

CINT

SAND2017-1458PE

The Center for Integrated Nanotechnologies

Nanomaterials

Integration

A U.S. DOE Nanoscale Science Research Center

CINT: A National User Facility for Nanoscience Research (Free Science!)

Sean J. Hearne, Ph.D.
Senior Manager – CINT Sandia
sjhearn@sandia.gov

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000

U.S. DEPARTMENT OF
ENERGY

Office of
Science

Sandia
National
Laboratories

CINT is a DOE Office of Science National User Facility

"A DOE/SC user facility has unique world-class research capabilities and technologies which are available broadly to science community worldwide from universities, industry, private laboratories, and other Federal laboratories for work that will be published in the open literature."

The DOE/SC nanoscience centers:

- Are defined by a scientific field, not specific instrumentation.
- NSRC staff support user projects and conduct original research.
- Capabilities involve expertise, hardware and software.
- Users access Synthesis, Fabrication, Characterization and Theory capabilities.

CINT is a LANL/SNL partnership to create a National resource for nanomaterials integration

CINT History:

- 2001 DOE approves CINT proposal
- 2002 Sandia / Los Alamos MOU
- 2003 Jump-start operations
- 2004 Ground breaking
- 2006 Buildings dedicated
- 2007 Full operations

CINT Today:

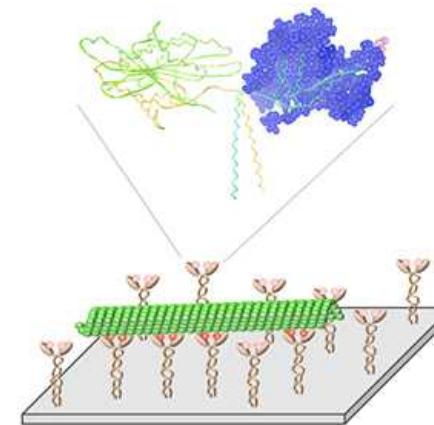
- 4 Science Thrusts, 1 leadership team
- 2 Facilities (total 130,000 gsf)
- 51 scientists & technologists
- 32+ post-docs & students
- 500+ users engaged in 200+ projects
- 270+ publications annually
- Peer-reviewed user proposal process
- No-fee for pre-competitive research
- Full cost recovery for proprietary research

Core Facility

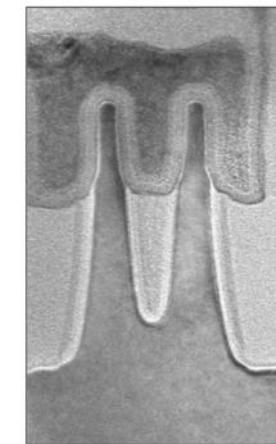
Gateway Facility

Differentiator : Nano-Integration

Nano-integration can take many forms


Mechanical strengthening from incorporation of nanotubes

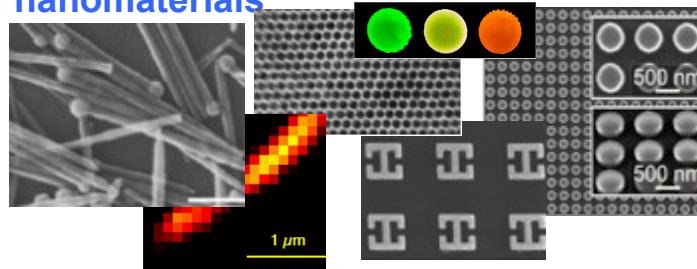
Carbon nanotubes in 17th Century Damascus steel


Reibold, et. al, Nature 444, 286 (2006)

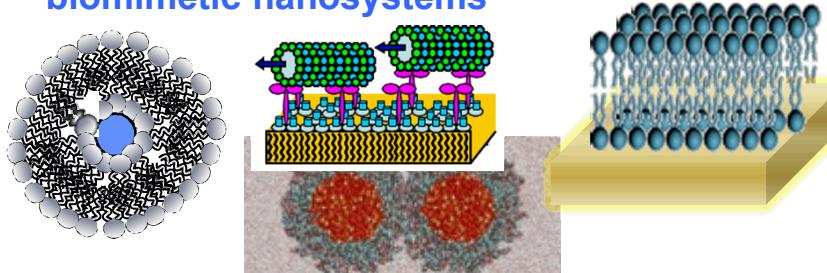
Collective behavior of biological systems

kinesin nanomotors to transport microtubules and nanoparticle payloads

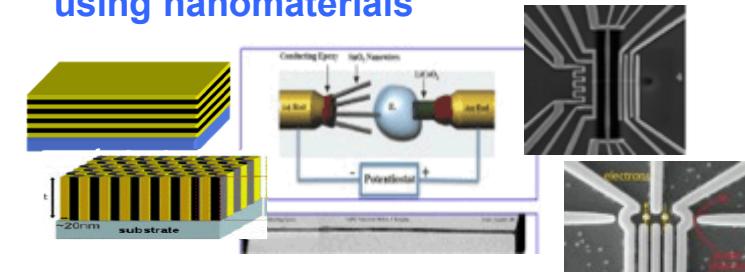
Nano-scale patterning to build hierarchical structures


Intel 14nm Broadwell CPU (2015) ~100 Atoms

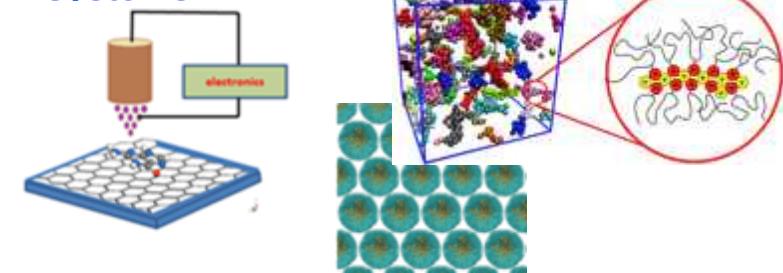
CINT has four scientific thrusts that steward capabilities


Nanophotonics & Optical Nanomaterials (NPON)

Synthesis, excitation and energy transformations of optically active nanomaterials


Soft, Biological, & Composite Nanomaterials (SBCN)

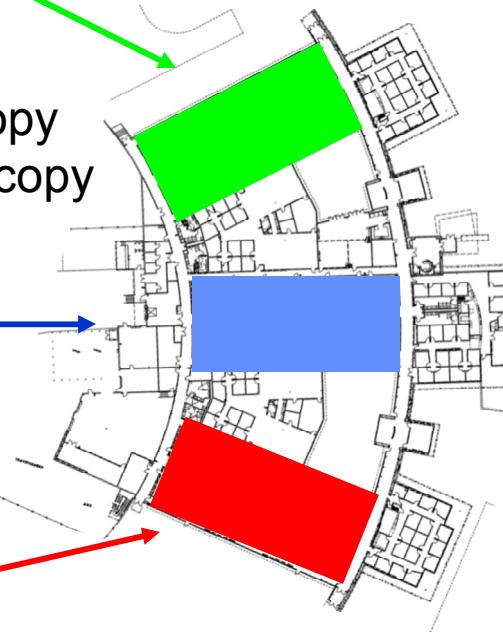
Solution-based nanomaterials synthesis and assembly of soft, composite and artificial biomimetic nanosystems


Nanoscale Electronics & Mechanics (NEM)

Control of electronic transport, wavefunction, and mechanical coupling using nanomaterials

Theory & Simulation of Nanoscale Phenomena (TSNP)

Assembly, interfacial interactions, and emergent properties of nanoscale systems



CINT has capabilities for synthesis, characterization and integration

Characterization Wing

- TEM, SEM
- Low Temp Transport
- Scanning Probe Microscopy
- Ultra-fast Laser Spectroscopy

Core Facility

Synthesis Wing

- Molecular Beam Epitaxy
- Chem & Bio labs
- Molecular films

Integration Lab

- E-beam lithography
- Photolithography
- Deposition & Etch
- SEM/FIB

Gateway to Los Alamos

- NSOM, AFM
- Environmental SEM
- Nano-indenter
- Pulsed Laser Dep.
- Ultra-fast Spectroscopy
- Computer Cluster
- Visualization Lab

