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Abstract—Efficient utilization of today’s high-performance
computing (HPC) systems with complex hardware and software
components requires that the HPC applications are designed
to tolerate process failures at runtime. With low mean-time-to-
failure (MTTF) of current and future HPC systems, long running
simulations on these systems require capabilities for gracefully
handling process failures by the applications themselves. In
this paper, we explore the use of fault tolerance extensions
to Message Passing Interface (MPI) called user-level failure
mitigation (ULFM) for handling process failures without the need
to discard the progress made by the application. We explore
two alternative recovery strategies, which use ULFM along with
application-driven in-memory checkpointing. In the first case, the
application is recovered with only the surviving processes, and in
the second case, spares are used to replace the failed processes,
such that the original configuration of the application is restored.
Our experimental results demonstrate that graceful degradation
is a viable alternative for recovery in environments where spares
may not be available.

Index Terms—Fault Tolerance, Process Failures, Check-
point/Restart, Message Passing Interface, Recovery

I. INTRODUCTION

Ensuring resilient operation is a major design hurdle for

current petascale high performance computing (HPC) systems

as well as for future exascale systems. Analyses of operational

system logs of current systems indicate a shrinking mean-time-

to-failure (MTTF), a trend that is expected to get worse in

future systems [1] with the emergence of highly complex HPC

systems that contain heterogeneous, multi-component hard-

ware and software. For most long-running HPC simulations,

the low MTTF means that the application may experience

multiple failures during their execution. Although it is possible

to design highly resilient systems based on hardware mecha-

nisms, their costs and design efforts are prohibitive. Therefore,

for many generations, HPC systems have used commodity

hardware and software components to meet stringent timelines
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and budgets. However, the successful use of these systems

in the presence of high fault rates requires software-based

mechanisms to ensure their reliable operation.

HPC applications are susceptible to both hardware and

software faults and errors, which may be transient or per-

manent in nature. Transient or soft errors are random events

caused by radiation particles affecting processing, network,

or memory elements in the system [2]. Permanent or hard

errors are caused by wear-out or device aging effects, which

manifest under specific conditions causing system components

to malfunction. From the perspective of an HPC application,

such transient and permanent errors may cause corruptions in

the application data or computations, and on occasion cause

fatal process crashes.

For a parallel HPC application using message-passing based

communication, the failure of a single process prevents for-

ward progress of the overall application. The process failure

causes the execution to cease and an abort signal to be sent to

all surviving processes. HPC applications employ checkpoint

and restart (C/R) mechanisms to recover from such failures.

C/R solutions take periodic snapshots of the global system

state, and upon a failure, the application is resumed using the

latest checkpointed state rather than starting over. However,

due to the scale of modern extreme-scale systems, global C/R

is an increasingly inefficient strategy in the presence of very

high failure rates.

The recent proposal of user-level failure mitigation (ULFM)

extensions [3] to Message Passing Interface (MPI) standard

proposes primitives to repair the communicator and to enable

the surviving processes to continue execution despite the fail-

ure of one or more MPI processes. However, ULFM does not

provide concrete failure recovery strategies, nor does it provide

the ability to recover lost application state, leaving the user to

decide which strategy to adopt for their applications. In this

paper, we explore the design of two distinct in-situ recovery

strategies in HPC applications using the MPI-ULFM interface.

In the first approach, called shrink, we isolate a failed process

and continue execution with surviving processes, and in the

second case, called substitute, we restore the original design-

time configuration of the application by use of spare processes.

In contrast to prior work [4] that focuses on performance

evaluation of the ULFM primitives, we present a detailed
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evaluation of two complete failure recovery strategies. We

evaluate our strategies for an application based on the widely

used Generalized Minimal Residual (GMRES) linear solver.

The ULFM extensions to MPI do not provide the ability

to reconstruct lost process state. While traditional check-

point/restart solutions take a global system-wide snapshot,

they tend to incur high storage, bandwidth and application

performance overheads. In this work, we also develop an

in-memory checkpointing solution to aid our ULFM-driven

shrink and substitute strategies. This approach is application-

driven, which facilitates a subset of total application state

required for forward progress of an application to be preserved.

Using point-to-point communication primitives, which are

highly optimized in HPC systems, the checkpoints are stored

in the memory of neighboring nodes in the system. This

enables rapid recovery from process failures. Additionally,

each node can assign multiple ‘buddy’ nodes that can store

its checkpoints, which supports handling multiple process

failures.

The major contributions of this work are:

• We present a detailed evaluation of process failure re-

covery strategies of substitute and shrink in the context

of parallel applications. Each of the solutions provide

the ability to mitigate process failures via reconfiguration

of the MPI communicator as well as application state

recovery capabilities.

• We use an iterative linear solver application as a use

case for demonstrating the various trade-offs and design

complexities involved in the implementation of the shrink

and substitute recovery approaches.

• We evaluate the performance overheads for in-memory

checkpoint and recovery operations at large scale in

the presence of multiple independent process failures,

which are becoming increasingly common in modern

HPC systems.

II. RELATED WORK

Prior work in supporting resilience for MPI-based applica-

tions has explored strategies by extending the MPI runtime

without changes to the interface. For example, MR-MPI [5],

rMPI [6] and their successor RedMPI [7] have introduced

redundancy at different granularities. The key benefit of these

runtime approaches is the avoidance of modifications to the

application source code to support resilience.

In contrast, ULFM requires programmer intervention, but

provides much greater flexibility in developing failure recovery

strategies and opportunities for optimization of the recovery

process. Previous works have explored the viability of various

strategies using ULFM to mitigate process failures for different

applications. For example, the Local Failure Local Recovery

(LFLR) [4] approach uses an early implementation of ULFM

MPI to facilitate recovery using spare processes. For a finite

element mini-app, which used checksums for application state

recovery, the results showed that recovery time is dominated

by the time to fix the communicator. Using a molecular

dynamics application as case study, another study evaluated

recovery by isolation of a failed MPI process by shrinking

the communicator and excluding the failed rank [8]. In a

comparison of the post-recovery performance of ULFM-driven

approaches using a synthetic benchmark [9], the performance

of collectives after shrink operations was found to deterio-

rate, since MPI implementations commonly optimize process

counts in terms of powers of two. Similarly, the work attributes

the degradation of performance after process substitution to

the distance of spare processes from failed node, which is

strongly dependent on the topology of the HPC network.

However, a detailed comparison of these strategies for the

same application on a uniform HPC platform to understand

the design trade-offs and performance overheads has not been

previously performed.

To improve the usability of ULFM, Fenix [10] provides

a wrapper interface for applications to perform application-

level in-memory checkpointing of variable state in addition

to transparent state recovery assuming spare processes are

present. A compiler-based solution was developed [11] to auto-

matically identify safe code locations where a checkpoint can

be consistently performed across all parallel processes. This

solution optimizes the performance of ULFM-based recovery.

In this work, we utilize in-memory checkpoints rather than

creating global checkpoints written using the parallel file

system. Previous work has also explored various algorithm-

based checkpoint-free schemes for application state recovery

including the use of row and column checksums on dense

matrix structures [12], the use of additional dot products to

detect errors in the matrix and vector elements of sparse

matrix computations [13], etc. While these techniques may

offer lower performance overheads, checkpoint-based recovery

is more broadly applicable to various application codes.

III. BACKGROUND: CHECKPOINT/RESTART

Checkpoint restart (C/R) is a broadly applicable technique to

mitigate process failures in distributed applications. It involves

taking checkpoints and storing them redundantly so that if a

failure were to occur, the application can recreate application

state as it was prior to the failure. Different C/R strategies

are possible depending on what aspects of the application

state are checkpointed, when the checkpoints are created and

where the checkpoints are stored. It is possible to store only

specific data structures, or even the entire system state at

the kernel-level or user-level. These two extremes represent

a trade-off in terms of memory required to store the state and

ease of implementation in terms of not needing to modify the

application source code. Maintaining checkpoints of the entire

system state across all processes can result in high storage

overheads. On the other hand, preserving a limited amount

of user-identified application state that is required for forward

progress can significantly lower the memory overheads.

When a checkpointing involves numerous processes, coor-

dinated or uncoordinated strategies are possible. Coordinated

checkpoints require that all parallel processes synchronize in

order to ensure that there are no in-flight messages, which en-

ables checkpointing of consistent global state. Uncoordinated

179



checkpoints are created independently by each process. This

requires message logging such that a consistent state can be

recreated across all processes upon occurrence of a failure.

However, a message sent from one process to another may be

missed during the checkpointing operation and may need to

be logged separately. Therefore, coordinated checkpoints are

often preferred in practice.

Among the key considerations of a C/R solution is the

checkpointing frequency. If checkpointing operation is per-

formed less often, the recovery from failures requires more

time due to the need for recomputation from the point of

the last stable checkpoint. When the checkpointing is per-

formed too often, there is increased overhead to the appli-

cation performance during failure-free operation. Therefore,

the trade-off between checkpoint interval and recovery la-

tency must be carefully considered. The optimal checkpoint

interval is dependent on the MTTF of the system and

checkpoint cost C. Young [14] identified the optimal check-

pointing interval assuming an exponential failure distribution

as:
√
2 ∗ C ∗MTTF

The checkpoint cost C is strongly dependent on where the

checkpoints are stored. In recent HPC systems, the parallel

file storage system was used to store the checkpoints. This

storage was assumed to be reliable, and could be used to

retrieve the checkpoints in case of a failure. However, since

this resource is shared by potentially multiple applications,

and can generate localized congestion in the network, other

alternatives have been explored. One alternative is to store

the checkpoints redundantly in the local memory and in the

memory of a buddy process. This configuration can be used

to restore lost state in case one of the processes carrying

the redundant state is alive. Optimized point-to-point message

communication can be utilized for transferring checkpoints

between buddy processes. This approach is possible with the

use of application-assisted checkpointing, which can lower

memory overheads. The performance efficiency and scalability

of this approach has been demonstrated in prior works [15].

The overhead to transfer checkpoints to buddy processes

can be eliminated by use of non-volatile memory, which is

expected to be common-place in future systems. Multilevel

checkpointing is also possible, where redundant checkpoints

are maintained across multiple memory layers and checkpoint

intervals for each layer are adjusted based on the cost of

performing checkpoint at that layer [16].

Therefore, the key factors in the design and implementation

of a C/R solution are the scope of the state captured during the

checkpoint operation, the frequency and the storage location

for the checkpoint. The primary overheads involved are the

time to perform checkpoints and extent of recomputation

during recovery, which are referred to as the waste overhead

of a C/R implementation. The main goal is to reduce this

overhead. Other overheads associated with process failure

tolerance include: overhead of detecting process failures, time

to reconfigure and recover parallel runtime environment after a

failure and the time to recover application state. The discussion

of these factors is provided in the next sections.

IV. DETECTION, RECONFIGURATION AND IN-SITU

RECOVERY FOR MITIGATION OF PROCESS FAILURES

HPC applications rely on a distributed runtime system

software for detection of process failures. We utilize the fault

tolerant version of MPI communication library ULFM for

reliable notification of process failures. The ULFM implemen-

tation extends the MPI operations with capabilities to notify

the application of anomalies in the group of processes involved

in a communication operation, i.e., a process failure is notified

when a MPI operation can not be completed as intended in

a failure-free setup. It is noteworthy that the fault detection

capabilities of ULFM needs to be initialized by changing

the default error handler MPI_ERRORS_ARE_FATAL on the

communication objects. Afterwards, an error is notified to

the processes involved in a communication operation via the

return code of MPI_ERR_PROC_FAILED. Consensus-based

algorithm among neighbors and timeouts is used to detect

failed processes. This can result in some overhead as opposed

to standard MPI implementation which does not provide these

features. However, recent efforts show considerable decrease

in these overheads and scalable operation [17].

From an applications perspective, the error reporting ca-

pability of ULFM provides the ability to take a proactive
or a reactive approach to failure detection. If an application

requires timely notification of failure to all processes, then a

proactive approach may involve strategic placement of collec-

tive operations inside the code, such that a failure is detected

early on and costly re-computation is avoided. However, this

can lead to high synchronization overheads. Another approach

is to wait for error notification by a MPI operation in the

code, i.e., a reactive approach. This can involve checking the

error codes of every MPI call or selected calls. Alternatively,

this can be easily accomplished by implementing a MPI error

handler which is called every time an error is notified by one

of the MPI routines. Error propagation to other processes and

recovery is orchestrated from within the error handler.

Once every surviving process has been notified of the failure

in the parallel computing environment, then reconfiguration

and recovery needs to be performed in a manner which is

most beneficial to the HPC application. To begin with, we

utilize ULFMs capability to remove all failed processes from

communication objects (by using MPI_COMM_SHRINK()).

The generated pristine MPI objects are used in future com-

munications among parallel processes. Afterwards, it is left

on to the user to recover application state and to resume

forward progress of the application towards the final solution.

In doing so, we have two options, either resume with same

number of processes as the application began with, a strategy

referred to as substitute, or resume with reduced number of

processes, a strategy referred to as shrink. We explore the

implications of both these options on application assisted in-

memory checkpointing in this section. Both have different

design tradeoffs, and their impact on application performance

will be evaluated in the experiment and results section.
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Fig. 1. Substitute approach: recovery mechanism for both static and dynamic
distributed objects. The spares are represented by φ.

A. Substitute: Supplemental Computation with Spares

The substitute approach requires allocation of spare pro-

cesses which can take the form of warm or cold spares,

depending on whether the processes are allocated at design

time or spawned at runtime. In this work, we do not con-

sider hot spares since those entail redundant computation for

each and every process, e.g., modular redundancy-MPI [5].

MR-MPI employs complete state replication across spares

and therefore does not require checkpointing of application

state. This can be extremely resource intensive yet sudden

degradation in reliability is incurred once failures start to

happen since failed processes are not replaced and subsequent

failures in non redundant processes can be fatal. Therefore, we

resort to spares which can be integrated into the application

as the need arises, i.e., as failures occur. The spares which

are design time allocated are warm spares, and processes

spawned at runtime are referred to as cold spares. Use of

both approaches is appropriate and similar from the context

of the application, but spawning processes at runtime has

more overhead. In addition, some computing environments

restrict spawning of new processes by an already scheduled

job. We therefore discuss the use of warm spares for restoring

the original configuration of the application, as a substitute

strategy. One obvious disadvantage in this case is the non-

utilization of resources in the failure free case.

The availability of spare processes provides the opportunity

for processes to continue execution with workload similar to

that of a failure-free setup. This is extremely useful for applica-

tions which perform initial compute-intensive data distribution

based on the input. For example, balancing the number of non-

zero elements assigned to each process in a sparse input matrix

requires the use of graph processing algorithms. Additionally,

the use of spare strategy is mandatory in some applications due

to constraints on problem decomposition, e.g., cube number

of processes are required if the problem is being decomposed

onto a cubic mesh.

On the implementation side, programming effort is required

to integrate the spare processes into the application code.

The effort involved is highly dependent on the programming

language used and the structure of the code if an existing code

base needs to be made resilient. The allocated warm spares

need to be segregated at the beginning of the computation, and

wait for their utilization during failure recovery. Once pristine

Fig. 2. Checkpointing operation in case of substitute approach after utilization
of a spare process.

communicator objects have been attained, the spare process

can be stitched in. In the new configuration, the spare process

is assigned a rank/id (the ranks for processes are represented

by unique numbers) similar to that of the failed process as

shown in Figure 1.

After we fix the parallel runtime environment and its ob-

jects, the application state of the spare process needs to be

populated. We use the checkpoints taken prior to a failure to

construct the application state for the spare process. The spare

process communicates with the neighbor of the failed process

for this purpose since it maintains a copy of application state

for the failed process as shown in Figure 1. In Figure 1, the

portion of application state for each process is represented by

letters A, B, etc., and the backup data-structure illustrates how

a redundant copy is maintained at the neighboring process.

During recovery, the survivors use their local copy to restore

the application state while the spare process uses MPI point-

to-point communication to get its portion of the application

state from the backup data-structure. Along with the recovery

of distributed state space, there is also a need to synchronize

the state of the processes which is local to them. This is

supposed to be consistent across processes, and we can use

any surviving process to populate the local state of the spare

process. For example, the number of iterations across all

processes should be same, otherwise, the spare process may

diverge and possibly cause a deadlock. Thus, this is a crucial

step in the application state recovery process.

The application can resume after consistent recovery of

application state across all processes. The point of restart

needs to be coordinated among all processes. For example,

exception handling blocks can be used to jump to the start

of an iterative block after recovering from a process failure.

To sustain future failures, the application continues to make

checkpoints of dynamic state across the set of processes

involved in the computation as shown in Figure 2. There is no

change in the size of checkpoints taken across these processes

as compared to failure free case. However, since spares may

be placed on a physically distant node, assuming the mapping

is not changed during the computation. An increase in latency

can be observed during ordinary communication operations

as well as during the checkpoint operation. For instance, a

neighboring process based on rank may not be a physical

neighbor after the spare processes have been utilized. This

181



Fig. 3. Shrink approach: checkpoint and recovery mechanism for static and
dynamic distributed objects.

can give rise to arbitrary communication patterns instead of

regular communication patterns which may be present in

the application by design. This effects performance during

message communications depending on the layout of the HPC

network.

B. Shrink: Graceful Degradation with Survivors

The shrink strategy for process failure recovery alleviates

the need to have spare processes allocated at design time.

However, determining the right number of spare processes can

be challenging and may depend on multiple factors, such as the

number of failures expected (based on MTTF of the system)

and the number of available resources. On the other hand,

arbitrary number of process failures can be sustained using

the shrink approach, as long as there are enough surviving

processes to continue execution of the application without

significant performance impact. In this approach, all processes

get to perform useful work from the start. However, good

performance or throughput is strongly dependent on whether

the application can dynamically adjust the workload across all

the surviving processes. Non uniform workload distribution

can affect performance significantly since some processes

may end up doing bulk of the work and overall application

performance is determined by the slowest process.

The recovery of application from process failures in this

case involves effort from the user. This is because domain

knowledge is required in most cases to re-distribute workload

among surviving processes. To illustrate, let us take the simple

example of distributing a vector with R rows among P parallel

processes. Assuming perfect divisibility, each process gets R
P

rows in a block wise manner in the beginning. After the failure

of one process, we need to redistribute the R rows among P−1
processes. For uniform workload distribution, each surviving

process needs to be assigned at least R
(P−1) − R

P extra rows.

This is accomplished via inter-process communication among

neighboring processes. The cycle is repeated every time a

failure occurs and the workload on each survivor keeps on

increasing as more failures are encountered.

The above re-distribution can take place during state recov-

ery while using the checkpointed dynamic and static state of

the application as shown in Figure 3. In-memory checkpoints

with redundant data across local and remote processes ensures

that every process get its desired chunk of the assigned data.

In some cases, it is possible to exclusively use local data

to reconstruct desired state. For the example illustrated in

Figure 3 whereby process with rank 4 (process id) has failed.

All processes with rank less than 4 need to communicate

with their neighbors to get a chunk of their local data. For

instance, the process with rank 3 needs to communicate with

process having rank 5 to grab a chunk of its backup data.

Whereas, the processes with ranks greater than the rank of

the failed process can use their local data alone to conform to

the new data distribution pattern. Consequently, the amount of

communication during state recovery depends on the location

of the failed process, i.e., failure of processes with higher ranks

results in more messages on the network.

After the re-distribution and recovery of application state,

we need to update all the in-memory checkpoints. This helps

to ensure that future failures are sustained and every distributed

data chunk has a backup. This adds on to the cost of state re-

covery. Any future checkpoints of dynamic state must comply

with the new distribution plan.

We do not need to recover local variables in case of

shrink strategy and the application can resume execution after

the above steps. With this approach, the number of workers

decrease over time and checkpoint overhead per process

increases over time. It is imperative to consider all these

overheads while choosing a recovery strategy.

V. USE CASE: ITERATIVE SOLVER

Iterative methods for solving linear equations assume re-

liability of data and arithmetic operations. If faults occur

during execution, they cause the solver to either abort or to

compute an incorrect result with no warning. To support fault

resilience, application-level solutions often rely on algorithm-

level techniques that encode computations using linear error

correcting codes, or leverage the mathematical convergence

properties of the solver to ensure it produces a correct outcome

at the cost of needing additional iterations.

A fault tolerant version of the Generalized Minimal Residual

(GMRES) called FT-GMRES [18] uses the notion of selective

reliability to ensure that the solver converges to a correct

outcome. The original GMRES method was developed as a

Krylov subspace method for an iterative solution of large

sparse nonsymmetric linear systems of the form Ax = b
[19]. The method was improved by partitioning the solver

into inner-outer iterations, where the “inner” solve step pre-

conditions the “outer” flexible iteration [20]. The FT-GMRES

algorithm requires that only the outer iterations are highly

reliable, while any faults during the execution of the inner

iterations are tolerated. This partitioning of the solver, which

executes only a fraction of the solver’s computations in highly-

reliable mode, offers protection against possibly unbounded

numerical errors caused by silent data corruptions.

However, MPI-based applications that use the FT-GMRES

method are not protected against hard errors that may cause

one or more of the MPI ranks to fail. Such process failures

caused by hardware component malfunctions or compute node

failures are unavoidable in large-scale HPC platforms.
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VI. IMPLEMENTATION AND EXPERIMENTAL SETUP

Implementation details: In this work, we have utilized

the FT-GMRES solver from [21], which is implemented

using C++ based Tpetra package within the Trilinos 12.6.4

framework [22]. The Tpetra package provides the ability to

distribute large objects such as sparse matrices, dense vectors

onto multiple parallel processes using a variety of parallel

programming models. It allows FT-GMRES to do parallel

operations such as sparse matrix vector multiplication, vector

scalar multiplication, etc. Using this setup, FT-GMRES is able

to solve large-scale linear systems.

Our contributions to FT-GMRES include: 1) altering the

application to support MPI-ULFM instead of standard MPI,

2) adding process failure detection and reconfiguration mecha-

nisms, 3) adding support for in-memory checkpoints to recover

application state, 4) adding dynamic workload redistribution

in case of shrink strategy, and 5) adding warm spares to be

utilized for recovery in case of substitute strategy.

In this work, we have utilized the ULFM version 1.1 which

uses Open MPI version 1.7.1 as a base implementation. All

necessary changes are made to the code for integration of

MPI-ULFM and to leverage its capability to resume appli-

cation despite process failures. Specifically, ULFM is able

to detect process failures reliably, identify the identity of

the failed processes, notify survivors about process failures,

and reconstruct the communication objects. Process failures

are detected proactively by a custom MPI error handler, i.e.,

control is transferred to the error handler whenever an error

code is returned by any MPI call. After recovery is complete,

we leverage C++ exception handling to coordinate a uniform

restart location across all processes, i.e., we jump to beginning

of the iterative block.

Our implementation provides the ability to checkpoint Tpe-

tra objects of sparse matrix and dense vectors. These objects

are checkpointed in the memory of buddy nodes according to

user-defined mapping and checkpoint intervals. For instance,

dynamic objects such as the solution vector which changes at

every iteration of the solver is checkpointed according to user

defined interval, whereas, static objects such as matrix A and

right hand side vector b only need to be checkpointed upon a

process failure.

Evaluation platform: We use a 960-core Linux cluster

with a fully connected dual-bonded 1 Gbps Ethernet for

our experiments. Each compute node has 2 AMD Opteron

processors each (with 12 cores each) and 64 GB memory. The

interconnect supports non-blocking point-to-point bandwidth

of 215 MB/s. We use process counts of 32, 64, 128, 256, and

512 in our experiments. The mapping of processes onto cores

is designed to incorporate the effect of communication over

the network.

Test problem: A test problem is generated by discretizing

a regular 3D mesh in Trilinos framework. We solve a linear

system with sparse matrix A having about 7 million rows and

186 million nonzero elements. We fix the problem size for all

experiments. Thus, the number of elements assigned to each

�

���

���

���

���

���

��	

��


���

���

�

�� 	� ��� ��	 ���


�
�
��
��
��
��
��
��
��
��
��
��
��
��
���
��
���

�
�
��
��
��
��
��
��
��
� 
��!
��
��
��
��
��
��

���"����#������$$�$

������������� ��%&�� ��%&���� �!���' ��%&���� ��"$������ ��%&���� �!���'
��%&���� ��"$������ ��%&���� �!���' ��%&���� ��"$������ ��%&���� �!���' ��%&���� ��"$������

Fig. 4. Performance comparison between the shrink and substitute recovery
strategies with up to four process failure injections.

process decreases as we increase the scale of our experiments.

In failure free setup with above problem configuration, the

solver converges to a solution within 325 iterations total.

Process failure injection: We perform controlled process

failure injections in our experiments to produce reproducible

results as follows: (1) The rank positions of failed processes

are fixed throughout the experiments. These positions are

selected to represent worst case scenarios for shrink and

substitute approaches. In case of substitute recovery exper-

iments, the failed process is selected to be on a different

physical node from the node on which the spare processes

reside. By default, the spare processes are mapped to the later

nodes in the experiment. This ensures network communication

delays are added when spares are utilized by the application.

Whereas, process failures are injected towards higher ranks

when shrinking recovery strategy is used, as it represents the

worst case in network communication during state recovery

phase as described earlier (see Figure 3); (2) The failure

injection time window is fixed for each injection experiment.

Note, we checkpoint dynamic state only after the completion

of one inner solve operation (every 25 iterations of the solver),

thus there is an upper bound on the amount of re-computation.

During our experiments, we inject up to four independent

process failures to simulate the effects on long running HPC

simulations. We therefore evaluate the sustainability of both

recovery approaches. It helps us to understand how the re-

covery characteristics or overheads change from one failure

to another. It also provides us the opportunity to model these

overheads in terms of a single process failure overhead, which

is useful since it alleviates the need to run extra experiments.

In each case, a process failure injection is simulated by

a system call to SIGKILL. Furthermore, we assume the

presence of adequate number of spares when utilizing the

substitute recovery strategy.

VII. EXPERIMENTAL RESULTS

In this section, a detailed performance comparison of shrink

and substitute approaches for in-situ recovery to process fail-
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Fig. 5. Checkpoint times normalized to the no failure case.

ures is done for the FT-GMRES solver. Figure 4 demonstrates

the performance slowdowns or reduction in time-to-solution

with each recovery approach sustaining multiple independent

process failures in comparison to the no protection case.

Each point in this plot is obtained by averaging results from

multiple experiments such that standard deviations are low,

i.e., the coefficient of variation range between 0.01 and 0.15.

Most of the variation in results is due to the recomputation

overheads since the position and window of failure injection

is fixed in all experiments, as discussed earlier. The bars

with patterns in Figure 4 represent the performance of shrink

strategy and solid bars represent the performance of substitute

strategy. The values close to one (no protection) translate to

a lower overhead. For instance, the ‘0 Fail’ case shows the

cost of providing process failure tolerance in case of failure

free conditions. Results demonstrate that the overheads to

perform the checkpoint decreases with scale since the number

of elements to checkpoint per process decreases.

A significant slowdown is observed in case of both shrink

and substitute approaches when mitigating process failures.

The overhead increases with increasing number of process fail-

ures since the state recovery overheads are additive. Recall that

the performance overheads when tolerating process failures in-

clude the checkpointing overheads, reconfiguration overheads,

state recovery overheads, and re-computation overheads. The

use of spare processes provides a performance advantage as

compared to the shrink strategy at process counts greater than

32 for all injection campaigns. However, this advantage starts

to diminish with increase in scale since there is not a substan-

tial increase in workload at each process when using the shrink

approach. A more thorough analysis of the overheads in each

case reveals that the checkpoint overheads tend to be higher

for the substitute recovery strategy as shown in Figure 5,

especially at lower process counts. Results demonstrate that

the checkpoint overheads do not increase multiplicatively with

increasing failures for the substitute recovery approach. We

attribute this behaviour to the placement of spares as discussed

later on. On the contrary, a linear pattern is observed in case

of shrink recovery approach.

Figure 5 also shows the comparison of checkpoint overheads

with respect to the total time to solution between shrink and

substitute approaches with four process failures plotted on

the secondary y-axis. It can be observed that the checkpoint

overhead for substitute approach is high as compared to the

shrink approach at processor counts of 32, 64 and 128, and is

comparable at processor counts of 256 and 512. The overhead

is as high as 28% at a processor count of 32 and tends

to decrease to as low as 5% at a processor count of 512.

At large scales, the checkpoint overheads are similar for

both approaches due to smaller inter-process communication

overheads. On the other hand, the observed difference in

overheads at small scale is due to placement of spares in the

system. Since we use fixed mapping throughout the computa-

tion as provided in the standard implementation of MPI, the

communication with utilized spare processes tend to add to the

overheads. The spare processes are always mapped towards

the later nodes (highest ranks are assigned to the spares). To

aggravate this issue, the process failures in our experiments are

forced to be on a different node as compared to the location

of the spares. Therefore, when the spare processes replace

the failed processes, it can lead to higher communication

overheads as discussed earlier (see Figure 2). This overhead

is increased when we use more spare processes, i.e., more

failures are mitigated. We expect this overhead to be present

in other parallel operations as well.

A comparison of recovery overheads between shrink and

substitute approaches is shown in Figure 6 (the overheads w.r.t.

total time to solution are plotted on the secondary y-axis).

For most cases, the recovery overheads tend to be comparable

and range from 19.5% to as low as 1.5%. Note, there is

a drop from 19.5% to 9% going from 32 to 64 processes.

Figure 6 also shows that it is relatively straightforward to

estimate the overheads for multiple failures from the recovery

costs of a single failure. Almost similar recovery overheads in

both cases show that most of the overhead is due to inter-

process communication required to reconstruct application

state. Therefore, the workload re-distribution overheads in case

of shrink approach tend to be negligible. Our results also

indicate that the reconfiguration overheads are negligible, i.e.,

they range from 0.01% to 0.05%. Although, a slight increase

in overhead is observed in our experiments when the spare

process needs to be stitched into the repaired communicator

object. Overall, both recovery and reconfiguration overheads

tend to be lower as compared to the checkpoint overheads.

Discussion: Our experimental results show that the shrink

approach provides graceful performance degradation at large

scale when enough workers are present to share the workload

of the failed processes. This is based on the assumption that

workload redistribution is supported in the application which

is observed to have negligible overhead in our experiments.

Our results also show that the mapping of spare processes

can significantly affect application performance especially at

smaller scales since it disrupts regular communication pattern

of the application. This can mitigate the performance benefit of

having spares when communication overheads in the applica-
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Fig. 6. Recovery and reconfiguration times normalized to single process
failure.

tion are dominant. Finally, the results presented are widely ap-

plicable for large-scale high-end scientific applications which

support parallelism by distributing matrices and vectors among

processes. The Tpetra package, which has been modified for

this work is widely used in the HPC scientific community.

VIII. CONCLUSION

In extreme-scale HPC systems, various types of malfunc-

tions and component failures occur at very high frequencies.

For parallel HPC applications developed using MPI, these

events are often fatal since the failure of even a single process

causes the remaining processes in the MPI communicator to

block indefinitely, preventing forward progress of the HPC

application. While recent ULFM extensions to MPI provide

simple primitives to support MPI communicator recovery,

they don’t explicitly support the recovery of lost application

state, nor do they provide well-defined application recovery

models. In this paper, we explored two alternative strategies

for handling process failure recovery of MPI applications. We

evaluated how the different implementations use application-

driven process recovery with in-memory checkpointing to offer

different levels of performance and scalability. We demon-

strated how these strategies may be flexibly applied on an

application-specific basis to gracefully handle failures while

minimizing any degradation in the application performance.
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