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ABSTRACT

Path finding is a key process in many areas of computation. Optimization
problems and heuristic search problems are two notable examples. The first
part of this dissertation presents a class of algorithms, denoted VGA, for solving
the two point shortest path problem in directed graphs with non-negative edge
weights. This class is a bi-directional extension of the most efficient known
uni—directionai shortest path algorithms. While it has long been realized that
bi-directional algorithms often provide computational savings, a theory of this
has not been forthcoming until now. This theory shows how a bi~directional
method using the proposed cardinality comparison strategy is a priori the best
shortest path algorithm within the class of algorithms VGA.

These theoretical results are verified by extenéive tests of VGA. A computer
program was written where several standard uni-directional and bi-directional
strategies were compared with cardinality comparison. The program randomly
generated a number of large directed graphs and each strategy in turn was tried
on numerous path problems within these graphs.

In heuristic search for artificial intelligence problems, algorithms similar
to the two point shortest path problem are used. The spaces searched are enor-
mous, often in:finite, and in consequence the constraint on finding the shortest
path is abandoned. The concern is for finding any solution path with minimum
effort. The second part of the dissertation presents a theory of these problems
and some experiments with the fifteen puzzle in using the methods suggested by
this theory of heuristic search,

The evaluation function directing the search is the sum of the distance from
the starting node and an estimate of the distance to the goal. This second com~

ponent is the heuristic term, and if accurate, allows efficient path finding in

- iii -



large spaces. Some results on the effect of error in the heuristic term are pre-
sented. Especially interesting is theorem 7.9, showing that the distance from
the start should be incorporated in the evaluation function. This particular result
rTuns counter to the reliance strictly on the heuristic term, a practice which is
widespread.

Bi-directional heuristic search is also proposed. VGHA, a bi-directional
class of algorithms, is an extension of the Hart, Nilsson, and Raphael uni-
directional heuristic search algorithms. Their results are extended to this more
general class.

These methods are used in solving fifteen puzzle problems and comparing
the number of nodes explored. It is a continuance of the empirical work started
by Doran and Michie with the Graph Traverser. The most interesting results
show the importance of appropriately weighting the heuristic term in the evalua-
tion function. For example, overrelaxation seems to be an important principle,
which means weighting the heuristic term on an average slightly more than the
cost-to-date term. This data is a successful prediction from the theory.

Some further results include the extension of bi-directional methods to the
network flow problem; the description of a new efficient algorithm for finding
bridges in directed graphs, which are structurally interesting as they can be
used for finding partitions; and applications of haéhing techniques to remove

problems of intersection in bi-directional search.
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PREFACE

The range of topics and ideas in computef science is so extensive that it is
often criticized as an amorphous mass rather than a discipline. Where is the
thread that runs from numefical analysis to systems programming and on to
artificial intelligence? As a student of this wilderness several points of unity

impressed me. The aim of all people in the discipline is to solve problems algo-
rithmically, and the tool used inherently discretizes the problems to be solved.
Graph Theory is one "language" that provides a description for many areas of
computer science. It is therefore important to be able to manipulate these struc-
tures computationally. One of the basic problems in this representation is finding
paths between two nodes. It is a core problem in such disparate fields as opera-
tions research, circuit theory, and artificial intelligence, hence the importance
of efficient algorithms for this problem. This then is the chief concern of our
work.
0.1 Organization

This dissertation is divided into two major parts. First, Chapters 1 through
5 are concerned with the classical two node shortest path problem. Secondly,
Chapters 6 through 9 are concerned with heuristic search. The connection be-
tween the two problems is that our model of heuristic search is a path problem
in a directed graph. In each case we are interested in a computationally efficient
solution. The insights from the better understood shoriest path problem provide
the tools for formalizing and solving the heuristic path problem.

Chapter 1 is an introduction to the shortest path problem, exhibiting some of
the principal methods to solve the problem. Chapter 2 contains our general bi-
directional shortest path algorithm which subsumes the current best algorithms
as special cases. This allows us o prove that this class of algorithms is correct
and to ask which is the best member of this class. We then propose the cardinality
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comparison algorithm and in Chapter 3 discuss a model of efficiency for this class
of algorithms. Chapter 4 proves that a priori expected work performed by cardi-
nality comparison is a minimum for our class of algorithms. Finally in

Chapter 5 we show some results of extensive experimental tests confirming the
theoretical conclusions of the previous two chapters.

Chapter 6 introduces a directed graph model of artificial intelligence problern
as path problems. It discusses how the search for a solution path is expedited by
appropriate use of heuristic functions. Chapter 7 presents a theory of uni-
directional heuristic search. It presents a formal characterization of the effect
of error in the heuristic function on search efficiency. Chapter 8 presents some
results of using the ideas developed in formally characterizing heuristic search
in solving fifteen puzzle problems in the mode of Doran and Michie. 18 Chapter 9
is the extension of the Hart, Nilsson and Raphael Theory30 to bi-directional heu-
ristic search. This unifies some of the work on the shortest path problem with the
heuristic search problem, as the solution paths obtained must be shortest.
Chapter 10 presents some further observations on computational graph theory and
its use as a model of artificial intelligence. It notes some unsolved problems and
presents conclusions on the problem area and our particular approach.

0.2 Contributions

The contributions to the field have been:
a. A formulation and proof of correctness of a class of algorithms
for efficiently solving the two node shortest path problem.
b. A theory of efficiency in solving these problems (shortest path
space).
c¢. The discovery and proof of the cardinality comparison strategy

as the most efficient a priori bi-directional shortest path
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method. This is demonstrated by theorem 4.5, which is
an interesting probabilistic result on this type of decision
problem.
d. Empirical verification of this theory and the gain in effi-
ciency by cardinality comparison over other standard
methods.
e. A theory of efficient heuristic search and associated worst
case analysis of heuristic functions.
f. Extensions of the Hart, Nilsson and Raphael results to bi-
directional heuristic search.
g. The use of associative search (hashing techniques) to solve
the redundancy problem and the tree intersection problem.
h. An efficient bridge ('marrows') finder in graph spaces.
We feel that these explicit contributions are the result of a computational
approach to these problem areas. One keeps in mind algorithmic efficiency
without failing to justify rigorously the method. Theory and practice naturally

develop in step, each bringing insight to the other.
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CHAPTER 1

THE SHORTEST PATH PROBLEM

1.1 Introduction

The problem of finding the shortest path between two points pervades many

fields of science. It is of fundamental importance to operations research, 7,8,11,32

and has wide application in computer science, 18, 30, 61

especially in modeling
various artificial intelligence problems involving searches of large but effectively
defined spaces. The discrete nature of the problem and its simplicity argue for

an elegant computer algorithm. Over the years, ma.ﬁy computer scientists, 17,23

operations researchers, 6,7,15 40, 63

and applied scientists have attempted to solve
the problem in an efficient manner. While one school, the operations researchers,
have characterized the problem in linear programming terms 15 and dynamic pro-
gramming terms, 6 the pragmatic computer scientists unencumbered by tradition,
have attempted to intuit a naive but efficient computational method and have been

remarkably successful. 17,20, 23

Historically the work derives its impetus from
this computer science tradition and this work is an attempt to generalize this
approach and generate a theory of efficient solutions to the shortest path problem
and analogous discrete algorithms which benefit from these ideas.

Shortest path work as noted above éovers many disciplines and the literature
is widespread and difficult to survey. Often a particular method or discovery is
attributed to several authors regardless of temporal primacy because of the dif-
ferent disciplines using these results. Dreyfuszo has gone to great lengths to
appropriately credit the originators of various of the shortest path algorithms.

In this regard my work owes its allegience to Dijkstra's method which in opera-

tions research is attributed to Dantzig. I would emphasize that Dantzig's work
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in both a computer science vein andd an operations resea_rch vein has been impor-
tant. Nevertheless, myv work was initiated and pursued in computer science
terms. This may be characterized as an eclectic pragmatic approach with effi-
ciency the paramount goal.

In generalizing the Dijkstra approach, an attempt is made to provide a unified
theory for efficiency in this class of algorithms. This unification has led to a
more efficient cardinality comparison strategy and extensions of this approach to
30,57

heuristic search.

1.2 Problem Statement

Consider a directed graph G(X, U) where X is a collection of nodes and U is a
collection of edges. Each member of U may be considered an ordered pair of nodes
of X. Let the nodes of X be mapped into the infegers in increasing order starting
from 1; then some member of o U may be written as e where i is the initial node
of @ and j is the terminal node of oz. A person standing on the ith node of G could
walk along street o and reach the jth node of G, where &« is a one-way street.

The cardinality of a set will be denoted by "| |". The cardinality of G will be
the cardinality of its vertex* set X.

A path p from node s to node t is a sequence of edges

p= (e , e ) eeey €
(Xoxl X% XK-lxK)

where XO =g and XK =t., Alternatively we write

“:(XO’ Xl, LIRS XK) )
or

0= (Ul’ U2’ cans UK) where Ui = eXi-lxi .

*Node and vertex will be used interchangeably as will arc and edge.
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The graphs we will consider have their edge set mapped into the non-negative
reals. These values will be called the lengths of the edges and will be represented
as

!l(eij) 20 .

The length of a path p will also be written as {(u) where

B=(Ugs vens Up) and £(p) =Zij;z(Ui)

The shortest path problem considered in this paper is:
given s,te X find some p*, a path from s to t such that
Kp*) is a minimum over all paths from s to t.
There are many important variants of this problem. 20 One such is the spe-
cialization of length to take on only a value of unity. Then the shortest path be- i
tween two nodes is the one which traverses the fewest edges. This is the cardi-
nality or Manhattan distance of a path. This problem can be solved by the methods
described here; some other variants like the kth-shortest path cannot. However,
the two node problem is the basic shortest path problem with many areas of
applicability.
The problem is clearly solvable, a most primitive solution being

a search over all possible paths. 24,26

An improvement over this exhaustive
enumeration is to recognize that if pu = (s, XysXgy evey Xy 1) is optimal then all
its subpaths are optimal. This satisfies the fundamental dynamic programming

principle and therefore one can use Bellman's method (see Ref. 6, p. 230),

0y _ . (9 _
1. g ;z(exit), i=1,2,...n, g =0

k . k-1 , k
i# i ij
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Step 2 is iterated up to n-1 times {stop when two successive iterations are

the same) and gives the shortest paths from all nodes to t. This requires 0(n3)

(order n-cubed) operations — a manageable amount of work. Nevertheless,

better methods of O(nz) have subsequently been developed. These are acknowl-

edged as the current best methods20 and are unlikely to be superceded by better

methods on ordinary Von Neumann machines. The 0(n2) methods constitute the | !
precursors of this work.

In order to place this work in perspective, we must describe the antecedents
of the general algorithm and theory. This will give the reader insight into the
development of this work as a generalization of shortest path algorithms. In doin
this, we will use an example of Nicholson's44 to demonstrate the mechanics of
each method.

1.3 E. W. Dijkstra's Method17

This algorithm was independently discovered by G. Dantzig15 and others. 20, ¢

Dijkstra defines three sets:

A The nodes having their minimum path from s (the initial
or starting node) known.

B The direct successors of the above set which are not in it.

C The remaining nodes.

The computation proceeds in two stages.

1. A node in set B with current minimum distance to s is
transferred to set A. If this node is t (terminal node) the
computation halts.

2. The successors of the node just placed in A by step 1 are
calculated. Of these, the nodes that are in C are trans-

ferred to B. The value of the distance from s, of the
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nodes already in B, are changed if the new distance

calculated is smaller than their current value.

So, with each node, let us associate its d value and its wf value.
d(n) = current best distance from s
wf(n) = immediate predecessor of n along path from s,
for which d(n) was calculated.
Initially all nodes have

d(xi) = and Wf(Xi) = undefined .

We always begin by placing s in set A with d(s) = 0.
Let us look at this method applied to Nicholson's graph and find the shortest
path from node 1 to node 9 (see Fig. 1.1).

Step 1
Set A d(xi) wf(xi) Set B d(xi) wf(xi) Set C d(xi) wf(xi)

1 0 -- 2 3 1 5 % --
3 6 1 6 o -

4 7 1 7 - _—

8 o —-—

9 o -

We will no longer show set C, since it can be found from complementing
AUB.

Step 2 node 2 has minimum distance in B.

Set A d(xi) wf(xi) Set B d(xi) wf(xi)

1 0 - 3 4 2
2 3 1 4 7 1
5 7 2



FIG. 1.1--Example: Nicholson's graph.
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Step 5

Steps 6 and 7

Set A

Set A

Set A

Set A

d(xi) wf(xi)
o -
3 1
4 2
d(xi) wf(xi)
0 -
.3 1
4 2
6 3
d(xi) wf(xi)
0 -
3 1
4 2
7 1
6 3
d(xi) wi(x;)
0 -
3 1
4 2
7 1
7 2
6 3
7 6

Set B

Set B

Set B

Set B

d(x 1)

d(xi)

11

d(xi)
11

wf(xi)



Step 8
Set A d(xi) wf(xi) Set B d(xi) wf(xi)

1 0 - 7 11 4
2 3 1 ;

3 4 2

4 7 1

5 7 2

6 6 3

8 7 6

9 8 6

The computation halts with d(9) = 8. By tracing back through wf we have

9, wi(9), wiwi(9)) ..., 1
or that the shortest path is
(1,2,3,6,9) .

Dantzig in proposing a sin;ila.r algorithm, recommended that the edge lists
be ordered by length. This makes for fewer comparisons and additions when
augmenting sets A and B. However, as Drey‘fus20 points out, any savings are
outweighed by the computation required to order the edges.

1.4 Dantzig's Bi-directional Method

The earliest widely published mention of a bi-directional algorithm occurs
in Dantzig. 15 The description of this algorithm is ambiguous and vague, leading
to subsequent misinterpretation by Dreyfus. 20 In fact, a computer scientist
would label the description as violating the principle of effectiveness. 33 For this
reason much of the credit for a correct bi-directional algorithm has accrued to
Nicholson. However, when asked by G. Da.ntzigl6 to investigate this issue, I
discovered an interpretation that leads to a correct algorithm.
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Dantzig‘515 description was as follows: (p. 365)

"If the problem is to determine the shortest path from
a given origin to a given terminal, the number of compari-
sons can often be reduced in practice by fanning out from
both the origin and the terminal, as if they were two sep-
arate independent problems.

"However, once the shortest path between a node and
the origin or the terminal is found in one problem, the path
is conceptually replaced by a single arc in the other problem.
The algorithm terminates whenever the fan of one of the prob-
lems reaches its terminal in the other."

In terminology analogous to Dijkstra's, the algorithm can be described as
alternating between sets A, B, and C in a forward manner, and sets D, E, and
F in a backward manner. Where

D The set of nodes having their minimum path to t known.
E The direct predecessors of set D, which are not in D,
F The remaining nodes.

In the Dijkstra algorithm, the set A starts initially with node s, and with each

iteration grows until it includes t. The nodes xieA form a rooted tree with s as

the root, where

T ={(X, B}

{x.: x.eA}
1 1

E = {(s, xi): xieA}

X

with

s, xi) = d(xi)

In Dantzig's algorithm a similar tree exists for set D which is rooted from
node t. We interpret “conceptually replaced' as modifying the original graph by
rooted trees grown in the fashion described above. In this algorithm the sets A
and D are expanded alternately; the first of these sets to include both s and t con-

tains the shortest path.



"conceptually replaced':

Let sdme iteration place n in A, theﬁ all edges connecting n with any xieA
are deleted from the graph and replaced by edge (s,n) with length d(n). Corre-
spondingly, if n is placed in set D the edge (n,t) is included in the graph.

Again we use Nicholson's example, where in addition to quantities in Dijkstra's
. algorithm we have:
dt(n) = current best distance to t
wt(n) = immediate successor of n

along path to t, for which

dt(n) was calculated.
Initially all nodes have d(xi) = dt(xi) = o and wf(xi) = w*l:(xi) = undefined. We
begin by placing s in set A with d(s) = 0 and t in set D with d 1:(t) = 0.

Step 1 We expand set A

A d(xi) Wf(Xi) B d(xi) wf(xi)
1 0 - 3 4 2
2 3 1 4 7 1

5 7 2

Step 2 We expand set D

D dyfx) wx,) E dx) wix)
6 2 9 3 4 6
9 0 - 4 5 6

7 5 9

8 2 9
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Step 3 We expand set A

A d(Xi) wf(xi) B d(xi) wf(xi)
1 0 -- 6 2 9

2 3 1 8 2 9

3 4 2 9 0 -

Step 4 We expand set D ,

D dx) wi(x) E  dx) wt(x)
6 2 9 3 4 6
8 2 9 4 5 6
9 0 - 5 3 8
7 5 9

At the end of step 4 the revised graph looks like Fig. 1.2. Note that (2,3) and

(6, 8) are no longer of interest and have been

FIG. 1.2--Nicholson's graph after conceptual replacement™ of edges,

"'conceptually replaced.”™ The above alternating expansion of sets A and D con-

tinues until step 11.
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Step 11 We expand set A

A d(xi) wf(xi) B d(xi) wf(xi)
1 0 -- 7 11 4
2 3 1

3 4 2

4 7 1

5 T 2

6 6 3

9 8 6

The algorithm halts with node 9 being placed in set A. Only six expansions of

set A were required, as opposed to seven expansions with the Dijkstra algorithm.
Node 8 was not included in set A because of conceptual replacement of its edges.
However, in this example more work was done by the Dantzig bi-direction algo-
rithm than by the Dijkstra algorithm. The Dantzig method is to use two separate
shortest path methods where the savings are made as each reduces the complexity
of its end of the graph. However, as will be seen later, the termination condition
is needlessly bad, and sevex:al refinements will be discussed below. In light of
the above elaboration of Dantzig's method, he must be credited as an early
(éarliest ?) correct innovator in bi-directional methods. |

1.5 Nicholson's Bi-directional Method

Nicholson's algorithm44 differs from Dantzig's in two important ways. Firstly,
Nicholson's is not strictly alternating between forward and backward sets. Secondly,
his termination condition is more complex, but allows the algorithm to terminate

much sooner, in general, than Dantzig's.
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Once again we have the sets A, B,C,D,E, and F as described above. How-

ever, instead of alternating, the set expanded depends on
X, such that X, € BUE and
d(xi) or dt(xi) is a minimum.

As long as nodes are closer to s than to t,set B is used and the algorithm augments
the forward set A, otherwise set E is used and set D is augmented, All nodes tied
at the minimum distance are simultaneously expanded, and no conceptual replace-
ment occurs. The algorithm terminates when
min d(xi) + dt(xi) € min d(x,) + min dt(x.)
x.€AND x.€B ' x.e€E !
1 1 1
Nicholson proves this condition is correct, and works out the example in Fig. 1.1.

1.6 Stopping Conditions

Dreyfus20 suggests an alternate terminating condition to that of Nicholson.
Terminate when there is some node
neAND and look at

nuy Y = {xi: xieAnE}
The shortest path will be found by

v _
min (XiEY d(Xi) + dt(xl) s d(n) + dt(n)> °

This condition is simpler to check and ordinarily saves computation. Nicholson's
condition requires recomputation every iteration, whereas the Dreyfus criterion
is a test on set inclusion, and can be done by means of simple Boolean flags (see
Appendix I).

A further refinement of the Dreyfus condition is possible. Nicholson requires

that all ties be treated in the same iteration. This is unnecessary. Assume, that
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only one at a time is handled, ties being broken in order of node number. Then
consider that a given node n occurs in the intersection of A and D stopping the
computation. If n was last placed in set A, and if there are some rules in set B
with d(xi) =d(n), X, €B then place these nodes in A. The termination step need
only look at XiEA NE and n. HoweVer, set E in this case may not include some
nodes on its perimeter which would have been simultaneously included in the
Dreyfus-Nicholson method. Therefore the terminating condition treats a smaller
set. A formalization of this refinement appears later, along with a proof of
correctness.

The importance of these stopping procedures is that they allow an essentially
analogue process to be treated digitally. Early proposals of bi-directional methods
were in error because of an incorrect terminating condition. The typical mistake
was to assume ne AND was always on the shortest path.s’ 20 Unfortunately, nota-
tion and complex terminating conditions obscure a basically simple and naive
algorithm. Hopefully, the following amoeba model will elucidate the ideas de-

scribed above.
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CHAPTER 2

GENERALIZATION OF THE SHORTEST PATH ALGORITHM |

2.1 Intuitive Description

Picture two amoeba, one dyed red and the other dyed blue. The red one is
placed on the starting node s, and the blue one is placed on the terminating node t.
Only the behavior of the red amoeba will be described in detail as the blue amoeba
behaves analogously. The red amoeba moves at a velocity Vr’ If the red amoeba
reaches a node, it splits into the number of outgoing edges (edges where the ini-
tial node is the node where the amoeba is), with one progeny traveling each edge.
The red amoeba and its progeny all travel at the same speed Vr' The blue amoeba
and progeny have speed Vb and are performing in the same fashion with respect to
ingoing edges. The first two amoeba of diiferent lineage to meet have traveled
the shortest path from s to t. Let dr(t) = the distance covered by red amoeba in
time t and let db(t) = the distance covered by a blue amoeba in time t. At any time
t these functions represent the distance covered by ali amoeba of the corresponding
color. If t* is the time at which two amoeba of different color meet, then the dis-
tance traveled would be dr(t*) +db(t*). Since dr and db are both monotonic functions with
respect to time, any pair of amoeba meeting at t* + €, € > 0 would have traveled
more than the pair that met first. Therefore the above procedure is correct.

The major complication in implementing the above algorithm by a discrete
process is to have a correct stopping criterion. |

This intuitive description covers all the standard shortest path methods and
one type not previously proposed.

a. Vv, #0, v, =0 forward uni-directional algorithmr7

b. v =0, Vv #0 backward uni-directional algorithm

TReference 8, p. 174 gives a bi-directional algorithm with an incorrect termina-
tion criterion (also see Ref. 7).
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C. Vr = Vb 590 unbiased bi-directional algorithm44

d. Vv %V, V_ %0,V %0 weighted bi-directional algorithm
(proposed here)
If properly trained amoeba could be found, the above represents an effective

procedure for finding the shortest path, providing a path of finite length exists.

meet at a node. A digital simulation of the above algorithm must have a compli-
cated stopping criterion.
Before going on to a formal description of my method the reader should try
to apply variants a, b, and ¢ described above to Fig. 2.1 with results as follows:
Each finds the shortest path p = (s,¢,f,d,f), (u) =21
a. Red amoebas visit all nodes of the graph.
b. Blue amoebas visit all but node e.

¢. Red amoebas visit s,e,c,g

Blue amoebas visit t,d, b, .

FIG. 2.1~-A shortest path from s to t of length 21 is shown in the above graph.
Each edge is undirected and may be thought of as representing two
directed edges pointing in opposite directions.
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2,2 Formal Description of the Very General Algorithm

Notation

s = starting node i

t = terminal node

S = set of nodes reached from s

T = set of nodes reached from t

~

S = set of nodes reachable along one edge from 8 but not in S

T = set of nodes reachable along one edge from T but not in T

g (X) = current distance from s to x

g(x) = current distance from x to t

wi(x) = immediate predecessor node from which x was reached

wt{x) = immediate successor node from which x was reached

S, T, S, "i", gs(x), gt(x), wi(x), wt(x) will change throughout the computation;

they are functions of the iteration step in the computation.

Algorithm

1l

Place s in S and calculate all successors,placing them in S.
For each successor X calculate

Bglxy): = ﬁ(esxi)’ wix;): =8
Similarly place t in T and calculate all predecessors of t,
placing them in T. Each predecessor of t has

g, (%) = ¢ (exit), wi(x;): = t
Decide to look at either S or T.
If S was selected in step 2, then select a node xeS which has
the smallest value of g 1f T was selected then this step
and the following would be carried out with respect to T
and associated functions. If more than one node minimizes
g then select all of them Ky eony Xy
- 17 -



4. Remove X, ..., X, from set S and place in set 8. If any
of these nodes satisfy xieSﬂT, then go to the terminal
step 6.
5. For each X;s calculate its successors (predeeessors in
case of T) and their values of g, If these nodes already
have a value of g and the new calculation is greater or
equal to the old value, then leave alone. If g g% is calcu-
lated where y is its predecessor, then gs(x) = gs(y) + R(eyx).
However, if the new value is less or has not previously been
calculated, then place the node in set S and make X, the value
of wf. Return to step 2.
6. The minimum distance is for
v X, such thatrxiesn(T uT) pick X; such that g (x)+
g4(%;) is 2 minimum. The path can be found by tracing
through wf and wt. (Note x,€TN(S U$) would work
equally well.)
In the above algorithm, step 2 is not an effective computational rule. The
point here is that any decision rule can be used as will be proved below. If rule
2 is always to choose 'S, we would have the forward uni-directional method. The

unbiased bi-directional method selects S, if

min min
gy < B
otherwise it selects T where
min .
gy = min{g(x)
XeS
min .
g5 = min (g,(x)

xXeT
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2.3 Proof of the Correctness of VGA

We wish to prove that regardless of what decision rule is used in step 2 of VGA,
the algorithm will correctly find a shortest path., The graphs of interest will be

finite connected graphs with positive edge weights.

Notation

Let the successive sets created by iterations of VGA be SO, Sl, SZ, -
Similarly §0, §1, +es Let éS(Si) be the maximum of the current values gs(xj) for
xjesi, and gs(gj) be the current minimum for xJ.EQSJi . SO is {s} with éS(SO) =0
always. The corresponding notation will be used for T and T. It is obvious from

VGA that the order of creation of sets §' and T' by different decision rules in

step 2 of VGA do not affect their composition.

Lemma 2.1

A node placed in set S is never returned to set S. The corresponding result
is true for nodes in set T.
Proof

Consider step 3 of VGA, This states that nodes X with gs(xi) = gs(gj) are
selected on the jth use of set S. Since edge lengths are positive, anf successor

of these nodes will have a larger distance value.
. Y 5 |
g B < g

so once a node is placed in set S, any future value must be larger.
n

By this lemma VGA need never recompute a distance for any node placed in
S on a previous iteration. This is not true of nodes in §, which can have better

values calculated in later iterations.
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Lemma 2.2

All nodes x with a path of length less than or equal to és(Si) from s are in S,
The corresponding result is true for nodes in set T.
Proof

Consider the first set, Sn, for which the lemma is false. There is some

optimal path

B =5, Xys gy eoey X y)
with the fewest number of nodes for which it fails.
o) S g (SN, y ¢ 8"

Now x, € s™ since it is along a path of fewer nodes.
" n-1 ~n-1 N -
xkeS then yeS and step 3 would have placed y in § since g‘S(y) < gs(Sn) .

n n-1
So xkeS and xke’S

LT Eg(S) =g %)

but gS(xk) < ) £ éS(Sn) Contradiction. -

The lemma is true for SO = {s}; so there can be no first S” for which it is false,
This shows that sets S and T are shortest path trees grown from s and t

respectively.

Theorem 2,.1: VGA terminates, always finding the shortest path from s to t, with
any decision rule used in step 2.
Proof
a. The algorithm terminates.
IS| + |T| is monotonically increasing with each iteration of VGA.
Step 4 always adds at least one node. When |S| + {T! > |G|, there is

some node n such that neSNT, (Note that even if set S is always
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selected in step 2, eventually by the above argument, and the fact
that te T, VGA would halt with teSNT.)

b. Upon termination a path from s to t is found.
At termination there exists some ne SNT., Therefore as noted in
lemma 2.2 there is some path from s to n, and some path from n
to t. So, here is at least one path through n, which goes from s
to t.

¢. The path found in step 6 of VGA is the shortest path from s to t.
Node n was found in step 4, where neSNT, and step 4 placed n in
S during the final iteration of VGA, The argument is symmetric
if n was last placed in set T.
If n was placed in S on the kth use of S, and in T on the jth use of
T, then the path through n has length = gs(sk) + §;t(Tj) or abbreviated
to és + ét'

Now assume that this is not the shortest path, but that it is p*.
R¥=(Ygs Yoo ween ¥3ds ¥ =8, ¥ =t

For path p* there is some v, such that

g, v) g, and g,

or if gs(yi+1) ? g then y; = t and consequently by lemma 2.2, n =t and the
shortest path would be found.
Let g;(xi) and gg(xi) denote optimal distances from s and t respectively.

Since p* is the shortest path
* * o o
BV * 8t 0ie) < g+
- . -
g, < gS(yi+1) from above and thus 8} (yi+1) < g
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By lemma 2.2, y, ; must be in T. Therefore yieT from the execution of step 5

of VGA. So yiesrﬁ‘, and the shortest path would have been found by step 6. ]

So we have proved that any decision rule inserted in step 2 leaves VGA cor-
rect. Some examples of previously used decision rules are:

1. Always use set S
Dijkstra's procedure — what we call the forward
uni-directional method.

2. Always use set T
The backward uni-directional method.

3. Alternate between § and T
Dantzig's procedure.

4. Let g be the current minimum for § and g be

min - min__
the current minimum for T. If g < B use S

- min  ‘min
otherwise use T.
Nicholson's procedure.

VGA as described uses Dreyfus' terminating condition. In section 1.6 we
proposed a further refinement to this terminating condition which we now prove
to be equivalent to the Dreyfus condition,

Change step 3 to read: "If more than one node minimizes B then select any
one of them." Change step 6 to read: YIf n found by step 4 is last placed in set 8,
then include all nodes X, with gs(n) = gs(xi) in set S" (their successors need not

be computed). Correspondingly, if n is last placed in set T, perform the sym-

metric calculation, and look at x.€ TN(SUS).
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Theorem 2.2: VGA as redefined above is still correct.
Proof

The proof will consider the case where n is placed in set S last, The argu-
ment is symmetric for set T.

In the regular VGA let 8, §, T, T be the sets upon termination and in the

~

redefined VGA (called VGAR) call these sets S_, S_, T , T _.

b. TOT_

In step 6 of the VGAR set S_ is completed with respect to ties. Now in VGA the
terminating step considers

SN (T UT)
and in VGAR the terminating step considers

S NT_UT)

T UT CTUT
This is true from b and the fact that the successors of the subset must be either
in the set T or in the successor set T.

Let k be the last node included in T by VGAR at a distance gt(k). If there

were no ties at this distance T_= T and T_E T and the shortest path would be
found by VGAR.

Call the optimum path
L ={(s, Xy Koy coe Xk’ 1)

WithXiES, x. . ¢S. Ifx.+

; 1eT then X 1€ T__Uﬁ'f__. This is because the only nodes

i+1
in T that are not in T_ must be nodes at gt(k), but all these nodes must be in f_,
since they are predecessors of nodes X, with gt(xi) < gt(k). So if Xi+1€T then the
path would be found. Assume x, +1€T but not in T_., Then Xi4o€T and so

gt(xi+2) < gt(k), in fact gt(xi+2) = gt(k)o If gt(xi+2) < gt(k) then X, 9€ T_and
e

Xy
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Now 2(u) < gs(n) + gt(n) and gt(n) < gt(k) since gt(k) is the last value used for

set T.

85Xy 1) * By(Xyy ) < B(Xy ) VBN )< B (M) ()
.. gs(xi+1) < gs(n) and xi_l_lsS contradiction. [ ]

The refinement allows a smaller set of nodes to be calcvlated, in that nodes
which are tied on the periphery of set T need not be computed. The refinement

is of practical interest for graphs with identical integral length edges.

2.4 Extensions of VGA

The two point shortest path problem is the basic problem in the area, There

are numerous variants of this problemzo’23

and some of these can be computed
by VGA with minimal modification.

Multiple Endpoints

Instead of a path from s to t, we may be interested in the shortest path in G
from any node in subset A to any node in subset B, where A and B are subsets
of X,

Given sieA, tje B find some p*, a path from si to tj such that f(u*) is a mini-
mum over all paths for Vij from 8, to tj‘

Initialize set S in VGA to set A and set T to set B and proceed as usual, and
we have an algorithm for this problem.

Disjoint Components

We cannot always be sure the graphs of interest are connected, thus there
may not be a path from s to t. If we always include an edge from s to t of length
inf where

inf >[G| - max (ﬂ(e..));
€, €U 1

J
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then if the algorithm terminates with a path of length inf we know that no path
exists,

All Shortest Paths

Ordinarily we want any shortest path from s to t, but a secondary criterion
may be of interest (most scenic shortest path). So, first we want to find all
shortest paths, This is done by modifying step 6 of VGA to return all paths of
minimum length. Along with this,wf(xi) must be extended to a multiple entry
table in oracr that ties be stored as the algorithm places nodes in'S. Then step
5 is modified to allow predecessors (successors in expansion from t) which are

along equal length sub-paths to all be stored in the wi(wt) table.
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CHAPTER 3
SHORTEST PATH SPACE

The correctness of VGA regardless of what decision rule is used in step 2
brings up the question of what rule to use. If cne wanted, set Sor T could be
chosen by using a coin toss or a pseudorandom number generator. This seems
an unintelligent way to make the decision. Similarly, there seems no apparent
point to always picking set S (or set "f), which is the uni-directional approach.

To determine a good rule, we must have the appropriate criterion,

VGA has an inner loop of steps 2 through 5 and the work the algorithm does
is related directly to number of nodes placed in set S and set T. This places an
upper bound on the number of iterations, |G] . Each node involves calculating the
g value of its successors and can have up to |G| successors. This places a bound
on the computation of O(lGlz) operations. Ordinarily, the search does not include
all the nodes of G. The cardinality of S and T, |8| + |T| provides a natural meas~
ure of computational efficiency. For a particular problem where p is the shortest
path of interest:

1 =(x1, vees xk)
1 X
k = |ul <18l + |TI< |G|

S =X
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3.1 Graph Density i

To explore more exactly the meaning of efficiency in shortest path computa-
tion, some concepts on density and distribution of nodes in a graph will be
developed.

Consider A = the shortest distance from s to t in graph G.

Let d?(n)* = the number of nodes reachable in < distance A from node n.

Let d%(n) = the number of nodes that can reach node n in < distance A .
In Fig. 2.1

d?(s) =4 nodes s, e, g, ¢
dI])'O(t) =4 nodest, d, b, f

aZly = 11

The number of nodes placed in set S by a forward uni-directional method is
d?(s), The corresponding number for the backward uni-directional method is

dg(t). The unbiased bi-directional method looks at approximately
A/2 A/2
df (s) + db t .

this is not exact because there may not be a node at distance A/2 from each end-
point, However, we will assume that for sufficiently large problems the above
expression is accurate.

A weighted graph does not necessarily have a Euclidean representation when
the edges are considered siraight lines, The triangle inequality is often violated.

We may induce a useful planar representation of the nodes in a graph for a

ra—
I‘l(n) is the normal notation for the nodes i edges from node n. This is the
sense of our superscript notation.

- 927 -



particular shortest path problem. Place node s at the origin and note t at distance

A on the x-axis. Each node X, in the graph under consideration will have two coor-

1 2

and the second coordinate is the shortest distance from node X to t. The node X,

dinates, r, and r.,. The first coordinate is the shortest distance from node s to X,

will be placed in the upper half plane with distance Ty from the origin and r 5 from
node t. If a node in our graph is not connected to s or t we will not be interested in
it. In Fig. 3.1 this mapping is shown for Nicholson's graph (see Fig. 1.1).

Theorem 3.1: For all xieG

r.o+r, > (3.1
r o+ A2r (3.2)

Proof

1. if for some ne Gr,r1 + 71, < A then there is a path oy through

2
n such that 4 ) < A which contradicts the fact that Ais a
miniraum distance.

2, Supposer,+A<T

1 2
Then there is a path from n to s and from s to t of length r,+ A and therefore
r, is not the shortest distance from n to t. ]

VGA expands a la Huygens' wavefronts from both s and t. The space these
wavefronts are propagating in is the one just described. The most efficient

decision rule for VGA is the one where r is found such that

[df(s) + d.i‘)“r(t)] (3.3)

is a minimum over 0 < < A. We wish to approximate the above description by

a continuous one which is easier to discuss analytically.

AN (g) - ds)
AX

AN =
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FIG. 3.1--Mapping Nicholson's graph into shortest path space.
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and
M - ad

Pyn) = AA

These functions may be considered as density functions for a given shortest path
problem. The most efficient algorithm is now the one which goes distance r from

s and distance X ~-r from t such that

r A-T

f PN dA + f P AL . (3.3")
0 0

is a minimum over 0 £ r £ A.

To find r requires a priori knowledge of Pq and p,, where in most cases these
can only be determined a posteriori. Therefore unless the shortest path space is
in some way characterized previous to solving problems in it, there is no assured
way of having an optimum decision rule (namely one which says pick set S as long
as gén in < r; otherwise pick set T), For example if someone told you the problems
of interest are in lattices in En*where most of the possible connections exist, then

n-1
PS(A), pt()\) o« N

r —

_ A-r _ n T\
jc)\n 1q +f eA” 1d oL ) = F(r)
A A n n

0 0

dF n-1

I =Ccr - C(X—I‘)n—l

dF _ . - _
T 0 .°. minimum atr =
I‘ -

2¢ (i_)“
n \2
where a uni-directional method would give

wof>1

(3.3") evaluates to

f et dy=S3in
0 n

a factor of (1/2)n_1 is gained,

E3
These are n-tuples (XysXgs v ees xn) where all X, are integers.

2
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The above argument underlies the obvious choice of unbiased bi-directional
methods, and is why some experts have been moved to dismiss weighted methods. 12

It seems that they implicitly assume a symmetric distribution of nodes.

3.2 A Loeally Optimal Decision Rule

In using VGA, on each iteration the cardinality of S and the cardinality of T
would be known. These numbers would reflect the local density of the regions
adjoining S and T. This information on cardinalities requires no additional compu-
tation and is a simple a priori estimate of density. Then one reasonable decision
rule for step 2 of VGA would be if lgl < 1"f| use set S or else use set T (cardinality
comparison strategy). VGA with this rule will be called a weighted bi-directional
(WBIDI) method. (UBIDI will mean the unbiased bi~directional method.)

Examine Fig. 3.2 where each edge is of length one. The most efficient algo-

rithm is the backward uni-directional method. It would visit only those nodes on

FIG. 3.2--Graph with edge lengths all unity.
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the shortest path from s to t, The forward uni-directional method and UBIDI
would visit all nodes in the graph. The WBIDI method, described above, would
also visit only those nodes on the shortest path. If s and t were interchanged,

the best method would now be the forward uni-directional method and WBIDI,
UBIDI in no way accounts for the difference in densities. In each case distance

x needs to be covered by the respective versions of VGA. A local approximation
to density in regions Sand T are known and without other information, progress
in the sparser region requires less work., To add substance to this argument we
take two complementary approaches to verifying this optimality. One approach

is to generate large numbers of graphs and compare the efficiency of the different
strategies. Additionally one can analyze a posteriori how close each strategy
came to minimize ropt' The other approach is fo calculate the expected number
of nodes placed in S and T over a given class of path problems and compare the
strategies on this basis. In both instances our geometric intuition outlined above

is vindicated.
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CHAPTER 4

ON THE OPTIMALITY OF OUR DECISION STRATEGY

4.1 Probabilistic Analysis

We wish to analyse the efficiency of different decision strategies, and to
demonstrate the efficacy of cardinality comparison. In order to do this, we will
take a probabilistic model of our algorithm as applied to some path problem, and
attempt to calculate the expected number of steps needed by a given decision

strategy. VGA for a given problem finds a path

u=(s, Xyr Fgr coen X ty .

At each iteration of the algorithm, sets S, S, T, and T are changed, with |S| and

1) _

| T| increasing. For simplicity, we will use VGAR, where E 1Y + 1,

1‘, ee.y and |TO|,

i.e., only one nede is added at a time. The sequences |80| . is
T, ... are monotonically increasing. Also, in general, f§1‘ and ﬁlf are mono-
tonically increasing, since the graphs of interest are connected with average
degree greater than one, Monotonicity of these tilde sets, S and T, is our hypothesis
and our experiments show this. *

Qur algorithm must find and place in set S or in set T the nodes X1 %oy

. X . On any given iteration some node ne st {or ne T]) is selected. At this

e
point in the computation some xﬂe i is in set §' and likewise some X €M is in
set T - to see this go back to the proofs of the correctness of VGA and VGAR,
When a node along u is placed in set S its successor and the associated minimal

distance function is placed in set S. Thus, if we have a unique shortest path p,

then at any time in the computation we are interested in finding the next successor

E3
A violation of this condition is called pathological, and is discussed later.
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node from s currently in S and the next predecessor node from t in T. Since,

we have no additional information, only the fact that some node onthe shortestpathis in
§i or 'Tj, the probability on a given iteration of finding a node along the shortest path
is 1/ \NSI‘ or 1/ ﬁj i depending on which set is selected by VGAR step two. A
decision rule in VGAR corresponds to some sequence of choosing either S or T,

and is expressible as D = SSTST... T for a given problem. Each strategy has

an expected number of steps until success which may be calculated and compared
with other strategies for a given path problem. The k nodes along the shortest
path ¢ must be found one at a time from either end, and we will show that cardi-
nality comparison has the smallest number of expected steps over all strategies

for doing this, under the monotonicity hypothesis for the tilde sets. To prove

this rigorously, we now derive some fundamental results from probability theory

about expected values of decision problems of this type.

Theorem 4., 1:

Let Bys Bgs eees A be a monotonic increasing sequence, and b bz, A ¢

1 k

be some other sequence, Consider
k
E(r) = z aibT(i) where T is a permutation over the index set,
i=1

[1, 2, ... k]. Then

Emin = mvlr; [E(T)] is given by a permutation where

bT(l)’ br(2)' vy bT(k) is a monotonic decreasing sequence.

Proof
k

Consider E(I) = 21 a.b. (The identity permutation)
1:
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_ Take the first

*) bi such that bi < b,, ., and interchange bi with bi+1°

i+1

ab; +a; gb g >ab,,+a b

(B9 = 8) Py > (a5 -2 by
>

D1 > by

The sequence formed by the interchange has a smaller value of E than the

original sequence. For any ordering b , if an interchange of the form (*) is

7 (i)
possible, then the new value of E(7) is smaller. The only sequence where this
interchange is not possible is b'r(i) > bT‘(i+1) for all i and this is a monotonic

decreasing system.

.
Corollary 4.1:
For E . = max [E(r)]
T
we have br(l)’ b7(2)’ eeos br(k) a monotonic increasing sequence.
Proof
The argument is completely symmetric with the above. (]

We call the above proof a proof by bubble sort. This result is also found in

Ref. 28.
We wish to calculate the expected number of steps until one success occurs for some

permutation of probabilities Pys Pos +ees Ppe

E = > i (probability of success on the ith step but not before)
k41 i-1
= i«p, - IT q, (4.1
i=1 o= ) )

where qj =1- pj and Py = 1. This last probability means that the sequence always

terminates on the k+1st turn if success has not been previously achieved.
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Theorem 4. 2:

The value of the expectation (41) is a minimum if the probabilities are in
monotonically decreasing order.

Proof

Let us assume that the sequence pl, pz, aoes pk is in monotonic decreasing

order. Then q., Uos Gos »»» G will
. 3 2 b4
17 %22 73 k

theorem 4.1 2.i . P, is a minimum, sincea, =1, a_ =2, ... a = k is a mono-~

1

Do

tonic increasing sequence.
If Py is the largest value then 9 is the smallest value. Now the product
terms are

k
q1$ qlqzs q1q2q3! * sy 1131 q]-_ ¥

and these terms, corresponding to the ordering of the p's, are the smallest pos-
sible, Any other ordering of p's gives larger product terms, since in the original
case we use a smallest first criterion. So

2. p; is a minimum and 2.i-. p;* Hqi must also be a minimum

since the Hqi are the smallest possible factors. The k+1st term

of the expectation

k
(k+1) p ¢ 11:71 g withp, ;=1

is the same for all possible orderings and as a constant does not

affect the arguments from monotonicity. .

So if our game consists of continuing to play until one success occurs, then
playing it with the probabilities of success in monotonic decreasing order is our
best strategy for finishing fastest. Now, we may want to play until two successes

have occurred and are interested in how best to proceed.
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If Py» Por Pgs «ees Py is the order of probabilities of single success then

Ty = PyPy

ro =Pg(Pdy + 44Py)

°

i-1 i-1 i-2
r.=p.(p, IT q.+p, IT q.+...+p, - IT q.
i i 1].=2 j 2j=1 j 11j=1 3
j#2

.

where the r's represent the probability of success on a given step but not before.

For any ordering P, (i) there is a corresponding set of r's.

Theorem 4. 3:

The expected number of steps in the two success game will be minimized for

P; monotonic decreasing.

Proof
k+1
E= Z i-ri
i=2
r, = 0 since the game cannot end in one step
k k ) k-1
r =\ Tq+p, ITa+...+p_ IT q.
k+1 j=1 j 1 §=2 3 k' j=1 j

L is a constant and is independent of the original order of the p's.
We shall proceed akin to the method of theorem 4.1. Consider the first p;»

such that p;<P

1 In this regard we always make Py > Py since the order of

Py and Py has no effect on E. Let us calculate how the interchange of these two
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terms will change E.

r. , will remain the same

I‘2, ooy 1_1

Tiigr ters Trug will remain the same

i-1 i-2
r,=p; |pg 7 q+..‘,.+p11 7 q
=2 =1

Let r* represent the redefined sequence.

, i-1 i-2
* =
ri p1+1 pl H q]+ eee +p 1 n q]

j=2 =1
i-1 i-1 i-1
X 1P {Py H 4+t g IT q+ﬂ- I q
% 1 ]2 ] ]—1 1] q]+1 ]=1 3
j=i-1
= p¥ *
L R TS B 8

i j=1
where
i-1 i-2
=1pg I7 q taee TP IT q
=2 te
p. i-1
i+l
r* +r¥* . =p. + Py, ( + —= [T q,
i+l i+1% i+1 9.1 =1 i
i-~1
Let p=II q
=1
P, P.
i _ i+l
P * P9y <a+ﬁ'i'ﬁ)" Py oz+pq1+1< +qi+1 >

RS NPT RS N L TRLAS LR R L
o (p*(1-p) Prp) * PPy B = (pi+1 +py (1=, 7)) *+ PpyP
@ (pi T Pip1 " pipi+1) PPt (pi TPy " PiPi )* PPiy1P

1) is true.
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s Pe pk : ek
2 i ri+(i+1)ri+1>1 ri+(1+1) iy

: Sy X *
oy Ty ) ¥ T > 9 4 T
by (1) this reduces to showing

|
Tin1 > Tiaa

Py Pit1
p..-4. @ ==—B}> pdq. (a+————B
i+17i ( qi > i*i+1 qi+1

P19t PPy A > op PPy, B

Py 1% > 29449
Since

- > -
Piyq > Py them 1-p; >1-p.; so p,>p; and g;>q;

vt pi+1qi > P8

Therefore the interchange reduces the value of E and by the argument in theorem
4.1 (the bubble sort device), the P, () which is monotonic decreasing is the best
ordering for the two success game.

We now generalize theorem 4.3 to cover the k success game. The proof is

identical and parallel to theorem 4.3 exactly.

Theorem 4.4:
The expected number of steps in the k success game will be minimized fdr
P; monotonic decreasing.,
Proof
n+l

E= . i-r
i=k
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Consider the first Py such that i 2k and P < Pyt The order of the p's |
before this is irrelevant. Let us calculate how the interchange of these terms
will change E.

Then using the same notation as in theorem 4.3 we have:

r, =P (all combinations of k-1 p*s with the rest q's)

P
all combinations of k-1 p's with the rest q's + El-
i

Civ1 " P % (

(all combinations of k-2 p's with the rest q's)),
Let o = all combinations of k-1 p's with the rest g's

Let B = all combinations of k-2 p's with the rest q's

Py

TR Ty TRt (0‘ * q ) ?

Pis1
r¥=p. @, T. . ¥=p.a. <a+_1—-—
i i+l i+1 itit+l qi_!_1
But these are the same as in theorem 4.3 and the same proof holds: u

The introductory discussion of the probabilistic analysis of VGAR showed it
tobe ak success game where the probabilities of success at a given point are
1/ g or 1/ Ll depending on the set chosen. This leads us naturally to the

following theorem as a consequence of theorem 4.4.

Theorem 4. 5:

An optimal strategy in the sense of the aprioriexpected work, istochoosethe set
with the currently fewest nodes, i.e., use set gi if |§il < !"fj | otherwise use set Tj .
Proof

The value of a given strategy is the expected number of sfeps it will take to
find the k nodes along the shortest path. For a given problem a strategy cor-
responds to some sequence of choosing §i and ”'I“'j where the probability of success

at any given point is the inverse of their cardinality.
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Let us call D* the decision sequence for cardinality comparison, and let the
sequence of probabilities corresponding to this strategy be Pys Pgs +ves Ppe This
sequence is monotonic decreasing since using D* together with the monotonicity
hypothesis assure this. Therefore according to theorem 4.4 any reordering
corresponding to some other bi-directional strategy must be worse.

However a uni-directional method could be used. This would mean that some
pifs will not occur. The sequence that does arise is a subset of the pi's which are
again monotonic. If we call the probabilities arising from a uni-directional
strategy q; then we have P; > 9 and therefore D* must be at least as good as any uni-

directional strategy. ]

4.2 Pathological Possibilities

It has been shown that given no a priori information about the structure of
shortest path graph, the optimal strategy is cardinality comparison. However,
it is possible to produce examples where cardinality comparison is significantly
worse than other strategies. The understanding of these examples confirms the
validity of the analysis.

Consider Fig. 4.1, where the shortest path of interest is between s and t and
is a path of length 7, The forward uni-directional algorithm would visif{ nodes 1
through 9 (including s and t, of course). The backward method would visit 4
through 19. The cardinalily comparison method would find that IS] is 4 and | T is
3 initially. The set T would be used and its cardinality as is evident from the
construction would remain 3. In effect the cardinality comparison method would
duplicate the behavior of the backward method.

If some observer were looking down on the graph and watching the behavior
of the cardinality comparison algorithm, he could say that two steps away S dies

out and therefore one should in fact explore this path in the forward direction.
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/FIG, 4.1--A pathological example.

This behavior could be built into a two step look-ahead, but this increases the cost
of each individual decision. The anomolous behavior exhibited in this problem
could then be replicated over a graph which was constructed to be dense two steps
away from s. If the particular class of problems is noted for highly irregular
behavior then a look-ahead feature could be useful as a smoothing out device which
is similar to measures needed by hill climbers in avoiding local maxima.

In terms of shortest path space, we have three distinct regions appearing in
this graph. A small region around s of high density 4, a large constant region
near t of density 3 and a region in between of density 1. So pg» Dear s is 4 but
changes to 1 while Py stays 3. In a graph where pS =P = C, any method works
with the same efficiency. Ordinarily a graph with average degree >1 will have
a monotonic increasing set of nearest neighbors. Then if one direction is favored
for many steps the cardinality of the tilde set on that side grows to exceed the
cardinality of the other tilde set. Thus a dynamic balance is maintained which

is not appreciably influenced by a local distortion. Another point is that local
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distortions of the space are not a priori detectable by one step methods and
strategies and in practice rarelyoccur.

One further anomaly is seen in very dense graphs where a node is just a few
nodes away from every other node along some shortest path. In this case Sand T
will soon exhaust the graph and further iterations will only deplete these sets. In
this case the algorithm using cardinality comparison will continue with only one
set, where a more symmetric procedure would be efficient. This case, like the
previous, does not frequently occur. In standard shortest path problems the
graphs are large and sparse. The cases of interest are rarely ones where all
shortest path are only 2 or 3 edges long. However in generating high symmetric

dense graphs of reasonably uniform weight, these graphs were produced.
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CHAPTER 5
EMPIRICAL RESULTS

As a practical test, VGA was programmed in ALGOL WS’ 62 (see Appendix )
and tried on a large number of shortest path problems. Corresponding to step 2

of VGA, was a logical procedure written as a case expression which included

decision rules for Dijkstra’s forward method, the analogous backward uni-
directional method, Nicholson's equi-distance method, and our cardinality com-
parison rule. The results were gratifying, in that VGA with our rule was the

most efficient algorithm.

5.1 Data

In order to obtain a meaningful result, a large number of graphs and path
problems using them were needed. A 200 node graph involves 40, 000 bits of in~
formation, a rather large amount of input. We therefore used a random graph
generator.48 It provided randomly generated graphs of appropriate size and den-
sity, weighted or unweighted according to the substituted parameters. For each
edge a random number generator produced values over (0, 1), which were compared
to the density; if less the edge was included with a length generated randomly over
1,2, ..., weight (if unweighted then length was uniformly 1). The data was repre-
sented in edge list fashion to enable the program to generate very large sparse

graphs up to 1000 nodes, 4000 edges.

5.2 Evaluation
The basic measure of efficiency was the number of nodes |S| + |T| at the end
of the computation, each method being run for exactly the same data. In addition,

a system of a posteriori analysis routines were incorporated into the program to
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measure the distribution of nodes in the shortest path spaces used. These routines
printed out d%‘(s) and d.;‘(t), allowing ropt to be found by inspection (see Eq. (3.3)).

In addition the radii of S and T were printed for each method to compare with ropt'

5.3 Results

The results clearly show the advantage of the bi~directional methods over the
uni-directional. In all cases investigated, the uni-directional methods visited at
least twice the number of nodes as the bi-directional. The Nicholson method and
the cardinality comparison method are the same order of magnitude, but invariably
the latter is more efficient. The closeness of these methods is because the graphs
used were in general symmetric, where ropt % 0.5*)\ most of the time. However,
the Nicholson method is badly out-performed in those examples which a pos-
teriori analysis shows are highly unsymmetrical. A general measure
of optimality is the absolute value of the difference between rOpt and the r found by
the given method. This measure along with the overall comparison of nodes
visited favors the cardinality comparison algorithm, The models used in analyzing
these algorithms formally are borne out in the empirical test. One note in this
regard is the verification of the monotone increasing nature of the sets Sand T
throughout a computation for even sparse graphs of average degree 2 or 3.

Let us pursue in detail one example in terms of our shortest path space model.
We will make the assumption that the spf;mce of interest is E2, because the average
degree of our example is approximately the same as for a lattice in Ez, The
graph is symmetric and unweighted, of size 200 and average degree 4. The full

distribution table is given in the tables marked Example A, table 5. 1.
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Table 5.1

Distribution Functions, Example A: 200 Node Graph

200 Nodes
Maximum Length ig 20

Symmetric with Average Degree 4

Distribution from S df(s) db(t) df + d.b
0 , 1 85 86
1 2 71 73
2 3 63 65
3 5 55 60
4 6 49 55
5 8 40 48
6 10 37 47
7 12 33 45
8 14 26 40
9 16 24 40

10 19 22 41
11 22 19 41
12 26 17 43
13 32 11 43
14 39 8 47
15 44 6 50
16 48 5 53
17 54 4 58
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Table 5.1 (cont.)

Pohl's method

Pohl's method

Nicholson's method

Distribution from S d f(s) db(t) df + d.b
18 63 3 66
19 68 3 71
20 77 3 80
21 90 3 93
22 101 2 103
23 111 2 113
24 124 2 126
25 129 2 131
26 136 2 138
27 141 2 143
28 149 1 150
Nodes Visited
Forward method 149 nodes
Backward method 85 nodes

44 + 11 = 55 nodes

22 + 22 = 44 nodes

Distance Tr'aveled

Nicholson's method

15 forward

11 forward

Uni-directional methods

15 backward
18 backward

28
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In E we have
Bf = density of nodes per unit volume in the forward |

direction
2 2 ..
/2 (b‘tr + sb(z -r )) = number of nodes visited

This is a minimum at

d 2 21 _
Ef(vr/z [Sfr + Sb(x—r ):l) =0
(Sf'r + Sb(r—h) =0
8f + 8b
If we assume that Bf and Bb are proportional to the results of the uni-
directional forward and backward methods, then
I
opt ]Sf‘ + |Tbl
where Sf is the set of nodes visited by the forward method and Tb is the set visited

by the backward method. Then for Example A (table 5.1) we have Tt~ 10,1,

pt
Sf =0.12, Sb = 0.07. Using these parameters and the observed radii of sets S
and T, the cardinality comparison method would investigate 22.8 + 35. 6 nodes ~—
a total of 58.4 nodes, while Nicholson's method would visit 42.3 + 24.7 nodes —
a total of 67 nodes. In our case, we have ro= 11 and r, = 18 while in Nicholson's

case it is r, = 15 and r, = 15. A posteriori one sees r =9, which is very close

opt
to what the cardinality comparison method found. The equi-distance approach,
while achieving a symmetric search, was less efficient.

The results are in favorable agreement with the model, and reflect the

cardinality comparison rule's attempt a priori to minimize Eq. (3.3). While the

- 48 —



discrete nature of the spaces, and the random nature of generation do not make
for an exact correspondence of the model to the test cases, the closeness of ry
to ropt in virtually all examples demonstrates the correctness of this approach.
Table 5.2 summarizes the results of tests using 500 node graphs with average
degree 3,6,9,12, and 15. Our method requires 1/4 the work of the uni-
directionally methods. Nicholson's method visits over 1/3 more nodes than ours,
but it compares favorably to uni-directionally methods. These results and more
data are presented in greater detail in Appendix II. Our model and the optimality

of our cardinality comparison strategy are validated by these experiments.

Tabie 5.2

Cumulative Results on 500 Node Graphs

Degree Forward Backward Pohl Nicholson
3 2583 1991 563 662
6 3406 3336 107 1151
9 2724 2924 510 828
12 2627 2434 581 142
15 2521 2596 619 681

Average per case
2717 266 60 81
Ratio to Pohl's method

4.6 4.4 1 1.4
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CHAPTER 6
HEURISTIC SEARCH AS A PATH PROBLEM

6.1 Introduction

In many areas of artificial intelligence, improvement has not been evident
over the early paradigms, 39 The GPS modeld‘2 has not been superceded and the
ideas in what heuristic search is and how to do it have remained the same over
the past decade. The situation reminds me of the state of mechanical translation
of natural language in the early 1960's. It was at this point that the criticism of
Bar—Hillel4 was becoming convincing. The original ideas of a simple syntactic
model and dictionary look-up were seen to not be able to bear the weight of the
problem. It was clear that mathematical linguistics had to be better understood.
I think in heuristic search the same situation exists. The formal tools need to be
developed to better understand and increase the power of heuristic programming.
The precise characterizing of these ideas allows not only a quantitative improve-
ment in computational performance, but through a deeper understanding can lead
to a qualitative improvement from generalizing and extending these methods. * It
is with this spirit and intent that this work is carried out. The formal model of
heuristic search presented here has led {0 a new understanding of soiving problems

with occasionally unexpected results.

One of the important general models of artificial intelligence is the directed

1,2, 10, 18,19, 30, 34, 37,41, 45, 55, 57

graphi model. In this model a node

E3
One noteworthy example of this is the current sophisticated use of - by Samuels'

checker program54 and Greenblatt's chess program. 27 Early researchers in
game playing21,43 had used the idea without considering it significant enough to
explore its ramifications or write on its usefulness.

TFor graph theory terminology, see Berge8 or Ore.%6:47
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contains a description of a possible problem state. If it is possible to get from
some state x to state y in a single move (rule of inference, operator, etc.) then
there is a directed edge from x to y. More generally, we wish to know if a path
exists between two nodes. We distinguish one as the initial node and look for a
path to the other, designated the goal node. Such a path is called the solution to
our problem. Sometimes we are interested in the shortest path between two nodes,
but normally any solution path will be acceptable.

The work of Amare],l’ 2 Michie and Dora.n18’ 19,37

and Hart, Nilsson, and
Raphael‘go’45 contributed to ‘different aspects of formulating problems in this
model. Amarel worked principally on the representation of different problems

in this model. Michie and Doran have developed a general problem-solving pro-
gram, called the Graph Traverser, for finding paths using heuristic functions to
control the search for the goal node. Hart, Nilsson and Raphael have given
sufficient conditions on heuristic functions to guarantee that a class of path finding
algorithms will find the shortest solution path in the space. Algorithms which
fall in this class are called admissible.

This work will consider how problems represented in the directed graph
model can be solved efficiently. There are two basic extensions over the efforts
outlined above. First, the pure heuristic uni-directional search of the Graph
Traverser is examined mathematically. This leads to results on the efficient
use of the heuristic function and a first theory of the effect of error in the
heuristic function. Secondly, the notion of admissible heuristic functions (algo-
rith:ms)30 is extended to bi~directional search. Along with admissibility, the
question of pragmatically implementing a bi-directional procedure is examined.

Associative search implemented by hashing schemes is shown to be a very

powerful technique for the redundancy and tree intersection problems. These
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questions are not only dealt with theoretically, but our approach is tested using
the 15 puzzle as an experimental environment. In all thése areas the spirit of
the shortest path work is found. We feel, that it is just this viewpoint that has
allowed us to discover many new results, some mildly surprising, and to under-
stand more deeply the mechanics of heuristic search. Artificial intelligence is
in many ways a branch of discrete mathematics and a science of effective and
intelligent enumeration in spirit close to enumerative combinatories. It is not
surprising to see that Polya,this century's outstanding combinatorialist,also

wrote extensively on how to attack and solve problems. 52

6.2 Problem Spaces and Heuristic Search

A directed graph G is a set of nodes X and a mapping I from the nodes into

themselves.

G: X={x1, Koy vees xn}

T: X—X

E ={(xi, Xj)| xiexijé T(Xi)}

The size or cardinality of the graph is denoted by |G| and can be unbounded. When
using directed graphs to characterize problem domains we attach to each X, a data
structure which contains the complete description of the problem. For example, inthe
case of the 15 puzzle (see Fig. 6.1) adata structure describing it would be the vector (9, 5,1,
3,13,7,2,8,14,6,4,11,10,15, 12, 0) where 0 denoted the blank position. The
mapping [ would represent possible single moves from one problem state to
another. In this domain we are at some initial node (or set of nodes) and wish to
reach some goal node (or goal set). We must produce a path from the initial node
to the goal node. Purely exhaustive methods are impractical in complicated
spaces with IG| and |E| large or possibly infinite. In most instances we have
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FIG. 6.1--15 puzzle.

heuristics which aid in narrowing the search, For our discussion, heuristic infor-
mation is a function over state vectors _v'i, attached to the nodes, into the non-negative
reals.

An Algorithm for Heuristic Search

When solving most artificial intelligence problems we are not ordinarily
interested in the most 'elegant! or shortest path, but in how to obtain any path
cheaply. A search method visits a number of nodes in G to find a path. We want
this number to be as few as possible, so that it may be computationally feasible
to find solution paths which are inherently long; i.e., the shortest path is long.

HPA — Heuristic Path Algorithm

s = initial node
t = goal node

- 53 -



g(x) = the number of edges from s to x,
as found in our search
h(x) = an estimate of the number of edges
from x to t, our heuristic function
f(x) = g(x) + w+ h(x) 0 Lwge
By convention if w =« then f(x) = h(x)
S = the nodes that have been visited
S = the nodes which can be reached from S
along an edge, but are not in S

T'(x) = the set of successors of node x

1. Place s in S and calculate T'(s), placing them in S.
If xe T'(s) then g(x) = 1 and f(x) = 1 + w - h(x).
9. Select ne§ such that f(n) is a minimum.
3. Placen in S and I'(n) in s (if not already in §) and calculate
{f for the successors of n.
If xe I'(n) then g(x) = 1 + g(n) and
f(x) = g(x) + w.h{x).
4, If n is the goal state then halt, otherwise go to step 2.
Note: HPA builds a tree; as each node is reached a pointer to its predecessor is
maintained. Upon termination the solution path is traced back from the
goal node through each predecessor.

An Example of the Use of HPA

The 15 puzzle is a simple, but combinatorially large problem space.
Each space* contains 16!/2 configurations, too large to be searched exhaustively.
The average degree (number of moves) of a node is 3, allowing exhaustive search
to find solutions of about 10 steps. On the other hand, the space is simple enough

to study as an heuristic search problem and heuristic functions are easy to formulate.

*

A particular 15 puzzle configuration may be in one of two spaces. A configuration
in one space cannot be manipulated by any sequence of moves into a configuration
of the other space. :
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The standard problem is — given some initial configuration, * how can we
push the tiles around to reach the standard goal' configuration? In Fig. 6.2, we

see a possible initial configuration and its state description as given by a 16-tuple.

1 2 3 4
5 6 T 8

= (1,2,3,4,5,6,7,8,9,10,11,12,13, 14,15, 0)
9 10 11 12

13 14 15 b

(a) Standard goal

1 2 3 4

an initial 5 6 7 8

(1,2,3,4,5,6,7,8,13, 15, 14, 11, 10,9, 12, 0)
configuration 13 15 14 11

10 9 12 b

® | 3
p,= ) p;=12
i=1 _
successors
1 2 3 4 1 2 3 4

= (1,2,3,4,5,6,

5 6 7 8 =(1,2,3,4,5,6,7,8,13, 5 6 7T 8
: 7,8,13, 15, 14,

13 15 14 b 15,14,0,10,9,12,11) 13 15 14 11
11,10, 9,0, 12)

10 9 12 11 : 10 9 b 12

P2=13 P3=—'11

(b) Successor states and their heuristic value

FIG. 6.2--Some puzzle configurations and descriptions.

*
In the appropriate parity space.
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From the initial con.figuratipn, there are two successor . states possible. These
correspond to switching any tile adjacent to the blank into the blank's position.
The position of the blank in the center of the board allows four possible moves,
on the sides three possible moves and in the corners two possible moves,

In applying HPA to our problem, we ordinarily attempt to find a good heuristic
function h. If for example we chose h=0, then we have an exhaustive search which
will ordinarily require too much time and space. Now one simple heuristic meas-
u.t'e18 is a position count. We have a 16-tuple of tile values which are out of order.
Any particular tile is so maﬁy squares away from its position in the goal con-
figuration. |

We can say, as in the Graph Traverserls work, that

p, = the Manhattan distance of the tile in position i from
its goal position

16
P = Z p; -
i=1

Note, if P = 0 then we are finished; also P represents a lower bound on how many
moves to the goal. In Fig. 6.2(b) we show the initial configuration with its two
successor states and their position count. The first step of HPA would piace
nodes 2 and 3 (number in circles) in set § and then node 3 would be placed in
set S because it has the smaller value. This'process continues until the goal
state is reached or the computational resources allotted to the problem are
exhausted.

In Fig. 3, we show the entire search tree that HPA would visit in solvihg this
problem. While this particular instance is simple enough so that HPA is never

misled, it still presents the flavor of heuristic search as thought of in our model.
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1269A6

FIG. 6.3--An example of a puzzle solution. How HPA with h=P
and w=« solves a particular 15 puzzle.
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FIG. 6.3 (cont.)

Node
1

2

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

28

State

(1,2,3,4,5,6,7,8,13, 15, 14, 11, 10, 9, 12, 0)
(1,2,3,4,5,6,7,8,13,15, 14, 0, 10,9, 12, 11)
(1,2,3,4,5,6,7,8,13,15, 14,11, 10,9, 0, 12)
(1,2,3,4,5,6,7,8,13,15,0,11, 10,9, 14, 12)
(1,2,3,4,5,6,7,8,13, 15,14, 11, 10,0, 9, 12)
(1,2,3,4,5,6,0,8,13,15,7,11, 10, 9, 14, 12)
(1,2,3,4,5,6,7,8,13,0, 15,11, 10,9, 14, 12)
(1,2,3,4,5,6,7,8,13,15,11,0, 10,9, 14, 12)
(1,2,3,4,5,0,7,8,13, 6, 15,11, 10, 9, 14, 12)
(1,2,3,4,5,6,7,8,13,9, 15,11, 10, 0, 14, 12)
(1,2,3,4,5,6,7,8,0,13, 15,11, 10, 9, 14, 12)
(1,2,3,4,5,6,7,8,13,9, 15, 11,0, 10, 14, 12)
(1,2,3,4,5,6,7,8,13,9, 15,11, 10, 14, 0, 12)
(1,2,3,4,5,6,7,8,0,9,15,11,13, 10, 14, 12)
(1,2,3,4,0,6,7,8,5,9,15,11,13, 10, 14, 12)
(1,2,3,4,5,6,7,8,9,0,15,11, 13, 10, 14, 12)
1,2,8,4,5,0,7,8,9,6,15,11,13, 10, 14, 12)
(1,2,3,4,5,6,7,8,9,15,0,11,13, 10, 14, 12)
1,2,3,4,5,6,7,8,9,10,15,11, 13,0, 14, 12)
(1,2,3,4,5,6,7,8,9,10,15,11,0, 13, 14, 12)
(1,2,3,4,5,6,7,8,9,10, 15, 11, 13, 14, 0, 12)
(1,2,3,4,5,6,7,8,9,10,0,11, 13, 14, 15, 12)
(1,2,3,4,5,6,7,8,9,10, 15,11, 13, 14, 12, 0)
(1,2,3,4,5,6,0,8,9,10,7,11, 13, 14, 15, 12)
(1,2,3,4,5,6,7,8,9,10,11,0, 13, 14, 15, 12)
(1,2,3,4,5,6,7,8,9,0,10,11,13, 14, 15, 12)
(1,2,3,4,5,6,7,0,9,10,11,8, 13, 14, 15, 12)

(1,2,3,4,5,6,7,8,9,10,11, 12, 13, 14, 15, 0)
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The search was conducted using f(x) = h(x) - pure heuristic search. However,
if f(x) = g(x) + h(x) was used,the exact same search would have occurred. The
nature of efficient heuristic search is clearly visible in this type of problem
environment, and leads to questions of how to appropriately use the heuristic

information.
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CHAPTER 7
THEORY OF UNI-DIRECTIONAL HEURISTIC SEARCH

HPA is a typical path finding algorithm and is similar to the algorithms used
in the work of Michie and Doran, and Hart, Nilsson and Raphael. It will find a
path if one exists and the graph is finite, and can fail if the graph is infinite.
In the Graph '1‘_:c'za.verser18 only h is used, by our convention w =, The intuitive
reason for this weighting is that prior distance in reaching a node is so much
"water over the dam." Indeed, if h is an accurate estimator of distance from
the goal, it will indicate the node nearest the goal. This remaining distance is
what determines the fewest nodes to visit. This argument is plausible, but relies
on the accuracy of the heuristic function. Any space for which an accurate esti-
mator exists is a solved problem domain, Only domains with inaccurate esti-
mators are interesting, and it is these cases for which the efficient use of
heuristic information is necessary. In table 7.1 we list some common weights

and the type of search produced.

Table 7.1

Commonly Used Evaluators

w=0, fn) =g exhaustive parallel or breadth first search
,  f(n) =h(n) simple or pure heuristic search —
Graph Traverser

w=1, f(n) = g(n) + h(n) compound heuristic search

7.1 Some Theorems on Searching

In examining formally the claims of the above argument two extremes are
easily dealt with. First, we could have a heuristic function which always returned

the exact distance to the goal, a function having this property we call perfect.
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Secondly, we could have a heuristic function which is completely in error; this

would be the inverse of the perfect function.

Theorem 7.1:

If h is perfect (exact, correct) then for w = 1, the search by HPA is optimal,
i.e., visits the fewest nodes possible.

Proof

Case 1. w=o,

Let the shortest path be k steps long. pu = (s, Xyr vees X, X, = t. Sinceh
is perfect then h(xi) =k - i, Now when s is expanded X, € I' (s) and since other
nodes are off the shortest path they must have an h value greater than k - 1. So
Xy is picked on the next iteration, and is expanded in turn. At each iteration the
node along the shortest path and currently in S is placed in 8. Therefore only
nodes on the shortest path are expanded, and so our method is optimal.

Case 2. w=1,

The argument is the same as above, except that along u, f(xi) = g(xi) + h(xi)
=i+ k -i=k. So along the shortest path, all nodes evaluate to k, and other nodes
evaluate to greater than k.

Case 3. 1< w< =,

Consider f*(n) = ggl)- = g%)+ h(n). -Each step from s adds 1/w from the first
term, and along the shortest path the second term is reduced by 1. Now 1/w < 1,
so along shortest path f* decreases with f*(xj) =k - j+ j/w. Each node along p
decreases in value by 1 - 1/w while nodes off u increase by at least 1/w. Thus
f* will expand only the nodes on g, and so is optimal. Now f* determines the
same search order as f, so f is optimal. .

We see that for h perfect and for w 2 1 HPA only expands nodes on the shortest
path.' If w < 1, then additional nodes may be expanded, with w = 0 the worst case.
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This case is the exhaustive parallel search (see table 7.1). However, the key
point of this result is that using g(x) in our evaluator does not decrease the
efficiency of search, when appropriately weighted. This is already in some

measure refutes the "common sense" arguments of the pure heuristic searchers.

Theorem 7.2:

If h* is the inverse of the perfect heuristic function h, then the search by
HPA using pufé heuristic search (w =) will always visit the goal node last, If
the space is infinite, the goal will never be found. Therefore w = 0 gives the best
search under these conditions.

Proof

Since we are using the reciprocal of the perfect function, the further from
the goal node the smaller h*. So HPA (w = «) will be led away from the goal,
and only if it exhausts the rest of the space will it reach the goal. It is obvious
that the larger w, the more misleading the evaluator

f=g+w.h*,
.. using w = 0, HPA visits the fewest nodes. [ ]

So in the case where the heuristic function is counterproductive, the less we
rely on it the better. It now remains to investigate cases where h is somewhere

between these extremes in its accuracy.

7.2 Heuristic Error

To do this rigorously will require easily analyzable spaces. However, as
will become clear, this should shed much light on the use of heuristic search,
where previously only heated “intuitively" justifiable arguments were used. The
spaces used will be regular infinite rooted trees with unique goal nodes. The
root is the only node without predecessors, and a regular tree is one in which

each node has the same number of descendants.
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The simplest such space is the unary tree (Fig. 7.1(a)). Over this space all
functions, representing any heuristic function é.nd weighting, are equivalent, The
search always proceeds from node 1 to node 2, ... until the goal node is
encountered. This case is without interest and we move on to the binary tree
space (Fig. 7.1(b)). This is already non-trivial and complex enough to represent
reasonable problem domains such as Lisp programs. 36

Theorem 7.1 applies regardless of the specific directed graph structure,
thus the use of a perfect h in our evaluator f is optimal for 1 £ w <=, Perhaps
no heuristic information exists for our domain, and we therefore have h identically
zero throughout the binary tree space. The evaluators we could use are then:

(a) f=g+weh=g (h=0) 0<w< =

(b) ft=h=0 w = oo
The use of g constitutes a parallel search, while the use of 0 is a search where
all the nodes in § (open nodes) will be tied. At each iteration, step 2 of HPA will
randomly choose from the nodes tied, and therefore (b) produces a random search.
If instead our tie-break rule was first-in/first~out (FIFQO) we would have parallel

search, Last-in/first-out (LIFO) would be a depth first rule.

Theorem 7. 3:
Over an infinite binary tree, a parallel search on the average requires
zk + 2k—1 - 1/2 nodes expanded to find a node k steps from the root.
Proof ‘
The number of nodes in a binary tree of diameter k (maximum length from
the root) is Bk = 2k+1 - 1, Since a node may be anywhere along the kth level with

equal probability, we must search Bk +1to Bk+1 nodes with the average being

k k-1

1 B = 4 ) <

Lemma: A binary tree of diameter k has oktl _ g nodes.
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Proof: By induction.
0+1

Case k =0: BO is just the root node. BO =2 -1=2-1=1,
Case k = 1: Bl is just the root node and two successors. B1 =8 = 2l+1 - 1.
Inductive step: Assume Bk = 2k+1 - 1, to show Bk 41 2k+2 -1,
Each level has Zk nodes, where k is the distance from the root.
Bk+1 = Bk + (k + 1 level)
=Bk+2k+1=2k+1+2k+1—1=2k+2—1.' -

So in a parallel search of a binary tree, we have the above formula deter-
mining, on average, how many nodes must be visited. It is exponentially varying
with the distance from the root; typical behavior in complex problem spaces.

In contrast, let us examine the expected number of nodes visited by a random
search in finding a goal node k steps from the root. In the simplest non~trivial

case k equals 1 (k = 0 is frivial).

Theorem 7.4:
Over an infinite binary tree, a random search expects to visit an unbounded
number of nodes to find a goal node 1 step from the root.
Note: HPA is not told that the node is only 1 away and consequently does not
restrict its search to this level..
Proof
E = Expected number of nodes visited
r, = Probability of finding the goal node in exactly i steps
p; = Probability of finding the goal node on the ith step,

having reached this step
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ﬂi = Probability of not finding the goal node on any step

before the ith step

i=1 1
The 1 is for the root node
e ‘€1 iy
We show
-1
Pi =131

With ééch step of HPA over a binary tree one node is removed from S and
placed in S, but two nodes are placed in S. This means at step i there are i + 1
nodes in 5. In the case of £=0 and random tie-breaking, they all are equally

- likely to be picked. Furthermore since the goal node is 1 away from the root and

it is always in set S until found by HPA so |

L, =
i

l-l-“_l

s we show this by induction
ﬂ. = 1 - I‘., = 1
i =1 1

cl-p =1-pg. =1-1.1=1
12-1 ry 1 p1“1 1 2.1_2,

Assume ﬂk = 1/k, we must show Ek-i-l = 1/k+1

k k-1
=1 - L= 1- -
lk+1 jz=:1 r] jz=:1 r] Tk

_ _ 1 1 1
‘%“rk-%(l‘PkFE(l'm)*m .
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Therefore

- ~] o0
— 1 _...].'... -1; = ..1_
E—-1+Z<1 i+1.i) 1+Zi
i=1 i=2

[~ e}
=3 —t- the harmonic series which
i=1

does not converge. »

This result is similar to gambler's ruin problems.zz’ 50

Essentially the
space grows too fast, and when not lucky enough to initially find the goal node,
we soon find it disappearing in the growth of S.

Normally, a search is restricted by time or space limitations. This is
akin to limiting our infinite space to some maximum depth. If we are interested
in finding a goal node in a binary tree of diameter k, then a maximum of 2k+1 -1
nodes need be searched. If each of these nodes is with equal probability the
goal node, then any exhaustive non-repeating search would yield the same
expected value for nodes visited % (Bk + BO)’ or Zk. Each method would get
better performance for different groups of nodes. The parallel search visits
the closer nodes soonest, and for goal nodes near the root this method has a
better expected value than random or depth first (LIFO) search.

In our theorem, HPA was unaware that the goal was at level 1, and so with
finite probability it searched portions of the space which were beyond the solution.
A modification on this would be to tell our procedure that the goal was on level

k. When this is known, the depth first (see Fig. 7.2) or backtrack track method24’ 26

is optimal. The algorithm should go down to a depth of k and check to see if this
is the goal node. If not it backs up one level and goes down to the next node at
level k. It continues backing up and going forward to the next node on level k

until it finds the goal. Since this search pattern looks at nodes on the kth level
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FIG. 7.2 --Nodes numbered in order visited by a depth first search to level 3.




as soon as possible, it must be best in the sense of the expected number of
nodes visited. I would be the worst search pattern if the goal node was
actually at level 1. Here it either finds the goal on the first try (like any other
method) or must loock at half the tree before returning to the goal node. A
paraliel search is a conservative strategy, you are guaranteed not to penetrate
below the part of the tree containing the goal, while you pay by always investi-

gating the whole subtree up to that level.

7.3 How Error Affects Heuristic Search

In general we have neither a complete lack of information nor perfectly
accurate information, but instead we have a heuristic funetion which has error.
We wish to resolve for this more typical instance how best to use a heuristic
function. To investigate this question, we stay in our binary tree space using
HPA. We will do a worst case analysis in the spirit of error analysis
in numerical problems.

Consider

h = perfect estimator
€ = g bound on the error 0,1,2,3, ...
h* = actual heuristic function

h-e £h*<h+c¢€

We will choose values of h* conformiﬁg to the above limits, but in such a
manner as to mislead HPA to the greatest extent. In doing this, we assume
that HPA will always choose the worst nodes in case of ties, i.e., nodes off
the solution path. An example of this analysis is Fig. 7.3, where HPA just
uses the h* function as the evaluator. The order of search is according to the
numbers inside the nodes with x, the goal being reached in 5 steps. To make

h* as bad as possible (¢ = 1), we add ¢ to each node on the shortest path, and
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FIG. 7.3--The goal node is marked by an x. Other nodes are labeled by order of search
(inside) and f value outside. Five nodes are searched when x is found.



we subtract € from each node off the shortest path. If h itself was used HPA
would only visit the 3 nodes on the shortest path which is a consequence of
theorem 7.1.

One of the principal questions is the comparison between h* and g + h* as
evaluators. Both to get more of a flavor of our error analysis and some inklings
as to this comparison, we work through the example of Fig. 7.4. Let us examine

HPA using f =h* + g, as in Fig. 7.4(b). At the goal node x,

h(x) = 0, g(x =1
h*(x) =h(x) + e =0+2=2
f(x) = 3;

while at node 2 we have

h(2) = 2, g(2) =1
h*(2) =h(2)-e=2-2=0

f(2) = 1.
Node 3 has

h(3) = 3, g(3) = 2
and so both have increased by 1 from the values of its predecessor node 2.

Thus
h*(3) =3 - 2-= 1
£(3) =3

an increase of 2 from its predecessor. In contrast when using only h* (Fig. 7.4(a)),
f increases by 1. This allows the search in Fig. 7.4(b) to cut-off sooner along an
incorrect path. The results of Fig. 7.4 are: |

distance to goal = 1

maximum error € = 2
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¢ =2, f=h*

(a) 9 nodes visited

FIG. 7.4--Comparison between two possible w's for h*:
(a) w== (b) w=1

(b) 5 nodes visited
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nodes vigited f = h* are 9
nodes visited f =h*+ g are 5
We can generalize this resuit and find a formula giving the number of nodes
visited for different errors and pﬁth lengths in our binary tree space.
In analyzing the worst case behavior, we must show that h* =h + € on the

solution path and h* = h - € off the shortest path leads to the poorest searches,

Theorem 7.5:

If h1 = h2 except on the solution path where

hl(x) 2 h2(x), X on solution path

Then the search by HPA using h1 always visits all the nodes visited when using
h2.
Proof

Let u = (xl, Koy seey xk) be the solution path.

S(xi) will be the tree explored by HPA, when X, is included in set S. So
S(xy) is the set of nodes searched when HPA finds the solution path.

Let Sl(xi) be the trees searched by HPA using h, and SZ(Xi) will be the

1
corresponding trees for h2. We show by induction that
a) S;(x)) 2 S,(x))
Since hl(xl) 2 h2(x1) and nodes off the solution path
have the same values.
b) Assume Sl(xi) 2 52(xi , then Sl(xi +1) 2 Sz(xi+1).
This is obvious from the same argument as in case (a).

Therefore increasing the value of the heuristic function along the solution path

can only increase the number of nodes searched. u
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Theorem 7. 6:

If h1 = hz on the solution path, but everywhere else

hl(x) < hz(x), x off the solution path

Then the search by HPA using h1 always visits all the nodes visited when using
h,,.
Proof

The argument is similar to theorem 7.5. Now the reason more nodes may
be visited using h1 is that the values off the solution path are lower using h, and

1
hence sooner included in set S. .

Taken together the above theorems show that a worst case search occurs
when h+¢ is used on the solution path and h-¢ is used off the solution path, These

results extend to using any particular value of w in making the corresponding f. and f c

1

Theorem 7.7:

Let k be the distance from the root node to the goal node and f = g + h* be
the function used by HPA, then the maximum number of nodes visited in our
binary tree space is

| 2 v k+1 .
Proof

If the goal node is distance k from the root, then if h* is perfect HPA visits
k + 1 nodes (theorem 7.1). In the worst case with an error of €, all nodes ¢ off
the shortest path will be visited, excluding the nodes succeeding the goal node.
This is shown in our discussion of Fig. 7.4.

Case € = 0.

This is as stated above k + 1.
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Case e =1,

These are the nodes on the shortest path plus those one off the shortest
path. There are k nodes one off the shortest path so we have

k+k+1=2k +1.,

Case € 2 2,

At this point each unexpanded node (leaf) has two not yet explored successors.
The number of leaves in a binary tree grows as 2‘:‘“1 . k. So the tree for error
€ 2 2is

ok +1+2+ k+2%k+...+2 1k

S o
€=l e-1 ,
=1+2%+k 2, 2
i=1
=1+2% .k

Similarly we prove
Theorem 7,8:
Let k be the distance from the root node to the goal node and f = h* be the

function used by HPA, then the maximum number of nodes visited in our binary

tree space is

- +k+1 €

v
peet

k+1 € =0
Proof
Case € =0. i
Again by theorem 7.1 a path to a goal node distance k _from the root is found ’

by HPA visiting k + 1 nodes, if h* is perfect.
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Case € = 1,
Here as in the previous theorem HPA visits nodes 1 off the solution path

and we have

1
ok + 1= 52- k+ 1 nodes visited.

Case € 2 2,

After the first level each increment in the error allows a maximum of two
additional levels to be visited, This is because along the solution path we use
h + € and off the solution path we use h - ¢ giving a 2¢ leeway. The trees with

the maximum number of explored nodes are
3 4

%+1+~%+2%-+2k+2k+.u
S, b’ S N
€=1 €=2 €=3
+ 226-3k + 22€—2k
\*\N
€
2e-~2

These results suggest two plausible conclusions for general heuristic search.
1. The more accurate h*, the fewer nodes visited by HPA.
2. It is better to include g in the evaluator.

Furthermore the results are extendable to any tree structured problem space

with a unique goal node of interest. Namely

Theorem 7.9:

If HPA is searching any tree structured space for some goal node then
a) f=h* will visit at least as many nodes f = g + h* in the sense

of the above worst case analysis.,
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(by Ifh- els hISh-&- ela.ndh- €q 5h§_<_h+ 62, €9 > €0
Then the number of nodes visited by HPA using h; will be at
least as many as when using h; in the sense of the worst
case and with w being the same for both evaluators.

Proof

Part (b) is obvious.

Part (a) follows from theorems 4 and 5.

The major defect of the above analysis and consequently the generality of
the results is that problem spaces are ordinarily not trees. In a tree each node
has a unique path back to the root. Problem domains have circuits normally
and many alternate solution paths. Also the above analysis is for the worst
case and while these results are attainable, in practice they are unlikely. It is

important to monitor the behavior of HPA in actual problems.
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CHAPTER 8
SOME UNI-DIRECTIONAL EXPERIMENTS WITH THE FIFTEEN PUZZLE

Each problem space and each heuristic function for this space presents a
problem in selecting an appropriate w. Exclusive use of g guarantees finding
the shortest solution path, however, a price is paid in the breadth of the search.
On the other hand, using only h is possibly unstable; HPA then runs down the
search tree to great depths before changing its search to another part of the
space. This behavior is analogous to the situation described by theorem 7.4.
It is appropriate to look for a middle ground between the pitfalls of these extremes.
Let us consider a specific heuristic function, h*, used by HPA to solve prob-
lems in some problem space. We can characterize its effectiveness for a given
problem by the number of nodes N it visits in finding a solution path of length K.
A further number describing its search is its branch rate.f The branch rate p
is the number of successors a node has in a regular tree of diameter K and size
N. So given a particular heuristic function and a weighted evaluator, we solve
a number of sample problems in our space, obtaining for each solution
N, = nodes searched for this weighting
K, = solution path length.
We can then determine
P, = branch rate for this weighting

by solving for P, in

TThis is a suggestion of Nils Nilsson.
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We then use this information to select the most successful value of w for our
evaluation function.

The fifteen puzzle represents a general problem domain in having many pos-
sible alternate solution paths. It is therefore reasonable to study the behavior of

HPA using different heuristic functions with respect to some sample of problems.

8.1 Heuristic Functions

In the previous chapter, we stepped through an example of a typical fifteen
puzzle problem using a function P referred to as position count. This function
has the lower bound property 30 with respect to the actual metric on the space,
and therefore

a) f=g+wP 0fwsg1l
is admissible.
In the Graph Traverser experiments, Doran and Michie developed a more

sophisticated function which had two separate terms.
16
by s= 5 n%pf
= !

P, is the position value as in P; hi is the.Manhattan.distance from the blank square
to tile i. The experiments with the Graph Traverser found ¢ = 0.5, 8 = 2 to be
best. The addition of hi into our evaluation (@ = 0, § = 1 makes S = P) adds the
fact that a tile may not be moved unless it is adjacent to the blank position. Con-
sequently rearrangement is harder the more distance between tile and blank

(see Fig. 8.1), S still was found to be impractical by Doran and Michie and they
included the 'ad hoct (their terminology) reversal term. The reversal term is

not precisely defined in Ref, 18, The interpretation given it in our experiments

-179 -



6 7 8 12 6 7 8 12
14 13 9 b b 14 13 9
15 11 10 5 15 11 10 5

~— ~~
{9 (i)

FIG. 8.1--Tile 5 is easier to move in (i) because it is next to the blank.

is described by the following Algol segment.

R:=0;
fori:=0 step 4 until 12 do
for j:=1 step 1 until 3 do
if board (i+j]=board [i+ i+ 1]+1
and board [i+j]=i+j+ 1 then R:=R+ 1;
fori:=1 step 1 until 4 do
forj =0 step 4 until 12 do
if board [i + j] = board [i + j + 1] + 4 |

and board i+ j]=i+j+4 then R:=R+ 1;

The reversal count R as defined above is incremented whenever two adjacent
tiles are interchanged from the goal position. The reversal term used by the
Graph Traverser* differs from ours in relaxing the requirement that the tiles be
in their goal positions. Instead, they may be in any adjacent positions within
their goal column or row. Since our purpose is to test the effect of w weightings
on heuristic search it is unnecessary to have the same heuristic functions as the
Graph Traverser. In fact the function developed using the Graph Traverser is
too good to be interesting. A function so reliable behaves well over a wide

range of w values as expected from theorem 7.1. This situation is unrealistic in

sk
Private communication with Jim Doran.
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difficult problem domains, and heuristic functions with significant error but of
positive benefit are more interesting. l

The above terms were combined into four different functions.

1. f1=g+w°P
2. fop=g+w: (P+20R)
3. f3=g+w-S
4, f4=g+we(S+20-R)

The reversal term was weighted by 20 because this is approximately the number
of moves times reversals it takes to solve a position whose only defect is a pair
of reversals. The functions { 1 and f2 constitute one pair of related functions and

f3 and f 4 are another pair. The basic term of the first pair P is a naive heuristic

in comparison to S, the basic term in the second pair.

8.2 Data

Figure 8.2 shows the ten positions used in our experiment. They cover a
wide range of difficulty and special features. Al and A6 have their top two rows
already in order. However A6 has many reversals. A9 is almost in reverser'
order, so the individual tiles are quite far from their goal squares. A8 is the
configuration appearing in Ref. 18 and A10 is a puzzle used by Ref. 56, The rest

of the positions are randomly selected.

8.3 Experiment
An Algol W program (Appendix III) incorporating the HPA procedure was run

with positions A1 - A10. Functions fl and f2 were run with w = 1, 2, 3,4, 8, 16, «~,
Functions f3 and f4 were run with w = 0,5,0,75,1,1,5,2,3,4,16,~, For each
case the solution path length and the number of nodes expanded were recorded.

If the number of nodes expanded reached 1000 the search was terminated without
a solution. This then was an arbifrary limit selected as being the highest price

we would pay for a solution. ,
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8 4 6 5 14 1 b 15
3 2 1 11 6 3 8
A9 Al0

FIG. 8.2--Initial positions and code numbers used in experiments,

The different values of w tested for fl and f2 versus f3 and f 4 come from
normalizing h with respect to g. P normally underestimates the actual distance
to the goal, while S generally overestimates the actual distance to the goal. In
making these calculations for position Al we have P=12 and S=47 where the actual
distance is 12. To have equal importance in the evaluator, the h term must be
normalized or scaled to the g values. Since S is an overestimator, we use

smaller values of w in our tests with it.
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8.4 Resulis

The performance of the different heuristic functions varied significantly with
w, Tables 8.1 - 8.4 show the results for the four functions and ten positions.
All of these functions were of positive benefit in pruning the search space. In
conducting a parallel search (f=g) with position A1, the search was terminated
when 1000 nodes were expanded. The tree depth was 9 which is 3 away from the
solution. This, being the simplest puzzle, shows that exhaustive search could
not within the 1000 node limitation solve any of our problems.

Function f 4 Was the most powerful evaluator, followed in order by f2, f 1
and f3. f 4 solved problems most consistently and with the fewest nodes expanded.
The P functions fl and f2 were much nearer in performance than the S functions
f3 and { 4° The reversal term was much more significant in improving the S
functions than the P function.

Function f2 was better than function fl in 37 cases, while f1 was better than
f2 7 times (this is out of a total of 70 cases). The scorecard for £ 4 Versus f3
was 60 to 1 out of 90 cases. Case Al was not significant in these comparisons
and other ties normally occurred because 1000 nodes were reached by both func-
tions. Function £ 4 with w = 1.5, 2,16, solved all the problems, Function fz
with w = 4,16= solved all but one problem. The best performance for f3 was
w = 0,75 which solved 6 problems; Whilé fl with w = 3,4,8,» solved 6 problems.
Except for w = 0.5, £ 4 solves at least 9 out of 10 problems for each w value. It
was also best in the sense of visiting fewer nodes, on the average, than f, the

2
next best function. For example, comparing f2 with f 4 with w =, f 4 Vas better
in 5 problems than f2 and looks at 2928 nodes; while f2 is better in 4 problems
and looks at 3459 nodes. Comparing the fewest total nodes visited, f1 was best

with w = 3, f2 with w =4, f3 with w = 1.5 and f4 with w = 1,5,
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Results for f1 =g+ w.P

Table 8.1

Al A2 A3 A4 A5 A6 AT A8 A9 Alo Total N
N K| N K N K N K N K N K| N K| N S\ | K N
1128 12 }1129 26 |1000 - 120 20| 1000 - | 1000 - | 1000 - | 1000 1000 - 1000 7277
2112 12 66 28 | 585 36 69 20 1000 - 11000 -} 1000 - | 1000 801 86 | 1000 6533
3/12 12| 35 28| 930 48 | 122 20 | 1000 - | 393 36| 317 38 1000 1000 - 1000 5809
4112 12| 36 28 [1000 - 228 20| 368 44| 447 36| 900 42| 1000 1000 - 1000 5991
gl12 12 | 36 28 | 1000 - 326 32| 516 44| 834 40} 431 62| 1000 1000 - 1000 6166
16{12 12| 36 28 |1000 - | 418 32| 1000 - | 1000 -1 279 62] 1000 1000 - 1000 6745
w|12 12 |996 86 | 853 148 119 21 | 1600 - | 1000 - 514 801 1000 360 152 | 1000 6854

N = nodes visited

K = solution path length
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Results for

Table 8.2

=g+ w(P+20-R)

2

Al A2 A3 A4 A5 A8 AT A8 A9 A10  Total N

N k|N k|N K| N K|N K|N K|]N K|N K|N K N K :
1{12 12| 66 26]1000 - | 106 20 |1000 - [1000 - [1000 - {1000 - 1000 - | 1000 - | 7184
2|12 12| 35 28f1000 - | 60 20 |1000 - | 443 32| 81 36[1000 -|1000 - | 1000 - [ 5631
3l12 12 36 281000 - | 84 20| €53 46| 663 40| 97 361000 -] 313 92 | 655 64| 4513
4|12 12| 36 28| 705 62 | 124 20| 206 46| 317 36| 118 48 [1000 - | 155 92 | 270 64| 2043
8|12 12| 36 28| 598 66 | 320 38| 189 46| 248 48| 124 48| 240 s85{1000 - | 1000 - | 3762
16{12 12| 36 281000 - [ 209 34| 323 66| 129 58| 610 66| 245 85( 691 120 [ 865 90 | 4120
w12 121433 104 121 58 | 119 20| 123 46 | 133 56| 138 58| 742 203] 648 196 | 1000 - | 3469

N = nodes visited

K = solution path length
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Table 8.3

Results for f3 =g+w.§

Al A2 A3 Ad A5 A6 A7 A8 A9 Al0  Total N

N K| N K| N K|N K|{N K| N KI|N N N K N K
0.5 |13 12| 48 261000 - | 31 20|1000 - |1000 - |1000 1000 1000 - | 1000 - | 7092
0.75/12 12 |1000 - | 286 42 | 26 20| 783 38 | 401 32 | 1000 1000 1000 ~ | 737 74| 6245
1 J12 121000 -~ | 488 40 | 26 201000 - | 754 38 | 1000 1000 1000 - | 511 78| 67191
1.5 j12 12 {1000 - | 394 48 | 26 20| 108 46 | 269 44 |1000 1000 1000 -~ | 1000 - | 5809
2 |12 121000 - | 203 48 | 26 20 [1000 - | 441 44 | 1000 1000 1000 - | 1000 - | 6682
3 |12 12|1000 - 1000 - | 24 201000 - | 250 40 |1000 1000 619 196 | 1000 - | 6905
4 |12 12|1000 - 1000 - | 24 20)1000 - | 438 40 | 1000 1000 1000 -~ ] 1000 - | 7474
16 |12 12|1000 - |1000 - | 24 20]1000 - |1000 - |1000 1000 1000 - | 1000 - | 8036
w |12 12 [1000 - | 178 80 | 24 20} 377 106 | 1000 - | 1000 1000 1000 - | 1000 . - | 6591

N =nodes visited

K = solution path length
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Table 8.4

Results for f, =S+ w. (S + 20+ R)

Al A2 A3 Ad A5 A6 A7 A8 A9 A10  Total N

N K|N K| N K |N K|N KIN kK|N K|!N K| N K|N K
0.5 |13 12| 48 26|1000 - |31 20|s8es 38 |1000 - [1000 - 1000 - (1000 - }1000 - } 6960
0.75112 12222 40| 78 42 )26 20[258 38| 282 38 | 933 38| 675 95]1000 - | 349 72 3835
1 liz 121306 40} 97 42|26 200|208 46| 162 38| 344 48 [ 882 1071000 - | 288 82 | 3410
1.5 12 12|230 60| 207 5226 =20f 98 46 | 267 46| 283 48 | 552 123 | 803 140 249 88 | 2720
o |12 120215 62} 154 72 {26 20202 76| 224 48 | 317 68 | 613 133 | 611 140 | 648 108 | 3022
5 |12 12]188 62| 350 72|24 20]168 76| 166 48 | 407 68 | 992 149 | 405 1761000 - | 3707
4 l12 12 |18a e2| 380 72|24 20[157 76| 162 48 | 493 68 [1000 - | 649 164 | 999 140 | 4055
16 |12 121173 62| 415 10224 20|147 76| 162 48| 257 102 | 783 185 | 552 208 | 882 122 | 3407
« |12 12}161 64| 370 102 |24 20|155 78 | 157 50 | 300 60 | 332 155 | 558 226 | 859 126 | 2928

N = nodes visited

K = solution path length




QOverrelaxation

The initial p values of the ten problems (table 8,5) show that P is roughly an
underestimate of about 1/2, the shortest solution pawu. S is an overestimate of
ahout twice the shortest solution path. The results for both the P functions and
the S functions are better for w values that cause an overestimate of the distance.
This is similar to theorem 7.1 which said that for w 21 the perfect heuristic esti-
mator was optimal. In underestimating we suffer from broadening the search; in
overestimating this does not occur (see Fig. 8.3). The behavior of search with

respect to w is akin to relaxation in elliptic differential equation methods.

Table 8.5

Initial values of the heuristic functions and the shortest solution paths found.

Al A2 A3 A4 A5 A6 AT A8 A9 Al0 Total
P 12 24 18 14 24 12 20 39 52 | 32 247
S 32.2| 82,2 {68.4139,3]|80.2|40.9|51.8]183.6|344 |139.8 | 1062.4
kmin 12 26 36 20 38 32 36 85 86 | 64 435
Dead-ends

The significant effects of reversals on the more depth first heuristic, S, is
also noteworthy. In backtrack search, the main efficiency is a result of the
immediate abandonment of a dead-end, as soon z;.s it is detectéd. 26 In a heuristic
search application to checkmates, Huberman's worse functions31 provide examples
vof dead-end detectors. Similarly to place a large value on reversals produces
dead-end behavior in the fifteen puzzle, The more depth first the search, the
more important to detect dead-ends. It is the difference between the worst
evaluator f3 and the best evaluator £ 4 Dead-end detection serves an analogous

purpose to using compound heuristic search as opposed to pure heuristic search.
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FIG. 8.3--Performance of each evaluator with respect to w.
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In compound search a particular path is no longer searched when its progress
does not justify initial expeéta.tions. Dead-end detection is a more cathartic
form of recognizing that progress is not keeping up to expectations.
8.5 Remarks

In general as w increased, path length k | increased and branching rate p
decreased (see table 8.6). These results, along with the observations on dead-
end detection and overrelaxation are more qualitative than quantitative. It is
indicative of the importance of developing this theory in general problem solving
domains. Minimally one could say that compound heuristic search is a more

general and efficient procedure than pure heuristic search.

Table 8.6

Density vs. Path Length for Function f 4° Problem Ab

w kw P, N
0.5 38 1.129 868
0.75 38 1,083 258
1 46 1,054 203
1.5 46 1.029 98
2 76 1,023 202
3 76 1.018 163
4 76 1.01% 157

16 76 1.016 147
0 78 1.016 155
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CHAPTER 9
BI-DIRECTIONAL HEURISTIC SEARCH

After seeing the sizable gains in computational efficiency made by bi-
directional methods in the shortest path problem, it is desirable to extend these
benefits to the heuristic case. E\-f[any problems have a known goal or goal set, and
the additional power of the bi-directional technique is a welcome aid in these
cases. At first, as in Ref. 30, we want the extension of VGA to the heuristic
case preserving admissibility.

Before going on to the extension, we would like to deal with two common
objections to the use of bi-directional techniques.

1. They are only useful when both the goal node and the initial node are
specified and the graph is symmetric. (This remark is inferred from Ref. 18,
p. 257.)

As we have already seen with VGA:

a) We may have a goal set and an initial set rather than
single nodes;

b) The graphs may be directed (unsymmetric);

c) If a property specifies the goal, it normally determines
a set, which as we note in seétion 2.4 can be handled.

2. The extra bookkeeping for bi-directional methods, especially the test
for a node lying in the intersection of forward and backward trees makes the
method cumbersome.

This was not the case in VGA and in the description (to follow) of the program
a general method based on hashing, simulates associative search and efficiently

finds nodes in the tree intersection along with providing a simple test for redundancy.
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9.1 Extension to Bi-directional Heuristic Search

The extension of the class of uni-directional admissible algorithms Ax30
to bi-directional algorithms at first appears simple. Naively, one would in VGA
replace g by fs =gt hs' This seems reasonable and worked in the uni-
directional case where Dijkstra's algorithm was so extended to the class A*,
However, a modification of our canonical counterexample, to include Euclidean
information (see Fig. 9.1) as the heuristic information refutes the above extension
of VGA. In the figure the Euclidean distances are marked above the dotted lines,
with the example drawn accﬁrately to show it is realizable in the plane, We step
through VGA modified as described above using for Btép 2 the alternating rule:
on odd iterations use the forward direction and on even iterations use the backward

direction.

Iteration 1:
s is placed in S fs(s) =6
t is placed in T ft(t) =6
nodes a and b are placed in s
_ S
fs(a) =1, fS(b) =17 8
nodes a and c are placed in T
' 5
ft(a) =1, ft(c) =13

node a is min in S and is placed in 8, t is placed in §, f(t)=8.

Iteration 2:

node a is min in T and is placed in T a e SNT and therefore we go to step

6 of VGA to terminate.
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FIG. 9.1--Euclidean counterexample. 126948
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The only path found is (s, a,t) with length 8. Howe\fer this is the wrong result,
the path (s, b, c,t) has length 7% . . Thus the algorithm is not admissible even
though the Euclidean metric satisfies the lower bound criterion and the 'consis-
tency' (Ref. 30, p. 12) condition for heuristic functions. | The problem is more
complex than the uni-directional extension, and possibly the more complete use of
the heuristic information must go into the selection of the next node to be expanded

An attractive criterion for expansionis the minimum over
vxeSwyeT (gs(x) + h(x,y) + gt(y))

where h(x,y) is a heuristic estimate of the distance from xto y. We want h to

behave nicely and we use an h which satisfies consistency so

hix,t) < h(x,y) + g,(y)

This means that we need only look at te T (and it must always be in T from the
initialization step). Then we have come back to the original algorithm which was
shown to fail, So even this calculation, almost exhaustive with respect to both
the forward and backward sets adds nothing. In fact if we had not deduced its
equivalence to our previous ‘method, we would have to calculate O(Igl . ﬁ‘l)
computations per iteration which is not computationally feasible in problems of

interest.

9.2 Correct Extension — The Very General Heuristic Algorithm

The above attempts are of interest in displaying the subtlety of the problem
in bi-directional approaches. When dealing with the shortest path problem, Berge
and others had trouble because of the terminating condition. We have been hesitant
in our extension to the heuristic case of challenging one previously well oiled ter-

minating condition. Once again, it is just this point that is the stumbling block.

- 94 -



In reconsidering the problem, an elegant device will be used, which hopefully
clarifies and lays to rest the termination confusion. In place of distance we will
substitute the concept of excess or waste. Waste will be the amount a solution
takes over some optimum which is estimated initially. Equivalent to finding the
least wasteful path is finding the shortest path. We define r* to denote our original

estimate of optional distance.
* = =
r hS(s) ht(t) .
the waste in the forward direction is
= - ¥ = -k

wgm =f () -r¥*=g (n) +h (n) -r*
and in the backward direction is

wt(n) = ft(n) -r*= gt(n) + ht(n) -T* .

We can now describe VGHA - the very general heuristic algorithm, where
the changes from VGA will be that w s and w, are used in place of Bg and g Also
the termination condition is changed and the h used in computing f satisfies both
lower boundedness and consistency. The consistency assumption (Ref. 30, p. 12)

is a form of triangle inequality for the distance estimators used in these domains.

VGHA
1. Place s in S and calculate a W for all successors of s placing them in S.
1 - %
W (%) !(esxi) +h(x)-r
wf(xi) =8
similarly calculate all predecessors of t, placing them in T and t in T.
Set & in =%

2. Decide to look at either §or T.
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3. If S was selected in step 2, then select node x€8 which has the smallest
Ws(xi)'

4, Place x from step 3 in S and check if xe SNT, If yes then
= 1 - ¥
8 - min (amin’ gs(x) + gt(x) r )

5. For each successor (predecessor) of x calculate WS(Wt) and see if they

are in §(%) yet. If not place in g (%) where
L x) = gs(x) + ¢ (ex(x)) + hs (x) -r*
wf (x) =x

If the successors (predecessors) are already in S (T), but the new value is lower,
update the values.

6. If

A in S max(;n;% (&S(X)). :leu% (Wt(X)))

then terminate with the path that gave this 2 in® Otherwise go to step 2.

We will show that this algorithm is indeed correct for any decision procedure
used by step 2. Belore going on, note that r* is a constant throughout the compu-
tation and may be dropped without changing the order in which nodes are found or
the path found. The notion of waste is a didactic one and makes the algorithm
more persuasive in its correctness.

Also at this point it is useful to step through the algorithm using our previous
counterexample. We again employ an alternating strategy. The reader is wel-
come to employ any strategy he can think up. For example a forward uni-directional

strategy clearly yields the admissible algorithm A*,
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Iteration 1:

r¥=6
s is placed in S

w_ (8) =0

s
t is placed in T wt(t) =0

b,aareplacedin§

gl a4l o8
ws(b)—32+48 6-18

wS(a) =44+3-6=1
c,a are placed in T
2 _
Wt(C) =1g wt(a) =1
node a is min in S and is placed in S

t is placed in § wit)=8-6=2,

Iteration 2:
node a is min in T and is placed in T

s is placed in T Wy(s) =8-6=2
aeSNT and a =2

This is not a minimum over either S or T and so the algorithm continues, where

before we stopped (incorrectly) at this point.

Iteration 3:

node b is min in § and is placed in S

3

¢ is placed in § Ws(c) = 14

a_ . is still too large.
min

Iteration 4:
node ¢ is min in T and is placed in T
b is placed in T w (b) = 1-2

a . in 18 still too large.
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Iteration 5:

node ¢ is min in § and is placed in S

- 13
ceSﬂ‘T, A in " 14

which is 2 minimum for either set § and T and therefore we halt with path (s, b, c,t)

the shortest path from s to t.

9.3 Correctness of VGHA

The argufnent is even simpler than the one for VGA. In essence, the algorithm
only terminates when the actual waste of the current best path is less than any esti-
mated waste of the set of possible paths. Since h a and h, are always a lower bound,

t
actual waste must be at least as much as expected waste, and therefore we have

the shortest path.

Theorem 9,1:

Upon termination, the path from s to t found by VGHA is the shortest path from
s to t. We are assuming positive edge lengths and the existence of some path.
Pf.

Consider the algorithm terminated with path u = (xl,xz, esoy xk), but that this

is not the shortest path. The shortest path is instead p* = (yl,yz, teuy yp_)

By lemma 2 of Ref. 30, any node in S or T has a shortest path already found, leading
back to respectively the initial or terminal node. Now there is some ¥; and yj, such
that i < j and yiES, yi+1¢'S and v; €T, ¥i-1 ¢ T, If this were not so, p* would
have been found before termination. We claim;: »

YslVi1) < 2nine Vis1

Wt(yj—l) <A in’ Yj-le T
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This is because hS is a lower bound and therefore wS must be a lower bound on

waste for nodes with their least gs(n).

vSince Lu*) < fp), its waste is smaller and so is any lower bound on this
value. Thus, the algorithm could not have been terminated, because a in is not
less than or equal to the minimum waste over either Sor T.

The algorithm must terminate since all nodes are eventually placed in either

S or T, including those on the shortest path (Ref. 30, p. 10). =

Corollary 9.1:

if hS and ht satisfy the lower bound condition, but not necessarily consistency,
then VGHA still terminates with the correct solution, if step 5 is modified. Step
5 must add the following: If a smaller value of W (wt) is found for a node already
in S (T), then the node is removed from there and placed back in s (T).
Pf.

The above proof of theorem 9.1 is used here again as the central argument.
However lemma ! of Ref. 30 must now be used to show there is a node x in §,

xep*withw () < a . . A similar node exists in T,

The heuristic functions hs and ht need not be defined in similar fashion, so
long as each satisfies the lower bound condition. However one ordinarily makes
use of the best possible heuristic function available. In so far as one regards
growing the shortest path tree S (or T), the results of Ref. 30 hold with respect
to one heuristic function dominating another. If h s1 18 always a greater lower
bound than hsz,then the tree hSl grows will be at least as sparse as the tree grown

using hsz (theorem 3 in Ref. 30) out to any given node along the shortest path.
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9.4 Strategies in Bi-directional Search

After selecting appropriate heuristic functions, we are again confronted as
was the case with VGA, with what decision rule to use in step 2 of VGHA. In
proposing an optimal strategy for VGA, we made two hypotheses

1. monotonicity of Sand T
2. equi~probability of any node in these open sets being
the next node on the shortest path.

The monotonicity hypothesis is usually satisfied in large graphs with an
average degree of greater than one, which is also a characteristic of complex
problem domains. The fifteen puzzle has a cardinality of 16!/2 with an average
degree of three. The equi-probable hypothesis coupled with the monotonicity
hypothesis means that as the algorithm iteratively augments S and T, the sets
grow larger and the probability at a given iteration of finding the next node of the
sh.ortest path decreases proportionately to the size of the set. Under these con-
ditions, the cardinality comparison strategy produces the best selection of either
the forward or backward direction in the sense that the expected number of nodes
visited is a minimum over all strategies. A further justification is that if the
decision on a particular iteration is independent, then it is clearly better to
choose from the smaller set.

Our hypotheses are reasonable and VGA following the cardinality comparison
decision rule outperforms other strategies, However, as in the case of the mono-
tonicity hypothesis discussed previously, the equi-probable hypothesis is not exact.
In point of fact the edges of a graph are not equi-probable in the number of
occurrences along the shortest paths, but in some complicated fashion these
probabilities are inversely proportional to the edge lengths suitably normalized

with respect to the smallest edge length. The longest edge in the graph has a
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smaller chance of lying on some shortest path than the shortest edge; providing
they are not of equal length.

Consider a directed graph of size n with edge lengths distributed from 1 to n.
An edge of unit length must. appear in at least one shortest path -— namely the path
it constitutes. However, an edge of length n (or even of length 2) may appear in
none. For example, the graph in Fig. 9.2 where there is a Hamilton circui’c49
with each edge of unit length. Edges off the circuit are of length seven. The
longest shorteét path in this graph is of length three (u = (1, 2, 3,4)) and only edges
of unit length are included in any shortest path. Theoretically, a probability
should be assigned to a node in an open set depending on its distance from the
root node in comparison to the other members of the set,

A decision strategy to be optimal must select the open node that has the
highest probability of being on the shortest path. Each set S or T must be con-
sidered separately. Each will have a current best candidate whose probability
of being on the shortest path is related to the values of the distance computed for
each member of the set.

Set S has |S| nodes each having some distance (or waste) value. If Py Py
veey Pig BT the probabiliﬁes that a given node is the next node along the shortest

path, then we must have

~

> py=1

i=1
where we select the node with the highest probability. We also do this for T and
then compare, ta.king that direction and node with the current maximum probability.
If for example, there is only one node in set S then no matter what its value

(of waste or distance), it must lie on the shortest path.

ISI=1
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FIG. 9.2--All shortest paths are subpaths of a Hamilton circuit.
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and
1
E pi:]"

i=1

Consider some computation reaching the following situation:

s = (xl, xz,xs)

T= (y,,5,)
fs(xl) = 5, fs(xz) =5
£(xg) = 200
f(y,) =100
f(y,) =100

Knowing nothing else about these nodes we have

= :12
Pyl Pyz /
p, =p, =1/2-¢ p -
Xy X, Xq 2€

So we would select the backward direction choosing either ¥, OF ¥, even though
ft(yl) > fS(xl) . Sinée a graph is a complex structure, a distribution of edge
lengths and the consequent probabilities induced with respect to a given shortest
path problem is exceedingly difficult to calculate. The equi~probable assumption
is a workable approximation which requires no additional computation.

The theoretical results (theorem 4.4) stillhold for VGHA, but the discussion
of probabilities must now include thé heuristic estimator. A node whose expected
path length is small is better than a node with a larger expected path length. We
also have to worry about the accuracy of our heuristic estimate., Thus VGHA
provides a more complicated decision problem then VGA, and cardinality com-

parison is again a pragmatic solution, However, some other problems arise in
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bi-directional heuristic search strategies, and in our discussion of open guestions

we will make further comments on this topic.

9.5 Associative Search as a Solution to Redundancy and Intersection

Previously we had mentioned the antipathy tobi-directional search because
of the extra mechanism involved — especially with regard to the termination
problem. Step 4 of VGHA asks to check if xe SNT. If x was just placed in S, we
xﬁust search all the nodes of T for that same state. In the VGA case we normally
have an explicit representation of a finite graph of n nodes. We can then keep

logical vectors for each set.

Boolean array SVEC, TVEC [1:n];

comment SVEC[i] =true if node i is in set S — similarly for TVEC.
When node i is placed in set 8 its SVEC [i] is set true and the check
for intersection is:

if  TVEC [i] then go to intersect

eise go to nointersect .

When a node i represents some state le and the nodes are being generated by
a successor (predecessor) routine, we do not have a predetermined node-state
labeling. The check for whether some state .i'r'i is in a given set requires a
search of the set node by node with a comparison of the associated states to \Ti .
This comparison is necessary not only in determining xe SNT, but is also needed
for finding out if a new node is redundant.

In generating search trees where the space contains cycles, the same state
can be reached along many alternate paths. These redundant nodes can be ignored
and left in the search tree, or for each node generated a redundancy check can be

used. This requires checking each new node against all others generated in the
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same search direction. The work involved in making a simple comparison search
would be O(n% where n is the number of nodes in the final search tree. For spaces
where there is likely to be a small amount of redundancy, the extra effort in
weeding it out is greater than generating a small number of nodes redundantly.

The redundancy problem and the intersection problem are both the same
problem. There is a minor differénce in that the redundancy problem requires
the check to be in the same search tree as the state of interest, while the inter-
section problem requires the check to be in the opposite tree as the state of interest.
Conceptually what is needed is an associative search. A state is a vector

= _ {1 (2 (k)
vi—(vi » VT eees Vg

) and a simple hash function over this vector would allow
us to simulate associative search.

One hash function possible, which we use in our implementation is

hash = 52 3. 9D
ash, & jevy i

where each node with this hash value is chained together. Then a check for
redundancy or intersection consists of computing the hash value and doing a
chained search of all nodes with this hash value. The search reduction possible
for a well-behaved hashing scheme is on the order of the number of equivalence
classes produced by the hash. Experimentally, a function of the above form was
used with the fifteen puzzle — dividing the 16!/2 positions into 680 equivalence
classes. This produced two orders of magnitude increase in running time for
1000 node searches. The hash chains were between 0-30 long for a tree of size
1000, which is a considerable improvement over searching the whole tree.

The importance of this computational idea should not be underestimated.

This idea recurs throughout combinatoric and enumerative programming. In

some sense the hash provides a semi~canonical form. It is even conceivable
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that the hash be the truncated evaluation value of the node, These uses of a hash
places the bi-directional search inner loop almost on a par with the uni-directional
search inner loop, which does not need to check for intersection but just if x is the

goal.
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CHAPTER 10
FURTHER OBSERVATIONS, OPEN PROBLEMS, AND CONCLUSIONS

It has been productive to use a computational approach to the shortest path
problem. This computational — combinatoric — heuristic blend has also been
useful in the Hamilton path problem,49 the traveling salesman problem, 35 and the

13,59

graph isomorphism problem. This area is pregnant with untried possibilities

for usefully handling difficult problems. A noteworthy achievement will be the
unification of these methods into a package48’ 53 with interactive capability. 3,38
These will aid in solving applied problems such as optimization of resource allo-
cation, and will also help graph theorists generate and test examples and

conjectures.

The work on efficient graph algorithms is just at a beginning stage, The idea

35,49, 51,58, 59

of using local properties, which may be easily computed, to aid in

some global calculation normally requiring an exponential amount of work is gaining
wider attention. Large graph problems, like constrained optimal path problems,
certainly require the special intuition the computer scientist has in regard to

efficient computation.

10.1 Network Flow Algorithm

One immediate extension of our work on bi-directional shortest path methods
is to the network flow algorithm of Ford and Fulkerson. 25 The heart of their
algorithm is the flow augmenting procedure. This is just a path finding procedure
which can be handled by our more efficient bi~directional methods. This gains a
factor of efficiency over the ordinary uni-directional method, which is comparable
to the improvement in the shortest path algorithm. It is probable that bi-
directional techniques are feasible for other search problems with similar

computational savings.
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In using the path problem as a vehicle for studying artificial intelligence in

a rigorous manner, many open problems and extensions of our work and the

19,37,34,55 r

recent work of others emain.

10.2 Bi-directional Intersection

In the shortest path problem we have the bi-directional search expanding like
two wave fronts in shortest path space. In the heuristic path problem we have the

search expandri.ng like two cones (see Fig. 10.1). Effective use of bi~directional

a) expansion h=0, f=g

’4:) b) expansion f=g+w-h
7‘1‘.

FIG. 10.1--Bi-directional search.

4]

heuristic search requires that the cones meet each other near the middle of their
separation. Otherwise, if they intersect near the endpoints it is twice the work

of uni-directional heuristic search. When bi-directional search works, it provides

a means of finding solutions of path length 2k with only twice the computation

needed for the uni-directional search of a solution of path length k. The uni-
directional search would need O(pk) extra work. The payoff in making bi-directional
heuristic search work is therefore quite large, leaving the solution to the intersection

problem an important open question.

- 108 -



At first, we anticipated no problem and because of the symmetry of the 15
puzzle,ran a simple alternating bi-directional search. The typical result was
that both the forward and backward tree had grown almost complete but separate
solution paths. Intersection would occur near one or the other endpoint rather
than the middle of the space. It then becomes apparent that each heuristic search
tree is a tiny sliver in the search space and very unlikely to intersect each other
even when moving appfoximately toward each other. It is as if two missiles were
independently aimed at each others base in the hope that they would collide. Two
attempts were made to guidé the trees toward each other, but neither have yet
proved fruitful,

Intermediate Board Conjecture

Suppose we have an initial state Vs = (Vél), coey vék)) and a terminal state
Vt = (Vi(:l)’ osey vt(:k)) and we can conjecture some intermediate state Vi = (vgl),
veay ng)). We then take our heuristic function which in the forward direction is
measuring the distance from node x to node t and add a term corresponding to the
distance from node x to node i and similarly for the backward evaluation. We
should then have a search which would steer toward its respective endpoint by
way of the intermediate position.

The method does not specify that the intermediate node must be visited —
only that it is used as part of the heuristic evaluation., We could have specifically
subdivided the original problem into two sub-problems of finding a path from s
to i and from i to t. This idea which is close to the notion of "lemma' in
theorem proving is certainly an important one, and an interesting topic for further
research. The "lemma' conjecturing problem and planning in general fit

naturally into our model.
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In using the intermediate board conjecture for weighting our search we hope
to improve our intersection likelihood. For example two possible intermediate

classes of positions in the 15 puzzle could be the ones in Fig. 10.2. We could

1 2 3 4 1 2 3 4
5 6 7 8 5 x x X
X X X X 9 x x X
X X X X : 13 x x x
a) halving b) 8-puzzle reduction -

FIG. 10,2--Intermediate board conjecture.

calculate P for a board position and add the indicated positions twice, This was
tried and did not work. It seems that the interaction between aiming at a goal
position and simultaneously placing emphasis on certain vector components is
complex and must be studied in more detail.

Shaping

Another possibility is the continuous updating of the heuristic function to
measure the distance to the front of the opposite search tree. This is using our
function to continuously re-aim our missiles at the point that the opposing missile
just reached. In experimenting with bi-directional methods using this type of
search tree 'shaping,? we also had no success. The searches produced in this
instance were much worse than without shaping. Possibly the fact that the
heuristic functions are inaccurate creates a severe instability when continually
re-aiming the search,

Both  shaping and weighting intermediate positions have been examined.

The effective use of bi-directional heuristic search is important enough to warrant
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further investigation into pragmatic and theoretical devices for forcing search

tree intersection.

10.3 Learning

In Chapter 8 we explored empirically the relation of search efficiency to
a parameter w. The adjustment of this weight could be "learned" as HPA solved
problems in a particular domain. In general we may have several heuristic
functions hl’ hz, ey hk and g. These are functions over the state space which
we would like to use in directing our search. In a simple instance we may attempt

to find some linear combination

J‘f=g+w1h1+w2h2+...+c;.:khk

where the wi's are adjusted as in Ref, 54,
More interesting is to attempt to find automatically a useful heuristic function.
Possibly these are observed by noting interesting structural characteristics of

the space.

10.4 Structural Features — Bridges

In Ref. 2, Amarel notes the importance of 'narrows' in these graph spaces.
These are in more traditional terms proper cut-sets with bridges being especially
importa.nt.g’ 14,28

A cut-set of a graph is a set of edges which, when removed from the graph,
leaves the graph unconnected. A proper cut-set is a cut-set which has no proper

subset which in turn is a cut-set. A bridge is a cut-set of one edge, and is there-

fore identically a proper cut-set. A graph is called h edge-connected*, when h

is the cardinality of its smallest (proper) cut-set (see Fig. 10.3).

*x
Berge7 calls this h~-coherent, but we will from now on refer to graphs as h-
connected, meaning edge-connected.
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FIG. 10.3--Edge (c,d) is a bridge.

Find all the bridges in a graph. One can do this simply by removing each
edge in turn and checking the remaining graph for connectedness. There are up
to n(n-1)/2 edges in a loop-free undirected graph and this approach is obviously
too tediocus.

At this point let us note a simple theorem (Ref. 11, p. 18):

"Every spanning tree has at least one edge in common with
every cut-set of a graph."

In particular, we note that any spanning tree mﬁst contain all bridges of the
graph. Generating a spanning tree is a simple coinputation, and is onthe average
only twice the work of generating a path. Now in a dense graph there are many
spanning trees possible, and by suitably generating successive spanning trees and
intersecting their edge sets, one should be left with only a smaller number of edges

(< n) to check as bridges. This then is the method we outline below in detail.
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Spanning Tree Algorithm

1.

5.

Mark all nodes as unreached and unused.

. Choose some node i €G as the root node and mark it reached.

Select any node n that is reached but unused and mark it used.
Mark all nodes n,_, which are connected by an edge to n and |
not previously reached as reached. Include the edges (n, nk)
in the spanning tree.

If all the nodes in G are reached then halt, else go to step 3.

By selecting different root nodes and by suitably varying the order in which

nodes are examined in step 3, a reasonably different sampling of spanning trees

will be constructed, if possible. One simple possibility is to use reached nodes

in ascending value and varying this by next choosing them in descending value.

Also this algorithm is a test for connectedness, for if no reached but unused

nodes exist at some stage before the computation halts, the graph must be

unconnected.

- Bridge Finding Algorithm

Compute two spanning trees in different (as possible) ways.

Find the set of edges in the intersection of these two trees —set I,
If I is empty halt.

Take the first edge in I and delete it from the graph and from I.
Generate a new spanning tree (again try to make it different from
the previous ones). |

If the tree does not have all the nodes of the graph, then list the
removed edge as a bridge. Otherwise, intersect the new tree

with I to obtain the new I. Return to step 3.
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Remark: At most n-1 spanning trees will be constructed, where this limit is |
attainable. |
Pi.

A spanning tree of a g-réph of size n has n-1 edges. Therefore set I can have

at most n-1 edges initially. If the graph is just a simple circuit:

X=1{,2,3, ..., n} '
E={(1,2, (2,3, ..., (0,1} ,
then the maximum number of intersections will be achieved.
.If the graph of interest is dense, then there will be many possible different
spanning trees. The intersection of two of these will leave but few candidate edges.
Outside of an iteration required for each bridge found, the algorithm will normally i
need only a few intersections before all extraneous edges are discarded. In |
implementing the algorithm, the number of intersections stayed between three
and five over a wide range of graph sizes and densities.

Generalization

The more general problem of finding the minimum proper cut-sets of a graph
is a great deal more difficult. Methods based on the repeated use of the Ford-
Fulkerson network flow a.lgorithm,25 with edge capacities identically one, can be
used. The fundamental result is that the maximum flow is equal to the minimum
cut capacity and the Ford-Fulkerson algorithm may be programmed to find the ‘
cut-set. In the case of bridges, obviously the tree intersection algorithm requires |
substantially less work. While the Ford-Fulkerson algorithm is efficient, it is
more complex than the simple tree spanning algorithm, and each iteration of it is
about the same work as a complete spanning tree computation.

It is possible to generalize our method to cut-sets of higher order. Consider

a cut-set of cardinality 2; name it C 9° By our theorem, each spanning tree must
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include one or the other edge of Cz. Therefore if k spanning trees are generated,
some member of C, will appear more than k/2 times, If edges are investigated
in order of number of occurrences (given that they appear > k/2 times) the case
of finding the other edge in 02 is reduced to finding a bridge. This scheme seems
more reasonable, especially in very dense graphs, than the more complex flow

. algorithm. The method, of course, is iteratively applicable to Cn with a criterion
of k/n appearances. However, it is most reasonable for n small.

Efficient algorithms for the recognition of important structural characteristics
of problem spaces is but one of many fruitful approaches to general problem
solving methods in our model.

Other areas of interest are statistical error analysis instead of worst case.

If closed form solutions are unavailable then Monte Carlo simulations should aid
in understanding these problems. Parallel computer organization should also
prove important in extending the class of problems which can be solved. These
are but a few of the possibilities for extension of the approach we have tried to

use throughout this work.

10.5 Some Concluding Remarks

One is always questioned on the significance of the work., In general this leads
to some exaggeration, especially when pne has some perspective on the range of
human thought. A simple answer is to say — here is the best shortest path method
or a first theory of heuristic search. However, we would rather stress a notion
of computational insight coupled to some combinatoric rigor and experimental
investigation. In a sense this work is using the computer in the Von Neumann
sense60 of heuristic — to gain a feel or intuition into a difficult problem domain,

and it is hoped some small contribution has been demonstrated.
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APPENDIX I
ALGOL W IMPLEMENTATION OF VGA

This appendix contains a commented ALGOIL W implementation of VGA., We
will explain the data representation used and the purpose of each procedure.
In my experiments two different data representations were used:
a) adjacency-matrix
b) edge list
Representation (a) is a nxn matrix A, wheren = l GI. An element of A, :aLij is the
length of the edge (i, j). If there is no such edge then a large positive value repre-
senting « is entered. Representation (b) is for very large sparse graphs. It
consists of two n element vectors, in-index and out-index and four n maxind
matrices, in-edge, out-edge, in-length and out-length., Maxind is the maximum
degree of any node in the graph. For each node i, in-index (i) is the number of
predecessors it has, and out-index (i) is the number of successors it has. Then
out-edge (i, 1::out-index (i)) is a list of successors of node i; the lengths repre-
sented by‘these edges are stored in out-length (i, 1l::out-index (i)). The corres-
ponding arrays and matrices represent the predecessor. This representation
requires n X (4 X maxind + 2) words and can save considerable storage space
over (a) for large sparse graphs. Consider that we have 42, 000 words of store,
then‘ representation (a) could store a complete 200 node graph. Representation (b)
could store a complete 100 node graph, but if the maximum degree is 10 it could

store a 1000 node graph.
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Below we show both representations for Ni_cholson's graph (Fig. 1).

(a) © 3 6 7 © o e oo o
3 »o 1 o 4 £ o © oo
6 1 oo ® % 2 o0 © %
(i o o ®© o 3 4 © oo
o0 4 o o © o0 o 1 oo
o0 50 2 3 ©0 © % 1 2
% % o 4 w© © © © 5
) 50 &0 0 1 1 oo o 2
© o o0 © ) 2 5 2 &0
= (1l::in-edge (node)), B = (l::out-edge (node)) |
(b) node in-index in—edgea in—lengtha out-index out-edge 8 out-length 8
1 3 2,3,4 3,6,7 3 2,3,4 3,6,7
2 3 13,5 3, 1,4 3 13,5 3,1,4
3 3 1,2,6 6,1,2 3 1,2,6 6,1,2
4 3 1,6,7 7,3,4 3 1,6,7 7,3,4
5 2 2,8 4,1 2 2,8 4,1
6 4 3,4,8,9 2,3,1,2 4 2,3,1,2 2,3,1,2
7 2 4,9 4,5 . 2 4,9 4,5
8 3 5,6,9 1,1,2 3 5,6,9 1,1,2
9 3 6,7,8 2,5,2 3 6,7,8 2,5,2

The graph is undirected and this symmetry is found in each representation
by noting
a A= AT

b) in-values = out-values
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The version listed here works with (b) and has generated and ﬁsed 1000 node
graphs.
Graph generating procedures:

1. RANDOM -a bseudo—ra.ndom number generator with range (0, 1).

2. GENEDGE - uses random to generate edge-list representations of
undirected graphs. A node is not allowed to have more than MAXIND edges. The
lengths are randomly generated integers with range [1, WTJ.

Shortest path algorithm — VGA:

1. WBIED - this is the ALGOL W incarnation of VGA. It consists of
the following local procedures.

2. DECIDE - a logical function procedure representing step 2 of VGA.
It contains various strategies of interest in a case expression, e.g., number 1 is
cardinality comparison.

3. INITIAL -~ this does the initialization step, step 1 of VGA.

4, MIDDLE - this is steps two through five of VGA and is the basic
iterative loop. Both this procedure and INITIAL are distinct because of the
08/360 segmentation problem.

Analysis procedures:

1. SORT - this bubble sorts the shortest distances found to the nodes
in set S (set T).

2. DLAMBA - counts the number of nodes in S (T) with distance less
than R from initial (terminal) node.

Graphs of different size and density and edge length distribution were gener-
ated by GENEDGE. Node pairs were selected from these graphs and for each

pair different decision rules in DECIDE were compared for efficiency.
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TALGOL

G0C1L
w2
Quo3
G004
LGS
0G06
GCo7
cufs
o009
QG110
Goll
417) ¥4
CClL3
0G0l4
Guls
Qul6
Cu1l7
o418
wOl9
co2u
V021
ugaz2
0C23
vC24
u2s
0026
0927
uG2se
G029
UG 3C
0C31
0G32
Q33
LU34a
(G35
G306
Gi:37
GG3s
G039
Lo4t
G0el
w42
HITK)
0Gas
a3
¢hab
ccavt
JCas8
i, G49
UG5
0651
o522
0¢53
GO54
0G55
ui56
u@s7
6058

BEGIN COMMENT IRA POHML SLAC (1968)

ALGOLW IMPLEMENTATION OF VGA - VERY GENERAL ALGURITHM
FUR FINDING SHORTEST PATHS IN DI~GRAPHS, THIS VERSION USES THE
EDGE LIST REPRESENTATION FOR ECONOMICAL STORING OF LARGE SPARSE
GRAPHS o
EXPLANATIONS OF PARAMETERS OCCUR THROUGHOUT THIS PROGRAM NEAR
THEIR ACTUAL USEe H
INTEGER SCCGUNT, TCOUNT,CNTNODE:

INTEGER NyMAXIND,START, TERMINUS,COUNT , INF;
INTEGER RANDUMX; LUNG REAL RANDOMC;
INTEGER DENSITY, DF, OB, MIND ;

INTEGER TsJyLAST;

COMMENT *skxs DEFINITION OF GLOBAL VARTABLES **xkkxxsxn

MANY OF THE VARIABLES ARE SYMMETRIC WITH REGARD TU THE FORWARD
AND BACKWARD DIRECTION, NORMALLY FURWARD VARIABLES ARE BEGUN WITH
S AND SALKWARD UNES WITH T, THE DEFINITIONS WILL BE WITH RESPECT
TO THE FURWARD VARITABLES WITH THE CORRESPONDING SACKWARD ONES N
PARENTHE SE S

SCOUNT= CARDINALITY UF SET S (TCOUNTI)

DF= FCRWARD DISTRIBUTION VALUE FOUND BY DLAMBDA (D3)

DENSITY= EDGE DENSITY UF THE DI-GRAPH, 1. PER-CENT REPRESENTS

THE COMPLETE GRAPH,

M= CARDINALITY OF GRAPH, START= [NITIAL NODE, TERMINUS=FINAL NODE,
INF= REPRESENTS INFINITY,

MINO=MINIMUM DISTANCE FOUND- IS INF IF NG PATH EXISTS.

CNTNODE= THE CENTRAL NUDE ON THE SHURTEST PATH, I.E, THE NUDE FOUND
BY 30TH THE FORWARLC AND BACKWARD SEARCH,

UTHERS ARE TEMPURARIES OR ARE UNIMPURTANT OR ARE EXPLAINED LATER ON;

COMMENT RANDOM GENERATES RANDUGM NUMBERS « <RANDOMCYI

LONG REAL PROCEDURE RANDGM;
BEGIN RANDUOMX:=12227:3125%RANDUMK;
NUMBER(BITSTRING{RANDUMX) AND ¥TFFFFFFF)/RANDOUMC END;

COMMENT THE FOLLOWING VALUES MUST BE INITIALIZED =
INTFIELDSIZE 1/0 PARAMETER o INF INFINITE EOGE LENGTH
MAXINU THE MAX LOCAL DEGREE ALLOWED IN THE LIST REPRESENTATION 3

RANDOMX3=1; RANDOMC :=Z2=**1];
INTUVFL = NULL3
INTFEELDSIZE: =63

INF :=999999;

CUMMENT MAXIND=MAX DEGREE ALLUWED K=GRAPH SIZE ;
FUR MAXIND:=T DO

FGR K:=10¢%0 DU
BEGIN
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0059
G060
0061
0cé62
0063
0664
0065
0066
Q06T
(#1611}
0069
0070

0071.

0072
0073
0074
0G75
0076
0C77
¢co078
Qave
7101 14]
uiBl
0Q8e
0G83
0084
0Q8s
GCB6
oQey
cos8e
ocas
ouse
0091
U092
0093
0094
Qo095
096
0057
Lo9s
0099
010G
0101
glQz
0103
G104
0105
17D §41.1
c107
0148
vlug
G110
G111
vll2
U113
Cila
vlls
vlle
o117
vlils

COMMENT ***EDGE LIST REPRESENTATION OF DI-GRAPH #*»

THE MAXIMUM DEGREE OF A NODE IS MAXIND DEFINED IN THE QUTER
BLOCK ALONG WITH K THE NUMBER OF NODESe THE ACTUAL DEGREE
OF EACH NODE IS FOUND IN THE ARRAYS ININDEX AND OUTINDEX. THESE
ARE IN AND OUT EDGE DEGREES RESPECTIVELY. EACH NODE HAS A LIST
OF 1TS SUCCESSORS AND PREDECESSORS STORED IN INEDGE AND
OUTEDGE. CORRESPONDING TO THESE LISTS ARE THE LENGTHS OF
THESE EDGES FOUND IN INLENGTH AND OUTLENGTH

THE REMAINING ARRAYS ARE USED B8Y THE SHORTEST PATH ALGORITHM
WHEN BUILDING MINIMUM PATH TREES, MWF IS THE WHERE FROM POINTER
FOR THE FORWARD TREE AND SDIST IS THE CURRENT BEST DISTANCE.
wT AND TODIST PLAY THE SYMMETRIC ROLE IN THE BACKWARD CASEo DIST
IS5 A TEMPORARY NEEDED IN DOING A POSTERIORI ANALYSIS:

INTEGER ARRAY WT,SOIST,TDIST(1lz:K+l);
INTEGER ARRAY ININDEX,OUTINDEX,WF,DIST{1::K+1);
INTEGER ARRAY INEDGE,GUTEDGE INLENGTH,OUTLENGTH(1::K,12: MAXINDI);

COMMENT GENERATE SYMMETRIC WEIGHTED GRAPHS AS EDGE LISTS k&% ;
PROCEDURE GENEDGE{INTEGER VALUE N,WT; REAL VALUE DENSITY);
COMMENT N=GRAPH SIZE, WT=MAXIMUM EDGE LENGTH, DENSITY=EDGE DENSITY:
BEGIN
FOR I:=1 STEP 1 UNTIL N DO
ININDEX(}):=0UTINDEXLI ) :=03
FOR I:= 1 STEP 1 UNTIL N DO
BEGIN
FOR J:=1+1 STEP 1 UNTIL N DO
IF OUTINDEX{I11=MAXIND THEN GU TO EXED ELSE
IF (ININDEX{J} -~=MAXIND} AND{RANDOM<DENSITY} THEN
4EGIN
QUTINDEX({1)==ININDEX{I}):=0UTINDEX(I) +1:
OUTINDEXIJ) t=ININDEX(J):=0UTINDEX(J) +1;
OUTEDGE( I1,O0UTINDEX(I) ) :=INEDGE(I,ININDEX{I)):=
QUTEUGE(J,OUTINDEX(J} ) :=INEDGE(J, ININDEX{J)}2=
OQUTLENGTHI I ;OUTINDEX (I ) ) 3=INLENGTH{Jy ININDEX(J}}:=
OUTLENGTHI JOUTINDEX (J) ) :=INLENGTH{E+ININDEX(I}):=
ENTIER{1L+RANDOM*WT) ;

Ji
s

END ;
EXED: 3 END:
END GENEQGE;

COMMENT **x¥ A PUSTERIORI ANALYSIS ROUTINES Rkt

IN ORDER TO FIND R-0OPT, THE OPTIMUM FORWARD RADIUS, WE SOLVE
BY BOTH THE FORWARD AND BACKWARD UNI-DIRECT[ONAL SHORYEST PATH
ALGORITHMS, THEN EALH TREE GENERATED IS SORTED BY DISTANCE FROM
THE RESPECTIVE INITIAL NODE, DLAMBDA THEN COUNTS THE NUMBER OF
NOUDES THAT A METHUOD GOING OUT TO A GIVEN R WOULD SEARCH: A SCAN
OF THIS DISTRIBUTION PRCDUCES THE MINIMUM GIVING R-OPT. THIS A
POSTERIURT ANALYSIS THEN CAN BE USED TO CHECK THE OPTIMALITY
OF A GIVEN STRATEGY. 5

COMMENT DLAMBDA FINDS HOw MANY NODES ARE WITHIN DISTANCE R FROM
THE INITIAL NODE {(USE SDIST) OR TERMINAL NODE{(USE ¥DISTI- 3

INTEGER PROCEDURE DLAMBDA(INTEGER VALUE R; INTEGER ARRAY SDIST(%*));
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01ll9

0120

0121

¢laz

0123

0124
G125
ulze
G127

ulzs

¢129

013C

C1l31

Q132

0133

0134
0135
0l36
0137
0138

0133
U1l4Q
0l4l
0142
0143
Glas
0145
0146
0le7
0148
0149
n15C
0151
0152
G153
0154
0155
Gl56
0157
ol58
0159
0160
Ol61
alée2
0l63
0l64
0l65
0l66
Ule7
0ls8
0169
Q17C
0171
Q172
0173
0174
0175
0176
0177
0178

BEGIN INTEGER 13 I:=13%
wHILE R >= SDIST(I} DO I:=T1+1; I
END DL AMBDA;

COMMENT SORT BUBBLE SORTS THE DISTANCES FOUND

PROCEDURE SORT(INTEGER VALUE N; INTEGER ARRAY DIST,SDIST{#*));
BEGIN COMMENT SORTS DIST INTO SDIST IN INCREASING VALUE;
INTEGER T3 LOGICAL FLG3
FLG:=TRUE;
FOR [:=1 STEP 1 UNTIL N DO SOIST(Iy:=DIST(I);
FOR I:=1 STEP 1 UNTIL N DO
BEGIN FLG:=FALSE;
FOR J:=1 STEP 1 UNTIL N-1 DO
IF SDIST(J¥ > SDIST(J+1) THEN

BEGIN T:=SDIST(J); SDIST(J):=SDIST{J+L); SOIST(J+1l)ei=T;

FLG:=TRUE END;
IF ~FLG THEN GO TOQ EXIT;
END:
EX1T:
END SORT;

COUMMENT  #***xV-ERY G~ENERAL A-LGORITHM ko k
VGA OR WBIED {WEIGHRED BI-DIRECTIONAL ALGORITHMI) SOLVES

THE TWO PUINT SHORTEST PATH PROBLEM:. THE DECISION STRATEGY,
STEP TWO OF VGAy IS SELECTED BY DNM. THIS IS THE DECISION

NUMBER FOR DECIDE o DECIDE IS A CASE STATEMENT OF THE CURRENT

STRATEGIES IN USEs i

PROCEDURE WBIED (INTEGER VALUE N,INF,START,TERMINUS,DNM;
INTEGER SCOUNT,TCOUNT,MIND,CNTNODE
INTEGER ARRAY WFWT,SDIST,TOISF (*} };

BEGIN

COMMENT *x*GLOBAL PARAMETERS CORRESPOND TO FORMAL PARAMETERS,

THE LOCAL PARAMETERS ARE DESCRIBED BELOWo H

INTEGER SMIND,TMIND,TT1,73,74,¥5; LOGICAL FLG;

INTEGER TT NUMSTWD 4NUMTTWD,T1C,T2C; INTEGER ARRAY T1,T2(1::N);

LOGTCAL ARRAY SVEC ,TVEC+STWOVEC,TTWOVEC(L1::N)3

COMMENT  #%%% LOCAL VARIABLES *¥%&xx

SMIND=CURRENT MINIMUM DISTANCE IN SET S—TILDA (TMIND)

FLG=LOGICAL FLAG SET TO TRUE IF A NODE APPEARS IN THE
INTERSECTION OF § AND T

NUMSTWO=NUMBER GF NODES IN SET S-TILDA (NUMTTWD)

SYEC=SET MEMBERSHIP FLAG FOR SET S5, IF SVEC(I) IS TRUE THEN NODE

I IS IN SET S (TVEC)
STWOVEC =CORRESPUNDING LOGICAL ARRAY FOR S5~TILDA (TTWOVEC)

*x*NOTE**% SVEC AND STWOVEC MAY BOTH BE FALSE FOR A GIVEN NODE.

BUT THEY MAY NOT BOTH BE TRUE .
F1=LIST OF NODES TIED AT MINIMUM DISTANCE IN S-YILDA (T2}

THE REMAINING VARIABLES ARE TEMPORARIESe ;
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0179
0180
ol8l
0182
0183
0l8s
0l85
0186
0187
olas
0189
Q1%0
0191
0192
0193
0194
0195
0196
G197
0198
0199
0200
0201
0202
0262
G204
0205
0206
U207
o208
0209
021C
0211
0212
0213
0214
0215
02le
0217
0218
0219
022G
o221
" 0222
0223
G224
0225
0226
0227
0228
G2zs
v230
G231l
0232
0233
0234
0235
v236
0237
0238

COMMENT OECIDE IS THE DECISION STRATEGY FOR VYGA. IT IS A CASE
STATEMENT WHERE A SPECIFIC STRATEGY IS SET BY DNMe ;

LOGICAL PROCEDURE DECIDE; i
BEGIN COMMENT ONM SELECTS APPROPRIATE RULE FOR STEP 2'OF VGA:

CASE (DNM) OF
{ NUMSTWDO<=NUMTTHWD,
SMIND<=TMIND,
TRUE
" FALSE,
NUMTTHWD <= NUMSTHWD
)

COMMENT DNM -

(S R P AL o

END;

OF

RULE

CARDINALITY COMPARISON (POHL)
EQUIDISTANCE {NICHOLSON)
UNI-DIRECTIUNAL FORWARD (DIJUKSTRA)
UNI-DIRECTIONAL BACKWARD

REVERSE OF 1 DEGENERATES TO 3 3

COMMENT BECAUSE OF SEGMENT OVERFLOW PROBLEM THE ALGORITHM IS
DIVIDED INTO INITIAL AND MIDDLE AND FINAL PARTS. INITIAL IS STEP
VGAo MIDDLE IS STEPS 2 THROUGH 5, AND FINAL IS STEP 6.

FINAL IS THE LAST PIECE OF CODE IN WBIED AND IS NOT A SEPARATE
PROCEDURE, H

PROCEDURE INITIAL:
BEGIN

IF

SMIND:=TMIND:=03;

COMMENT NODES INITIALLY IN NO SETS

FOR I:=1 STEP 1 UNTIL

N DO

BEGIN SVEC(I):=TVEC(I) :=STWOVEC(I

SDIST(I):=:=TDIST(])
END; ’

s=INF; WF(I}

}

t= THDVEC(II::FALSE;
=WT(I

TTz=1; SCOUNT:=TCOUNT:=G; NUMSTWDI=NUMTTWO:=
WF{START):=03; WT(TERMINUS) :=0;

CUMMENT INITIALIZE VALUES FOR ENDPOINTS ;

SDIST(START):=0; TDIST{TERMINUS) :=C;

SVEC{STARTI :=TVECITERMINUS}) :=TRUE}

STWOVEC(START) :=TTWOVEC(TERMINUS} :=TRUE;
FLG:=FALSE; MIND:=C;
CUOMMENT AN IMAGINARY EOGE OF INF LENGTH IS ADDED TO DUR

GRAPHs IF NO OTHER PATH IS FOUND THIS WILL BE PATH OF

MINIMUM DISTANCE.

'

BUT INDEX( START)< MAXIND THEN

BEGIN

JUTINDEX{ START) 3= CGUTINDEX{STARTI+1; OQUTEDGE{START,
UGUTINDEX( START) ) :=TERMINUS;
OUTLENGTH(START ,OUTINDEX{START) ):=INF}

END ELSE
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0239 BEGIN O?EEDGE(STARTyMAXIND):=TERMINUS: OQUTLENGTHISTART ,MAXIND?}
u240 . L= H

{0241 END;

G242 1IF ININDEX{TERMINUS) < MAXIND THEN

0243 BEGIN

D244 ININDEX({TERMINUS} :=I NINDEX(TERMINUS ) +1; INEDGEC(TERMINUS,

0245 ININDEX({ TERMINUSI) )} : =START;

0246 INLENGTH({TERMINUSININDEX (TERMINUS V)3 =INF;

Q247 END ELSE

0248 8EGIN INEDGE{ TERMINUS +MAXIND) :=START; INLENGTHU{TERMINUS,MAXIND
0249 )i=INF;

g25¢ END;

0251 - END INITIAL;

0252 :

G253 PROCEDURE MIDDLE; COMMENT SEGMENT OVERFLOW BYPASS;

G254 WHILE (-FLG) AND (=IMIND=INF}) DO

0255 BEGIN :

0256 IF DECIDE THEN COMMENT DECIDE UPON DIRECTION;

G257 B8EGIN

azs58 MIND:=INF3;

0259

0260 COMMENT THE CURRENT MINIMUM DISTANCE DVER NODES IN S-
0261 TILDA IS FOUNDe TIES ARE STORED IN ARRAY T1 WITH T1C
G262 THE NUMBER OF TIESo 3

0263

G264 FOR I:=1 STEP 1 UNTIL N DO

0265 [F STWOVEC{1) THEN

0266 BEGIN

0267 IF SDIST(1) < MIND THEN

Q268 BEGIN MIND:=SDIST{I); T1C:=1; F1l{(T1C):=1 END

0269 ELSE IF SDIST{1) = MIND THEN

Q27C BEGIN T1C:=T1C+1; TI(T1C}:=1 END H

0271 END3;

0272 )

0273 COMMENT TI1C REPRESENTS THE NUMBER OF NODES TRANSFERRED
Q274 FROM SET S TO SET S-TILDA; THE APPROPRIATE COUNTERS ARE
G275 CHANGED. H

06276

G271 NUMST WD : =NUMSTWD-T1C; SCOUNT :=SCOUNT+T1C;

0278 SMIND:=MIND;

0279

0280 COMMENT APPROPRIATE SET MEMBERSHIP FLAGS ARE SET. EACH
0281 NODE BEING CHECKED FOR BEING IN S ENTERSECTION T. H
G282

0283 FOR [:=]1 STEP 1 UNTIL T1C DO

0284 BEGIN TT:=T1(1):

0285 IF «FLG THEN BEGIN FLG:=TVEC(TT);TT1:=TT END;

a286 SVEC{TT):=TRUE; STWOVEC(TT):=FALSE;

0287 FOR J:=l STEP 1 UNTIL OQUTINDEX{(TT} 0O

0288 BEGIN T3:=0UTEDGE(TT,3); T4:=SDIST(T3);

0289 TS5:=0UTLENGTH(TT 4+J 1} 3

0290 IFf T4 > MIND +T5 THEN

0291 BEGIN SDIST(T3):=MIND+T5; WFI(T3):=TT;

0292 IF =~ STHWOVEC(T32) THEN

0293 BEGIN NUMSTWD:=NUMSTWD+1; STWDVECI(T3):=TRUE END
0294 END :

0295 END

4296 END

0297 END

0298 ELSE
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0299
0300
0301
0302
0303
0304
4305
G306
0307
0308
0309
0310
0311
0312
0313
0314
0315
0316
0317
0318
0319
032¢
0321
0322
0323
0324
0325
¢326
0327
0328
0329
0336
0331
0332
0332
0334
0335
0336
0337
0338
0339
0340
0341
0342
0343
0344
0345
0346
0347
G348
0349
0350
0351
0352
0353
0354
0355
0356
0357
0358

BEGIN

COMMENT SYMMETRIC TO THE ABOVE LOOP WITH RESPECT TO THE
BACKWARD DIRECTIONe

MIND:=INF; _
FOR I:=1 STEP 1 UNTIL N DO
IF TTWOVEC(I) THEN
BEGIN
IF TDEIST(I) < MIND THEN
BEGIN MIND:=TDIST(I); T2C:=l; T2(T2C):=I END
ELSE IF TDIST(I) = MIND THEN
BEGIN T2C:=T2C+13 T2(T2C}:=1 END ;
END
NUMTTWD :sNUMTTWD=T2C 5 TCOUNT:=TCOUNY +T2C;
TMIND : =MIND;
FOR I:=1 STEP 1 UNTIL T2C DO
BEGIN TT:=T2(1);
IF -FLG THEN BEGIN FLG:=SVEC(TT);TTl:=TT END;
TVEC{TT):=TRUE; TTWDVEC(TT):=FALSE:
FOR J:=1 STEP 1 UNTIL ININDEX{TT} DO
BEGIN T3:= INEDGE(TT,J}; Té4:=TDIST(T3);
TS:= INLENGTH(TT,J}3
IF T4 > MIND +T5 THEN
BEGIN TDIST(T3):=MIND+T5; WT(T3):=TT;
IF -~ TTWOVEC(T3) THEN
BEGIN NUMTTWD :=NUMTTWD+1; TTWDVEC(T3):=TRUE END
END
END
END
END
END ;

COMMENT * * % % * * ¥ % MAIN ROUTINE * * x % x * x %

INITIAL; MIDDLE:

WRITE("VGA TERMINATED BY NODE "4TT1,"S50=",SDIST(TT1})," TD=",
TOIST{TT1) )

WREITE(H"SMIND=",SMINDs" TMIND=,TMIND};

COMMENT S INTERSECTION T-TILDA 15 CHECKED AND THE DISTANCE
OF ANY SUCH PATHS ARE COMPUTED AND COMPARED TO MINIMUM.

MINO == SDIST(TYL} + TDIST(TT1};
T1C:=TT13;
FOR [:=1 STEP 1 UNTIL N DC
1F SVEL(I) AND TTWOVEC{I) THEN
BEGIN
T2C:= SDIST(1) + TYDIST(I);
IF T2C< MIND THEN BEGEIN MIND:=T2(C; TiC:=1 END;
END;
CNTNUODE :=T1C;

END WBIED;

FOR DENS:=2 DO
BEGIN COMMENT LOOP OVER GRAPH DENSITY IN 1/5rn;
WRITE(®" *);
WHITE("MAXIND=",MAXIND,™ SYMMETRIC WITH DENSITY=",DENS/S5CL);
WRITE(WTIME TO GENERATE ",TIME(1l),"SIZE vw,K);
GENEDGE(K,2C, DENS/530) 3
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0359 WRITE{"TIME TO GENERATE ",TIME{l));
DO

0360 FOR CC:=1 STEP 1 UNTIL 35

0361 BEGIN

0362 ) COMMENT  sxdmakhokkk

0363 1 AND J ARE INITIAL AND TERMINAL NODES SELECTED AT RANDOM.. :
0364

0365 I:=ENTIER(K*RANDOM +1);

0366 $=ENTIER{ K*RANDOM +11};

0367 . WRITE(™ M) WRITE("I 4J"y1,J); WRITE(™ ")

0368 WOTEDUK s INF o1 9Js3ySCOUNT, TCOUNT yMINDyCNTNODEyWF,WT,SDIST,
0369 TDIST):

0370 WRITE("FORWARD METHOD SCOUNT*,SCOUNT,"” MIND=",MIND);
0371 SORTI(KySDIST,DISTi;

0372 WBIED(K ¢ INF I yJs49SCOUNT, TCOUNT yMIND,CNTNODE ,WF,WT, SDIST,
0373 TDISTH;

0374 WRITE("BACKWARD METHOD TCOUNT®,TCOUNT " MIND=",MIND}:
0375 SORT(Ks TDIST, SDIST);

0376 IF MIND < INF THEN

0377 BEGIN WRITE(™TABLE OF DISTRIBUTION FUNCTIONST};

0378 FOR R:=0Q STEP 1 UNTIL MIND DO

Q3719 BEGIN

0380 DISTI(K+1) := INF + 1,

0381 SDISTI(K+1} ¢= INF + 13

0382 DF : =OLAMBDA{(R,DIST); DB:=DLAMBDA{MIND-R,SDIST);
0383 WRITE(R, DF, DBy DB + DF);

0384 END R;

0385 END;

0386 FOR D:= 1, 2 DQ

0387 BEGIN

0388 WRITE(®TIME ENTERED WBIED NO", D," TIME ",TIME(1});
0389 WBTIED(KSINF 413040y SCOUNT, TCOUNT yMIND,CNTNODE yWF 4 WT,
0390 SCIST,TDIST);

0391 WRITE(®TIME EXITED WBIED ",TIME(l)};

0392 WRITE{®CNTNODE IS ", CNTNODE," SCOUNT ", SCOUNT,
0393 * TCOUNT ", TCOUNTI};

0394 WRITE("SHORTEST PATH LENGTH IS "“,MIND}; WRITE("® Ll B
0395 END3

0396 END

0397 END DENSLOQP;

0398 END LOOPK;

0399 ENDe

ELAPSED TIME IS 00:00:49
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APPENDIX I
COMPARATIVE RESULTS USING DIFFERENT STRATEGIES IN VGA

In this appendix we list some results of actual computer runs (see Appendix
I for the program). Our cardinality comparison strategy is compared to the
forward and backward uni-directional strategies and Nicholson's equi-distance
bi-directional strategy. The measure of efficiency is the number of nodes at the
end of a computation, that have been visited by VGA, i.e., |S| + |T!. The data
provides a verification of the efficiency of our method and the veracity of our
model.

The figures and tables in this appendix present a portion of the computational
experience of the author. A graph of given size and edge density was generated
randomly, as described above, and two nodes were randomly selected. The
shortest path problem between these nodes was solved using VGA for each
strategy and the following datg collected.

1. length - the shortest path length, which of course is the same
for each method

2. IS}, IT| - the number of nodes in these sets

3. rOpt - the radius the forward rpethod should reach for optimal
efficiency

4. Lpy Ty = the forward and backward radii for a bi-directional
method.

For each graph 10 different shortest path problems were solved. A graph is
characterized by its size, the average degree of its nodes and the maximum length
of its edges. In table 5. 2, we have already summarized the results of the raw

data displayed in tables H.1 through II.5. The headings not previously
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GRAPF S1it = Eng Tabls 1.1

AVERBGL LEGKEE a2

FaxIMLM ECGE LENGTE = 2
LASE LENGTH FCRWARD BACKWARD  FCeL KILHCLSGN PUML BCHL AICFULSON RECHOLSCK F RGP R (P) R (A} R (N}
£ B 3 e Cp F B F 8
T 3F 0wl 11e TR 3e 21 17 Z1 17 e 3 1< IS 1%
2 17 25 17 24 21 i2 12 18 5 ¢ e 14 13 12
3 e z°s 214 a1 €8 18 43 25 43 24 2¢ 22 23 23
4 P 210 125 51 5§ 24 21 8 21 18 18 23 21 20
5 7¢ €37 ac1 82 171 43 49 143 23 5 2% «8 4z 42
¢ 7z 363 32e 83 54 37 26 37 17 14 11 25 17 I
1 &3 281 zen 73 €5 42 af: 43 22 26 25 an 25 28
£ 5¢ 373 232 12 7 37 35 59 18 28 21 34 22 3l
< ¢ 52 22 2n 25 12 it 24 5 12 1e 1 21 22
e e? 441 L 51 76 24 27 &2 12 39 24 4 47 4e
SUrS
524 2583 1551 563 662 251 212 15 187 220 244 118 284 275
10
Z length/2 - r =34
= optly
10
3 B
1=1
10
Z r‘(N) —r-optl=ss
1=1
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Table I]. 2
GRAPF S1IE = g
AVERAGE LLCHIE = &
pAYENMLM CLGE LENCTF = Z

LASF LENGTF FCkWARE EACKWAKG — PCFL NICHOLSEN PCHL PCFL MICFCLSCH NI1CHCLSCA & ®LF1 R AP} R N) n
F [} F B OPT F 8 F 8
T P FE TS 3T 3k 18 “t 23 33 18 21 2¢
2 4t 187 4er <7 1r1 48 45 21 14 z2 24 1% 21 20
2 LY 329 2 76 78 39 37 59 15 14 2n 25 23 22
‘ 24 122 Les 43 a7 24 15 24 23 13 14 12 14 13
5 21 53 Lla 24 20 11 13 7 13 15 17 14 15 14
£ c¢ e Les 4 357 z3 25 393 4 13 14 “ 14 35
7 s anp Atk 101 12¢ 49 52 98 10 15 21 21 2% 24
3 1E 338 412 74 77 42 32 0 41 2C 21 15 20 20
< 37 1t w21 53 12t 41 48 36 85 21 23 18 22 2L
n e 415 461 87 118 17 sC 27 91 3e i an 34 34
SL¥s
q1r 1406 3136 77 1151 150 357 719 432 157 213 2258 229 223
10,
E length/z-ropt| =38
i=1
10
Z II(P)-roptL-ls
i=1
10
E rgm-ropt:u_-
=1
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Table 11.3

GRAPF SIZE = Eng
AVEKBCE CECPLE = 5
MAXIwMUM ECCE LENGTF = 20
CASE LENGTH FCRWARL LACKAARD FUHL NICHOLSCN PCHL FC+L NICKCLSUN NICHCLSCMN  F R (P R (P} B {h) R (N)
F B F 8 CPT F B f .
1 ek 292 4oy 23 123 38 45 3 121 18 15 ir 13 13
é 23 457 454 £3 122 Z4 25 1% 15 12 14 16 18 17
3 2L A 456 15 224 EL) 43 7 217 21 21 10 16 16
4 15 122 4265 43 101 15 24 10 $3 14 13 & 11 ia
5 1% 278 247 63 T3 32 31 42 31 T 1 8 8 8
& 18 225 1€ ar 28 11 15 18 10 & & 1n T 8
T 1€ 196 211 4e 44 e 19 13 2¢& 2 s 7 g e
£ € S& 5 5 1§ 2 3 16 3 1 11 L] 6 E:]
L] &5 LYY 487 s7 82 “8 49 15 67 17 1€ 13 15 14
13 14 252 T 8 9 H 5 7 2 2 1 12 3 11
SLNS
¢k 2724 2924 10 B28 243 2e1 244 584 1¢7 11s 1n4 1¢5 t13
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Table 1. 4

GRAPF SIZE = srg
AVIKACE [ECRIE = 1z
MOXINUF ELCE LENCTH = 20
CASE LCAGTE FCkmEKL UACKWAKD  PCHL AICHELSCN PLML PCFL MICHCLSGN NICACLSCh & RUF) R (PY R (M) R (N)
@ F 8 0T K 8 F 8
T 1z 3T E) = 51 36 24 TR 17 i 7 3 7 s ;
2 ¥ 151 <2 el Se 2e 45 e 2 € 8 10 [ 5 [
3 1z 208 a1 15 3 ] 11 26 s 4 4 8 It s
4 1z 2ne 343 87 s 44 213 26 40 1 ) 5 7 5 !
5 i 24at et 22 49 10 12 34 6 2 2 7 5 s ;
P ie PrYs wi2 lar 129 0l 15 55 34 8 8 1 5 s
7 17 370 1ee 72 73 1n 12 66 7 4 “ 9 2 8
3 12 52 246 m 51 21 25 4 a2 $ 11 T 9 8
5 i¢ 355 415 5 1417 32 47 2n 121 1z 1t ? 10 5
e 5 155 35 41 58 26 27 12 res S 160 1 9 s
SUNS !
13¢ 2621 2434 gl 742 27¢ 215 330 352 €1 14 7% 18 785
10
lay Z-r =17
2. [ttt/ optL
=1
10
2 [74P o) 79
i=1
10
§|r‘(m _r‘“"i’ls

|
1
|
i
!
f
i
i
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Table I.5

GRAPE SEIE = cot
AVERAGE CRCGREE = 18
FAXINUP ECGE LENGTF = 2c
CASE LENGTH FCAWSRL BALKWARC  PCHL NICHCLSON PCHL FCrFL MICHCLSON MICHCLSCMA R RIPY R (P} R (N R (N)
F B F e oeT F [ F B
1 5 3% wa 15 13T 7 3 “ 4 : z 5
2 i 143 22¢ 71 55 %1 kL &5 ac £ 5 [ & &
3 14 362 415 122 122 55 67 55 a7 1 B 8 8 8
4 2c 4BR 4B3 52 S 1e 56 57 34 $ s 11 10 10
5 1€ 445 438 82 93 38 54 56 37 -] L} S 9 a
& 11 132 213 3c &2 24 12 24 38 6 T 4 7 &
7 1) a7y 144 £3 7 23 4t [ 12 & 4 e & 5
L] [%¢ 125 152 45 33 23 22 11 2z 5 & 5 5 s
5 ki &5 B2 24 24 i 14 13 1a H & 3 4 3
1o 1< 123 289 64 10 37 27 2b b4y 7 T 4 ) .5
SUMS
11¢ 2521 PELT 30 6E1 LY 32 37t 304 6C 62 62 [ &1
10 1
v 1 - =qi
ergth/2 !npti 13
i=1

16
E El't(l’) - optL =4

i=1

%

i=1

rt(N) - rnrpt

=10
i
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explained are:
POHLF, POHLB - |8! and |T| respectively for the cardinality
comparigon strategy.
NICHOLSONF, NICHOLSONB - as above for the equi-distance
strategy.
ry(P), TAN) - the forward radii of the POHL and NICHOLSON
strategies,
The results are summed for the ten cases in each graph and additionally
10

(i) >

i=1

length/2 - L optli

10
(i) 2

i=1

[

rf( P) - ropt

10
(iii) 3
i=1

rf(N) - I‘opt

e

are computed. In the case of the bi-directional methods, these are indications of
how well the methods a priori solved Eq. (3.3). The value of (i) reflects the
asymmetry of the problems used. Since the graphs generated were undirected and
uniformly produced, it is to be expected that the consequent densities are reasonably
symmetric. The results for a given problem whére this is not so is favorable to

cardinality comparison, For example, table II. 1, case 5 has

OBt _ 25 1/3
Tength =~ 75 ~

where

rf(P) = 28, rb(P) =48
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TN =1 (N) =42 .

The symmetry assumptions in the equi-distance strategy, inflexibly lead to more

work. In all but two cases, (table II. 3, case 8 and 10)
r(N) - rb(N)l < 1,

The cardfnality comparison strategy tends to equalize the cardinalities of S and
T, which is appropriate from considerations of efficiency, as seen in our model.

In Fig. II.1, we plot the comparative data for each method in the 500 node
experiments. Similarly in Fig. 1.2, we plot results from 150 node experiments
with average degree 2 through 16, Table II. 6 presents the 500 node data for the
forward u.ni-directionai strategy indexéd by path length. Table II.7 is the same
presentation for the cardinality comparison data. These tables show how number
of nodes visited is directly proportional to path length and density, as expected

from our model of shortest path space. Overall the results in this appendix con-

firm our theoretical insights,
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AVERAGE NUMBER NODES VISITED
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' e,
/ : BACKWARD
/ J \?‘\, ><
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- 134 -




AVERAGE NUMBER NODES VISITED

150

100
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FORWARD
NICHOLSON L
Y Iy 4 .
/
POHL
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DEGREE
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FIG. II.2--Results — 150 node graphs.
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FORWARL CRLCSSTABLE

LENGTH

10

2¢C

3¢

4Q

5C

6C

7¢

Table II. 6

DEGREE
3 6 9 12 15

I i 54 | I 34 |

} | I i 45 |

25 | | 122 | 311 ! 366 |
| | 275 | 191 | 392 |

i | 225 | 268 | 445 [

| [ 196 § 206 i 132 |

| | 252 I 246 | EXA! |

} | i 469 | 125 [

i | | 370 | 123 {

] | i 52 | |

| [ | 355 | |

! I | 159 | {

{ 122 i 292 i { 488 ]

| €3 | 441 | | ]

142 | 329 { 497 | l |
G2 | 388 i 370 | i |
l 311 | | i |

2GS | 385 | i | |
230 | 387 | l | |
| 448 | | | |

281 | 494 | i | i
373 | | I t |
| 485 | i | |

437 | | { | |
2¢3 I ¢ | | |
4131 | { | | |
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FOHL

LENGTH

1¢

20

3c

4¢C

5¢

6C

7€

Table .7

CRCSSTRABRLE
DEGREE
3 6 12
| | 5 l | 1n |
| I | | 24 |
24 | { 43 | 58 I 71 ]
| | 63 | 81 | 122 {
| i 30 | 19 | 92 ]
| H 49 | 67 | 16 ]
| I 8 | 22 | &3 |
| | | 140 | 45 {
| { | 22 | 64 {
| { | 46 | [
| | | 75 | |
| | | 47 | |
| 43 | 83 | | 92 |
I 24 | 97 | [ |
ag ] 76 | 53 I | |
28 | 14 | 79 | | |
| 93 | | | ]
81 &4 | | | |
£1 | 57 | | | |
| 101 | | | |
73 | 48 | | | (
72 | { | | |
{ 87 | i {
€2 i | | | |
&3 } { | | |

[

-
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APPENDIX I

ALGOL W IMPLEMENTATION OF VGHA FOR THE FIFTEEN PUZZLE

This appendix describes the ALGOL W implementation of VGHA as used in
experiments with the fifteen puzzle. The basic data representation was a list
structure created from records and references in ALGOL W.

RECORD NODE (STRING (17) ENCOD; INTEGER PZ,WF, DIST;

REAL VALU; REFERENCE (NODE) SPILL)

FIELDS:

ENCOD is a string containing the state description. Here it has the
values of the sixteen positions.

PZ is the position of the blank tile. It is useful in efficiently generating
adjacent positions.

WP is the index to the predecessor node,

DIST is the cardinality distance back to the initial node.

VALU is the value of the evaluation function for this node.

SPILL is the pointer for the hash equivalence class. It is NULL if this
is the last node within a given class or else it points to the next member of the
class,

The state encoding information could of course be for any other problem
domain. This coupled with the successor procedure and the evaluation procedure
would be tailored to a specific problem domain.

A short description of the procedures constituting VGHA follows below. In
conjunction with the documented listing, this appendix allows a detailed under~

standing of VGHA.
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Debugging and 1I/0 procedures

1. WRTBRD1 - this produces a square array printout of a fifteen puzzle
configuration.

2. WRTBRD2 - this pfoduces a string printout and hash value of a fifteen
puzzle configuration.

3. DMP - this uses a case statement to printout various parts of the search
trees. A variable CND selects the particular dump wanted.

4, TRACE - this prints the solution path found by VGHA.

5, HDISTR - this prints the number of nodes found in each hash equivalence
class, i.e. the hash distribution.

Auxiliary routines

1. ENCODE - this takes an array representation BOARD and maps it into
a string representation VAR for a given fifteen puzzle configuration.

2. DECOD - this is the inverse of ENCODE.

3. HASH - this uses the array representation BOARD to compute the hash
value of a configuration.

4. PTABINIT - this is the PTABLE initializer. The PTABLE is a table
lookup for the position value (see Chapters 6 and 8).

5. INITIALIZE - this routme initializes all the necessary flags and arrays
to their appropriate value. It also designates the initial node INIT and the ter-
minal node GOAL.

Principal routines

1. SUCCESSOR - this takes a given configuration and generates the
neighboring configurations in NXNODES.

2. EVALUATE - this evaluates the board configuration provided by
SUCCESSOR. This is a case statement incorporating the various evaluation
functions to be tested.
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3. NONREDUNDANT - this uses the hash equivalence class of a node to
conduct a linked list search for redundancy.

4, DECIDE - this is the step that decides which direction the search should
take, either forward (DECIDE:=TRUE) or backward (DECiDE:=FALSE).

- 5, TERMINATE - this uses the hash classes to see if a given node is in both

the forward and backward search trees.

The basic iteration step is coded symmetrically for the forward and Backward
search. The backward search corresponding to DECIDE=FALSE has its variable

identifiers prefixed by B.
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LALGCOL 3:8£,9000

2601 BEGIN CCMMENT [I.FCHL OCT 1968 (SLAC)

ogce

o063 ALGCL W IMPLEMENTATION CF VGHA-VEKY GENERAL HEURISTIC
nC04 ALGCRITHM. THIS VERSION SOLVES THE FEFTEEN PUZZLE,

Qees

0006 PARAMETERS : *##2d stk rsnkh;

aca?

nacs INTEGER- MAX] TER s NUMNCODE ¢ BNUMNODE yCURNCD 4DEG, F1,T2,BCURNQD;

20¢9 INTEGER FUSE, BUSE, DECN, EVALN, DMPN, CSN, SDIST, TDIEST;

Qcl10 INTEGER PEX,PEXLledy ¥5, TIN;

0011 LOGICAL FLGsTFLAG; REAL WT VALGMIN;

0012 LOGECAL ARRAY TP(OQO::15); REAL ARRAY WW(l:2:1Q);

0013 LOCICAL ARRAY UNDEVELUPED,BUNDEVELGPED {(1l::3C00);

0G1la INTEGER ARRAY MAP,MAP1,BCARU,BCARDI(Oz2:15); INTEGER ARRAY NZ({l::4};
0a1s STRING {16) GOAL,INI¥,S5T1,572;

QcC1é6 STRING (1&6) ARRAY NXNGDES(1::4); INTEGER ARRAY PTABLE(Q:z:15,0::15);
0017 RECORD NODE(STRING (16) ENCDD; INTEGER PZ+wF,DIST; REAL VALU;
0018 REFERENCE (NODE} SPILL};

aC19 REFERENCE (NODE) ARRAY PT{1::300C);

2a20 REFERENCE (NCDE) ARRAY BPT{1::3CQC);

0021 REFERENCE (NOLCE) ARRAY HSH{Q::80C);

0022 REFERENCE (NODE) ARRAY BHSH(GC::8003;

0023 REFERENCE (NODE) Pl, P2;

0024

7025 COMMENT *e3x* DEFINITICN OF IMPORTANT VARIABLES #%xxx

0026

o027 VARIABLES PREFIXEC BY B ARE PACKWARD CIRECTIGN VARIABLES.

0028

aczs NODE = RECCRLC REPRESENTATING ONE NCGDE AND ASSGCIATED

0030 STATE INFORMATICN, .

0031 ENCCD = STRING FIELD FOR 15 PUZZILE CCNFIGURATION.

0G32 PZ = INTEGER FIELD NQTING PCSITION CF THE BLANK.

0c33 wF = INDEX TO PRECECESSCR NCCE.

0034 OIST = CARCINALITY DISTANCE TQO ENOPCINT.

Q035 VALU = THE VALUE OF THE EVALUATION FUNCTICAK.

0036 SPILL = PCINTYER TO NEXT NODE IN HASKF EQUIVALENCE CLASS.
30137 PT {BPT) = REFERENCE ARRAYS POINTING YO FCRWARC(BACKWARD)

o038 SEARCH TREES.

0038 HSH (BHSH) = PQINTERS TO INITIAL NOOE IN EACH HASH CLASS.

0040 CURNOD {BCURNOD) = INDEX INTO REFERENCE ARRAY PT (BPT}.

1041 PTICURNGD) PCINTS TO THE CURRENT NCDE BEING E£XPANDEC.

0042 INIT = STRING ENCCOING OF STARTING 15 PUZILE CCNFIGURATION,
0043 GOAL = TERMINATING CR GCAL CONFIGURATICON.

3044 NXNODES = ARRAY CF SUCCESSOR COFIGURATICNS OF CURNODIBCURNGD) .
0045 MAXITER = MAXIMUM NUMBER OF NODES EXPANDEL BEFORE SEARCH 135 ENDED
D046 NUMNODE (BNUMNGODE) = NUMBER OF FORNARD (BACKWARD) NODES SEARCHED.
J047 DECN = PICKS DECISEON STRATEGY IN DECIDE.

Q048 EVALN = PICKS EVALUATOR [N EVALUATE,

0049 CMPN = PJCKS DUMP RCUTINE IN [OMP.

QQs0 WY = WEIGHT OF FEURISTIC FUNCTION VERSUS CIST IN EVALUATOR.
0051 UNDEVELOPED{BUNDEVELOPED) = IS TRUE IF NOCE I5 NOT YET EXPANDED.
0052

3053 OTHER VARIABLES ARE TEMPORARIES OR HAVE SPECIAL FUNCTIONS;
6054

0055

Q056

Q0357

0058
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0059
Q060
acel
0062
0063
0064
0Cé5
00606
0067
0068
0G69
0070
0Q7l
nov2
Q073
0074
Q0175
0076
0077
0C78
ocr9
coso
0081
Q082
0083
0ga4
o0as
0086
0087
0088
00€9
QC90
0091
0092
0093
0094
0QsS
0056
QcCsYy
ogge
0099
¢100
0101
0102
0103
0lo4
0105
Q106
0107
aicse
¢109
0110
0111
0112
o113
0ll4
0115
0116
01il7
ol118

COMMENT ENCODE TAKES INTEGER ARRAY REPRESENYATICN OF A 15
PUZZLE CCNFIGURATION -80ARL ANC ENCODES [N STRING FORM-VAR;

PROCEDURE ENCOCE(INTEGER ARRAY BOARC(*); STRING (16) VAR);
CCMMENT USES ALGOLW IMPLICIT PROCEDURE CCDE;
FOR 1:=0 STEP 1 UNTIL 15 DO VAR{I}1):= CCOE(BCARD{L));

CCMMENT INVERSE PROCEDURE FCR ENCODE;

PROCEDURE CECOD {STRING (16) VAR; INTEGER ARRAY BUARD(*));
COMMENT USES INVERSE OF CGCE -DECOQE;
FOR I:=0 STEP 1 UNTIL 15 DO BOARD(1):= LECODE(VARII|1));

COMMENT NONREDUNCANT CHECKS TO SEE LF THE 15 PUZZLE CONFIGURA-
TION VAR HAS ALREACY BEEN FOUNC.

LOGICAL PROCEDURE ANONREDUNDANTU STRING (1&) VAR; INTEGER H13
LOGICAL FLG);
BEGIN COMMENT
VAR= STATE BEING CHECKED
Hi=HASh INDEX OF VAR
FLG = WHICH TREE IS5 SEARCHED FOR REDUNDANT NODE.
1F TRUE THEN FORWARD TREE ELSE BACKWARD TREE, ;
LGCICAL T ;
DECOD {VAR,EGARLC); H1:=HASH{BOARLC);
Pls= (IF FLG YTHEN HSHIH1} ELSE BHSHIKL1)): Y :=TRUE;
CCMMENT CHAINED SEARCH ;
WHILE Pl ~= AULL DG
IF ENCOD(P1l)=VAR THEN
COMMENT NOCE ALREADY EXISTS [N HASH CLASS:
BEGIN TY3:=FALSE; GOTO DUT END
ELSE PL:=SPILL{P1);
aut: T
END NONREDUNCANT;

CCMMENT SUCCESSCR FINDS NOGES ADJACENT TC VAR. THE NUMBER
[T FINDS IS CEG ,ANC THEY ARE STORED IN NXNCDES WITH THE ZERO
POSITIENS RECCROED IN NZ3

PROCEDURE SUCLESSORL STRING {16} VAR INTEGER DEG,PZ;
INTEGER ARRAY NZ(*); STRING (16) ARRAY NXNCDES¢(#*));
BEGIN

LOGICAL LoR,U,C; INTEGER Alg

CCMMENT L RyUyC ARE LEFT,RIGHT,UP,DOWN FLAGS RESPECTIVELY.THEY
TELL NXT WHICr OF FOUR POSSIBLE MGVES TO GENERATE. ;

PRCGCEDURE NX¥3
BEGIN Al:z=C;
IF R THEM
BEGIN Ali=13
NXNODES{1}:=VAR; NXNODES{1)(FZ{1):=VAR(PZ+LI|11}}
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0119
0120
0121
o122
0123
0124
0125
0l26
o127
0128
ci29
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
01le0
0161
0162
0163
0l&a
0165
0lé&s
0167
0168
01£9
0170
0171
0112
0173
0174
0175
0176
o177
6178

NXNCDES(L)(PL+1]1):=CODELG}; NIU(L)2=PZ+l;
END RIGHYMCVE;
IF L THEN

BEGIN Alz=Aj+l;
NXNCDES (ALY z=VAR; NXNODESC(AIY(PLIL)=VAR(PI-1]1);
NXNCDES(AL)(PZ-1]1):=CODELQ)}; NZCAL):=PZ-1;
END LEFTMOVE;
IF U THEN
BEGIN Al:=Al+l;
NXNCDES(A1)Y:=VAR; NXNODESUALI(PZILl):=VAR(PZ~-4|1})}
NXNCDES{AL)(PLZ~4|L):=CODE(O); NZLALl):=PZ-4;
END UPMOVE;
IF C THEN
BEGIN Al:i=Al+l;
NXNODES (A1) :=VAR; NXNODES(AII(PZ|1):=VAR{PZ+4]|1);
NXNODES(AL)(PZ+4]:):=CODECO); NZ(AL):=PZ+4;
END CCWNMOVE;
END NXT:

COMMENT SUCCESSOR USES THE P2I=POSITICN CF ¥HE ZERC IN VAR TO FIND

NEW BOARD POSITIGNS;

CASE PZ+1 OF

.BEGIN
BEGIN R:=D:=TRUE; L:i=U:=FALSE} DEG:=2; NXT END;
BEGIN R:=L:=D:=TRUE; 3I=FALSE; DEG3s=3; NXT END;
BEGIN R:=L:2=D:=TRUE; U:=FALSE; DEG:=3; NXT END;
BEGIN L:=D:=TRUE; i=Us=FALSES DEG:=2; NXT END;
BEGIN R:=Uz=Dt=TRUE; L:=FALSE; DEG:=3; KXY END;
BEGIN Ri=Lz=U:=D:=TRUE; DEG:=43 AXT END:
BEGIN R3:=L:=U:=D:=TRUE; DEG:=4; NXT END;
BEGIN L:2sU:=D:=TRUE; R:s=FALSE: DEG:=3; NXT END;
BEGIN R:=Uz=D:z=TRUE; L:=FALSE; DEG:=33 AXT END;
BEGIN Ri=L:=Uz=D:=TRUE; DEG:=43 NXT END3
BEGIN Ri=L:=U:i=D:=TRUE; DEG:=4; NXY END;
BEGIN L3i=U:=D:=TRUE; R:=FALSE: DEG:=3; AXT¥ END;
BEGIN Rz2=U:=TRUE; L:=D:=FALSE; DEG:=2; ANXT END;
BEGIN L:=R:=U3=TRUE; D:=FALSE; DEG:=3; NXT END;
BEGIN Li=Ri=Ui=TRUE; Di1=FALSE; OEG:=33; AXT ENDO;
BEGIN L:=U:=TRUE; R2=Di=FALSE; DEG:=2; NXT END;

ENC MOVES;

END SUCCESSOR;

INTEGER PROCEDURE HASHUINTEGER ARRAY BOARD{®*));
BEGIN COMMENT RASHES A BDARD POSITICA INTD 560 TO 12403
INTEGER T; T:=03 i
FOR I:=0 STEP 1 UNTIL 15 DO T:=T4+BCARL(I)*1;
(T-560)
END HASH;

- 143 -



QL79
c180
018l
0182
Q183
0184
0185
0186
0187
0188
Q189
0190
0191
ols2
01s3
a184
0195
al1ss
0187
Qiss
0199
0200
0201
0202
0203
0204
0zC5
0206
gz207
02¢s
0209
0210
0211
0212
0213
0214
0215
Q216
0217
0218
0219
0220
0221
Q222
0223
0224
0225
0226
0227
0228
Qz29
0230
0231
0232
0233
0234
0235
0236
0237
Q238

COMMENY EVALUATE PCSITICON VAR RESWULT [S VAL. EVALN SELECTS

PARTICULAR EVALUATION FUNCTION AND FLG IS USED WHEN DIRECTION-

AL INFORMATICA IS AKANTED. H

PROCEDURE EVALUATE(STRING (16} VAR; INTEGER PZ; REAL VAL.wT3

INTEGER EVALN; LOGICAL FLG);
BEGIN
INTEGER PsT PEX,PEX1,PEX2sR: REAL 53
INTEGER ARRAY SEQ,PP+BT,HB (0::15);

COMMENT R IS5 THE REVERSAL CCUNT;
INTEGER PROCEDURE REVERSALS:
BEGIN
1=0;
FOR J3=0 STEP 4 LNTIL 12 DG
FOR [:=0 STEP 1 UNTIL 2 DC
IF BOARD{I#J)= 1 + J ¢2 THEN IF BCARD{I+Jel)=1+J¢l THEN
3=R+1;

FOR [:=0 STEP 1 UNTIL 3 DO
FOR J:=0 STEF 4 UNTIL 8 0O
IF BOARD(I+J)=1+J+5 THEN IF BOARD(I#+J+4)=T+J¢]1 THEN
R:=R+]1;
{ R )
END REVERSALS;

CGMMENT DCRAN-MICHIE EVALUATCR wWITHOUT REVERSAL TERM;
REAL PRCCEDURE MCKR;
BEGIN
FOR 1:=0 STEP 1 UNTIL 14 DO HB{1Y2=PTABLE(PZ,1+1);
HB{15):=PTABLE(PZ,15)4+{JF (PZ+1) REM 4=0C THEN -1 ELSE 1);
$:=03
FOR I:=0 STEP 1 UNTIL 15 DO
5:=5 + SQRT(HB(IL) })*PP(I)*PP(I);
[ |
END MOWR;

CCMMENT MOWR WITH MY REVERSAL TERM ;
REAL PRUCEDURE M3 (MOWR+2C*REVERSALS) ;

CCMMENT IF BACKWARD DIRECTICN THEN PCSITICON IS MAPPED INTO
THE ANTI-SYMMETRIC CONFIGURATICN ALLOWING EVALUATE TO
TREAT IT NORMALLY. ;
IF ~FLG THEN
BEGIN CECOD (VAR,BOARDLI);:
FOR I:=0 SYEP 1 UNTIL 15 DO BCARD(I}:=MAP{BGARDILI));
END
ELSE
BEGIN CECOD {(VAR,BOARD1});
FOR I:=0 STEP i UNTIL 15 DO BCARD(I):=MAP1(BCARCL(I}};
END;

PEX2=PEX1:=pP:=Q3

FOR I:=0 STEP L UNTIL 15 DO

BEGIN T:=BOARDI(I};
BT(T):=PP{I):=PTABLE(I+T};
P:=P+PP(1);

ENC3
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0239
Q240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0250
0251
g2%2
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
G263
02€4
0265
Q266
0267
0268
0269
0270
02171
0272
0273
0274
c275
0276
0277
0278
0279
Qzeo
028l
0282
0283
0284
0285
0286
0287
0288
0289
0290
0291
g292
c2s3
0294
3295
0296
Q297
o298

COMMENT THE FOLLOWING VARIABLES ARE NOT CURRENTLY BEING USEC.
PEX AND PEXL REPRESENT PARTIAL P EVALUAVICN AND ARE USED IN
SOME BI-DIRECTIGNAL INTERSECTION EXPERIMENTS. THEY ARE TURNED
OFF FOR PURPOSES COF EFFECIENCY. 3

COMMENT TURN OFF
FOR I:=0 STEP 1 UNTIL 15 DO
B8EGIN
IF FLG THEN BEGIN IF TPUI) THEN PEX1:z2=PEX1+B8T{1) END
ELSE BEGIN IF ~TP{I} THEN PEX1:=PEXI+8T{I) END
END;

COMMENT PEX SCORE REORDER L/2 OF BOARC:
COMMENT  TURN OFF

BEGIN FOR [:=0 STEP 1 UNTIL 7 DO PEX:=PEX+BT{I) END;

CASE EVALN OF
BEGIN
VAL:={[Ff FLG THEN DIST(PT(CURNOD)) ELSE DIST(BPTIBCURNCD) )+
WT*P+1;
VAL:=(IF FLG THEN DISTUPT(CURNOD)} ELSE DIST(BPT{BCURNDOD))}+
WT#P+1+2Q0%REVERSALS;
VALz={IF FLG THEN QIST{PT{CURNOD))} ELSE DISTIBPTI(BCURNOD}))
+HWT*MOWR §
VAL:={IF FLG THEN DIST{(PT(CURNOD)) ELSE DISTIBPT{BCURNDD) )}
+WT*ME;
VAL:=P}
VAL:=P+20%REVERSALS;
VALI=MDONWR;
VAL:=MD;
VAL:={1F FLG THEN DIST(PT(CURNOD)})} ELSE DIST{BPT{BCURNOD)}})+1;
VAL:={]IF FLG THEN DIST(PTC(CURNUDI}})} ELSE DIST(BPT(BCURNODI}I})+pP
+PEX +1;
VAL:=(IF FLG THEN DIST(PT{CURNQOD)) ELSE DIST(BPT(BCURNQODI))I+P
+PE2*PEXL+]1;
VAL:={IF FLG THEN DIST(PT(CURNOD}) ELSE DIST(BPT{(BCURNOD) }})+P
+PEX#PEXL+];
VAL:=03;
END3
END EVALUATE;

PROCEDURE WRTBRD2!( STRING (16} VAR):; COMMENT LINEAR REPRESENTATION;
BEGIN

INTFIELDSIZE:= 33

WRITE(™ *); CECOD{VAR, BOAROD};

FOR [:=0 UNTIL 15 DC WRITEON(BOARD(I));

RRITE (WHASH VALUE ", HASH(BCARD));

INTFIELDSIZE==123 -
END WRTBRDZ;

PROCEDURE WRTBRDL{ STRING (l6) VAR);

COMMENT WRITES GLT 4 BY 4 ARRAY REPRESENTATION OF FIFTEEN PUZZILE;
BEGIN

INTFIELDSIZE:= 23} HRITE(™ "); LCECGD{VAR, BCARL);

FOR I:=0 UNTIL 2 DO WRITEON(BCARDI(LI)); KRITE{(®" *);

FOR J:=4 UNTIL T DO WRITECN(BOARDILIN); WRITE(®" ")

FOR 1:=12 UNTIL 15 DO WRITECN{BOARDI(I)13 INTFLELDSIZE:z=123
END WRTEBRD1L;
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02$9
2300
0301
0302
0303
0304
0305
0306
0307
3308
0309
0310
0311
0312
03i3
0314
0315
0316
0317
0318
0319
0320
0221
0322
0323
0324
0325
0326
0327
0328
v3zs
0330
0331
0332
0333
0334
0335
0336
0337
¢338
0335
0340
1341
0342
0343
Q344
0345
0346
0347
Q348
0349
4350
0351
Q352
0353
0354
0355
0356
0357
0358

COMMENT HDISTR COLLECTS AND PRINTS HASH CLASS DISTRIBUTION.:

PROCEDURE HDISTR;
BEGIN
INTEGER ARRAY NH(O0::680);
WRITE ("HASH TABLE NUMBER OF CCCURRENCES");
FOR I:=0 STEP 1 UNTIL 680 DC NH{Il):=0;
FOR I:=]1 UNTIL MNUMNGDE CO
BEGIN
CECOC{ENCOD{PT(I)}, BOARD}; T1:=HASH{BUARD);
NH{TLl}:= NH(TL) + 13
END;
INTFIELDSIZE:=3;
FOR J:=0 STEP 10 UNTIL 670 DC
BEGIN WRITE(J);
FOR 1:=0 UNTIL S DC WRITEONC NR(I+J) };
END3}
END HOISTR;

COMMENT DMP DUMPS VARICUS NODES OF THE SEARCH TREES;

PROCEDURE CMPUINTEGER CND};
CASE CND CF

BEGIN
COMMENT CNC = 1 :FULL FGRWARD AND BACKWARC TREES
BEGIN
FOR I:=1 STEF 1 UNTIL NUMNODE 0O
BEGIN

WRTBRCZ(ENCAD(PTI(I)) )3
WRITEL WFIPT(L))y VALUCPTURI) DIST(PTLLI)) )
END;
FOR I:=1 STEP 1 UNTIL BNUMNGCDE DO
BEGIN
WRTBRO2 (ENCCO(BPT(ID) )3
WRITEL WFIBPTIL)), VALU{BPT{I)) DISTIBPTIL)) };
END;
END;

COMMENT CNC =2: FULL FCRWARD TREE;
FOR [:=1 STEP ! UNTIL NUMNODE €O
BEGIN
WRTBRDZIENCCD(PTCINY) )3
WRITE( WFIPT{I)), VALU(PTLL)),CISTIFT{I}) );
ENC;

COMMENT CND = 33 FULL BACKWARD TREE ;
FOR [:=]1 STEP I UNTIL BNUMNGCDE DO
BEGIN
WRTBRC2ZLENCCOIBPTILI} &3 ]
WRITEL WF{BPT(I))y VALUCBPT(L)),DIST(BPTLI)) )3
END;

COMMENT CND = 4: EVERY TENTH NODE IN FORWARD TREE;
FCR li=1 STEP 10 UNTIL NUMNCDE (G
BEGIN
WRTEBROZLENCCO(PTLI)Y 33
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0359
03¢0

03¢1
03e2
0363
03¢e4
03¢5
0366
0367
0368
0369
0370
0371
0372
0373
0374
0375
0376
0317
Q378
g37s
03840
0381
0282
0383
Q384
0385
g386
0387
02l&8
0389
6390
0391
0392
4393
0394
0395
396
037
G3s8
0399
0400
0401
0402
0403
0404
0405
0406
G407
Q4C8
04C9
0410
041l
0412
0413
0414
0415
0416
0417
0418

NDHRITE( WF{PTII))y VALULPTUTI},DIST(PTLLI}) i3
*
3 COMMENT CASE 5 IS5 ANULL:

CCMMENT CND = &3 LAST TEN NCDES IN BOTH FCRWARD AND BACKWARD
TREESS
BEGIN
INTEGER TF,TB;
IF  NUMNGCDEC1) THEN TF:=]l ELSE TF:i=NUFMMNCDE~-1(;
[F BNUMNODE<1! THEN TB:=1 ELSE TB:=BNUMNODE~-10;
FOR I:=NUMNCDE STEP -} UNTIL TF DC
BEGIN
WRTBRC2(ENCOD(PTIE)) )3
WRITE( WFIPT(I)), VALULPT(I}) CIST(FT(I)} )3
END3 .
FOR I:=BNUMNCDE STEP -1 UNTIL T8 DO
BEGIN
WRTBRDZ{ENCCD(BPT(1}} )3
WRITE( WF(BPTU(I}}, VALU(BPT(I)) DISTIBPTII)} )3

COMMENT TRACE PRINTS QUT THE SCLUTION PATH;

PROCEDURE TRACE; (CCMMENT TRACES PATH ULSES T1,T2 AS EXTERNALLY
SUPPLIED STARTIAG PCINTS FROM PRCCEDURE TERMINATE;
BEGIN
INTEGER COUNT;
COUNT:=0;
COMMENT FCRWARD CIRECTICN STARTS WITH NODE Tl. USES WF TO CHAIN
THROUGH PATH LNTIL O IS ENCOUNTERED AT NODE INIT;
WHILE T1-=0 ©GC
BEGIN
PLl:=PT(TL);
WRITE{"“NGDE #, ® TJREE POS ",y Tl.*® VAL *,VALUIP1)}:
WRTBRD1(ENCOD(P1}) 3
T1:=HWF(P1)}
COUNT:=COUNT+1;
END;
WRITE("FCRWARLC TREE NODES ".NUMNCOE," PATH IS5 ",COUNT);
COUNT: =03
COMMENT BACKWARD CIRECTION STARYS WITH ANGDE T2. USES WF TCO CHAIN
THROUGH PATH UNTIL O 1S ENCOUNTERED AT NODE GCAL;:
WHILE T2~=0 DO
BEGIN
P2:=BPT(T2);
WRITE ("NOGE w, ® TREE POS %, T2,% VAL *,VALU(P2}};
WRTBRDL{ENCOD(P2))3
T2:=wF (P2);
COUNT:=CCUNT+13
END;
WRITEL"BACKWARD TREE NODES *,BNUMNCDE,* PATH IS ",COUNT);
END TRACE;

- 147 -



0419
0420
0421
0422
0423
0424
0425
0426
0427
0428
0429
0430
0431
0432
0433
0434
0435
0436
0437
0438
0439
0440
0441
0442
0443
0444
0445
0446
c4at
0448
0449
0450
0451
0452
0453
0454
0455
0456
0457
0458
0459
0460
0461
0462
0463
0464
0465
0466
0467
0468
0469
0470
0471
0472
0473
0474
0475
0476
0477
0478

COMMENT s#xekx PTABLE INITIALIZATION #*%*x4
PTABLE(POSITION, TILE VALUE) EQUALS MANHATTAN DISTANCE FROM
TILE TO ITS GOAL SQUARE H

PROCEDURE PTABINIT;

BEGIN :
FOR [3:=0 UNTIL 14 DO

PTABLE{],0):=PTABLE{L,I+]1):=0;
PTABLE(15,0):=0;
PYABLE(O,2):=PTABLE{Q,5):=PTABLE(]1,3):=PTABLE(L6):=PTABLE(2,4):=
PTABLE(2,7)3=PTABLE(3,8):=PTABLE(4,6):=PTABLE(4,9):=PTABLE(5,7)
=13
PYABLE(O,3):=PTABLE(O+6):=PTABLE(C,9) :=PTABLE(L1+4) s=PTABLE(1,5):=
PYABLE(L,7):=PTABLE(1,10):=PTABLE(2,6):=PTABLE(2,8):=2;
PYABLE(Oy4) :=PTABLE(O,7):=PTABLE(O,10):=PTABLE(0,13):=
PTABLE{1,8):=PTABLE(1,11}:=PTABLE(1,14) :=PTABLE(2,5):=3;
PTABLE(O,8) :=PTABLE(O,11):=PTABLEIDy14):=PTABLE(1,12):=
PTABLEL1,13):=PTABLE{),15):=PTABLE(2,9) :=PTABLE{2,14):=
PTABLE(3,5)3=4;
PTABLE(O,12) :=PTABLE(Q,15):=PTABLE(2,13):=PTABLE(3,9):=
PTABLEL3,14}):=5;
PTABLE(S,10):=PTABLE(648) :=PTABLE{6,1]1) t=PTABLE(7412):=
PTABLE(8,13):=PTABLE{ 94+11):=PTABLE( 9,14):=PTABLE(10,412):=
PYABLE(B8,10}2=1;
PTABLE{2:11):=PTABLE(3,:7)3=PYABLE{3,12):=PTABLE{4,7T):=
PTABLE(4,13):=PTABLE(5,8}:=PTABLE(5+9):=PTABLE{(S5,11):=
PTABLE(4,10):=2;
PTABLE(2y10)3=PTABLE(2512)23=PTABLE(2+15)3=PTABLE(3¢6):=
PTABLE(4,8):=PTABLE(4¢s11):=PTABLE(4,414):=PTABLE(S,12):=
PTABLE{(2,11):=3;
PTABLE(3,10}:=PTABLE(3,15):=PTABLE(4,12)}:=PTABLE(4,15):~
PTABLE(7+9) :=PTABLE(7+14):=PTABLE(6413) 3=4;
PTABLE(3413)3=63
PTABLE(S5,14)2=PTABLE(641C):=PTABLE{6,12) :=PTABLE(6,15):=
PTABLE(8,11):=PTABLE( 8+ 14):=PTABLEl 9412} :=PTABLE( 9413):=
PTABLE{Ts11):=2;
PTABLE(S5,13):=PTABLE(S,15):=PTABLE{6+49):=PTABLE(6,14):=
PTABLE(Ts15):=PTABLE(B,12):=PTABLE(8,15):=PTABLE(7,10)3=3;
PTABLE( 9,15):=PTABLE({10,14):=PTABLE{L1Ll,15):=PTABLE(12+15):=2;
PTABLE(10415):=PTABLE{12,14):=PTABLE(13,]15):=1;
PTABLE(1,9):=PTABLE(10+13):=PTABLE{Ll1l+14)3=3;
PTABLE{11,13)3:=4; PTABLE(7,13):=5;
FOR [:=0 UNTIL 14 OO
FOR J:=1+¢2 UNTIL 15 DO PTABLE(J-1,1#1):=PTABLE{L+d);

PTABLE(L1S,113=6; PTABLE(15,2):=PTABLE(LS,5):=5;PTABLE(15,415):=]1;
PTABLE(15,3):=PTABLE(15,6):=PTABLE{15,9)3=43 PTABLE(15,12):=1;
PTABLE(15,4):=PTABLE(15,7):=PTABLE(15+10) :=PTABLE{15,13}):=3;
PTABLE(15,8):=PTABLE{15511) s=PTABLE(15,14)3=2;

END PTABINIT:

PRCCEDURE INITIALIZE; COMMENT SEGMENT OVERFLOW
BECIN
COMMENT * INITIALIZATICN OF PARAMETERS * H
UNDEVELCPED{1)}:=EUNDEVELOPED{ 1) := TRUE;
FOR [:=0 STEP 1 UNTIL 800 0O HSH(TI}:=BHSH({I)3=NULL;
NUMNODE :=BNUMNGCE:=1; FUSEs=BUSE:s=0; SDIST:=T0157:=0;
FOR I:=0 STEP 1 UNTIL 14 DO BOARCII):=1+I; BCARC{15):=0;
ENCODE(BCARC,GCAL);
FOR I3:=0 UNTIL 14 OC MAPLLBOARD{I)):=I+#1l; MAPL{BCARD(L5)):=0;
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0479 CECODU(INIT,BOARLC);

0480 FOR [:=0 UNTIL 14 DO MAPC(BOARD(I)):=1+1; MAPLBOARD{15)):=0;
0481 CCMMENT INITIAL EVAL IS MEANINGLESS ANC IS SET YO 0O:

0482 VAL:=03 PT{1):=NCDECINIT,T5,0,0, VAL NULL);

0483 8PT{1):=NODE(GOALy155,0,0, VAL NULL)}S

Q484 CECOD (INIT,BOARLC);

0485 FSHIHASH{BOARD) ) s=PT{1)3; CCMMENT INITIAL HASH CLASS:

04E6 CECOD (GCAL,BCARC);

0487 BHSH(HASH{BOARD) ) :=BPT(1);

Q4E8 ENC INITIALIZE;

0489

0490 :

0491 PTABINIT;

G452

Q493 COMMENT WW IS AN ARRAY CF WEIGHTS TO BE USEC WITH EACH FUNCTION;
0494 WWil)l:=0.5; #n{2):1=C,75;: wWW(3)}:=1; MWhi4):=1.8; nwKi{5):=2;
0455 wHi6)s=3; WW(T)i=4; HWW{B):=163

0496 FOR [:=0 STEP 1 UNTIL 15 DO TP({I)3:=FALSE;

0497 FOR 1:=0,1424344+E412 OC TP(I):=TRUE;

04938

Q4S9 CVER:

0500 COMMENT REAC IN PARAMETERS 3

0s01

0502 REAC(MAXITER jCECNGEVALNsDMPNK,CSNoWT) 3

0503 FOR [:=0 STEP 1 UNTIL 15 DO

0504 BEGIN READCN(BOARCI(IL)}; IF BOARD(I)=0 THEN TS5:=I END;

0505 ENCODE(BOARC, INIT);

asce ICCONTROL(3);

ase7 WRITE(™ BI-DIRECTYICNAL GRAPH TRAVERSER WITF GRAPHS IN RECORDS");
0sC8 WRITE(®CASE ™,CSNs" LCECN ",DECN.*" EVALN ",EVALN);

0509 WRITE{PPARAMETERS ™," WT= ", kT, MAXITER= “,MAXITER);

0510 WRITE("STANDARD GGAL "y " INITLALLY ");

0511 WRTBRDI{INIT);

6512 TIN:=ENTIER(WT};

0513 FOR CC==TIN UNTIL 8 DC

0514 BEGIN HT:?hH(CC’;

0515 INITIALRZES

0s16

Q517 CCMMENT *¥%k%  KAIN PRCGRAM LOGP #%skkdx%;

o518

€519 Ji=0;

0520 ®RHILE J < MAXITER DC

0521 BEGIN

Q522

0523

0524 LOGICAL PRCCEDURE CECICE [ INTEGER VALUE CN);

0525 CASE CN OF {

0526 TRUE, CCMMENY - FCRWARD SEARCH;

0527 FALSEy COMMENT - BACKWARC SEARCH;

0528 ({J REM 2} = 0}y CCMMENT — ALTERNATING BI-DIRECTICNAL SEARCH;
a529 {{J REM 3] = 0), CCMMENT =-ALTERNATING 1 FORW 2 BACK;

€530 (SCIST < TOISTi, COMMENT - BI-DIRECTIONAL EQUIDUSTANT SEARCH;
0531

0532 CCMMENT A FGRM CF PENRETRANCE RULE;

0533 ( (SCIST+1l)/{NUMNODE=-FUSE) > (TDIST+1) /(ENUMNODE-BUSE) ),
0534

0535 CCMMENT DECISICN BASEC CN BRANCHING FOR TREE CF LENGTH *CIST;
0536 { LNINUMNODE-FUSE)*(TLIST+1) < LN(BMNUMNODE~BUSE)*(SDIST+1) )
Q537 |

0538
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0539
0540
0541
0542
0543
0544
0545
0546
0547
0548
0549
0550
0551
0552
0553
0554
0555
0556
0557
05548
0559
0560
0561
0562
0563
0564
0565
0566
0567
0568
0565
0570
0571
0572
05173
0574
0575
0576
0577
05178
0579
0580
Q581
0582
0583
0584
0585
0586
0587
0588
0589
0590
0591
0592
0593
0594
0595
Q596
0597
0598

PROCEDURE TERMINATE(STRING (16} VAR; LOGICAL FLG);
BEGIN COMMENT CHECKS WHETHER CRNOD IS IN BOTH TREES
INTEGER T3 CECCD (VAR,EQARC}); T:=HASH{BOARD);
IF FLG THEN
BEGIN P23=BHSH(T);
WHILE P2 -=NULL DO
IF VAR=ENCUD(P2) THEN

.
’

BEGIN
T1:=NUMNCODE; T2:=wF(P2);
Pl:=PTI{NUMNODE); GOTO TRACEPATH
END
ELSE BEGIN TZ:=wF{P2); P2:=SPILL{P2) END
END
ELSE

BEGIN P1:=hSHI(T);
WHILE P1 ~= NULL DO
IF VAR=ENCOC(Pl} THEN
BEGIN
T2:=BNUMNCDE ; Tl:=wF(PL)}
P2:=BPT{BNUMNODE); GOTO TRACEPATH;
END
ELSE BEGIN Tl:z=wF{Pl); PLl:=SPILLIP1) END
END
END TERMINATE;

VFLAG:=TRUE;
IF DECIDE{ DECN) THEN
BEGIN
COMMENT FORWARLC DIRECTIGON 3
MIN:=100000; FLG:=TRUE;

COMMENT SEARCH FOR UNDEVELOPEC NODE wWITH MINIMUM VALUE;
FOR [:3=ANUMNCDE STEP -1 UNTIL 1 DO
IF UNDEVELOPED(1) THEN
BEGIN.
1F MINOVALULPTI(I)) THEN
BEGIN MIN:=VALU(PT{I}); CURNOC:=I END;
ENC UNDEV;

COMMENT INCREMENY NUMBER CF NODES EXPANCEC;
FUSE:=FUSE+]) ;

UNDEVELOFPED(CURNOD}:= FALSE;

SDIST:=0IST( PT{ CURNOD));

COMMENT GENERATE ADJACENY NODES AND CHECK FOR REDUNDANCY:
SUCCESSOR(ENCCO(PT(CURNOD ) ) 4DEG,PZIPT{CURNOD) ) 4NZ 4 NXNODES) 5
FOR I:=1 STEF 1 UNTIL DEG OO

IF NONREDUNDANT(NXNGDES(11+T2,FLG) THEM

BEGIN

CCMMENT ADD NEW NODE TC FORWARD SEARCH TREE;
EVALUATE(NXNCDES (1) oNZ(T}oVAL WT EVALN,FLG)
NUMNOCE : = N\UMNODE+L;
5T1:=NXNCDES(L);
PTUNUMNODE ) :=NODE(ST1,NZ(I),CURNOD,CIST(PT{CURNOD)) +1,
VALsNULL)S
UNDEVELOPEDUNUMNGDE ) 3= TRUE;
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0599

0600 COMMENTY CALCULATE SPILL PCINTER FOR HASH CLASS;
06C1 IF HSH{TZ)=NULL THEN HSH(TZ):=PT {NUMNODE)

0602 ELSE

0603 BEGIN

0604 Pl:=HSH(T2);

0605 WRHILE Pl ~= NULL ©O

0606 BEGIN P2:=PLl; Pl:=SPILL(PY) END;

0607 SPILL{P2) := PYINUMNCDE)

0608 END;

0609

0610 ’ COMMENT CHECK IF NODE [S CCNTAINEC IN BOTH SEARCH TREES;
0611 TERMINATE(NXNODES{I}4FLG)

Q812 END LOCPI;

Qel3 END

0614 ELSE .

0615 BEGIN COMMENT PBACKWARD DIRECTIQN ;

Qéle MIN:=)1Q00QQ; FLG:=FALSE;

0617 FOR I:=RAUMNCOE STEP —1 UNTIL 1 DG

Q618 IF  BUNDEVELOPEDII) THEN

0619 BEGIN

0620 IF  MIN > VALUIBPT(1}) THEN

0621 BEGIN MIN:= VALUCBPT(I}); BCURNOD:=] END;
Q622 END ;

0623 BUSE:=BUSE+L ;

0624 BUNDEVELCPED (BCURNOD) : =FALSE;

0£25 TOIST:=DIST(BPT{BCURNODI);

0626 SUCCESSUR(ENCDD{BPT(BCURNUD)lpDEG'PI(BFT(BCURNUD)l.Nl.NXNGDES)
0627 H

0628 FOR l:=1 STEP % UNTIL BEG DO

0629 IF NONREDUNDARNTUNXNODESUL)o72,FLG) THEN

0630 BEGIN

0631 EVALUATE(NXNODES(I)oNZ(L} 4 VAL yWT,EVALN,FLG):

0632 BMIMNCDE ! =BNUMNCOE+13

Q&33 ST1:=NXNOGDOES(1);

0634 8PYT (BNUMNCDE ) :=NCDE(ST1s NZi1}, BCURNOD,

0635 DISTUEPTIBCURNOD) )#1,VAL,NULL);

Q636 BUNCEVELCPEC(BNUMNODE )= TRUE;

0637 IF BHSH(TZ)=NULL THEN BHSH{T2}:=BPT(BNUMNCDE}

0628 ELSE

Q639 BEGIN

D64C Pli=EHSHIT2);

Deé4al WHILE Pl -~= AULL DO

0642 BEGIN P2:=PLl; PL:=SPLILL(PL) END;

0643 SPILL(P2):=8PT{BAUMNODE )

ge4as END;

0645 TERMINATEINXNODES{I)+FLG)

0646 END LOOPI;

Q647 END ELSECLAUSE;

0648

Geag di=J+l;

0650 END JLCOP

08651 TRECEPATH: 1F JCKMAXITER THEN TRACE ELSE WRITE("WAXIMUM ITERATIONS");
0652 WRITEI®™ "}; WRITE(®F DEV NODES ".FUSE,"™ B8 LEV NODES ".BUSE};
0&£53 HDISTR;

0654 [F  FUSE+BUSE = MAXITER TrHEN IF DMPN=5 THEN LMPN:=zg;

Q&85 CMP{OMANY S

G656 ENE €C3

0657 GOTO OVER;

0e58 END.

- 151 -



iG.

REFERENCES

Amarel, S., "An approach to heuristic problem solving and theorem proving
in the propositional calculus,” Carnegie Institute of Technology, Pittsburgh,
Pennsylvania (June 1966).

Amarel, S., "On machine representations of problems of reasoning about
actions — The missionaries and cannibals problem, " Carnegie Institute of
Technology, Pittsburgh, Pennsylvania (June, 1966).

Baecker, R., "Planar representations of complex graphs, " Report No.
TN-ESD-TR-67~61, Lincoln Laboratory, MIT, Cambridge, Massachusetts,
(1967).

Bar-Hillel, Y., (Editor), Language and Information, (Addison-Wesley, Palo

Alto, California, 1964), especially "Nonfeasibility of FAHQT," pp. 174-179.
Bauer, H., S. Becker, and 8. Graham, "ALGOL W implementation Report
No. TR-CS8-98, Stanford Computer Science Department, Stanford University,
Stanford, California (May 1968).

Bellman, R. and S. Dreyfus, Applied Dynamic Programming, (Princeton

University Press, Princeton, New Jersey, 1962).

Berge, C., The Theory of Graphs and Its Applications, (Metheum Co. Litd.,

London, England, 1962).

Berge, C., and A. Ghouila-Houri, Programming, Games, and Transportation

Networks, (Metheun Co. Ltd., London, England, 1965j.
Berztiss, A., "A note on segmentation of computer programs, ' Information
and Control, 12, 21-22 (January 1968).

Burstall, R., "Writing search algorithms in functional form,'* Machine

Intelligence 3, D. Michie, Editor (Oliver & Boyd, Edinburgh, England, 1968);

pp. 373-385.

- 152 -



11.

12,

13.

14,

15.

16.

17.

18.

19.

20.

21.

22,

Busacker, R. and T. Saaty, Finite Graphs and Networks, (McGraw Hill

Company, New York, New York, 1965).

Chartros, B., "Letter ‘_co the Editor," Computer Journal, 10, 118-119,
(May 1967).

Corneil, D., "Graph isomorphism," Ph.D. Thesis, University of Toronto,
Toronto, Canada, (1968).

Corneil, D., and C. Gotlieb, "Algorithm for finding a fundamental set of
cycles for an undirected graph, " Communications of the ACM, 10, 780-783,

{December 1967).

Dantzig, G., Linear Programming and Extensions, (Princeton University

Press, Princeton, New Jersey, 1963).

Dantzig, G., (personal communications, 1968).

Dijkstra, E., "A note on two problems in connection with graphs,”
Numerische Mathematik, 1, 269-271,(1959).

Doran, J. and D. Michie, "Experiments with the graph traverser program, "
Proceedings of the Royal Society (A), 294, 235-259, (1966).

Doran, J., '""An approach to automatic problem-solving,' Machine Intelligence

1, N. Collins and D. Michie, Editors, (Oliver and Boyd, Edinburg, England,
1967); pp. 105-123,

Dreyfus, D., '"An appraisal of som'e shortest path algorithms," Report No.
RM-5433, Rand Corporation, Santa Monica, California, (August 1967).
Feigenbaum, E., "Artificial intelligence: Themes in the second decade,"
Memo-67, A.I. project, Stanford University, Stanford, California, (August

1968).

Feller, W., An Introduction to Probability Theory and Its Applications 1,

(John Wiley & Sons, London, England, 1950).

- 153 -



23.

24.

25,

26.

27,

28,

29.

30.

31.

32.

33.

34.

Floyd, R., "Algorithm 97, shortest path," Communications of the ACM, 5,
345, (1962).

Floyd, R., "Nondeterministic algorithms," Journal of the ACM, 14, 636-644,
(October 1967).

Ford, L., and D. Fulkerson, Flows in Networks, (Princeton University

Press, Princeton, New Jersey, 1962).

Golomb, S., and L. Baumert, "Backtrack programming," Journal of the ACM,
12, 516-524, (October 1965).

Greenblatt, R. E., D. E. Eastlake, and S. Crocker, "The Greenblatt chess

program, " Proceedings Fall Joint Computer Conference, (1967); pp. 801-810.

Harary, F., R. Normal, and D. Cartwright, Structural Models: An Introduction

to the Theory of Directed Graphs, (John Wiley and Sons, Inc., New York, New

York, 1965).

Hardy, G., J. Littlewood, and G. Polya, Inequalities, (Cambridge University
Press, Cambridge, Massachusetts, 1964).

Hart, P., N. Nilsson, and B. Raphael, "A formal basis for the heuristic
determination of minimum cost paths," Stanford Research Institute report,
(June 1967); and IEEE Trans. on Sys. Sci. and Cybernetics, (July 1968).
Huberman, B., "A program to play chess end games," Report No. CS-106,
Computer Science Department, Stanford University, Stanford, California,
(1968).

Kaufmann, A., Graphs, Dynamic Programming and Finite Games,

(Academic Press, New York, New York, 1367).

Knuth, D., "Fundamental algorithms," The Art of Computer Programming 1,

(Addison-Wesley, Reading, Massachusetts, 1968).

Kozdrowicki, E., ""An adaptive tree pruning system: A language for pro-

gramming heuristic tree searches, ' Proceedings of the ACM, (1968); pp. 725-735.

- 154 -



35,

36.

37.

38.

39.

49.

41.

42,

43.

44,

Lin, Shen, "Computer solution of the traveling salesman problem, " Bell
System Technical Journal, (December 1965); pp. 2245-2269.

McCarthy, J., LISP 1.5 Programmer's Manual, (MIT Press, Cambridge,

Massachusetts, 1964).

Michie, D., "Strategy building with the graph traverser,' Machine Intelligence
1, (Oliver and Boyd, Edinburg, England, 1967); pp. 135-152.
Michie, D., J. G. Fleming, and J. V. Oldfield, "A comparison of heuristic,

interactive, and unaided methods of solving a shortest-route problem, "

Machine Intelligence 3, (Oliver and Boyd, Edinburg, England, 1968);

pp. 245-255.

Minsky, M., ''Steps toward artificial intelligence, ' Computers and Thought,

E. Feigenbaum, and J. Feldman, Editors, (McGraw Hill Company, New York,
New York, 1963); pp. 406-450.

Moore, E., "The shortest path through a maze," Proceedings of an International
Symposium on the theory of switching, Part II, April 1957, (Harvard University
Press, Cambridge, Massachusetts, 1959); pp. 285-292,

Newell, A., and G. Ernst, "The search for generality,' Proceeding of IFIP
Congress (1965); pp. 17-22.

Newell, A., and H. Simon, "GPS, 2 program that simulates human thought, "'

Computers and Thought, E. Feigenbaum, and J. Feldman, Editors, (McGraw

Hill Company, New York, New York, 1963); pp. 279-283.
Newell, A., J. C. Shaw and H. Simon, ''Chess-playing programs and the

problem of complexity, ' Computers and Thought, E. Feigenbaum, and

J. Feldman, Editors, (McGraw Hill Company, New York, New York, 1963);
pp. 39-70.
Nicholson, T., "Finding the shortest route between two points in a network, "

Computer Journal, 9, 275-280 (November 1966).

- 155 -



45,

46.

47,

48.

49.

50,

b1,

52.

53.

54.

55.

56.

57,

Nilsson, N., "Searching problem — solving and game playing trees for
minimal cost solutions," IFIPS Congress preprints (1968); pp. H125-H139,

Ore, O., Graphs and Their Uses, (Random House, New York, New York, 1963).

Ore, O., Theory of Graphs, (AMS Colloquium Publications, Providence,

Rhode Island, 1962); p. 38.

Pohl, 1., "Graph package,'" GSG Memo-43, Stanford Linear Accelerator
Center, Stanford University, Stanford, California (June 1967).

Pohl, I., "A method for finding Hamilton paths and Knight's tours, " Com-
munications of the ACM, 10, 446-449, (July 1967).

Pohl, I., "Phrase-structure productions in PL/I," Letter to Communications
of the ACM, 10, 757, (December 1967).

Pohl, 1., "A generalized extension to shortest path methods," GSG Memo-586,
Stanford Linear Accelerator Center, Stanford University, Stanford, California,

(March 1968).

Polya, G., How to Solve It, (Doubleday, Garden City, New York, 1957): 2nd Ed.
Ramamoorthy, C., "Analysis of graphs by connectivity considerations, "
Journal ACM, 13, 211-222, (April 1966).

Samuel, A., "Some studies in machine learning using the game of checkers,"

Computers and Thought, E. Feigenbaum, and J. Feldman, Editors, {McGraw

Hill Company, New York, New York, 1963); pp. 71-105.

Sandewall, E., "A planning problem solver based on look-ahead in Stochastic
gametrees, ' Report No. NR-13, Department of Computer Science, Uppsala
University, Uppsala, Sweden, (1968).

Shaw, A., "The fifteen puzzle, (private communication, 1965).

Slagle, J., and P. Bursky, "Experiments with a multipurpose, theorem-

proving heuristic program,' Journal of the ACM, 15, 85-99, (January 1968).

- 156 -



58,

59,

60.

61.

62.

63.

Tonge, F., "Summary of a heuristic line balancing procedure,' Computer
and Thought, E. Feigenbaum, and J. Feldman, Editors, (McGraw Hill
Company, New York, New York, 1963); pp. 168-190.

Unger, S., "G.I.T. — A heuristic program for testing pairs of directed line
graphs for isomorphism,' Communications of the ACM, 7, 26~34, (January
1964).

Von Neumann, J., Theory of Self-Reproducing Automata, Edited and completed

by Arthur W. Burks, (University of Illinois Press, Urbana, Illinois, 1966).
Warshall, S., "A theorem on Boolean matrices," Journal of the ACM, 9,
11-12, (January 1962).

Wirth, N., and C. Hoare, "A contribution to the development of ALGOL,"
Communications of the ACM, 9, 413-431, (June 1966).

witzgall, C., "On labeling algorithms for determining shortest paths in
networks, " Report No. 9840, U, S. National Bureau of Standards, Washington,

D.C., (May 1968).

- 157 -



