inform Sandia’s ATDM technical roadmap

Scalability improves with
asynchronous iterations.
Requires only minor
changes to DARMA code.

