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Contrast Invariance of the Iteratively Reweighted 
Norm Algorithm for £1-TV Regularization 

Paul Rodriguez and Brendt Wahlberg 

Abstract- It is well-known that f 1 Total Variation (TV) de­
noising is contrast invariant in the sense that the minimizer 
for an input multiplied by some scalar is the the same scalar 
multiplied by the minimizer for the unscaled input. While the 
recently introduced Iteratively Reweighted Norm algorithm for 
minimizing TV functionals preserves this property in principle, 
we have observed that, in practice, as a result of finite-precision 
arithmetic, significantly difference results may be obtained by 
scaling the input. We discuss some relevant implementational 
details, and describe a modified algorithm which avoids problems 
arising from dependence on the contrast of the input. 

Index Terms-image restoration, inverse problem, regulariza­
tion, total variation 

I. INTRODUCTIO N 

The standard TV regulari zed solution of the denoisi ng 
problem involving data b is the min imum of the functi onal 

for p = 2, q = 1 (referred as €2 -TV) and where we employ 
the following notation: 

• F(u) = *llu -blip is the data fi delity term. 
p q 

• R(u) = ~1 1 j(D,ru) 2 + (Dyu) 2L is the regularization 

term, 
• the p-norm of vector u is denoted by !lull,,, 
• scalar operations applied to a vector are considered to be 

applied element-wise, so that, for example, u = v 2 =:;. 

Uk = uf. and u = JV =? Uk = fok , and 
• horizontal and vertical discrete derivative operators are 

denoted by Dx and Dy respective ly. 

An important modification has been to use the gt norm as 
the fidelity term, corresponding to choosing p = 1, q = 1 
in (I ). This modified functional (referred as €1-TV), was first 
analyzed in [I], [2], [3] (see also [4] fo r a good tutorial). 

Recently, the Iteratively Reweighted Norm algori thm [5], 
[6 ], [7] was proposed for minimizing the generalized TV 
functional of Equation (I), which includes the €2 -TV and et_ 
TV as special cases, by representing the £P and f q norms by the 
equivalent weighted €2 norms. In particular, the IRN algorith m 
provides a very fast algorithm for the f 1-TV case, where it 
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is competitive with the state of the art algorithms for €1-TV 
denoising ([8], [9], (10], [ Ill). 

The contrast invariant property (see [3], [4]) in €1-TV 
denoising is understood as fo llows: 

Property I. I : if u• is the minimizer to Eq. I for observed 
input b then u• = ,6u* is the minimizer to Eq. I for observed 
input b = f3 b, where /3 > 0. 
The IRN algorithm does comply with this property, never­
theless we have observed numerical artifacts for /3 » 1 (i.e . 
/3 = 255 and b E [0 .. 1 j) and the computational results do 
not follow the theory. In section III we propose a simple 
modification to the IRN algorithm to correct its computational 
behavior. 

This paper is organized as follows: in Section II we briefly 
described the IRN algorithm with focus on computational 
issues. Next, in Secti on III, we describe the numerical artifacts 
of the IRN algori thm for €1-TV denoising and how to correct 
them. Finally we show numerica l results Section IV and list 
our concluding remarks in Section V. 

II. ITERATIVE LY REWEIGHTED NORM APPROACH 

The !RN algorithm approximates the Total Variation func ­
ti onal (Eq. (I )) by a €2 weighted version of the original one, 
and when solved iteratively, it converges to the solution given 
by Eq. ( l ). The new functional is given by: 

y(kl (u) = ~ [[w~kl 1 1 2 
(u _ b) 11: + ~ [[ w~klt 12 Dull: (2) 

where 

w~k ) = d iag ( rp (u(k) - bl), 

and rp is defined (for some small Ep) as 

{ 
lxlµ- Z 

Tp(X) = p-2 
Ep 

if lxl > Ep 

if lxl :S: Ep, 

(3) 

(4) 

to avoid nu merica l problems for p < 2 and u(k) - b = O; this 
strategy is a common approach for IRLS type algorithms [ 12]. 
The matrices D and W~ ) (regularization term) are defined by 

D = ( Dx ) IV(kJ - ( ol kl () ) " "R 
Dy 

, R -
0 rPl 

R 

(5) 

where 

TR(:r: ) = { 
l:rl (q-2)/2 if IJ·I >ER 
0 if lxl :S: ER 

(6) 
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for some small ER, and set 

n~) = diag ( TR ( (Dxu(kl ) 2 + (D yu(k)) 2
)), (7) 

An iteratively minimization of Eq. 2 resu lts in an algorithm 
that finds ulkJ 

u(k) = ( Wfk) + >. DTWii_k) D )-l W}k)b (8) 

for/..;= 1, 2, . ., with u <0l = (I + ,\DT D f 1 bas the initial 
solution. 

The matrix inversion can be achieved using the Conjugate 
Gradient (CG) or the Preconditioned CG (PCG) method such 
as Jacobi line re laxation (JLR) or symmetric Gauss-Seidel line 
relaxation (SLGS) [ 13]. 

For two dimensional datasets the matrix v\/}kl + 
>. DTWii_k) D is block-diagonal and has a very specific struc­
ture: it has a main block (tridiagonal) and two off-diagonals. 
It is convenient to store it as two tridiagona l matrices: witho ut 
loss of generali ty let the input data be stored in row-major 
then the two tridiagonal matrices wi ll be given by w }:,k) + 
>.Din~ ) Dx and >.D~n~ ) Dy and note that the firs t matrix 
will operate over contiguous elements in memory whereas the 
second one will operate over elements with a stride equal 
to the number of co lumns of the input dataset. This storage 
strategy allows a very efficient implementation of the matrix 
times vector operation, heavily used in CG or PCG. 

For p < 2 (see Eq. {! )) we may apply the substitution 
v = W~12u in Equation (2) giving 

rlkl(v) = ~ ll v - wYl1/\11: +~ ll wii_kl 1;2 D W}k)- 1/2 v 11 : , 

with solution 

v (k) = (1 +XWfk)- 1/2DTWii_" lDWfk )- 1/2) - 1 W}") l/\ _ 

(9) 
In this case the resulting algorithm will compute v <kl and then 

u (k) = 1,\/}k)- l/
2 
v(k); similarly u<0l = (I + >.DT D) - l b is 

used as the initial solution. 
The substitution v = wY2 u, specially in the €1-TV 

denoising case, was found to result in a very large reduction 
in the required number of CG iterations and in increased 
reconstruction quality (SNR). 

Note that the condition numbers of the matrices to be 
inverted in equat ions (8) and (9) are (theoretically) the same, 
but computationally they behave different. Heuristically the 

(k)- 1/2 T (k) (k) -1 /2 
product W F D WR DW F reduces the dynamic 
range of the matrix to be inverted and therefore reduces the 
cumulative error due to finite precision computations (matrix 
times vector in the CG or PCG solver). 

The strategy to comrute the product I + 
>. w C"l- 112 

Dr1v1kl DH'(k) - i 
2 

ti mes a given 
F n F ~ 

vector is to pre-compute two tridiagonal matrices 
(k)- 1/2 T ( k) (k)- 1/ 2 

I + >.WF Dx n R DxWF ,whichwill operateover 
(k)-1/2 T (k) (k·)- l / 2 

contiguous elements and ).. H' F Dy n R Dy iv F 

which will operate over elements with a stride equal to the 

number of co lumns of the input dataset. 
Note that for both cases (equations (8) and (9)) 

a line relaxation preconditioning strategy can be 
easily implemented due to the storage policy. For 
instance, in equation (9) the relaxation will be Aiven 
by R - I + >.W(k)- 1/2 DTD(k) D w<kJ- 1 2 + 

- F x R x F 
. (k) - 1/2 T (k) 

diag(>. W F Dy nR Dy) · 

III. C ONT RAST INVARIANT €1-TV IRN ALGORITHM 

In this section we analyze the compliance to the contrast 
invari ant property (property I.I ) by the IRN algorithm for £1-

TV d!noising. We focus in the case when f3 » 1 (i.e. ,8 = 255) 
and b E [O .. l ], typical if the input image has been acquired 
usi ng a digital still camera or a CCD video camera. 

Let b = f3 b be the noisy input, where f3 is a posi tive 
constant and b E [0 .. 1] . Without loss of generality we focus 
in the case when f3 » 1. Let EF and 'ER, be the thresholds used 
for b E [0 .. 1] and EF = f3'EF and ER= f3'ER be the thresholds 
used for b E [O .. {3] then it is straightforward to show that for 
the £1-TV case 

where uCk) and iJ(k) are the kth solution (Eq. (8) or (9)) for 
inputs b and b respectively. 

The weighting matri ces used to denoise b will be defined 
by (using 4- and 'ER, as the thresholds) 

Wfk) diag (TF(iJ (k) - b)) (1 0) 

f)~) diag (TR ( (DxiJ(k)) 2 + (Dyu(k) J2
) ) (11 ) 

and wii_kl fo llows from Eq. (5 ). Furthermore, from equations 
(3), (7) and (I 0), (I I) we note a similar e_gu ivalence for the 
weighting matrices used to denoise b and b 

w<kl _ _'.:__fi! <kl w<kJ = _'.:__fi!<k) ( l 2) 
F -{3 F R j]R · 

Eq. ( 12) implies that for equivalent threshold levels and /3 » 
1, the numerical values of the weighting matrices wJ:,kl and 

wii_k ) (numerical values of the input dataset b are in the 
range [0 .. ,6]) are much smaller than the numerical values of 
the weighting matrices Wfk ) and Whk) (numerical values of 

the input dataset b are in the range [0 .. 1 ]). We will show 
that these differences in the weighting matrices (Eq. (12)) do 
not modi fy the linear syste m to be inverted (eq uations (8) 
and (9)) by the IRN algorithm, and it (theoretically ) complies 
with the contrast invariant property. Nevertheless due to fin ite 
precision computations and straightforward arithmetic used by 
the IRN algorithm (as presented in [6]) when computing the 
we ighting matrices, the computational results do not exhibit 
the the contrast invariant property; this can be easily corrected 
by reorderi ng the ari th metic (to avoid numerical errors) when 
computing the weighting matrices 

To show that IRN algorithm complies with the contrast 
invariant property, we first replace H;YJ and w1k) by wJ:,k) 



and W~"l in Eq. (8), then 

u <kl (.!. w(k) + ADT .!_W(k) D)-l .!_W (k) b 
(JF P R /] F 

(w}kJ + ADTW~k) D )-
1 

W fk)b ( 13) 

replacing b f3 b and noting that ii(k) 

(w}kl + )..Drw~k) D ) -
1 
w}klf; will be the solution to 

the €1-TV denoising problem with input b (instead of b), is 
easy to conclude that u(k) = f3 ii(k) . Similarly, in Eq. (9) 

(
1 + )..ao5w<">-o' vr ~w(k ) D/3o 5w<kl -O' ) -l 

, F (3 R F 

1 -(!.-)" 5 

J0 5 W F b 

(I + A vv}"l-", vrwjtl D w}"l-o ") - 1 

1 - (k)Q ,, 
;305 Wp b (14) 

then by setting y (k) 

( 1 + AW}q -us Drw~"l DW}~l -" 0 ) - 1 

Wfk )
0 5 b, replacing 

b = /3 b (note that v <"l = .3° 5vU"l) and operating u<"l = 
(k) - 0.5 - (k) -U.5 ) 

W F vlk) we get u <"l = 130 5W F /3o.5v (k = /3 ii(k ) 

Comparing equations (8) and (9) with ( 13) and ( 14) we 
conclude that the linear system to be inverted (in any case) is 
the same whereas the data values of the input dataset are in 
the range [0 .. p] or [0 .. 1 ]; we also conclude that u <"l = f3 ii(k ) 

and thus the contrast invariant property holds. 

The IRN algorithm for €1-TV denoising, as presented in 
[6], directly solve for the linear system in Eq. (8) (or Eq. 
(9)) and thus it computes w}k) and w~k) without taking into 
account the scaling constant (3 and therefore the simplification 
(factoring out the constant value (3) presented in equations 
(1 3) and ( 14) are explicit carried out (while inverting the 
linear system) using fin ite precision arithmetic, incurring in 
numerical errors that are observable: u< k) =J ,B ij(k) for 
computational results achieved by £1-TV denoising (via the 
IRN algorithm) for noisy input data b E [0 .. 1] and b = f3 b. 

Note that equations (1 3) and J.1 4) solve the €1-TV denoising 
problem for input b (not for b ), even though the weightincr 
matrices (in the linear system needed to be inverted) are w}kJ 
and w~k) (instead of iv}"1 and w~"\ 

This observation is the key to modify the IRN a lgorithm 
(as presented in [6]) in order to avoid the numerical errors 
(described above) and attain computational results that do 
exhibit the the contrast invariant property: the constant value /3 
should be taken into account before solving the linear system. 
This is summarized in algorithm I which differs from the IRN 
algori thm as presented in [61 in that the former operates the 
matrix inversion using matrices w}k) and wh") instead of 

matrices IV}1'1 and W~"l (as done by the latter). In the case of 
shot no ise, factor .3 can be directly computed as the maximum 
value of the noisy input b; for other type of noise, an ad-hoc 
value should be estimated. 

Inputs 

b : Noisy input dataset, where b = 6 b and b E [O .. l ] 

Initialize 

u <0l = (! + ADTDf
1

b 

fork = L 2, . 

W}k ) = d iag (f3 · Tp(u(k- l ) - b)) 
fi~l = diag (!3 . T R ( (Dxu(k-l))2 + (Dyu(k- 1))2)) 

(i) u (k) = ( W}"l + ADTWh"l D )-l W~k)b 

( .. 1) (k) - ( -(kl- 1/2 y -( k) -(k)- 1/2) - I Tf!(k)
112 b 

ll- V - l + >d-VF D W n D WF vv F 

( . . 2 ) (kl_ -wur11 2 
(kl 

11- U - F V 

end 

Algorithm I: Contrast Invariant IRN Algorithm. Matrices D 
and Wh"l are defined in Equation (5). Step (i) refers to 
equation (8) and ( 13). Steps (ii ) refers to equations (9) and 
( 14). 

IV. NUMERICAL RESULTS 

Given a noisy input b = (3 b, where (3 » 1 and b E [O. l ] 
there are up to three different approaches to denoise it via TRN 
€1 -TV: 

(A I) use b to solve for Eq. (8) or (9) and find u. 
(A2) use b (instead of b ) to solve for Eq. (8) or (9), find ii 

and then compute u = /3 ii. 
(A3) use b to so lve for Eq. (13) or (14) and find u. This is 

the case of the contrast invariant IRN algorithm. 

In most of the cases, IRN-(A I) with (3 = 255 Eq. (8) 
or (9) do not converge to a stable solution, and therefore 
we will concentrate our simulations for cases IRN-(A2) and 
IRN-(A3). The test image will the Lena image (512 x 512 
pixel); similar results are attained for other classical images 
(Barbara or Mandrill, often used in image processing) but not 
presented here due to space constrains. Except where specified 
otherwise, program run ti mes were obtained on a I .8GHz 
Intel dual-core processor with 2048K L2 cache and IG of 
RAM. A software implementation [14], which can reproduce 
the results presented in this paper, is avai lable under an open­
source license. 

In Figure I we compare the reconstruction quali ties (SNR 
with respect to the reference noise-free image) for IRN-(A2) 
e t -TV and the Contrast Invariant IRN-(A3) €1-TV, where the 
input (noisy) image is Lena, corrupted with speckle noise 
(10% of its pixels, SNR l.2dB). It is observed that for equa­
tions (9) and ( 14) (labeled in Figure I as IRN-(A2) via (9) and 
IRN-(A3) via (1 4) respectively, see also Figure 2) the Contrast 
Invariant property holds up to the fourth iteration when they 
start showing a small difference in the reconstruction quality 
(due to fi nite precision errors), having IRN-(A3) via ( 14) the 
best quality; this was expected since, by design, it reduces the 
computational errors. 

When equations (8) and (1 3) are used, we observed that 
(i) when compared to equations (9) and (1 4) they present a 
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smaller reconstruction quality (Figure l ) and the number of 
CG iterations (Figure 3) needed to solve the linear system (at 
each iteration) is greater than the ones needed for equations (9) 
and ( 14) (this results are compatible with previously reported 
ones in [5], [6], [7]) and (ii) computationally they do not 
exhibit the contrast invariant property. 

20 

I8 ... -- -· ·------ - -~~ ·-- .... . ···········O .. 

I6 

14 

l2 
IRN-(A3) via ( 14) 
IRN-(A2) via (9) 
IRN-(A3 ) via (l 3) 10 

IRN-(A2) via (8) 
8 

2 3 4 5 6 7 8 9 IO 

Iteration number 

Fig. I. €1-TY denoising SNR values agai nst algorithm iteration num ber for 
.\ = l.25 using a fixed (10 - 4 ) CG tolerance fo r all cases. Input image was 
Lena corrupted with speckle noise ( I 0% of its pixels. SNR l.2dB .). 

19.0 

I8.8 

CQ 18.6 
:::?, 
~ z 18.4 
C/J 

I8.2 

18.0 
3 4 5 

IRN-(A3) via (I4) -+-­

IRN-(A2) via (9) --)(---

6 7 8 9 

Iterat ion number 

IO 

Fig. 2. A detail comparison for IRN-(A3) via ( 14) and IRN-(A2) via (9). 
corresponding to the simulation described fo r Figure I. 

V. CONC LUSIONS 

We have presented a modified version of the IRN algorithm 
which preserves invariance to contrast of the input. 
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