
Introducing miniplumber
David Fritz
7 Feb 2017

SAND2017-1449PE



Introduction

miniplumber provides uni­ and multi­cast experiment communication to VMs, minimega
instances, and external programs anywhere in an experiment.



Motivation

How do we plumb non­network based connectivity?

Emulytics helps study many network­centric problems

minimega builds networks easily

Great support for describing machine­to­machine structure/behavior

Not great support for describing machine­to­anything­else structure/behavior



Plumbing the kitchen sink

Buttons

Serial connections

Vehicle radars

physics ­ sound, heat, light, rabid bunnies

cyber­physical interactions of all kinds

measurement data­planes



Plumbing

Enter miniplumber

A networkless, out­of­band, inter­process communication layer

Quick specification of communication pathways (pipelines)

uni­ or multi­cast experiment communication

Supports any number of clients (scales along with the rest of minimega)

Similar to unix pipelines (though not limited to linear pipelines)

Borrows concepts from the plan 9 plumber

Newline delimited messages (as opposed to unix byte streams)

Works on host, in minimega, and any miniccc client (ARM, x86­64 / *bsd, linux, windows)



A quick example
# create a pipeline connecting foo and bar 
plumb foo "sed ­u s/foo/moo/" bar 
 
plumb 
 
# write something to foo 
pipe foo "the cow says foo" 
 
pipe 
 
# works from the command line too 
# echo "hello plumber!" | minimega ­pipe foo 
 
clear plumb 
clear pipe 
 



Plumbing objects

Simple standard I/O based communication

Easily plumbed to existing unix tools

Several minimega­supplied tools (minevent, distribution functions, etc.)

Pipelines are plumbed locally, pipe data is forwarded everywhere

# plumbing productions are similar to unix pipelines 
plumb "cat data.txt" "grep ­i foo" lines_with_foo 
 
# named pipes can attach directly 
plumb this is a valid production 
 
# pipelines live until any stage of the pipeline is destroyed 
plumb foo "grep ­i foo" bar 
 
# kill the above pipeline by closing foo 
clear pipe foo 
 



minimega distribution

Fully distributed via meshage



Out­of­band communication

Works over meshage for node­to­node communication

Uses miniccc/ron for node­to­VM communication

Fully out­of­band when using miniccc networkless backchannels



Message scheduling

Support for most communication use cases

one­to­many

one­to­one (round robin, random)

# create a pipe with round­robin scheduling 
pipe foo mode round­robin 
 
pipe 
 



Use cases

cyber­physical experiments

training

data forwarding



Summary

miniplumber ­ simple, out­of­band communication framework

Growing library of communication primitives, support for any external programs

Bring cyber­physical / simulation layers to emulytics



Thank you

David Fritz
7 Feb 2017


