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Motivation Conformal Cu Jacketing Mesoscale TSV Filling with S-NDR Approach

This work aims to develop an optimal copper electrodeposition process A traditional MSA electrolyte with various additive We have made progress in filling these mesoscale TSVs using the previously established H,SO,
for electroplating full-wafer thickness blind through-silicon-vias (TSVs) at concentrations, applied pulse widths, duty cycles, and current ~ chemistry and S-NDR approach. Ongoing experimentation Is being conducted to develop a robust

a depth of 600 um and an aspect ratio of 4.8. We have demonstrated the densities has been examined for optimal conformal jacketing of process for fully filling these_ TSVs. The three_variables_manipulated In these experiments are suppressor
concentration, sample rotation rate, and applied potential.

ability to electroplate copper conformally into these features at a these mesoscale vias, but this technique is insufficient for void-
sufficient thickness, and we are progressing towards developing a free superconformal filling of these features. Diffusion Layer Thickness « w™%2 = §; = 1.61 (D 7)*/3v/6w~1/2
method for fully filling (e.g., ‘superfilling’) these features with Cu. Pulse Width Comparison Duty Cycle Comparison R
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Moffat, T. P., and D. Josell. "Extreme bottom-up superfilling of through-silicon-vias by damascene processing: suppressor disruption,
s positive feedback and turing patterns.” Journal of The Electrochemical Society 159.4 (2012): D208-D216.
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Type Depth (um)  Aspect Ratio High density copper filled or jacketed
Cu-Damascene <1 10 3D IC scales vary from <1 um to 150 -
Device 20-60 515 umin length, with aspect ratios from 1. S=NDR_ApPpProach Fundamentals S-NDR Approach in CuSO,-MSA Electrolyte
Interposer 50-150 4-8 15. Compared to the device examined ‘ , _ o _ _ = _ _
Image Sensor 50-100 13 herein, which has a length of 625 pm Bottom-up’ growth has been demonstrated using a CuSO,- Utilizing MSA as the electrolyte in an acid copper plating cher2r1|stry rather than H,SO, provides the
Full-Wafer TSV 500 c and an aspect ratio of 4.8. H,SO, electrolyte with only chloride and a polyether suppressor distinct advan_tage of allowing for a S|gn|_f|cantly Increased Cu | concentratlor_\ because Cu is significantly
TERS - more soluble in MSA versus H,SO, 3 This leads to a decrease in Cu?* depletion at the electrode
additive in 50 um deep annular TSVs. A graphical . e . - ) . . .
Int t. S h . f this S-NDR derived filling is sh below:2 Interface so that combining this chemistry with the S-NDR method might ultimately improve throughput
N eg ration oscneme representation ot this S- erived Tiling 1S snown DeEIow. while retaining the distinct benefits of the filling evolution presented above. The figure below shows that
Before Cu Electrodeposition Conformal Cu Jacketing Superfilling - . u , = ; il . —  there is indeed a similar hysteresis as well as the "Turing pattern’ deposition that we saw in the H,SO,
Device Routing E———— EI—— . <, = . electrolyte above. Subsequent feature filling experiments will be conducted to optimize the filling rate of
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Chemistries used for copper electroplating typically consist of a simple copper sulfate o L : -
solution with either sulfuric acid (H,SO,) or methanesulfonic acid (MSA) as the electrolyte. Electrolytes exhibiting S-NDR show hysteresis in cyclic = -50 —12
This standard chemistry is modified through the use of a three or four-additive system, in  Voltammograms due to breakdown of adsorbed suppressor. o 2 mV/s
order to improve the quality of the plated copper. These four additives are described below: Deposition at potentials in the hysteretic region produces E -40
« Accelerator — Surfactant molecule that adsorbs on the surface and, by coverage “Turing patterns’ with active and passive regions:? §
Increase with area loss, preferentially increases plating rate at the concave bottom -0.08 T I v T ' T v T - I 5 -30
@
e Suppressor - Large chain polymer (1k-20k mW) whose gradient of concentration yields Poloxamine Tetronic 701 20
an associated gradient in deposition rate (slower higher in via) |
« Leveler - Disables accelerator to reduce overburden thickness; grain refiner N’g -10 \
« Chloride — Competitively complexes with suppressor and accelerator species at A 0 .
electrode surface; required for suppressor function 3
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Examples of results using traditional (or additive free) chemistries: =
— qc) 3Cho, Sung Ki, Myung Jun Kim, and Jae Jeong Kim. "MSA as a supporting electrolyte in copper electroplating for filling of
‘ H,SO, Electrolytes Additive-Free MSA Q 004 damascene trenches and through silicon vias." Electrochemical and Solid-State Letters 14.5 (2011): D52-D56.
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B Caen of 3 Conclusions
‘ -0.02 | Despite over two decades of copper TSV and trench filling experimentation for 3D
Interconnects, the established 4-additive electroplating chemistry is opaque and often
unpredictable. The S-NDR mechanism detailed by Moffat and Josell can predictably
N yield bottom-up void-free filling of TSVs with high aspect ratios. This technique works in
0.00 olg . 018 : 0'7 ' (jlé g _— 0'4 both H,SO, and MSA based chemistries. We continue to develop processes optimized
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