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Contrast Invariance of the Iteratively Reweighted
Norm Algorithm for ¢!-TV Regularization

Paul Rodriguez and Brendt Wohlberg

Abstract—1It is well-known that ¢' Total Variation (TV) de-
noising is contrast invariant in the sense that the minimizer
for an input multiplied by some scalar is the the same scalar
multiplied by the minimizer for the unscaled input. While the
recently introduced Iteratively Reweighted Norm algorithm for
minimizing TV functionals preserves this property in principle,
we have observed that, in practice, as a result of finite-precision
arithmetic, significantly difference results may be obtained by
scaling the input. We discuss some relevant implementational
details, and describe a modified algorithm which avoids problems
arising from dependence on the contrast of the input.

Index Terms— image restoration, inverse problem, regulariza-
tion, total variation

I. INTRODUCTION

The standard TV regularized solution of the denoising
problem involving data b is the minimum of the functional
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for p = 2, ¢ = 1 (referred as ¢2-TV) and where we employ
the following notation:

‘ v

o F(u) = [—1)| u — b|| is the data fidelity term.

e R(u) = 5 v/ (Dyu)? + (Dyu)?|| s the regularization
term, ‘

e the p-norm of vector u is denoted by ||ul|,,

o scalar operations applied to a vector are considered to be
applied element-wise, so that, for example, u = v? =
up = vi and u = /v = ux = /0, and

o horizontal and vertical discrete derivative operators are
denoted by D, and D, respectively.

An important modification has been to use the ¢! norm as
the fidelity term, corresponding to choosing p = 1, ¢ = 1
in (1). This modified functional (referred as ¢1-TV), was first
analyzed in [1], [2], [3] (see also [4] for a good tutorial).

Recently, the Iteratively Reweighted Norm algorithm (5],
[6], [7] was proposed for minimizing the generalized TV
functional of Equation (1), which includes the ¢2-TV and ¢!-
TV as special cases, by representing the #” and ¢9 norms by the
equivalent weighted €2 norms. In particular, the IRN algorithm
provides a very fast algorithm for the ¢!-TV case, where it

Paul Rodriguez is with Digital Signal Processing Group at the Pontific
Catholic University of Peru, Lima, Peru. Email: prodrig@pucp.edu.pe,
Tel: (+51 1) 9339-3427

Brendt Wohlberg is with T-7 Mathematical Modeling and Analysis,
Los Alamos National Laboratory, Los Alamos, NM 87545. USA. Email:
brendt@t7.lanl.gov, Tel: (+1 505) 667 6886, Fax: (+1 505) 665 5757

is competitive with the state of the art algorithms for ¢1-TV
denoising ([8], [9], [10], [11]).

The contrast invariant property (see [3], [4]) in LTV
denoising is understood as follows:

Property 1.1: if U* is the minimizer to Eq. 1 for observed

input b then u* = #u* is the minimizer to Eq. 1 for observed
input b = 3 b, where 3 > 0.
The IRN algorithm does comply with this property, never-
theless we havgobserved numerical artifacts for 3 > 1 (i.e.
3 = 255 and b € [0..1]) and the computational results do
not follow the theory. In section III we propose a simple
modification to the IRN algorithm to correct its computational
behavior.

This paper is organized as follows: in Section II we briefly
described the IRN algorithm with focus on computational
issues. Next, in Section III, we describe the numerical artifacts
of the IRN algorithm for #1-TV denoising and how to correct
them. Finally we show numerical results Section IV and list
our concluding remarks in Section V.

II. ITERATIVELY REWEIGHTED NORM APPROACH

The IRN algorithm approximates the Total Variation func-
tional (Eq. (1)) by a ¢? weighted version of the original one,
and when solved iteratively, it converges to the solution given
by Eq. (1). The new functional is given by:
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and 7¢ is defined (for some small ez) as
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to avoid numerical problems for p < 2 and u®) — b = 0; this
strategy is a common apFroach for IRLS type algorithms [12].
The matrices 1D and W}?') (regularization term) are defined by
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for some small eg, and set
0ff) = diag (7 (D)2 + (Du™P)), )

An iteratively minimization of Eq. 2 results in an algorithm

that finds u'*)

u®) = <uf'},"> +/\Dng‘>D) 1wf;"lo )
for k=1, 2, ., with u® = (I + ADTD) ™" b as the initial
solution.

The matrix inversion can be achieved using the Conjugate
Gradient (CG) or the Preconditioned CG (PCG) method such
as Jacobi line relaxation (JLR) or symmetric Gauss-Seidel line
relaxation (SLGS) [13].

For two dimensional datasets the matrix Wl(:k) +
ADTW g")D is block-diagonal and has a very specific struc-
ture: it has a main block (tridiagonal) and two off-diagonals.
It is convenient to store it as two tridiagonal matrices: without
loss of generality let the input data be stored in row-major
then the two tridiagonal matrices will be given by W,(,k) +
ADTQW D, and ADTQY) D, and note that the first matrix
will operate over contiguous elements in memory whereas the
second one will operate over elements with a stride equal
to the number of columns of the input dataset. This storage
strategy allows a very efficient implementation of the matrix
times vector operation, heavily used in CG or PCG.

For p < 2 (see Eq. (1)) we may apply the substitution
v = W}ﬂu in Equation (2) giving
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In this case the resulting algorithm will compute v*) and then
ulk) = H’}k) l/Zv(’"); similarly u(® = (1 ﬁ—/\DTD)—1 b is
used as the initial solution.

The substitution v = W,fﬂ/zu, specially in the ¢1-TV
denoising case, was found to result in a very large reduction
in the required number of CG iterations and in increased
reconstruction quality (SNR).

Note that the condition numbers of the matrices to be
inverted in equations (8) and (9) are (theoretically) the same,
but computationa}‘l’ly they behave diff/e)rent. Heuristically the
product W l/hDTVV,(?A')DWS") % reduces the dynamic
range of the matrix to be inverted and therefore reduces the
cumulative error due to finite precision computations (matrix
times vector in the CG or PCG solver).

The strategy to compute the product [ +
kY2 (k) o (R) T L2 —— .
AW DWWy DWg times a given
vector is to pre-compute two tridiagonal matrices
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contiguous elements and )\I'V;‘A) DyFSZ(Fé”)DyW}“
which will operate over elements with a stride equal to the

number of columns of the input dataset.

Note that for both cases (equations (8) and (9))
a line relaxation preconditioning strategy can be
easily implemented due to the storage policy. For

instance, in equation (9) the relaxation will be given
&)~V o) 1y 1 (k)12

by R I + AWy D, Qg D Wy

y (£)~Y2 S (k)

diag(AW D, Q' Dy).

I1I. CONTRAST INVARIANT #1-TV IRN ALGORITHM

In this section we analyze the compliance to the contrast
invariant property (property 1.1) by the IRN algorithm for ¢!-
TV denoising. We focus in the case when 3 > 1 (i.e. 3 = 255)
and b € [0..1], typical if the input image has been acquired
using a digital still camera or a CCD video camera.

Let b = 3 b be the noisy input, where 3 is a positive
constant and b € [0..1]. Without loss of generality we focus
in the case when 3 > 1. Let €r and €g be the thresholds used
for b € [0..1] and e = 3€p and eg = B¢y be the thresholds
used for b € [0..4] then it is straightforward to show that for
the ¢1-TV case

mr(u®) - b) %TF(‘A‘(M - b)

T[l((D_EU(k))Q‘i-(DUU(k))Z) %Tn((DJ_G(k‘,)2+(Dya(k))2)’

where u® and u(*) are the k' solution (Eq. (8) or (9)) for
inputs b and b respectively. N

The weighting matrices used to denoise b will be defined
by (using € and €g as the thresholds)

Wék) —= diag(rp(ﬁ(k)—g)> (10
ol = diag(TR ((Dxﬁ“"))er(Dyﬁ“"))Q)) n

and W’g') follows from Eq. (5). Furthermore, from equations
(3), (7) and (10), (11) we note a similar eguivalence for the
weighting matrices used to denoise b and b

L =k

wd = Ip®  wd (12)
Eq. (12) implies that for equivalent threshold levels and 3 >
1, the numerical values of the weighting matrices H",(:k) and
W}(;) (numerical values of the input dataset b are in the
range [0..3]) are much smaller than the numerical values of
the weighting matrices W,(:k) and Iri”g) (numerical values of
the input dataset b are in the range [0..1]). We will show
that these differences in the weighting matrices (Eq. (12)) do
not modify the linear system to be inverted (equations (8)
and (9)) by the IRN algorithm, and it (theoretically) complies
with the contrast invariant property. Nevertheless due to finite
precision computations and straightforward arithmetic used by
the IRN algorithm (as presented in [6]) when computing the
weighting matrices, the computational results do not exhibit
the the contrast invariant property; this can be easily corrected
by reordering the arithmetic (to avoid numerical errors) when
computing the weighting matrices

To show that IRN algorithm complies with the contrast
invariant property, we first replace W}',-k) and “Vg,k) by IV,(f)
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the ¢*-TV denoising problem with input b (instead of b), is
easy to conclude that u*) = 3G%), Similarly, in Eq. (9)

replacing b = noting
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Comparing equations (8) and (9) with (13) and (14) we
conclude that the linear system to be inverted (in any case) is

setting 1\7 (k) =
- /\(k)() 5~

0.5
vik) we get ul

the same whereas the data values of the input dataset are in (A

the range [0..3] or [0..1]; we also conclude that u®) = 3G(*)
and thus the contrast invariant property holds.

The IRN algorithm for ¢'-TV denoising, as presented in
[6], directly solve for the linear system in Eq. (8) (or Eq.
(9)) and thus it computes W}“ and L-V,(?k) without taking into
account the scaling constant 3 and therefore the simplification
(factoring out the constant value /) presented in equations
(13) and (14) are explicit carried out (while inverting the
linear system) using finite precision arithmetic, incurring in
numerical errors that are observable: u'®) # 3 4@ for
computational results achieved by ¢!-TV denoising (via the
IRN algorithm) for noisy input data b € [0..1] and b = 3 b.

Note that equations (13) and (14) solve the ¢*-TV denoising
problem for input b (not for b) even though the wclghtm0
mamccs (m the linear system needed to be inverted) are W
and W (mxtead of W g") and Wg‘))

This observatlon is the key to modify the IRN algorithm
(as presented in [6]) in order to avoid the numerical errors
(described above) and attain computational results that do
exhibit the the contrast invariant property: the constant value 3
should be taken into account before solving the linear system.
This is summarized in algorithm 1 which differs from the IRN
algorithm as presented in [6] in that the former operates the
matrix mverslon using matn(.ex W ;ﬂ) and W( ) instead of
matrices Ii " and W L (as done by the latter). In the case of
shot noise, factor B8 can be directly computed as the maximum
value of the noisy input b; for other type of noise, an ad-hoc
value should be estimated.

Inputs

b : Noisy input dataset, where b = @b and b € [0..1]
Initialize

u® = (1+ADTD) "' b
for k= 1.2 ..

W = diag (8- r(u*~1) — b))

Qff = diag (8- 7r (D,u=)2 + (Dyu)2))
. e 2
= (W +20TWPD) Wb

e\ =1 e~ p31/2
) W

(i) u®

. —~y—1/2 —~ —~(k
(1i-1) v (k) =(1+AW‘M d DTWw pw

1/2

(ii-2) u® = Wy k)

end
Algorithm 1: Contrast Invariant IRN Algorithm. Matrices D
and Wi(ik) are defined in Equation (5). Step (i) refers to

equation (8) and (13). Steps (ii) refers to equations (9) and
(14),

IV. NUMERICAL RESULTS

Given a noisy input b = 3 b, where 3> 1 and b € [0..1]
there are up to three different approaches to denoise it via IRN
ATV

(Al) use 9 to solve for Eq. (8) or (9) and find u.

) use b (instead of b) to solve for Eq. (8) or (9), find u
and then compute u = § u.

use b to solve for Eq. (13) or (14) and find u. This is
the case of the contrast invariant IRN algorithm.

In most of the cases, IRN-(Al) with 3 = 255 Eq. (8)
or (9) do not converge to a stable solution, and therefore
we will concentrate our simulations for cases IRN-(A2) and
IRN-(A3). The test image will the Lena image (512 x 512
pixel); similar results are attained for other classical images
(Barbara or Mandrill, often used in image processing) but not
presented here due to space constrains. Except where specified
otherwise, program run times were obtained on a 1.8GHz
Intel dual-core processor with 2048K L2 cache and 1G of
RAM. A software implementation [14], which can reproduce
the results presented in this paper, is available under an open-
source license.

In Figure 1 we compare the reconstruction qualities (SNR
with respect to the reference noise-free image) for IRN-(A2)
fL-TV and the Contrast Invariant IRN-(A3) ¢!-TV, where the
input (noisy) image is Lena, corrupted with speckle noise
(10% of its pixels, SNR 1.2dB). It is observed that for equa-
tions (9) and (14) (labeled in Figure 1 as IRN-(A2) via (9) and
IRN-(A3) via (14) respectively, see also Figure 2) the Contrast
Invariant property holds up to the fourth iteration when they
start showing a small difference in the reconstruction quality
(due to finite precision errors), having IRN-(A3) via (14) the
best quality; this was expected since, by design, it reduces the
computational errors.

When equations (8) and (13) are used, we observed that
(i) when compared to equations (9) and (14) they present a

(A3)



smaller reconstruction quality (Figure 1) and the number of
CG iterations (Figure 3) needed to solve the linear system (at
each iteration) is greater than the ones needed for equations (9)
and (14) (this results are compatible with previously reported
ones in [5], [6], [7]) and (ii) computationally they do not
exhibit the contrast invariant property.
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Fig. 1. #'-TV denoising SNR values against algorithm iteration number for

A = 1.25 using a fixed (10~*) CG tolerance for all cases. Input image was
Lena corrupted with speckle noise (109 of its pixels, SNR 1.2dB.).
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Fig. 2. A detail comparison for IRN-(A3) via (14) and IRN-(A2) via (9),

corresponding to the simulation described for Figure 1.

V. CONCLUSIONS

We have presented a modified version of the IRN algorithm
which preserves invariance to contrast of the input.
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