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ABSTRACT 

Path finding is a key process in many areas of computation. Optimization 

problems and heuristic search problems are two notable examples. The first 

part of this dissertation presents a class of algorithms, denoted VGA, for solving 

the two point shortest path problem in directed graphs with non-negative edge 

weights. This class is a bi-directional extension of the most efficient known 

uni-directional shortest path algorithms. While it has long been realized that 

hi-directional algorithms often provide computational savings, a theory of this 

has not been forthcoming until now. This theory shows how a hi-directional 

method using the proposed cardinal@ comparison strategy is a priori the best 

shortest path algorithm within the class of algorithms VGA. 

These theoretical results are verified by extensive tests of VGA. A computer 

program was written where several standard uni-directional and bi-directional 

strategies were compared with cardinality comparison. The program randomly 

generated a number of large directed graphs and each strategy in turn was tried 

on numerous path problems within these graphs. 

In heuristic search for artificial intelligence problems, algorithms similar 

to the two point shortest path problem are used. The spaces searched are enor- 

mous, often infinite, and in consequence the constraint on finding the shortest 

path is abandoned. The concern is for finding any solution path with minimum 

effort. The second part of the dissertation presents a theory of these problems 

and some experiments with the fifteen puzzle in using the methods suggested by 

this theory of heuristic search. 

The evaluation function directing the search is the sum of the distance from 

the starting node and an estimate of the distance to the goal. This second com- 

ponent is the heuristic term, and if accurate, allows efficient path finding in 
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large spaces. Some results on the effect of error in the heuristic term are pre- 

sented. Especially interesting is theorem ‘7.9, showing that the distance from 

the start should be incorporated in the evaluation function. This particular result 

runs counter to the reliance strictly on the heuristic term, a practice which is 

widespread. 

Bi-directional heuristic search is also proposed. VGHA, a bi-directional 

class of algorithms, is an extension of the Hart, Nilsson, and Raphael uni- 

directional heuristic search algorithms. Their results are extended to this more 

general class. 

These methods are used in solving fifteen puzzle problems and comparing 

the number of nodes explored. It is a continuance of the empirical work started 

by Doran and Michie with the Graph Traverser. The most interesting results 

show the importance of appropriately weighting the heuristic term in the evalua- 

tion function. For example, overrelaxation seems to be an important principle, 

which means weighting the heuristic term on an average slightly more than the 

cost-to-date term. This data is a successful prediction from the theory. 

Some further results include the extension of hi-directional methods to the 

network flow problem; the description of a new efficient algorithm for finding 

bridges in directed graphs, which are structurally interesting as they can be 

used for finding partitions; and applications of hashing techniques to remove 

problems of intersection in hi-directional search. 
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PREFACE 

The range of topics and ideas in computer science is so extensive that it is 

often criticized as an amorphous mass rather than a discipline. Where is the 

thread that runs from numerical analysis to systems programming and on to 

artificial intelligence? As a student of this wilderness several points of unity 

impressed me. The aim of all people in the discipline is to solve problems algo- 

rithmically, and the tool used inherently discretizes the problems to be solved. 

Graph Theory is one Qnguage” that provides a description for many areas of 

computer science. It is therefore important to be able to manipulate these struc- 

tures computationally. One of the basic problems in this representation is finding 

paths between two nodes. It is a core problem in such disparate fields as opera- 

tions research, circuit theory, and artificial intelligence, hence the importance 

of efficient algorithms for this problem. This then is the chief concern of our 

work. 

0.1 Organization 

This dissertation is divided into two major parts. First, Chapters 1 through 

6 are concerned with the classical two node shortest path problem. Secondly, 

Chapters 6 through 9 are concerned with heuristic search. The connection be- 

tween the two problems is that our model of heuristic search is a path problem 

in a directed graph. In each case we are interested in a computationally efficient 

solution. The insights from the better understood shortest path problem provide 

the tools for formalizing and solving the heuristic path problem. 

Chapter 1 is an introduction to the shortest path problem, exhibiting some of 

the principal methods to solve the problem. Chapter 2 contains our general bi- 

directional shortest path algorithm which subsumes the current best algorithms 

as special cases. This allows us to prove that this class of algorithms is correct 

and to ask which is the best member of this class. We then propose the cardinality 
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comparison algorithm and in Chapter 3 discuss a model of efficiency for this clast 

of algorithms. Chapter 4 proves that a priori expected work performed by cardi- 

nality comparison is a minimum for our class of algorithms. Finally in 

Chapter 5 we show some results of extensive experimental tests confirming the 

theoretical conclusions of the previous two chapters. 

Chapter 6 introduces a directed graph model of artificial intelligence problen 

as path problems. It discusses how the search for a solution path is expedited by 

appropriate use of heuristic functions. Chapter 7 presents a theory of uni- 

directional heuristic search. It presents a formal characterization of the effect 

of error in the heuristic function on search efficiency. Chapter 8 presents some 

results of using the ideas developed in formally characterizing heuristic search 

in solving fifteen puzzle problems in the mode of Doran and Michie. 18 Chapter 9 

is the extension of the Hart, Nilsson and Raphael Theory 30 to bi-directional heu- 

ristic search. This unifies some of the work on the shortest path problem with the 

heuristic search problem, as the solution paths obtained must be shortest. 

Chapter 10 presents some further observations on computational graph theory and 

its use as a model of artificial intelligence, It notes some unsolved problems and 

presents conclusions on the problem area and our particular approach. 

0.2 Contributions 

The contributions to the field have been: 

a. A formulation and proof of correctness of a class of algorithms 

for efficiently solving the two node shortest path problem. 

b. A theory of efficiency in solving these problems (shortest path 

space). 

C. The discovery and proof of the cardinality comparison strategy 

as the most efficient a priori hi-directional shortest path 

- vi - 



method. This is demonstrated by theorem 4.5, which is 

an interesting probabilistic result on this type of decision 

problem. 

d. Empirical verification of this theory and the gain in effi- 

ciency by cardinality comparison over other standard 

methods. 

e. A theory of efficient heuristic search and associated worst 

case analysis of heuristic functions. 

f. Extensions of the Hart, Nilsson and Raphael results to bi- 

directional heuristic search. 

g- The use of associative search (hashing techniques) to solve 

the redundancy problem and the tree intersection problem. 

h. An efficient bridge (“narrows”) finder in graph spaces. 

We feel that these explicit contributions are the result of a computational 

approach to these problem areas. One keeps in mind algorithmic efficiency 

without failing to justify rigorously the method. Theory and practice naturally 

develop in step, each bringing insight to the other. 
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CHAPTER 1 

THE SHORTEST PATH PROBLEM 

1.1 Introduction 

The problem of finding the shortest path between two points pervades many 

fields of science. It is of fundamental importance to operations research, 7,8 > 11,32 

and has wide application in computer science, 18,30,61 especially in modeling 

various artificial intelligence problems involving searches of large but effectively 

defined spaces. The discrete nature of the problem and its simplicity argue for 

an elegant computer algorithm. Over the years, many computer scientists, 17,23 

operations researchers, 6,7,15 and applied scientists4” 63 have attempted to solve 

the problem in an efficient manner. While one school, the operations researchers, 

have characterized the problem in linear programming terms 15 and dynamic pro- 

gramming terms, 6 the pragmatic computer scientists unencumbered by tradition, 

have attempted to intuit a naive but efficient computational method and have been 

remarkably successful. 17,20,23 Historically the work derives its impetus from 

this computer science tradition and this work is an attempt to generalize this 

approach and generate a theory of efficient solutions to the shortest path problem 

and analogous discrete algorithms which benefit from these ideas. 

Shortest path work as noted above covers many disciplines and the literature 

is widespread and difficult to survey. Often a particular method or discovery is 

attributed to several authors regardless of temporal primacy because of the dif- 

ferent disciplines using these results. Dreyfus 20 has gone to great lengths to 

appropriately credit the originators of various of the shortest path algorithms. 

In this regard my work owes its allegience to Dijkstra’s method which in opera- 

tions research is attributed to Dantzig. I would emphasize that Dantzig’s work 
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in both a computer science, \ (>in .~:!tl an operations research vein has been impor- 

tant. Nevertheless, my work was initiated and pursued in computer science 

terms. This may be characterized as an eclectic pragmatic approach with effi- 

ciency the paramount goal. 

In generalizing the Dijkstra approach, an attempt is made to provide a unified 

theory for efficiency in this class of algorithms. This unification has led to a 

more efficient cardinality comparison strategy and extensions of this approach to 

heuristic search. 30,57 

1.2 Problem Statement 

Consider a directed graph G(X, v) where X is a collection of nodes and U is a 

collection of edges. Each member of U may be considered an ordered pair of nodes 

of x. Let the nodes of X be mapped into the integers in increasing order starting 

from 1; then some member of Q E U may be written as eij where i is the initial node 

of a! and j is the terminal node of o!. A person standing on the ith node of G could 

walk along street (Y and reach the jth node of G, where a! is a one-way street. 

The cardinality of a set will be denoted by “1 1”. The cardinality of G will be 

the cardinality of its vertex* set X. 

A path p from node s to node t is a sequence of edges 

P = eXlxZy -wsp 
eXK-lXK) 

where X 0 =sandX K = t. Alternatively we write 

P = (X0, x 1’ ..*, XK) , 
or 

,u=(U,, U2, .-., UK) whereUi=eX x . 
i-l i 

* 
Node and vertex will be used interchangeably as will arc and edge. 

-2- 



The graphs we will consider have their edge set mapped into the non-negative 

reals. These values will be called the lengths of the edges and will be represented 

as 

Q(e po . 

The length of a path ~1 will also be written as Q(p) where 

P =uJ 1, . . . , UK) and Q@) = c Q(U,) . 
i 

The shortest path problem considered in this paper is: 

given s,teX find some p*, a path from s to t such that 

Q@*) is a minimum over all paths from s to t. 

There are many important variants of this problem. 20 One such is the spe- 

cialization of length to take on only a value of unity. Then the shortest path be- 

tween two nodes is the one which traverses the fewest edges. This is the cardi- 

nality or Manhattan distance of a path. This problem can be solved by the methods 

described here; some other variants like the kth-shortest path cannot. However, 

the two node problem is the basic shortest path problem with many areas of 

applicability. 

The problem is clearly solvable, a most primitive solution being 

a search over all possible paths. 24,26 An improvement over this exhaustive 

enumeration is to recognize that if p = (s, x1,x2, m S *, xk, t) is optimal then all 

its subpaths are optimal. This satisfies the fundamental dynamic programming 

principle and therefore one can use Bellman’s method (see Ref, 6, p. 230). 

(0) =o gt 

i = 1,2, . . . n, (9 = o gt 
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Step 2 is iterated up to n-l times (stop when two successive iterations are 

the same) and gives the shortest paths from all nodes to t. This requires O(n3) 

(order n-cubed) operations - a manageable amount of work. Nevertheless, 

better methods of O(n2) have subsequently been developed. These are acknowl- 

edged as the current best methods 20 and are unlikely to be superceded by better 

methods on ordinary Von Neumann machines. The O(n2) methods constitute the 

precursors of this work. 

In order to place this work in perspective, we must describe the antecedents 

of the general algorithm and theory. This will give the reader insight into the 

development of this work as a generalization of shortest path algorithms. In doinl 

this, we will use an example of Nicholson’s 44 to demonstrate the mechanics of 

each method. 

I.3 E. W. Dijkstra’s Method 17 

This algorithm was independently discovered by G. Dantzig 15 and others. 2oy ’ 

Dijkstra defines three sets: 

A The nodes having their minimum path from s (the initial 

or starting node) known. 

B The direct successors of the above set which are not in it. 

C The remaining nodes. 

The computation proceeds in two stages. 

1. A node in set B with current minimum distance to s is 

transferred to set A. If this node is t (terminal node) the 

computation halts. 

2. The successors of the node just placed in A by step 1 are 

calculated. Of these, the nodes that are in C are trans- 

ferred to B. The value of the distance from s, of the 
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nodes already in B, are changed if the new distance 

calculated is smaller than their current value. 

So, with each node, let us associate its d value and its wf value. 

d(n) = current best distance from s 

wf(n) = immediate predecessor of n along path from s, 

for which d(n) was calculated. 

fnitially all nodes have 

d(xi) = m and wf(xi) = undefined. 

We always begin by placing s in set A with d(s) = 0. 

Let us look at this method applied to Nicholson’s graph and find the shortest 

path from node 1 to node 9 (see Fig. 1.1). 

Step 1 

Set A d(xi) “f(xi) Set B d(x.J wf(xi) Set C d(xi) “f(“$ 

1 0 -- 2 3 1 5 c-2 -- 

3 6 1 6 co -- 

4 7 1 7 00 -- 

8 03 -- 

g m -- 

We will no longer show set C, since it can be found from complementing 

AUB. 

node 2 has minimum distance in B. Step 2 

Set A d(Xi) “f(xi) Set B d(Xi) wf(xi) 

1 0 -- 3 4 2 

2 3 1 4 7 1 

5 7 2 
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FIG. l.l--Example: Nicholson’s graph. 

-6- 



step 3 

SetA d(Xi) “f(Xil Set B d@$ “f@$ 
1 ,o -- 4 7 1 

2 3 1 5 7 2 

3 4 2 6 6 3 

step 4 

Set A d(Xi) "f(Xil Set B d(x,) "f(xil 

1 0 -- 4 7 1 

2 3 1 5 7 1 

3 4 2 8 7 6 

6 6 3 9 8 6 

Step 5 

Set A d(Xi) "f(Xi) 

1 0 -- 

2 3 1 

3 4 2 

4 7 1 

6 6 3 

Steps 6 and 7 

Set A 

1 

2 

3 

4 

5 

6 

8 

d(Xi) "f(xil 

0 -- 

3 1 

4 2 

7 1 

7 2 

6 3 

7 6 

Set B d(Xi) "fixi) 

5 7 2 

7 11 4 

8 7 6 

9 8 6 

Set B d(Xi) "fCxi) 

7 11 4 

9 8 6 
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Step 8 

Set A d(Xi) wf(xil Set B d(Xi) “f(xi) 

1 0 -- 7 11 4 

2 3 1 

3 4 2 

4 7 1 

5 7 2 

6 6 3 

8 7 6 

9 8 6 

The computation halts with d(9) = 8. By tracing back through wf we have 

9, wf(9), wf(wf(9)) . . . , 1 

or that the shortest path is 

Dantzig in proposing a similar algorithm, recommended that the edge lists 

. 

be ordered by length. This makes for fewer comparisons and additions when 

augmenting sets A and B. However, as Dreyfus 20 points out, any savings are 

outweighed by the computation required to order the edges. 

1.4 Dantzig’s Bi-directional Method 

The earliest widely published mention of a bidirectional algorithm occurs 

in Dantzig. 
15 

The description of this algorithm is ambiguous and vague, Ieading 

to subsequent misinterpretation by Dreyfus. 20 In fact, a computer scientist 

would label the description as violating the principle of effectiveness. 33 For this 

reason much of the credit for a correct bidirectional algorithm has accrued to 

Nicholson. However, when asked by G. Da&zig 16 to investigate this issue, I 

discovered an interpretation that leads to a correct algorithm. 

-8- 



Damzig’s” description was as follows: (p. 365) 

“If the problem is to determine the shortest path from 
a given origin to a given terminal, the number of compari- 
sons can often be reduced in practice by fanning out from 
both the origin and the terminal, as if they were two sep- 
arate independent problems. 

“However, once the shortest path between a node and 
the origin or the terminal is found in one problem, the path 
is conceptually replaced by a single arc in the other problem. 
The algorithm terminates whenever the fan of one of the prob- 
lems reaches its terminal in the other. I’ 

In terminology analogous to Dijkstra’s, the algorithm can be described as 

alternating between sets A, B, and C in a forward manner, and sets D, E, and 

F in a backward manner. Where 

D The set of nodes having their minimum path to t known. 

E The direct predecessors of set D, which are not in D. 

F The remaining nodes. 

In the Dijkstra algorithm, the set A starts initially with node s, and with each 

iteration grows until it includes t. The nodes xieA form a rooted tree with s as 

the root, where 

T = {CX, E)j 

x = {xi: xi’A} 

E = (s, xi): xieA 
1 > 

with 

m(s, xi) =d(xi) 

b Dantzig’s algorithm a similar tree exists for set D which is rooted from 

node t. We interpret “conceptually replaced” as modifying the original graph by 

rooted trees grown in the fashion described above. In this algorithm the sets A 
and D are expanded alternately; the first of these sets to include both s and t con- 

tains the shortest path. 
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%onceptually replaced”: 

Let some iteration place n in A, then all edges connecting n with any xie A 

are deleted from the graph and replaced by edge (s, n) with length d(n). Corre- 

spondingly, if n is placed in set D the edge (n,t) is included in the graph. 

Again we use Nicholson’s example, where in addition to quantities in Dijkstra’s 

algorithm we have: 

dt(n) = current best distance to t 

wt(n) = immediate successor of n 

along path to t, for which 

dt(n) was calculated. 

Initially all nodes have d(xi) = dt(xi) = 00 and wf(x.J = wt(xi) = undefined. We 

begin by placing s in set A with d(s) = 0 and t in set D with dt(t) = 0. 

Step 1 We expand set A 

A d(Xi) “f(Xil B d(Xi) “f(Xi) 

1 0 -- 3 4 2 

2 3 1 4 7 1 

5 7 2 

Step 2 We expand set D 

D dt(X3 Wt(Xi) E dt@i). “tCx$ 

6 2 9 3 4 6 

9 0 -- 4 5 6 

7 5 9 

8 2 9 
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Step 3 We expand set A 

A d(Xi) wf(xi) B d(Xi) wf(xi) 

1 0 -- 6 2 9 

2 3 1 8 2 9 

3 4 2 9 0 -- 

Step 4 We expand set D 

D dt(Xi) Wt(Xi) E dt(Xi) wt(Xi) 

6 2 9 3 4 6 

8 2 9 4 5 6 

9 0 -- 5 3 8 

7 5 9 

At the end of step 4 the revised graph looks like Fig. 1.2. Note that (2,3) and 

(6,8) are no longer of interest and have been 

FIG. 1. Z--Nicholson’s graph after ‘bonceptual repIacement” of edges, 

%onceptually replaced. ” The above alternating expansion of sets A and D con- 

tinues until step 11. 
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Step 11 We expand set A 

A Wi) 

1 0 

2 3 

3 4 

4 7 

5 7 

6 6 

9 8 

wf(xi) B d@i) wf(xi) 
-- 7 11 4 

The algorithm halts with node 9 being placed in set A. Only six expansions of 

set A were required, as opposed to seven expansions with the Dijkstra algorithm. 

Node 8 was not included in set A because of conceptual replacement of its edges. 

However, in this example more work was done by the Da&zig bi-direction algo- 

rithm than by the Dijkstra algorithm. The Dantzig method is to use two separate 

shortest path methods where the savings are made as each reduces the complexity 

of its end of the graph. However, as will be seen later, the termination condition 

is needlessly bad, and several refinements will be discussed below. In light of 

the above elaboration of Dantzig’s method, he must be credited as an early 

(earliest ?) correct innovator in bi-directional methods. 

1. 5 Nicholson’s Bi-directional Method 

Nicholson’s algorithm44 differs from Dantzig’s in two important ways. Firstly, 

Nicholson’s is not strictly alternating between forward and backward sets. Secondly, 

his termination condition is more complex, but allows the algorithm to terminate 

much sooner, in general, than Dantzig’s. 
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Once again we have the sets A, B, C,D, E, and F as described above. How- 

ever, instead of alternating, the set expanded depends on 

xi such that xic BUE and 

d(xi) or d&xi) is a minimum. 

As long as nodes are closer to s than to t,set B is used and the algorithm augments 

the forward set A, otherwise set E is used and set D is augmented. All nodes tied 

at the minimum distance are simultaneously expanded, and no conceptual replace- 

ment occurs. The algorithm terminates when 

mm 
xieAnD 

d(xi) + dt(xi) ,< min d(xi) + min d (x.) 
xicB xieE ’ ’ 

Nicholson proves this condition is correct, and works out the example in Fig. 1.1. 

1.6 Stopping Conditions 

Dreyfus 20 suggests an alternate terminating condition to that of Nicholson. 

Terminate when there is some node 

neAflD and look at 

nUY Y = xi: xieAnE 

The shortest path will be found by 

min v EY d(xi) +’ dt(Xi) , d(n) + dp) - 
i 

This condition is simpler to check and ordinarily saves computation, Nicholson’s 

condition requires recomputation every iteration, whereas the Dreyfus criterion 

is a test on set inclusion, and can be done by means of simple Boolean flags (see 

Appendix I) a 

A further refinement of the Dreyfus condition is possible. Nicholson requires 

that all ties be treated in the same iteration. This is unnecessary. Assume, that 
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only one at a time is handled, ties being broken in order of node number. Then 

consider that a given node n occurs in the intersection of A and D stopping the 

computation. If n was last placed in set A, and if there are some rules in set B 

with d(xi) = d(n), xie B then place these nodes in A. The termination step need 

only look at xicAnE and n. However, set E in this case may not include some 

nodes on its perimeter which would have been simultaneously included in the 

Dreyfus-Nicholson method. Therefore the terminating condition treats a smaller 

set. A formalization of this refinement appears later, along with a proof of 

correctness. 

The importance of these stopping procedures is that they allow an essentially 

analogue process to be treated digitally. Early proposals of bidirectional methods 

were in error because of an incorrect terminating condition. The typical mistake 

was to assume neAnD was always on the shortest path. 8,20 Unfortunately, nota- 

tion and complex terminating conditions obscure a basically simple and naive 

algorithm. Hopefully, the following amoeba model will elucidate the ideas de- 

scribed above. 
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CHAPTER 2 

GENERALIZATION OF THE SHORTEST PATH ALGORITHM 

2.1 Intuitive Description 

Picture two amoeba, one dyed red and the other dyed blue. The red one is 

placed on the starting node s, and the blue one is placed on the terminating node t. 

Only the behavior of the red amoeba will be described in detail as the blue amoeba 

behaves analogously. The red amoeba moves at a velocity VrO If the red amoeba 

reaches a node, it splits into the number of outgoing edges (edges where the ini- 

tial node is the node where the amoeba is), with one progeny traveling each edge. 

The red amoeba and its progeny all travel at the same speed Vr. The blue amoeba 

and progeny have speed Vb and are performing in the same fashion with respect to 

ingoing edges. The first two amoeba of diiferent lineage to meet have traveled 

the shortest path from s to t. Let dr(t) = the distance covered by red amoeba in 

time t and let db(t) = the distance covered by a blue amoeba in time t. At any time 

t these functions represent the distance covered by all amoeba of the corresponding - 

color. If t* is the time at which two amoeba of different color meet, then the dis- 

tance traveled would be dr(t*) + db(t*) . Since dr and db are both monotonic functions with 

respect to time, any pair of amoeba meeting at t* + E , E > 0 would have traveled 

more than the pair that met first. Therefore the above procedure is correct. 

The major complication in implementing the above algorithm by a discrete 

process is to have a correct stopping criterion. t 

This intuitive description covers all the standard shortest path methods and 

one type not previously proposed. 

a. Vr # 0, Vb = 0 forward uni-directional algorithm 17 

b. vr = 0, Vb + 0 backward uni-directional algorithm 

t Reference 8, p0 174 gives a bi-directional algorithm with an incorrect termina- 
tion criterion (also see Ref. 7). 
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c. Vr=VbfO unbiased bi-directional algorithm 44 

d. vr f ‘b’ V, f 0, Vb f 0 weighted bi-directional algorithm 

(proposed here) 

If properly trained amoeba could be found, the above represents an effective 

procedure for finding the shortest path, providing a path of finite length exists. 

However, there is no guarantee that the amoebas traveling the shortest path will 

meet at a node. A digital simulation of the above algorithm must have a compli- 

cated stopping criterion. 

Before going on to a formal description of my method the reader should try 

to apply variants a, b, and c described above to Fig. 2.1 with results as follows: 

Each finds the shortest path ~1 = (s,c,f,d,t), (i-4 = 21 

a. Red amoebas visit all nodes of the graph. 

b. Blue amoebas visit all but node e. 

c. Red amoebas visit s,e,c,g 

Blue amoebas visit t,d,b,f. 

t 
S 

I 

FIG. 2.1--A shortest path from s to t of length 21 is shown in the above graph. 
Each edge is undirected and may be thought of as representing two 
directed edges pointing in opposite directions. 
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2.2 Formal Description of the Very General Algorithm 

Notation 

s = starting node 

t = terminal node 

S = set of nodes reached from s 

T = set of nodes reached from t 

g = set of nodes reachable along one edge from S but not in S 

? = set of nodes reachable along one edge from T but not in T 

g,(x) = current distance from s to x 

g,(x) = current distance from x to t 

wf(x) = immediate predecessor node from which x was reached 

wt(x) = immediate successor node from which x was reached 

S, T, g, T, g,(x), g,(x), wf(x), wt(x) will change throughout the computation; 

they are functions of the iteration step in the computation. 

Algorithm 

1. Place s in S and calculate all successors,placing them in s. 

For each successor xi, calculate 

gs(xi): = P esx. , wf(xi): = s . 
( 1 1 

Similarly place t in T and calculate all predecessors of t, 

placing them in F. Each predecessor of t has 

gt(xi) : = 1 exit 3 
( 1 

wt(Xi) : = t . 

2. Decide to look at either !% or ?. 

3. If g was selected in step 2, then select a node XC~ which has 

the smallest value of gs. If %? was selected then this step 

and the following would be carried out with respect to !? 

and associated functions. If more than one node minimizes 

gs, then select all of them XI, . . , , xk . 
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4. Remove x1, . . . , xk from set 3 and place in set S. If any 

of these nodes satisfy xieSflT, then go to the terminal 

step 6. 

5. For each xi, calculate its successors (predecessors in 

case of T) and their values of gs. If these nodes already 

have a value of g, and the new calculation is greater or 

equal to the old value, then leave alone. If g,(x) is calcu- 

lated where y is its predecessor, then g,(x) = g,(y) + P(eyx). 

However, if the new value is less or has not previously been 

calculated, then place the node in set g and make xi the value 

of wf. Return to step 2. 

6. The minimum distance is for 

w xi such that xic Sfl (T U!?) pick xi such that gs(xi) + 

g&xi) is a minimum. The path can be found by tracing 

through wf and wt. (Note xi’ Tn (SU$ would work 

equally well. ) 

In the above algorithm, step 2 is not an effective computational rule. The 

point here is that any decision rule can be used as will be proved below. If rule 

2 is always to choose 3, we would have the forward uni-directional method. The 

unbiased bi-directional method selects g, if 

otherwise it selects T” where 

gr = min (g,(x)) 
XC3 

g$@ = min (g,(x)) . 
XC? 
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2.3 Proof of the Correctness of VGA 

We wish to prove that regardless of what decision rule is used in step 2 of VGA, 

the algorithm will correctly find a shortest path. The graphs of interest will be 

finite connected graphs with positive edge weights. 

Notation 

Let the successive sets created by iterations of VGA be So, Si, S2, , . . 

Similarly 3’, gl, . . . Let gs(S’, be the maximum of the current values gs(xj) for 

xjeSi, and gs(?$ be th e current minimum for x.6?. So is {sl with g,(S’) = 0 
J 

always. The corresponding notation will be used for T and !?. It is obvious from 

VGA that the order of creation of sets S1 and T1 by different decision rules in 

step 2 of VGA do not affect their composition. 

Lemma 2.1 

A node placed in set S is never returned to set g. The corresponding result 

is true for nodes in set T. 

Proof 

Consider step 3 of VGA. This states that nodes xi with g,(xi) = g,(??) are 

selected on the jth use of set !?. Since edge lengths are positive, any successor 

of these nodes will have a larger distance value. 

so once a node is placed in set S, any future value must be larger. 
a 

By this lemma VGA need never recompute a distance for any node placed in 

S on a previous iteration. This is not true of nodes in s, which can have better 

values calculated in later iterations. 
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Lemma 2.2 

All nodes x with a path of length less than or equal to gs(S’, from s are in S1. 

The corresponding result is true for nodes in set T. 

Proof 

Consider the first set, S”, for which the lemma is false. There is some 

optimal path 

with the fewest number of nodes for which it fails. 

Now xkeSn since it is along a path of fewer nodes. 

If Xk’ sn-l then y E??-’ and step 3 would have placed y in S” since g,(y) < gs(Sn). 

so xktSn and x&S”-’ 

. l 0 is@7 = g&l 

but gs(%) < a@) 6 is(S) Contradiction. 8 

The lemma is true for So = (~1; so there can be no first S” for which it is false. 

This shows that sets S and T are shortest path trees grown from s and t 

respectively. 

Theorem 2.1: VGA terminates, always finding the shortest path from s to t, with 

any decision rule used in step 2. 

Proof 

a. The algorithm terminates. 

I S I + 1 T I is monotonically increasing with each iteration of VGA. 

Step 4 always adds at least one node. When 1 SI + IT I > 1 GI , there is 

some node n such that neSfIT. (Note that even if set g is always 
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selected in step 2, eventually by the above argument, and the fact 

that teT, VGA would halt with teSflT.) 

b. Upon termination a path from s to t is found. 

At termination there exists some neSnT. Therefore as noted in 

lemma 2.2 there is some path from s to n, and some path from n 

to t. So, here is at least one path through n, which goes from s 

to t. 

C. The path found in step 6 of VGA is the shortest path from s to t. 

Node n was found in step 4, where neSnT, and step 4 placed n in 

S during the final iteration of VGA. The argument is symmetric 

if n was last placed in set T. 

Lf n was placed in S on the kth use of g, and in T on the jth use of 

y, then the path through n has length = gs(Sk) + &(Tj) or abbreviated 

to g, + pt. 

Now assume that this is not the shortest path, but that it is CL*. 

P*=tYl’ Y2’ ---t Yj), Yl=s’ Yj=t 

For path CL* there is some yi such that 

gs(Yi) ~ gs and gs(Yi+l) > gs . 

P&Y,) = &(SO) = 0 5 is 

or if gs(Yi+l) p’ iis9 then yi = t and consequently by lemma 2.2, n = t and the 

shortest path would be found. 

Let gi(xi) and g,*(xi) denote optimal distances from s and t respectively. 

Since p* is the shortest path 

g,*(Yi+l) * g;(Yi+l) ’ gs + gt 

gs c gs(yi+l) from above and thus g;(yi+l) < itO 
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By lemma 2,2, yi+l must be in T. Therefore yic? from the execution of step 5 

of VGA. So yieSn?, and the shortest path would have been found by step 6. n 

So we have proved that any decision rule inserted in step 2 leaves VGA cor- 

rect. Some examples of previously used decision rules are: 

1. Always use set s 

Dijkstra’s procedure - what we call the forward 

uni-directional method. 

2. Always use set T” 

The backward uni-directional method. 

3. Alternate between g and ? 

Da&zig’s procedure. 

4. Let gs . be the current minimum for 3 and gt . be 
mm mm 

the current minimum for T. If gs 5 gt use X 
min min 

otherwise use ?. 

NicholsonPs procedure. 

VGA as described uses Dreyfus’ terminating condition. In section 1.6 we 

proposed a further refinement to this terminating condition which we now prove 

to be equivalent to the Dreyfus condition. 

Change step 3 to read: “If more than one node minimizes gs, then select any 

one of them D ” Change step 6 to read: “If n found by step 4 is last placed in set S, 

then include all nodes xi with g,(n) = gs(xi) in set S” (their successors need not 

be computed). Correspondingly, if n is last placed in set T, perform the sym- 

metric calculation, and look at xieTn(SUg). 
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Theorem 2.2: VGA as redefined above is still correct. 

Proof 

The proof will consider the case where n is placed in set S last. The argu- 

ment is symmetric for set T. 

In the regular VGA let S, g, T, y be the sets upon termination and in the 

redefined VGA (called VGAR) call these sets S, s, T-, ?-. 

a. S=S - 

be _ TIT 

In step 6 of the VGAR set S- is completed with respect to ties. Now in VGA the 

terminating step considers 

s n (TUT) 

and in VGAR the terminating step considers 

s- n(T-U?J 

T-U?-cTUT 

This is true from b and the fact that the successors of the subset must be either 

in the set T or in the successor set ?!. 

Let k be the last node included in T-by VGAR at a distance gt(k). If there 

were no ties at this distance T = T and ?-I? and the shortest path would be 

found by VGAR. 

Call the optimum path 

,.i = (s, xl’ x2, * 0 * Xk’ t, 

with xieS, xi+I #S. If xi+IeT then x~+~cT-U?-. This is because the only nodes 

in T that are not in T-must be nodes at gt(k), but all these nodes must be in ?-, 

since they are predecessors of nodes xi with gt(xi) < gt(k). So if xi+IeT then the 

path would be found. Assume xi+.,,e?! but not in y-S Then x~+~ET and so 

gt(‘ti+2) g gt(k), In fact gt(Xi+2 ) = q(k) D If gt(xi+2) < gt(k) then xi+2~ T- ad 

CT xi+l -’ 
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how e(p) < g,(n) + g,(n) and g,(n) I gt(k) since gt(k) is the last value used for 

set T. 

gs(xi+l) + gtCxi+z) I gs(Xi+2) + gt(Xi+2) I g,(n) +gt(k) 

. - . gs(xi+l) 5 g,(n) and x~+~CS contradiction. n 

The refinement allows a smaller set of nodes to be calculated, in that nodes 

which are tied on the periphery of set T need not be computed. The refinement 

is of practical interest for graphs with identical integral length edges. 

2.4 Extensions of VGA 

The two point shortest path problem is the basic problem in the area. There 

are numerous variants of this problem 20,23 and some of these can be computed 

by VGA with minimal modification. 

Multiple Endpoints 

Instead of a path from s to t, we may be interested in the shortest path in G 

from any node in subset A to any node in subset B, where A and B are subsets 

of x. 

Given sieA, tjeB find some II*, a path from si to tj such that P&J*) is a mini- 

mum over all paths for Vij from si to t.. 
.l 

Initialize set S in VGA to set A and set T to set B and proceed as usual, and 

we have an algorithm for this problem. 

Disjoint Components 

We cannot always be sure the graphs of interest are connected, thus there 

may not be a path from s to t. If we always include an edge from s to t of length 

inf where - 

inf >IGI * - 
1.l 
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then if the algorithm terminates with a path of length inf we know that no path - 

exists. 

All Shortest Paths 

Ordinarily we want any shortest path from s to t, but a secondary criterion 

may be of interest (most scenic shortest path). So, first we want to find all 

shortest paths. This is done by modifying step 6 of VGA to return all paths of 

minimum length. Along with this,wf(xi) must be extended to a multiple entry 

table in or&r that ties be stored as the algorithm places nodes ins. Then step 

5 is modified to allow predecessors (successors in expansion from t) which are 

along equal length sub-paths to all be stored in the wf(wt) table. 
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CHAPTER 3 

SHORTEST PATH SPACE 

The correctness of VGA regardless of what decision rule is used in step 2 

brings up the question of what rule to use. If one wanted, set 3 or ? could be 

chosen by using a coin toss or a pseudorandom number generator. This seems 

an unintelligent way to make the decision. Similarly, there seems no apparent 

point to always picking set % (or set T), which is the uni-directional approach. 

To determine a good rule, we must have the appropriate criterion. 

VGA has an inner loop of steps 2 through 5 and the work the algorithm does 

is related directly to number of nodes placed in set S and set T. This places an 

upper bound on the number of iterations, IGI . E ac node involves calculating the h 

g value of its successors and can have up to [Gl successors. This places a bound 

on the computation of 0( )G12) operations. Ordinarily, the search does not include 

all the nodes of G. The cardinality of S and T, 1 S 1 + ITI provides a natural meas- 

ure of computational efficiency. For a particular problem where p is the shortest 

path of interest: 

P = @ 1’ ***, xk) 

s=x 1’ t = Xk 

k=lptJIISI+ IT;I,G( . 
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3.1 Graph Density 

To explore more exactly the meaning of efficiency in shortest path computa- 

tion, some concepts on density and distribution of nodes in a graph will be 

developed. 

Consider h = the shortest distance from s to t in graph G. 

Let d:(n) * = the number of nodes reachable in 5. distance h from node n. 

Let d:(n) = the number of nodes that can reach node n in _< distance h . 

In Fig. 2.1 

d:(s) = 4 nodes s, e, g, c 

dI’(t) = 4 nodes t d b f b , 3 3 

d;l(t) = 11 

The number of nodes placed in set S by a forward uni-directional method is 

d;(s) q The corresponding number for the backward uni-directional method is 

d;(t) D The unbiased bi-directional method looks at approximately 

dx/2 f (S) + <‘2(t) . 

this is not exact because there may not be a node at distance x/2 from each end- 

point. However, we will assume that for sufficiently large problems the above 

expression is accurate. 

A weighted graph does not necessarily have a Euclidean representation when 

the edges are considered straight lines. The triangle inequality is often violated. 

We may induce a useful planar representation of the nodes in a graph for a 

* i r (n) is the normal notation for the nodes i edges from node n. This is the 
sense of our superscript notation. 
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particular shortest path problem. Place node s at the origin and note t at distance 

h on the x-axis. Each node xi in the graph under consideration will have two coor- 

dinates, rI and r2. The first coordinate is the shortest distance from node s to x. 
1 

and the second coordinate is the shortest distance from node xi to t. The node x. 
1 

will be placed in the upper half plane with distance rI from the origin and r2 from 

node t. If a node in our graph is not connected to s or t we will not be interested in 

it. In Fig. 3.1 this mapping is shown for Nicholson’s graph (see Fig. 1.1). 

Theorem 3.1: For all xicG 

r +A 1 >r r +Alr 2’ 2 1 

Proof 

1. if for some ncG,rI + r2 < h then there is a path p, through 

n such that J!(J+,) < h which contradicts the fact that h is a 

mini:rlum distance. 

2. Suppose rI + h < r2 

Then there is a path from n to s and from s to t of length rI + h and therefore 

r2 is not the shortest distance from n to t. q 

VGA expands a la Huygens’ wavefronts from both s and t. The space these 

wavefronts are propagating in is the one just described. The most efficient 

decision rule for VGA is the one where r is found such that 

(3.3) 

is a minimum over 0 _< r 5 L We wish to approximate the above description by 

a continuous one which is easier to discuss analytically. 

d;+*‘(s) - d;(s) 
P&W *,h 
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(a) PLACING NODE 4 IN SHORTEST PATH SPACE 

0 8 

(b) THE FULL GRAPH 

6 8 

FIG. 3.1--Mapping Nicholson’s graph into shortest path space. 
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and 

These functions may be considered as density functions for a given shortest path 

problem. The most efficient algorithm is now the one which goes distance r from 

s and distance A-r from t such that 

[ 

r h-r 

s 
P&A) dh + 

I- 
Pt(h) dh 

I 
. (3.3’) 

0 0 

is a minimum over 0 5 r -< X. 

To find r requires a priori knowledge of es and pt, where in most cases these 

can only be determined a posteriori. Therefore unless the shortest path space is 

in some way characterized previous to solving problems in it, there is no assured 

way of having an optimum decision rule (namely one which says pick set 2 as long 

as g- p I r; otherwise pick set ‘VT). For example if someone told you the problems 

of interest are in lattices in Eswhere most of the possible connections exist, then 

P,(A), PtO) x n-l CA 
r 

/ 
n-l A-r 

CA dh+ 
n-l 

CA dA = c $ + c(h-r)n = F(r) 
n 

0 0 

dF n-l n-l T=cr - c(X-r) 

dF -=o :. i 
dr minimum at r = z 

(3.3’) evaluates to 
-n 

2c h 
0 112 

where a u&-directional method would give 

a factor of (l/2)“-1 is gained, 

* 
These are n-tuples (x1,x2, . . . , x,) where all xi are integers. 
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The above argument underlies the obvious choice of unbiased bi-directional 

methods, and is why some experts have been moved to dismiss weighted methods. 12 

It seems that they implicitly assume a symmetric distribution of nodes. 

3.2 A Locally Optimal Decision Rule 

In using VGA, on each iteration the cardinality of g and the cardinality of ? 

would be known. These numbers would reflect the local density of the regions 

adjoining S and T. This information on cardinalities requires no additional compu- 

tation and is a simple a priori estimate of density. Then one reasonable decision 

rule for step 2 of VGA would be if 131 < IT”1 use set g or else use set !? (cardinality 

comparison strategy). VGA with this rule will be called a weighted bi-directional 

(WBIDI) method. (IJBIDI will mean the unbiased hi-directional method.) 

Examine Fig. 3.2 where each edge is of length one. The most efficient algo- 

rithm is the backward uni-directional method. It would visit only those nodes on 

b d 

n n n n ” ” ” 
m n p q rt 

FIG. 3.2--Graph with edge lengths all unity. 
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the shortest path from s to t. The forward uni-directional method and UBIDI 

would visit all nodes in the graph. The WBIDI method, described above, would 

also visit &those nodes on the shortest path. If s and t were interchanged, 

the best method would now be the forward uni-directional method and WBIDI. 

UBIDI in no way accounts for the difference in densities. In each case distance 

h needs to be covered by the respective versions of VGA. A local approximation 

to density in regions g and ?? are known and without other information, progress 

in the sparser region requires less work. To add substance to this argument we 

take two complementary approaches to verifying this optimality. One approach 

is to generate large numbers of graphs and compare the efficiency of the different 

strategies. Additionally one can analyze a posteriori how close each strategy 

came to minimize r opt’ The other approach is to calculate the expected number 

of nodes placed in S and T over a given class of path problems and compare the 

strategies on this basis. In both instances our geometric intuition outlined above 

is vindicated. 
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CHAPTER 4 

ON THE OPTIMALITY OF OUR DECISION STRATEGY 

4.1 Probabilistic Analysis 

We wish to analyse the efficiency of different decision strategies, and to 

demonstrate the efficacy of cardinality comparison. In order to do this, we will 

take a probabilistic model of our algorithm as applied to some path problem, and 

attempt to calculate the expected number of steps needed by a given decision 

strategy, VGA for a given problem finds a path 

p = (s, x1, X2’ 0”“) xk’ t) . 

At each iteration of the algorithm, sets S, g, T, and “T are changed, with IS/ and 

ITI increasing. For simplicity, we will use VGAR, where /Si+Il = lSil + 1, 

1. e. , only one node is added at a time. The sequences ISol, /S’\, . . . , and ITot, 

T , .o* are monotonically increasing. Also, ingeneral, ISi/ and /?I are mono- 

tonically increasing, since the graphs of interest are connected with average 

degree greater than one. Monotonicity of these tilde sets, g and T, is our hypothesis 

and our experiments show this. * 

Our algorithm must find and place in set S or in set T the nodes XI, x2, 

. . . xk. On any given iteration some node ne? (or ne?) is selected. At this 

point in the computation some xfep is in set “s’ and likewise some x 
m Ep is in 

set TJ - to see this go back to the proofs of the correctness of VGA and VGAR. 

When a node along ~1 is placed in set S its successor and the associated minimal 

distance function is placed in set g. Thus, if we have a unique shortest path p, 

then at any time in the computation we are interested in finding the next successor 

A violation of this condition is called pathological, and is discussed later. 
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node from s currently in S and the next predecessor node from t in T. Since, 

we have no additional information, only the fact that some node on the shortest path is in 

3’ or ?, the probability on a given iteration of finding a node along the shortest path 

is l/l%‘) or l/l?1 depending on which set is selected by VGAR step two. A 

decision rule in VGAR corresponds to some sequence of choosing either s” or !?, 

and is expressible as D = SSTST. D D T for a given problem, Each strategy has 

an expected number of steps until success which may be calculated and compared 

with other strategies for a given path problem. The k nodes along the shortest 

path p must be found one at a time from either end, and we will show that cardi- 

nality comparison has the smallest number of expected steps over all strategies 

for doing this, under the monotonicity hypothesis for the tilde sets. To prove 

this rigorously, we now derive some fundamental results from probability theory 

about expected values of decision problems of this type. 

Theorem 4.1: 

Let al, a2, . . ‘, ak be a monotonic increasing sequence, and bl, b2, -. . , bk 

be some other sequence. Consider 
k 

E(T) = c aib7(i) where T is a permutation over the index set, 
i=l 

C 1, 2, -*. k]. Then 

Emin = min [E(T)] is given by a permutation where 
w-r 

b r(l)’ b b 
r(2)‘“” r(k) 

is a monotonic decreasing sequence. 

Proof 
k 

Consider E(I) = c a.b. (The identity permutation) 
i=l l l 
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Take the first 

*) bi such that bi < bi+l, and interchange bi with bi+l. 

aibi + a. b r+l i+l ’ “ibi+l + ai+lbi 

(ai+l - ai) bi+l > @i+l - ai) bi 

b >b i+l i 

The sequence formed by the interchange has a smaller value of E than the 

original sequence. For any ordering b 
r(i)’ 

if an interchange of the form (*) is 

possible, then the new value of E(r) is smaller. The only sequence where this 

interchange is not possible is b 
T(i) 

> b r(i+l) for all i and this is a monotonic 

decreasing system. n 

Corollary 4.1: 

For Emax = max [E(T)] 
W-T 

we have b r(l)’ b 
T(2)’ “” b r(k) 

a monotonic increasing sequence. 

Proof 

The argument is completely symmetric with the above. n 

We call the above proof a proof by bubble sort. This result is also found in 

Ref. 29. 

We wish to calculate the expected number of steps until one success occurs for some 

permutation of probabilities pl, p2, . . . , pkS 

E = c i a (probability of success on the ith step but not before) 

(4.1) 

where qj = 1 - pj and pk+l = 1. This last probability means that the sequence always 

terminates on the k+lst turn if success has not been previously achieved. 
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Theorem 4.2: 

The value of the expectation (41) is a minimum if the probabilities are in 

monotonically decreasing order. 

Proof 

Let us assume that the sequence pl, p2, a D *, pk is in monotonic decreasing 

order. Then ql, q2, q3, . . . qk will be in monotonic increasing order. By 

theorem 4.1 xi . pi is a minimum, since al = 1, a2 = 2, . . * ak = k is a mono- 

tonic increasing sequence. 

If p1 is the largest value then q1 is the smallest value. Now the product 

terms are 
k 

and these terms, corresponding to the ordering of the p’s, are the smallest pos- 

sible. Any other ordering of p’s gives larger product terms, since in the original 

case we use a smallest first criterion. So 

xi. pi is a minimum and xi. pi. flqi must also be a minimum 

since the nqi are the smallest possible factors. The k+lst term 

of the expectation 

k 
with pk+l = 1 

is the same for all possible orderings and as a constant does not 

affect the arguments from monotonicity. n 

So if our game consists of continuing to play until one success occurs, then 

playing it with the probabilities of success in monotonic decreasing order is our 

best strategy for finishing fastest. Now, we may want to play until two successes 

have occurred and are interested in how best to proceed. 
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If PI’ P2’ P3’ *a -9 pk is the order of probabilities of single success then 

r2 = PIP2 

r3 = P3(Plq2 + qlP2) 

. 

. 
e 

( 

i-l i-l i-2 
r. 

1 
= pi p1 17 qj + P2 n qj + .’ l + Pi-1 ff 

j=2 j=l j=l > 
qj 

jP2 

where the rss represent the probability of success on a given step but not before. 

For any ordering prti) there is a corresponding set of r’s. 

Theorem 4.3: 

The expected number of steps in the two success game will be minimized for 

pi monotonic decreasing. 

Proof 
k+l 

E= c i-r. 
i=2 1 

rl 
= 0 since the game cannot end in one step 

k-l 

rk+l = hq+pl iq.+..;+Pk n 
j=l j j=2 J j=l 

qj 

rk+l is a constant and is independent of the original order of the p’s. 

We shall proceed akin to the method of theorem 4.1. Consider the first pi, 

such that pi < P~+~. In this regard we always make p1 > p2, since the order of 

p1 and p2 has no effect on E. Let us calculate how the interchange of these two 
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terms will change E. 

r2’ l - - 9 rim1 will remain the same 

r. 1+2’ ‘- ” ‘k+l will remain the same 

i 
( 

p1 i; qj+- 
i-2 

ri = p 
j=2 

+ Pi-l n 
j=l 

qj 

> 

Let r* represent the redefined sequence. 

rr =Pi+l 
i-l i-2 
I7 qj + a* a + Pi-l I7 
j=2 j=l 

qj 

i-l i-l P. 
%4 ’ piqi+l Pl R 4j + *‘* + pi-l 

( 

1+1 i-1 

j=2 j11 ‘j + 9j,l ’ n qj 
j=l 

j=i-1 ) 

1) ri + ri+l = rr + r;+1 

( 

pi ri + r i+l = Pi’y + Pi+1 qi (y + S * i; q 
i j=l j ) 

where 
/ i-l i-2 \ 

rf + r* 
1+1 

= p. 
1+1 o! + Piqi+l 

( 
O1 + 

picl i;T’ q 
qi+l j=l j > 

i-l 
Let P = I7 qj 

j=l 

Pioc + Pi+lqi ( > cl: + q 3 P = pi+p + Pi qi+l 
‘i+l 

i ( > 
ff f Q- P 

i+l 

pi(y + P i+l 9i’y + PiPi+lp = Pi+l” + Pi qi+l (y + Pi Pi+1/3 

Iy (pi + (l - pi) Pi+l) + PiPi+lp = a! (Pi+1 + Pi (l - Pi+l)) + piPi+lP 

Q! ! Pi + Pi+l - PiPi+l ) + PiPi+lp = (y (Pi + Pi+1 - PiPi+l ) + piPi+lp 

1) is true. 
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2) i . ri + (i+l) ri+l > i * rf + (i+l) ri*+l 

i(ri + ri+l) + ri+l > i(rr + ri+l*) + ri+l* 

by (1) this reduces to showing 

ri+l >r * i+l 

“Pi+lqi + PiPi+lP ’ cuPi9i+l + PiPi+ P 

“Pi+lqi ’ “Piqi+l 

Since 

P i+l ’ pi then 1 -pi > 1 - pi+l so pi+l>pi and qi>qi+l 

. 
’ ’ Pi+lqi > Pigi+ 

Therefore the interchange reduces the value of E and by the argument in theorem 

4.1 (the bubble sort device), the p 
r(i) 

which is monotonic decreasing is the best 

ordering for the two success game. 

We now generalize theorem 4.3 to cover the k success game. The proof is 

identical and parallel to theorem 4..3 exactly. 

Theorem 4.4: 

The expected number of steps in the k success game will be minimized for 

pi 
monotonic decreasing. 

Proof 
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Consider the first pi, such that i 2 k and pi < piil. The order of the p's 

before this is irrelevant. Let us calculate how the interchange of these terms 

will change E. 

Then using the same notation as in theorem 4.3 we have: 

ri = pi. (all combinations of k-l pfs with the rest q’s) 

pi r. I+1 = pi+l ‘i ’ all combinations of k-l p’s with the rest q’s + ;J- 
i 

(all combinations of k-2 p’s with the rest q’s)). 

Let (Y = all combinations of k-l p's with the rest q’s 

Let p = all combinations of k-2 p’s with the rest q’s 

pi ri = piO, ri+l = piilqi * a + c P ( ) 1 

rr = pi+lQ, pi+l 
ri+l * = piqi+l a + $--- P ( > i+l 

But these are the same as in theorem 4.3 and the same proof holds& m 

The introductory discussion of the probabilistic analysis of VGAR showed it 

to be a k success game where the probabilities of success at a given point are 

l/1$\ or l/\??( depending on the set chosen. This leads us naturally to the 

following theorem as a consequence of theorem 4.4. 

Theorem 4,5: 

An optimal strategy in the sense of the apriori-expected work, is to choose the set 
. . 

withthecurrently fewest nodes, i.e., use set ;3’ if @1< I?[ otherwise use set ?!I0 

Proof 

The value of a given strategy is the expected number of steps it will take to 

find the k nodes along the shortest path. For a given problem a strategy cor- 

responds to some sequence of choosing ? and ? where the probability of success 

at any given point is the inverse of their cardinality. 
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Let us call D* the decision sequence for cardinality comparison, and let the 

sequence of probabilities corresponding to this strategy be pl, p2, . . . , pf’ This 

sequence is monotonic decreasing since using D* together with the monotonicity 

hypothesis assure this. Therefore according to theorem 4.4 any reordering 

corresponding to some other bi-directional strategy must be worse. 

However a uni-directional method could be used. This would mean that some 

pips will not occur. The sequence that does arise is a subset of the pi’s which are 

again monotonic. If we call the probabilities arising from a uni-directional 

strategy qi then we have pi 2 qi and therefore D* must be at least as good as any uni- 

directional strategy. 8 

4.2 Pathological Possibilities 

It has been shown that given no a priori information about the structure of 

shortest path graph, the optimal strategy is cardinality comparison. However, 

it is possible to produce examples where cardinality comparison is significantly 

worse than other strategies. The understanding of these examples confirms the 

validity of the analysis. 

Consider Fig. 4.1, where the shortest path of interest is between s and t and 

is a path of length ‘7. The forward uni-directional algorithm would visit nodes 1 

through 9 (including s and t, of course). The backward method would visit 4 

through 19. The cardinality comparison method would find that Is\ is 4 and I??/ is 

3 initially. The set T would be used and its cardinality as is evident from the 

construction would remain 3. In effect the cardinality comparison method would 

duplicate the behavior of the backward method. 

If some observer were looking down on the graph and watching the behavior 

of the cardinality comparison algorithm, he could say that two steps away g dies 

out and therefore one should in fact explore this path in the forward direction. 
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12 14 16 I8 

(FIG. 4.1--A pathological example, 

This behavior could be built into a two step look-ahead, but this increases the cost 

of each individual decision. The anomolous behavior exhibited in this problem 

could then be replicated over a graph which was constructed to be dense two steps 

away from s. If the particular class of problems is noted for highly irregular 

behavior then a look-ahead feature could be useful as a smoothing out device which 

is similar to measures needed by hill climbers in avoiding local maxima. 

In terms of shortest path space, we have three distinct regions appearing in 

this graph. A small region around s of high density 4, a large constant region 

near t of density 3 and a region in between of density 1. So p,, near s is 4 but 

changes to 1 while pt stays 3. In a graph where ps = pt = C, any method works 

with the same efficiency. Ordinarily a graph with average degree > 1 will have 

a monotonic increasing set of nearest neighbors. Then if one direction is favored 

for many steps the cardinality of the tilde set on that side grows to exceed the 

cardinality of the other tilde set. Thus a dynamic balance is maintained which 

is not appreciably influenced by a local distortion. Another point is that local 
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distortions of the space are not a priori detectable by one step methods and 

strategies and in practice rarelyoccur. 

One further anomaly is seen in very dense graphs where a node is just a few 

nodes away from every other node along some shortest path. In this case g and ? 

will soon exhaust the graph and further iterations will only deplete these sets. In 

this case the algorithm using cardinality comparison will continue with only one 

set, where a more symmetric procedure would be efficient. This case, like the 

previous, does not frequently occur. In standard shortest path problems the 

graphs are large and sparse. The cases of interest are rarely ones where all 

shortest path are only 2 or 3 edges long. However in generating high symmetric 

dense graphs of reasonably uniform weight, these graphs were produced. 
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CHAPTER 5 

EMPIRICAL RESULTS 

As a practical test, VGA was programmed in ALGOL W5’ 62 (see Appendix I) 

and tried on a large number of shortest path problems. Corresponding to step 2 

of VGA, was a logical procedure written as a case expression which included 

decision rules for Dijkstra’s forward method, the analogous backward uni- 

directional method, Nicholson’s equi-distance method, and our cardinality com- 

parison rule. The results were gratifying, in that VGA with our rule was the 

most efficient algorithm. 

5.1 Data 

In order to obtain a meaningful result, a large number of graphs and path 

problems using them were needed. A 200 node graph involves 40,000 bits of in- 

formation, a rather large amount of input. We therefore used a random graph 

generator. 
48 It provided randomly generated graphs of appropriate size and den- 

sity, weighted or unweighted according to the substituted parameters. For each 

edge a random number generator produced values over (0, 1), which were compared 

to the density; if less the edge was included with a length generated randomly over 

1,2, s.0, weight (if unweighted then length was uniformly 1). The data was repre- 

sented in edge list fashion to enable the program to generate very large sparse 

graphs up to 1000 nodes, 4000 edges. 

5.2 Evaluation 

The basic measure of efficiency was the number of nodes ISI + IT/ at the end 

of the computation, each method being run for exactly the same data. In addition, 

a system of a posteriori analysis routines were incorporated into the program to 
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measure the distribution of nodes in the shortest path spaces used. These routines 

printed out d:(s) and d$t), allowing rapt to be found by inspection (see Eq. (3.3)). 

In addition the radii of S and T were printed for each method to compare with r opt’ 

5.3 Results 

The results clearly show the advantage of the bi-directional methods over the 

uni-directional. Ln all cases investigated, the uni-directional methods visited at 

least twice the number of nodes as the bi-directional. The Nicholson method and 

the cardinality comparison method are the same order of magnitude, but invariably 

the latter is more efficient. The closeness of these methods is because the graphs 

used were in general symmetric, where r 
opt 

+ 0.5*A most of the time. However, 

the Nicholson method is badly out-performed in those examples which a pos- 

teriori analysis shows are highly unsymmetrical. A general measure 

of optimality is the absolute value of the difference between r 
opt 

and the r found by 

the given method. This measure along with the overall comparison of nodes 

visited favors the cardinality comparison algorithm. The models used in analyzing 

these algorithms formally are borne out in the empirical test. One note in this 

regard is the verification of the monotone increasing nature of the sets g and !? 

throughout a computation for even sparse graphs of average degree 2 or 3. 

Let us pursue in detail one example in terms of our shortest path space model. 

We will make the assumption that the space of interest is E2, because the average 

degree of our example is approximately the same as for a lattice in E2* The 

graph is symmetric and unweighted, of size 200 and average degree 4. The full 

distribution table is given in the tables marked Example A, table 5.1. 
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Table 5.1 

Distribution Functions, Example A: 200 N4e Graph 

200 Nodes 

Maximum Length is 20 

Symmetric with Average Degree 4 

Distribution from S 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

II 

12 

13 

14 

15 

16 

17 

dfW d&t, df +db 

1 85 86 

2 71 73 

3 63 65 

5 55 60 

6 49 55 

8 40 48 

10 37 47 

12 33 45 

14 26 40 

16 24 40 

19 22 41 

22 19 41 

26 17 43 

32 11 43 

39 8 47 

44 6 50 

48 5 53 

54 4 58 
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Table 5.1 (cont.) 

Distribution from S df(s) $0) df+db 

18 63 3 66 

19 68 3 71 

20 77 3 80 

21 90 3 93 

22 101 2 103 

23 111 2 113 

24 124 2 126 

25 129 2 131 

26 136 2 138 

27 141 2 143 

28 149 1 150 

Nodes Visited 

Forward method 149 nodes 

Backward method 85 nodes 

Nicholson’s method 44 + 11 = 55 nodes 

Pohl’s method 22 + 22 = 44 nodes 

Distance Traveled 

Nicholson’s method ’ 15 forward 15 backward 

Pohl’s method 11 forward 18 backward 

Uni-directional methods 28 
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In E we have 

8f = density of nodes per unit volume in the forward 

direction 

This is a minimum at 

& 7r/2 6fr2 + fib(h-r2) 
( [ I) = 0 

6fr + Eb(r -A) = 0 

Sb. h 
r = af -I- cYb 

If we assume that 15~ and ?ib are proportional to the results of the uni- 

directional forward and backward methods, then 

r lTb(’ A 
opt = IsfI + lTbl 

where Sf is the set of nodes visited by the forward method and Tb is the set visited 

by the backward method. Then for Example A (table 5.1) we have r 
opt 

= 10.1, 

Sf = 0.12, Sb = 0.07. u . smg these parameters and the observed radii of sets S 

and T, the cardinality comparison method would investigate 22.8 + 35.6 nodes - 

a total of 58.4 nodes, while Nicholson’s method-would visit 42.3 + 24.7 nodes - 

a total of 67 nodes. In our case, we have rs = 11 and rt = 18 while in Nicholson’s 

case it is r 
S 

= 15 and rt = 15. A posteriori one sees r 
opt 

= 9, which is very close 

to what the cardinality comparison method found. The equi-distance approach, 

while achieving a symmetric search, was less efficient. 

The results are in favorable agreement with the model, and reflect the 

cardinality comparison rule’s attempt a priori to minimize Eq. (3.3). While the 
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discrete nature of the spaces, and the random nature of generation do not make 

for an exact correspondence of the model to the test cases, the closeness of rs 

to r 
opt 

in virtually all examples demonstrates the correctness of this approach. 

Table 5.2 summarizes the results of tests using 500 node graphs with average 

degree 3,6,9,12, and 15. Our method requires l/4 the work of the uni- 

directionally methods. Nicholson’s method visits over l/3 more nodes than ours, 

but it compares favorably to uni-directionally methods. These results and more 

data are presented in greater detail in Appendix II. Our model and the optimality 

of our cardinality comparison strategy are validated by these experiments. 

Table 5.2 

Cumulative Results on 500 Node Graphs 

Degree Forward 

3 2583 

6 3406 

9 2724 

12 2627 

15 2521 

Average per case 

277 

Ratio to Pohl’s method 

4.6 

Backward Pohl Nicholson 

1991 563 662 

3336 707 1151 

2924 510 828 

2434 581 742 

2596 619 681 

266 60 81 

4.4 1 1,4 
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CHAPTER 6 

HEURISTIC SEARCH As A PATH PROBLEM 

6-l Introduction 

In many areas of artificial intelligence, improvement has not been evident 

over the early paradigms. 
39 The GPS model 42 has not been superceded and the 

ideas in what heuristic search is and how to do it have remained the same over 

the past decade. The situation reminds me of the state of mechanical translation 

of natural language in the early 1960’s. It was at this point that the criticism of 

Bar-Hillel4 was becoming convincing. The original ideas of a simple syntactic 

model and dictionary look-up were seen to not be able to bear the weight of the 

problem. It was clear that mathematical linguistics had to be better understood. 

I think in heuristic search the same situation exists. The formal tools need to be 

developed to better understand and increase the power of heuristic programming. 

The precise characterizing of these ideas allows not only a quantitative improve- 

ment in computational performance, but through a deeper understanding can lead 

to a qualitative improvement from generalizing and extending these methods. * It 

is with this spirit and intent that this work is carried out. The formal model of 

heuristic search prssented here has led to a new understanding of solving problems 

with occasionally unexpected results. 

One of the important general models of artificial intelligence is the directed 

One noteworthy example of this is the current sophisticated use of or-/3 by Samuels’ 
checker program54 and Greenblatt’s chess program. 27 Early researchers in 
game playing21,42 had used the idea without considering it significant enough to 
explore its ramifications or write on its usefulness. 

t For graph theory terminology, see Berge8 or Ore. 46,47 
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contains a description of a possible problem state. If it is possible to get from 

some state x to state y in a single move (rule of inference, operator, etc.) then 

there is a directed edge from x to y. More generally, we wish to know if a path 

exists between two nodes. We distinguish one as the initial node and look for a 

path to the other, designated the goal ncde. Such a path is called the solution to 

our problem. Sometimes we are interested in the shortest path between two nodes, 

but normally any solution path will be acceptable. 

The work of Amarel, 122 Michie and Doran 18,19,37 and Hart, Nilsson, and 

Raphael”’ 45 contributed to different aspects of formulating problems in this 

model. Amarel worked principally on the representation of different problems 

in this model. Michie and Dorsn have developed a general problem-solving pro- 

gram, called the Graph Traverser, for finding paths using heuristic functions to 

control the search for the goal node. Hart, Nilsson and Raphael have given 

sufficient conditions on heuristic functions to guarantee that a class of path finding 

algorithms will find the shortest solution path in the space. Algorithms which 

fall in this class are called admissible. 

This work will consider how problems represented in the directed graph 

model can be solved efficiently. There are two basic extensions over the efforts 

outlined above. First, the pure heuristic uni-directional search of the Graph 

Traverser is examined mathematically; This leads to results on the efficient 

use of the heuristic function and a first theory of the effect of error in the 

heuristic function. Secondly, the notion of admissible heuristic functions (algo- 

30 rithms) is extended to bi-directional search. Along with admissibility, the 

question of pragmatically implementing a bi-directional procedure is examined. 

Associative search implemented by hashing schemes is shown to be a very 

powerful technique for the redundancy and tree intersection problems. These 
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questions are not only dealt with theoretically, but our approach is tested using 

the 15 puzzle as an experimental environment. In all these areas the spirit of 

the shortest path work is found. We feel, that it is just this viewpoint that has 

allowed us to discover many new results, some mildly surprising, and to under- 

stand more deeply the mechanics of heuristic search. Artificial intelligence is 

in many ways a branch of discrete mathematics and a science of effective and 

intelligent enumeration in spirit close to enumerative combinatorics. It is not 

surprising to see that Polya,this century’s outstanding combinatorialist,also 

wrote extensively on how to attack and solve problems. 52 

6.2 Problem Spaces and Heuristic Search 

A directed graph G is a set of nodes X and a mapping IY from the nodes into 

themselves. 

G: x = x1, x2, . . . . xn { I 

I-: x-x 

E = (xi, xj)IxieX/\xje r(xi) 

The size or cardinality of the graph is denoted by IGI and can be unbounded. When 

using directed graphs to characterize problem domains we attach to each xi a data 

structure which contains the complete description of the problem. For example, in the 

caseofthe 15puzzle (see Fig. 6.1) adatastructuredescribingitwouldbethevector (9,5,1, 

3,13,7,2,8,14,6,4,11,10,15,12,0) where 0 denoted the blank position. The 

mapping iY would represent possible single moves from one problem state to 

another. In this domain we are at some initial node (or set of nodes) and wish to 

reach some goal node (or goal set). We must produce a path from the initial node 

to the goal node. Purely exhaustive methods are impractical in complicated 

spaces with IGI and IEl large or possibly infinite. In most instances we have 

- 52 - 



9 

13 

14 

IO 

5 

7 

6 

15 

I 3 

2 8 

4 I I 

12 b 

FIG. 6.1--E puzzle. 

heuristics which aid in narrowing the search. For our discussion, heuristic infor- 

mation is a function over state vectorsTi, attached to the nodes, into the non-negative 

reals. 

An Algorithm for Heuristic Search 

When solving most artificial intelligence problems we are not ordinarily 

interested in the most ‘elegant’ or shortest path, but in how to obtain any path 

cheaply. A search method visits a number of nodes in G to find a path. We want 

this number to be as few as possible, so that it may be computationally feasible 

to find solution paths which are inherently long; i.e., the shortest path is long. 

HPA - Heuristic Path Algorithm 

s = initial node 

t = goal node 
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g(x) = the number of edges from s to x, 

as found in our search 

h(x) = an estimate of the number of edges 

from x to t, our heuristic function 

f(x) = g(x) + we h(x) O<Wl=J 

By convention if w = m then f(x) = h(x) 

S = the nodes that have been visited 

g = the nodes which can be reached from S 

along an edge, but are not in S 

r(x) = the set of successors of node x 

1. Place s in S and calculate l?(s), placing them in g. 

If XE I’(s) then g(x) = 1 and f(x) = 1 + w - h(x). 

2. Select nes such that f(n) is a minimum. 

3. Place n in S and T(n) in g (if not already ins) and calculate 

f for the successors of n. 

If XE I(n) then g(x) = 1 + g(n) and 

f(x) = g(x) + w . h(x). 

4. If n is the goal state then halt, otherwise go to step 2. 

Note: HPA builds a tree; as each node is reached a pointer to its predecessor is 

maintained. Upon termination the solution path is traced back from the 

goal node through each predecessor. 

An Example of the Use of HPA 

The 15 puzzle is a simple, but combinatorially.large problem space. 

Each space* contains 16!/2 configurations, too large to be searched exhaustively. 

The average degree (number of moves) of a node is 3, allowing exhaustive search 

to find solutions of about 10 steps. On the other hand, the space is simple enough 

to study as an heuristic search problem and heuristic functions are easy to formulate. 

* 
A particular 15 puzzIe configuration may be in one of two spaces. A configuration 
in one space cannot be manipulated by any sequence of moves into a configuration 
of the other space. 
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The standard problem is - given some initial configuration, * how can we 

push the tiles around to reach the standard goal configuration? In Fig. 6.2, we 

see a possible initial configuration and its state description as given by a 16-tuple. 

12 3 4 

5 6 7 8 
E (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,0) 

9 10 11 12 

13 14 15 b 

(a) Standard goal 

1 2 3 4 

an initial 5 6 7 8 
E (1,2,3,4,5,6,7,8,13,15,14,11,10,9,12,0) 

configuration 13 15 14 11 

10 9 12 b 

o/~s~=fpi=12 
2 3 

1 2 3 4 1 2 3 4 
E (1,2,3,4,5,6, 

5 6 7 8 = (1,2,3,4,5,6,7,8,13, 5 6 7 8 
7,8,13,15,14, 

13 15 14 b 15,14,0,10,9,12,11) 13 15 14 11 
11, 10,9,0,12) 

10 9 12 11 10 9 b 12 

P2 = 13 P3 = 11 

(b) Successor states and their heuristic value 

FIG. 6.2--Some puzzle configurations and descriptions. 

* 
In the appropriate parity space. 
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From the initial configuration, there are two successor states possible. These 

correspond to switching any tile adjacent to the blank into the blank’s position. 

The position of the blank in ,the center of the board allows four possible moves, 

on the sides three possible moves and in the corners two possible moves. 

In applying HPA to our problem, we ordinarily attempt to find a good heuristic 

function h. If for example we chose h=O, then we have an exhaustive search which 

will ordinarily require too much time and space. Now one simple heuristic meas- 

urel’ ’ 1s a position count. We have a 16-tuple of tile values which are out of order. 

Any particular tile is so many squares away from its position in the goal con- 

figuration. 

We can say, as in the Graph Traverser 18 
work, that 

p. = the Manhattan distance of the tile in position i from 
1 

its goal position 

P=&L. 
i=l ’ 

Note, if P = 0 then we are finished; also P represents a lower bound on how many 

moves to the goal. In Fig. 6.2(b) we show the initial configuration with its two 

successor states and their position count. The first step of HPA would place 

nodes 2 and 3 (number in circles) in set g and then node 3 would be placed in 

set S because it has the smaller value. This process continues until the goal 

state is reached or the computational resources allotted to the problem are 

exhausted. 

In Fig. 3, we show the entire search tree that HPA would visit in solving this 

problem. While this particular instance is simple enough so that HPA is never 

misled, it still presents the flavor of heuristic search as thought of in our model. 
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FIG. 6.3--An example of a puzzle solution. How HPA with h=P 
and w= m solves a ptiticular 15 puzzle. 
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FIG. 6.3 (cont.) 

Node 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

State 

(1,2,3,4,5,6,7,8,13,15,14,11,10,9,12,0) 

(1,2,3,4,5,6,7,8,13,15,14,0,10,9,12,11) 

(1,2,3,4,5,6,7,8,13,15,14,11,10,9,0,12) 

(1,2,3,4,5,6,7,8,13,15,0,11,10,9,14,12) 

(1,2,3,4,5,6,7,8,13,15,14,11,10,0,9,12) 

(1,2,3,4,5,6,0,8,13,15,7,11,10,9,14,12) 

(1,2,3,4,5,6,7,8,13,0,15,11,10,9,14,12) 

(1,2,3,4,5,6,7,8,13,15,11,0,10,9,14,12) 

(1,2,3,4,5,0,7,8,13,6,15,11,10,9,14,12) 

(1,2,3,4,5,6,7,8,13,9,15,11,10,0,14,12) 

(1,2,3,4,5,6,7,8,0,13,15,11,10,9,14,12) 

(1,2,3,4,5,6,7,8,13,9,15,11,0,10,14,12) 

(1,2,3,4,5,6,7,8,13,9,15,11,10,14,0,12) 

(1,2,3,4,5,6,7,8,0,9,15,11,13,10,14,12) 

(1,2,3,4,0,6,7,8,5,9,15,11,13,10,14,12) 

(1,2,3,4,5,6,7,8,9,0,15,11,13,10,14,12) 

(1,2,3,4,5,0,7,8,9,6,15,11,13,10,14,12) 

(1,2,3,4,5,6,7,8,9,15,0,11,13,10,14,12) 

(1,2,3,4,5,6,7,8,9,10,15,11,13,0,14,12) 

(1,2,3,4,5,6,7,8,9,10,15,11,0,13,14,12) 

(1,2,3,4,5,6,7,8,9,10,15,11,13,14-,0,12) 

(1,2,3,4,5,6,7,8,9,10,0,11,13,14,15,12) 

(1,2,3,4,5,6,7,8,9,10,15,11,13,14,12,0) 

(1,2,3,4,5,6,0,8,9,10,7,11,13,14,15,12) 

(1,2,3,4,5,6,7,8,9,10,11,0,13,14,15,12) 

(1,2,3,4,5,6,7,8,9,0,10,11,13,14,15,12) 

(1,2,3,4,5,6,7,0,9,10,11,8,13,14,15,12) 

(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,0) 
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The search was conducted using f(x) = h(x) - pure heuristic search. However, 

if f(x) = g(x) + h(x) was used,the exact same search would have occurred. The 

nature of efficient heuristic search is clearly visible in this type of problem 

environment, and leads to questions of how to appropriately use the heuristic 

information. 
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CHAF’TER 7 

THEORY OF UNI-DIRECTIONAL HEURISTIC SEARCH 

HRA is a typical path finding algorithm and is similar to the algorithms used 

in the work of Michie and Doran, and Hart, Nilsson and Raphael. It will find a 

path if one exists and the graph is finite, and can fail if the graph is infinite. 

In the Graph Traverser 
18 only h is used, by our convention w = *. The intuitive 

reason for this weighting is that prior distance in reaching a node is so much 

‘water over the dam. ” Indeed, if h is an accurate estimator of distance from 

the goal, it will indicate the node nearest the goal. This remaining distance is 

what determines the fewest nodes to visit. This argument is plausible, but relies 

on the accuracy of the heuristic function. Any space for which an accurate esti- 

mator exists is a solved problem domain. Only domains with inaccurate esti- 

mators are interesting, and it is these cases for which the efficient use of 

heuristic information is necessary. In table 7.1 we list some common weights 

and the type of search produced. 

Table 7.1 

Commonly Used Evaluators 

w = 0, f(n) = g(n) exhaustive parallel or breadth first search 

WZC-3 , f(n) = h(n) simple or pure heuristic search - 

Graph Traverser 

0 = 1, f(n) = g(n) + h(n) compound heuristic search 

7.1 Some Theorems on Searching 

In examining formally the claims of the above argument two extremes are 

easily dealt with. First, we could have a heuristic function which always returned 

the exact distance to the goal, a function having this property we call perfect. 
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Secondly, we could have a heuristic function which is completely in error; this 

would be the inverse of the perfect function. 

Theorem 7.1: 

If h is perfect (exact, correct) then for w 1 1, the search by HPA is optimal, 

i.e., visits the fewest nodes possible. 

Proof 

Case 1. W=m. 

Let the shortest path be k steps long. p = (s, x1, . . . , “k,, xk = t. Since h 

is perfect then h(xi) = k - i. NOW when s is expanded xle P(s) and since other 

nodes are off the shortest path they must have an h value greater than k - 1. So 

x1 is picked on the next iteration, and is expanded in turn. At each iteration the 

node along the shortest path and currently in g is placed in S. Therefore only 

nodes on the shortest path are expanded, and so our method is optimal. 

Case2. w=l. 

The argument is the same as above, except that along )J, f(xi) = g(xi) + h(xi) 

=i+k-i=k. So along the shortest path, all nodes evaluate to k, and other nodes 

evaluate to greater than k. 

Case 3. 1 < w < 00. 

Consider f*(n) = w !@ =c+ h(n). .Each step from s adds l/w from the first 

term, and along the shortest path the second term is reduced by 1. Now l/w < 1, 

so along shortest path f* decreases with f*(xj) = k - j + j/w. Each node along p 

decreases in value by 1 - l/w while nodes off p increase by at least l/w. Thus 

f* will expand only the nodes on p, and so is optimal. Now f* determines the 

same search order as f, so f is optimal. m 

We see that for h perfect and for w 11 I-IPA only expands nodes on the shortest 

path. If w C 1, then additional nodes may be expanded, with w = 0 the worst case. 
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This case is the exhaustive parallel search (see table 7.1). However, the key 

point of this result is that using g(x) in our evaluator does not decrease the 

efficiency of search, when appropriately weighted. This is already in some 

measure refutes the “common sense” arguments of the pure heuristic searchers. 

Theorem 7.2: 

If h* is the inverse of the perfect heuristic function h, then the search by 

HPA using pure heuristic search (w =-) will always visit the goal node last. If 

the space is infinite, the goal will never be found. Therefore w = 0 gives the best 

search under these conditions. 

Proof 

Since we are using the reciprocal of the perfect function, the further from 

the goal node the smaller h*. So HPA (w = -) will be led away from the goal, 

and only if it exhausts the rest of the space will it reach the goal. It is obvious 

that the larger w, the more misleading the evaluator 

f=g+w.h*. 

. ’ . using w = 0, HPA visits the fewest nodes. n 

So in the case where the heuristic function is counterproductive, the less we 

rely on it the better. It now remains to investigate cases where h is somewhere 

between these extremes in its accuracy. 

7.2 Heuristic Error 

To do this rigorously will require easily analyzable spaces. However, as 

will become clear, this should shed much light on the use of heuristic search, 

where previously only heated “intuitively” justifiable arguments were used. The 

spaces used will be regular infinite rooted trees with unique goal nodes. The 

root is the only node without predecessors, and a regular tree is one in which 

each node has the same number of descendants. 
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The simplest such space is the unary tree (Fig. 7.1(a)). Over this space all 

functions, representing any heuristic function and weighting, are equivalent. The 

search always proceeds from node 1 to node 2, . . . until the goal node is 

encountered. This case is without interest and we move on to the binary tree 

space (Fig. 7.1(b)). This is already non-trivial and complex enough to represent 

reasonable problem domains such as Lisp programs. 36 

Theorem 7.1 applies regardless of the specific directed graph structure, 

thus the use of a perfect h in our evaluator f is optimal for 1 5 w < 00. Perhaps 

no heuristic information exists for our domain, and we therefore have h identically 

zero throughout the binary tree space. The evaluators we could use are then: 

(4 f=g+w.h=g (h=O) O<w<m 

(‘3 f=h=O WC00 

The use of g constitutes a parallel search, while the use of 0 is a search where 

all the nodes in 3 (open nodes) will be tied. At each iteration, step 2 of HPA will 

randomly choose from the nodes tied, and therefore (b) produces a random search. 

If instead our tie-break rule was first-in/first-out (FIFO) we would have parallel 

search. Last-in/first-out (LIFO) would be a depth first rule. 

Theorem 7.3: 

Over an infinite binary tree, a parallel search on the average requires 

2k + g-1 - l/2 nodes expanded to find a node k steps from the root. 

Proof 

The number of nodes in a binary tree of diameter k (maximum length from 

k+l 
the root) is Bk = 2 - 1. Since a node may be anywhere along the kth level with 

equal probability, we must search Bk + 1 to E%l+l nodes with the average being 

Lemma: A binary tree of diameter k has I?! +’ - 1 nodes. 
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Proof: By induction. 

Case k = 0: B. is just the root node. B. = 2’+l - 1=2-l=l. 

Case k = 1: B1 is just the root node and two successors. B1 = 3 = 2 l+1 - 1 . 

Inductive step: Assume Bk = 2 k+l - 1, to show Bk+l = 2k+2 - 1. 

Each level has gk nodes, where k is the distance from the root. 

Bk+l = Bk + (k + 1 level) 

= s + $+I = $+I+ gk+l - 1 = $+2 _ 1. n 

So in a parallel search of a binary tree, we have the above formula deter- 

mining, on average, how many nodes must be visited. It is exponentially varying 

with the distance from the root; typical behavior in complex problem spaces. 

In contrast, let us examine the expected number of nodes visited by a random 

search in finding a goal node k steps from the root. In the simplest non-trivial 

case k equals 1 (k = 0 is trivial). 

Theorem 7.4: 

Over an infinite binary tree, a random search expects to visit an unbounded 

number of nodes to find a goal node 1 step from the root. 

Note: HPA is not told that the node is only 1 away and consequently does not 

restrict its search to this level. 

Proof 

E = Expected number of nodes visited 

ri = Probability of finding the goal node in exactly i steps 

pi = Probability of finding the goal node on the ith step, 

having reached this step 
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Iii = Probability of not finding the goal node on any step 

before the ith step 

The 1 is for the root node 

ri = pi - Pi . 

We show 
,’ 1 

Pi = i+l’ 

With each step of HPA over a binary tree one node is removed from 2 and 

placed in S, but two nodes are placed in g. This means at step i there are i + 1 

nodes in g. In the case of f = 0 and random tie-breaking, they all are equally 

likely to be picked. Furthermore since the goal node is 1 away from the root and 

1 it is always in set g until found by HPA so pi = - 
i+l’ 

Pi=+, we show this by induction 

i-l 
$=I- C r., Q=l 

j=l J 

f2=1-rl=l-plfl=l-i. l=f. 

Assume fk = l/k, we must show J$+~ = l/k+1 

=%-rk=ek(l-%)=~~-~l)=l 
k+l * 
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Therefore 

= E t the harmonic series which 
i=l 

does not converge. n 

22,50 This result is similar to gambler’s ruin problems Essentially the 

space grows too fast, and when not lucky enough to initially find the goal node, 

we soon find it disappearing in the growth of g. 

Normally, a search is restricted by time or space limitations. This is 

akin to limiting our infinite space to some maximum depth. If we are interested 

in finding a goal node in a binary tree of diameter k, then a maximum of 2 k+l -1 

nodes need be searched. If each of these nodes is with equal probability the 

goal node, then any exhanstive non-repeating search would yield the same 

expected value for nodes visited i ( Bk + Bo) , or 2k. Each method would get 

better performance for different groups of nodes. The parallel search visits 

the closer nodes soonest, and for goal nodes near the root this method has a 

better expected value than random or depth first (LIFO) search. 

In our theorem, HPA was unaware that the goal was at level 1, and so with 

finite probability it searchedportions of the space which were beyond the solution. 

A modification on this would be to tell our procedure that the goal was on level 

k. When this is known, the depth first (see Fig. 7.2) or backtrack track method 
24,26 

is optimal. The algorithm should go down to a depth of k and check to see if this 

is the goal node. If not it backs up one level and goes down to the next node at 

level k. It continues backing up and going forward to the next node on level k 

until it finds the goal. Since this search pattern looks at nodes on the kth level 
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FIG. 7.2 --Nodes numbered in order visited by a depth first search to level 3. 



as soon as possible, it must be best in the sense of the expected number of 

nodes visited. It would be the worst search pattern if the goal node was 

actually at level 1. Here it either finds the goal on the first try (like any other 

method) or must look at half the tree before returning to the goal node. A 

parallel search is a conservative strategy, you are guaranteed not to penetrate 

below the part of the tree containing the goal, while you pay by always investi- 

gating the whole subtree up to that level. 

7.3 How Error Affects Heuristic Search 

In general we have neither a complete lack of information nor perfectly 

accurate information, but instead we have a heuristic function which has error. 

We wish to resolve for this more typical instance how best to use a heuristic 

function. To investigate this question, we stay in our binary tree space using 

HPA. We will do a worst case analysis in the spirit of error analysis 

in numerical problems. 

Consider 

h = perfect estimator 

e=aboundontheerror 0,1,2,3, . . . 

h* = actual heuristic function 

h-elh*<h+e 

We will choose values of h* conforming to the above limits, but in such a 

manner as to mislead HPA to the greatest extent. In doing this, we assume 

that HPA will always choose the worst nodes in case of ties, i.e., nodes off 

the solution path. An example of this analysis is Fig. ‘7.3, where HPA just 

uses the h* function as the evaluator. The order of search is according to the 

numbers inside the nodes with x, the goal being reached in 5 steps. To make 

h* as bad as possible (E = 1), we add E to each node on the shortest path, and 
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f =h* 1197A4 

FIG. 7.3- -The goal node is marked by an x. Other nodes are labeled by order of search 
(inside) and f value outside. Five nodes are searched when x is found. 



we subtract E from each node off the shortest path. If h itself was used HPA 

would only visit the 3 nodes on the shortest path which is a consequence of 

theorem 7.1. 

One of the principal questions is the comparison between h* and g + h* as 

evaluators. Both to get more of a flavor of our error analysis and some inklings 

as to this comparison, we work through the example of Fig. 7.4. Let us examine 

HPA using f = h* + g, as in Fig. 7.4(b). At the goal node x, 

h(x) = 0, P(X) = 1 

h*(x) = h(x) + E = 0 + 2 = 2 

f(x) = 3; 

while at node 2 we have 

h(2) = 2, g(2) = 1 

h*(2) = h(2) - E = 2 - 2 = 0 

f(2) = 1. 

Node 3 has 

h(3) = 3, g(3) = 2 

and so both have increased by 1 from the values of its predecessor node 2. 

Thus 

h*(3) = 3 - 2 = 1 

f(3) = 3 

an increase of 2 from its predecessor. In contrast when using only h* (Fig. 7.4(a)), 

f increases by 1. This allows the search in Fig. 7.4(b) to cut-off sooner along an 

incorrect path. The results of Fig. 7.4 are: 

distance to goal = 1 

maximum error s = 2 
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nodes visited f = h* are 9 

nodes visited f = h* + g are 5 

We can generalize this result and find a formula giving the number of nodes 

visited for different errors and path lengths in our binary tree space. 

In analyzing the worst case behavior, we must show that h* = h + E on the 

solution path and h* = h - E off the shortest path leads to the poorest searches. 

Theorem 7.5: 

If hI = h2 except on the solution path where 

h+x) 2 h2(% x on solution path 

Then the search by HPA using hI always visits all the nodes visited when using 

Let p = (XI, x2, . . . , “k, be the solution path. 

S(xi) will be the tree explored by HPA, when xi is included in set S. So 

sw is the set of nodes searched when HPA finds the solution path. 

Let SI(xi) be the trees searched by HPA using hI and S2(xi) will be the 

corresponding trees for h2. We show by induction that 

a) S1(xl) 2 s2(q 
Since hl(xl) Z h2(x1) and nodes off the solution path 

have the same values. 

b) Assume SI(xi) 1 S2(xi)s then SI(xi+l) 2 S2(xi+I)* 

This is obvious from the same argument as in case (a). 

Therefore increasing the value of the heuristic function along the solution path 

can only increase the number of nodes searched. m 
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Theorem 7.6: 

If hI = h2 on the solution path, but everywhere else 

hi(x) 5 h2(% x off the solution path 

Then the search by HPA using hI always visits all the nodes visited when using 

h2’ 

Proof 

The argument is similar to theorem 7.5. Now the reason more nodes may 

be visited using hl is that the values off the solution path are lower using hl and 

hence sooner included in set S. l 

Taken together the above theorems show that a worst case search occurs 

when h+e is used on the solution path and h-E is used off the solution path. These 

results extend to using any particular value of w in making the corresponding fl and f, ‘ 

Theorem 7.7: 

Let k be the distance from the root node to the goal node and f = g + h* be 

the function used by HPA, then the maximum number of nodes visited in our 

binary tree space is 

2s .k+l. 

Proof 

If the goal node is distance k from the root, then if h* is perfect HPA visits 

k + 1 nodes (theorem 7.1). In the worst case with an error of E, all nodes E off 

the shortest path will be visited, excluding the nodes succeeding thegoal node. 

This is shown in our discussion of Fig. 7.4. 

Case E = 0. 

This is as stated above k + 1. 
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CaseE=l. 

These are the nodes on the shortest path plus those one off the shortest 

path. There are k nodes one off the shortest path so we have 

k+k+l=2k+l. 

At this point each unexpanded node (leaf) has two not yet explored successors. 

The number of leaves in a binary tree grows as 2 
E-l ,. k. So the tree for error 

E I2is 

%+1+2*k+22k+ . ..+2 E-l k 
Y 

E=l 

=1+2k+k ‘2’ ai 
i=l 

=1+2e.k 

Similarly we prove 

Theorem 7.8: 

Let k be the distance from the root node to the goal node and f = h* be the 

function used by HPA, then the maximum number of nodes visited in our binary 

tree space is 

Proof 

Case E = 0. 

k+l E =o 

Again by theorem 7.1 a path to a goal node distance k from the root is found 

by HPA visiting k + 1 nodes, if h* is perfect. 

- 75 - 



Case c = 1. 

Here as in the previous theorem HPA visits nodes 1 off the solution path 

and we have 

&+1=$ k+l nodes visited. 

Case s Z 2. 

After the first level each increment in the error allows a maximum of two 

additional levels to be visited. This is because along the solution path we use 

h + E and off the solution path we use h - E giving a 2~ leeway. The trees with 

the maximum number of explored nodes are 

2k+ 1 + 2k + 22k + 23k+ + . . . 
-- 

e=l e=2 e=3 

+ 22e-3k + 22e-2k 

26-2 

=l+W+k 
c . 

bE 2l= l+T.k 

i=l 

These results suggest two plausible conclusions for general heuristic search. 

1. The more accurate h*, the fewer nodes visited by HPA. 

2. It is better to include g in the evaluator. 

Furthermore the results are extendable to any tree structured problem space 

with a unique goal node of interest. Namely 

Theorem 7.9: 

If HPA is searching any tree structured space for some goal node then 

a) f = h* will visit at least as many nodes f = g + h* in the sense 

of the above worst case analysis. 
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(b) Ifh-elSh;Ih+slandh-e2<h;<h+s2, e2>sl. 

Then the number of nodes visited by HPA using hg will be at 

least as many as when using hZ in the sense of the worst 

case and with w being the same for both evaluators. 

Proof 

Part (b) is obvious. 

Part (a) follows from theorems 4 and 5. n 

The major defect of the above analysis and consequently the generality of 

the results is that problem spaces are ordinarily not trees. In a tree each node 

has a unique path back to the root. Problem domains have circuits normally 

and many alternate solution paths. Also the above analysis is for the worst 

case and while these results are attainable, in practice they are unlikely. It is 

important to monitor the behavior of HPA in actual problems. 
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CHAPTER 8 

SOME UNI-DIRECTIONAL EXPERIMENTS WITH THE FIFTEEN PUZZLE 

Each problem space and each heuristic function for this space presents a 

problem in selecting an appropriate w. Exclusive use of g guarantees finding 

the shortest solution path, however, a price is paid in the breadth of the search. 

On the other hand, using only h is possibly unstable; HPA then runs down the 

search tree to great depths before changing its search to another part of the 

space. This behavior is analogous to the situation described by theorem 7.4. 

It is appropriate to look for a middle ground between the pitfalls of these extremes. 

Let us consider a specific heuristic function, h*, used by HPA to solve prob- 

lems in some problem space. We can characterize its effectiveness for a given 

problem by the number of nodes N it visits in finding a solution path of length K, 

A further number describing its search is its branch rate. t The branch rate p 

is the number of successors a node has in a regular tree of diameter K and size 

N. So given a particular heuristic function and a weighted evaluator, we solve 

a number of sample problems in our space, obtaining for each solution 

NW = nodes searched for this weighting 

Kw = solution path length. 

We can then determine 

pw = branch rate for this weighting 

by solving for pw in 

t . This is a suggestion of Nils Nilsson. 
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We then use this information to select the most successful value of w for our 

evaluation function, 

The fifteen puzzle represents a general problem domain in having many pos- 

sible alternate solution paths. It is therefore reasonable tc study the behavior of 

HPA using different heuristic functions with respect to some sample of problems. 

8.1 Heuristic Functions 

In the previous chapter, we stepped through an example of a typical fifteen 

puzzle problem using a function P referred to as position count. This function 

has the lower bound property 30 with respect to the actua.I metric on the space, 

and therefore 

4 f=g+wP O<w<l 

is admissible. 

In the Graph Traverser experiments, Doran and Michie developed a more 

sophisticated function which had two separate terms. 

16 
S = c hy pf 

i=l 

pi is the position value as in P; hi is the.Manhattan distance from the blank square 

to tile i. The experiments with the Graph Traverser found o = 0.5, /3 = 2 to be 

best. The addition of hi into our evaluation ((Y = 0, p = 1 makes S = P) adds the 

fact that a tile may not be moved unless it is adjacent to the blank position. Con- 

sequently rearrangement is harder the more distance between tile and blank 

(see Fig. 8.1). S still was found tc be impractical by Doran and Michie and they 

included the ‘ad hoc@ (their terminology) reversal term. The reversal term is 

not precisely defined in Ref. 18. The interpretation given it in our experiments 
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(9 (ii) 

FIG. 8.1--Tile 5 is easier to move in (i) because it is next to the blank. 

is described by the following Algol segment. 

R:=O; 

for i := 0 step 4 until 12 do - - - 

for j := 1 S&J 1 until 3 do - -- 

if board [i + j] = board [i + j + l] + 1 

and board [i + j] = i + j + 1 then R := R + 1; - 

for i := 1 step 1 until 4 do - -- 

for j - := 0 step 4 until I.2 do - - 

ifboard[i+j]=board[i+j+1]+4 

&board [i+ j]=i+ j+4 then R :=R+ 1; 

The reversal count R as defined above is incremented whenever two adjacent 

tiles are interchanged from the goal position. The reversal term used by the 

Graph Traverser* differs from ours in relaxing- the requirement that the tiles be 

in their goal positions. Instead, they may be in any adjacent positions within 

their goal column or row. Since our purpose is to test the effect of w weightings 

on heuristic search it is unnecessary to have the same heuristic functions as the 

Graph Traverser. In fact the function developed using the Graph Traverser is 

too good to be interesting. A function so reliable behaves well over a wide 

range of w values as expected from theorem 7.1. This situation is unrealistic in 

Private communication with Jim Doran. 
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difficult problem domains, and heuristic functions with significant error but of 

positive benefit are more interesting. ’ 

The above terms were combined into four different functions. 

1. fl=g+w* P 

2. f2 = g + w . (P + 20 * R) 

3. f3=g+w*S 

4. f4 = g + w 0 (S + 20. R) 

The reversal term was weighted by 20 because this is approximately the number 

of moves times reversals it takes to solve a position whose only defect is a pair 

of reversals. The functions fi and f2 constitute one pair of related functions and 

f3 and f4 are another pair. The basic term of the first pair P is a naive heuristic 

in comparison to S, the basic term in the second pair. 

8.2 Data 

Figure 8.2 shows the ten positions used in our experiment. They cover a 

wide range of difficulty and special features. Al and A6 have their top two rows 

already in order. However A6 has many reversals. A9 is almost in reverse 

order, so the individual tiles are quite far from their goal squares. A8 is the 

configuration appearing in Ref. 18 and A10 is a puzzle used by Ref. 56. The rest 

of the positions are randomly selected. 

8 o 3 Experiment 

An Algol W program (Appendix III) incorporating the HPA procedure was run 

with positions Al - AlO. Functions fI and f2 were run with w = 1,2,3,4,8,16, m. 

Functionsf3andf4wererunwithw=0.5,0.75,1,1.5,2,3,4,16,~a. Foreach 

case the solution path length and the number of nodes expanded were recorded. 

If the number of nodes expanded reached 1000 the search was terminated without 

a solution. This then was an arbitrary limit selected as being the highest price 

we would pay for a solution. 
- 81 - 
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8 5 2 12 

10 15 9 3 
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FIG. 8. %--Initial positions and code numbers used in experiments. 

The different values of w tested for fl and f2 versus f3 and f4 come from 

normalizing h with respect to g. P normally underestimates the actual distance 

to the goal, while S generally overestimates the actual distance to the goal. In 

making these calculations for position Al we have P=12 and S=47 where the actual 

distance is 12. To have equal importance in the evaluator, the h term must be 

normalized or scaled to the g values. Since S is an overestimator, we use 

smaller values of w in our tests with it. 
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8.4 Results 

The performance of the different heuristic functions varied significantly with 

w. Tables 8.1 - 8.4 show the results for the four functions and ten positions. 

All of these functions were of positive benefit in pruning the search space. In 

conducting a parallel search (f=g) with position Al, the search was terminated 

when 1000 nodes were expanded. The tree depth was 9 which is 3 away from the 

solution. This, being the simplest puzzle, shows that exhaustive search could 

not within the 1000 node limitation solve any of our problems. 

Function f4 was the most powerful evaluator, followed in order by f2, fl 

and f3. f4 solved problems most consistently and with the fewest nodes expanded. 

The P functions fI and f2 were much nearer in performance than the S functions 

f3 and f4. The reversal term was much more significant in improving the S 

functions than the P function. 

Function f2 was better than function fI in 37 cases,while fl was better than 

f2 7 times (this is out of a total of 70 cases). The scorecard for f4 versus f3 

was 60 to 1 out of 90 cases. Case Al was not significant in these comparisons 

and other ties normally occurred because 1000 nodes were reached by both func- 

tions. Function f4 with w = 1.5,2,16,00 solved all the problems. Function f2 

with w = 4,16 m solved all but one problem. The best performance for f3 was 

w = 0.75 which solved 6 problems; while fI with 0 = 3,4,8,~ solved 6 problems. 

Except for w = 0.5, f4 solves at least 9 out of 10 problems for each w value. It 

was also best in the sense of visiting fewer nodes, on the average, than f2 the 

next best function. For example, comparing f2 with f4 with w =m , f4 was better 

in 5 problems than f2 and looks at 2928 nodes; while f2 is better in 4 problems 

and looks at 3459 nodes. Comparing the fewest total nodes visited, fI was best 

withw=3, f2withw=4, f3withw=1.5andf4withw=1.5. 
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Table 8.1 

Results for fl =g+ w. P 

Al A2 A3 A4 A5 A6 A7 A8 A9 A10 Total N 

NKNKNKNKNKNKNKNKNKNK 

1 28 12 129 26 1000 - 120 20 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 7277 

2 12 12 66 28 585 36 69 20 1000 - 1000 - 1000 - 1000 - 801 86 1000 - 6533 

3 12 12 35 28 930 48 122 20 1000 - 393 36 317 38 1000 - 1000 - 1000 - 5809 

4 12 12 36 28 1000 - 228 20 368 44 447 36 900 42 1000 - 1000 - 1000 - 5991 

8 12 12 36 28 1000 - 326 32 516 44 834 40 431 62 1000 - 1000 - 1000 - 6156 

6 12 12 36 28 1000 - 418 32 1000 - 1000 - 279 62 1000 - 1000 - 1000 - 6745 

I) 12 12 996 86 853 148 119 21 1000 - 1000 - 514 80 1000 - 360 152 1000 - 6854 

N=nodesvisited 

K = solution path length 



Table 8.2 

Results for f2 = g+ w(P+ 20 9 R) 

Al A2 A3 A4 A5 A6 A7 A8 A9 Al.0 TotalN 

N K N K N K NKNKNK N K N K 

12 12 66 26 

12 12 35 28 

12 12 36 28 

12 12 36 28 

12 12 36 28 

12 12 36 28 

12 12 433 104 

1000 - 

1000 - 

1000 - 

705 62 

598 66 

1000 ,- 

121 58 

106 20 1000 - 1000 - 1000 - 

60 20 1000 - 443 32 81 36 

84 20 653 46 663 40 97 36 

124 20 206 46 317 36 118 48 

320 38 189 46 248 48 124 48 

209 34 323 66 129 58 610 66 

119 20 123 46 133 56 138 58 

N=nodesvisited 

K = solution path length 

1000 - 

1000 - 

1000 - 

1000 - 

240 85 

245 85 

742 203 

N K N K 

1000 - 1000 - 

'1000 - 1000 - 

313 92 655 64 

155 92 270 64 

1000 - 1000 - 

691 120 865 90 

648 196 1000 - 

\ 

7184 

5631 

4513 

2943 

3762 

4120 

3469 



Table 8.3 

Results forf3 =g+ wq s 

0.5 

0.7: 

1 

1.5 

w2 
co 
aa 3 
I 

4 

16 

m 

Al A2 A3 

NK N K N K 

13 12 48 26 1000 - 

12 12 1000 - 286 42 

12 12 1000 - 488 40 

12 12 1000 - 394 48 

12 12 1000 - 203 48 

12 12 1000 - 1000 - 

12 12 1000 - 1000 - 

12 12 1000 - 1000 - 

12 12 1000 - 178 80 

A4 

N K 

31 20 

26 20 

26 20 

26 20 

26 20 

24 20 

24 20 

24 20 

24 20 

A5 

N K 

1000 - 

783 38 

1000 - 

108 46 

1000 - 

1000 - 

1000 - 

1000 - 

377 106 

A6 

N K 

1000 - 

401 32 

754 38 

269 44 

441 44 

250 40 

438 40 

1000 - 

1000 - 

N =nodes visited 

A7 A8 A9 

N K N K N K 

1000 - 1000 - 1000 - 

1000 - 1000 - 1000 - 

1000 - 1000 - 1000 - 

1000 - 1000 - 1000 - 

1000 - 1000 - 1000 - 

1000 - 1000 - 619 196 

1000 - 1000 - 1000 - 

1000 - 1000 - 1000 - 

1000 - 1000 - 1000 - 

Al0 To&IN 

N K 

1000 - 7092 

737 74 6245 

51i 78 6791 

1000 - 5809 

1000 - 6682 

1000 - 6905 

1000 - 7474 

1000 - 8036 

1000 - 6591 

K = solution path length 



+ rn 



Overrelaxation 

The initial p values of the ten problems (table 8.5) show that P is roughly an 

underestimate of about l/2, the shortest solution paLi. S is an overestimate of 

about twice the shortest solution path. The results for both the P functions and 

the S functions are better for w values that cause an overestimate of the distance. 

This is similar to theorem 7.1 which said that for w 2 1 the perfect heuristic esti- 

mator was optimal. In underestimating we suffer from broadening the search; in 

overestimating this does not occur (see Fig. 8.3). The behavior of search with 

respect to w is akin to relaxation in elliptic differential equation methods. 

Table 8.5 

Initial values of the heuristic functions and the shortest solution paths found. 

I AI A2 A3 A4 A5 A6 A7 A8 A9 A10 Total 
\ 

P 12 24 18 14 24 12 20 39 52 32 247 

S 32.2 82.2 68.4 39.3 80.2 40.9 51.8 183.6 344 139.8 1062.4 

k min 12 26 36 20 38 32 36 85 86 64 435 

Dead-ends 

The significant effects of reversals on the more depth first heuristic, S, is 

also noteworthy. In backtrack search, the main efficiency is a result of the 

immediate abandonment of a dead-end, as soon as it is detected. 26 In a heuristic 

search application to checkmates, Hubermsn’s worse functions 31 provide examples 

of dead-end detectors. Similarly to place a large value on reversals produces 

dead-end behavior in the fifteen puzzle. The more depth first the search, the 

more important to detect dead-ends. It is the difference between the worst 

evaluator f3 and the best evaluator f4. Dead-end detection serves an analogous 

purpose to using compound heuristic search as opposed to pure heuristic search. 
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FIG. 8.3--Performance of each evaluator with respect to w. 
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In compound search a particular path is no longer searched when its progress 

does not justify initial expectations. Dead-end detection is a more cathartic 

form of recognizing that progress is not keeping up to expectations. 

8.5 Remarks 

In general as w increased, path length kw increased and branching rate p, 

decreased (see table 8.6). These results, along with the observations on dead- 

end detection and overrelaxation are more qualitative than quantitative. It is 

indicative of the importance of developing this theory in general problem solving 

domains. Minimally one could say that compound heuristic search is a more 

general and efficient procedure than pure heuristic search. 

Table 8.6 

Density vs. Path Length for Function f4, Problem A5 

W 

0.5 

0.75 

1 

1.5 

2 

3 

4 

.6 

a 

k 
W 

38 

38 

46 

46 

76 

76 

76 

76 

78 

PW 
N 

1.129 868 

1.083 258 

1.054 203 

1.029 98 

1.023 202 

1.918 163 

1.017 157 

1.016 147 

1.016 155 
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CHAPTER 9 

BI-DIRECTIONAL HEURISTIC SEARCH 

After seeing the sizable gains in computational efficiency made by bi- 

directional methods in the shortest path problem, it is desirable to extend these 

benefits to the heuristic case. Many problems have a known goal or goal set, and m 
the additional power of the bi-directional technique is a welcome aid in these 

cases. At first, as in Ref. 30, we want the extension of VGA to the heuristic 

case preserving admissibility. 

Before going on to the extension, we would like to deal with two common 

objections to the use of bi-directional techniques. 

1. They are only useful when both the goal node and the initial node are 

specified and the graph is symmetric. (This remark is inferred from Ref. 18, 

p. 257.) 

As we have already seen with VGA: 

a) We may have a goal set and an initial set rather than 

single nodes; 

b) The graphs may be directed (unsymmetric); 

c) If a property specifies the goal, it normally determines 

a set, which as we note in section 2.4 can be handled. 

2. The extra bookkeeping for bi-directional methods, especially the test 

for a node lying in the intersection of forward and backward trees makes the 

method cumbersome. 

This was not the case in VGA and in the description (to follow) of the program 

a general method based on hashing, simulates associative search and efficiently 

finds nodes in the tree intersection along with providing a simple test for redundancy. 
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9.1 Extension to Bi-directional Heuristic Search 

The extension of the class of uni-directional admissible algorithms A*3o 

to bidirectional algorithms at first appears simple. Naively, one would in VGA 

replace g, by fs = gs + hs. This seems reasonable and worked in the uni- 

directional case where Dijkstra’s algorithm was so extended to the class A*. 

However, a modification of our canonical counterexample,to include Euclidean 

information (see Fig. 9.1) as the heuristic informatiosrefutes the above extension 

of VGA. In the figure the Euclidean distances are marked above the dotted lines, 

with the example drawn accurately to show it is realizable in the plane. We step 

through VGA modified as described above using for step 2 the alternating rule: 

on odd iterations use the forward direction and on even iterations use the backward 

direction. 

Iteration 1: 

s is placed in S fs(s) = 6 

t is placed in T f,(t) = 6 

nodes a and b are placed in g 

fp) = 7, 

nodes a and c are placed in !? 

fs(b) = 7; 

fp) = 7, f&c) ? 7; 

node a is min in g and is placed in S, t is placed in s, f,(t) = 8 . 

Iteration 2: 

node a is min in !? and is placed in T a eSnT and therefore we go to step 

6 of VGA to terminate. 
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FIG. 9. l--Euclidean counterexample. 1269AS 
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The only path found is (8, a, t) with length 8. However this is the wrong result, 

the path (8, b, c, t) has length 7: . Thus the algorithm is not admissible even 

though the Euclidean metric satisfies the lower bound criterion and the ‘consis- 

tency’ (Ref. 30, p. 12) condition for heuristic functions. The problem is more 

complex than the uni-directional extension, and possibly the more complete use of 

the heuristic information must go into the selection of the next node to be expanded 

An attractive criterion for expansionis the minimum over 

WxcS WY~T (g,(x) + W,Y) + gtW) 

where h(x, y) is a heuristic estimate of the distance from x to y. We want h to 

behave nicely and we use an h which satisfies consistency so 

h&t) I h(xsy) + g,(Y) 

This means that we need only look at te T (and it must always be in T from the 

initialization step). Then we have come back to the original algorithm which was 

shown to fail. So even this calculation, almost exhaustive with respect to both 

the forward and backward sets adds nothing. In fact if we had not deduced its 

equivalence to our previous method, we would have to calculate O(lgl l I?I) 

computations per iteration which is not computationally feasible in problems of 

interest. 

9.2 Correct Extension - The Very General Heuristic Algorithm 

The above attempts are of interest in displaying the subtlety of the problem 

in bidirectional approaches. when dealing with the shortest path problem, Rerge 

and others had trouble because of the terminating condition. We have been hesitant 

in our extension to the heuristic case of challenging one previously well oiled ter- 

minating condition. Once again, it is just this point that is the stumbling block. 
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In reconsidering the problem, an elegant device will be used, which hopefully 

clarifies and lays to rest the termination confusion. In place of distance we will 

substitute the concept of excess or waste. Waste will be the amount a solution 

takes over some optimum which is estimated initially. Equivalent to finding the 

least wasteful path is finding the shortest path. We define r* to denote our original 

estimate of optional distance. 

r* = hs(s) = h&t) . 

the waste in the forward direction is 

ws(n) = f&n) - r* = g,(n) + Q(n) - r* 

and in the backward direction is 

w,(n) = ftW - r* = g,(n) + h&n) - r* . 

We can now describe VGIIA - the very general heuristic algorithm, where 

the changes from VGA will be that ws and wt are used in place of gs and gt. Also 

the termination condition is changed and the h used in computing f satisfies both 

lower boundedness and consistency. The consistency assumption (Ref. 30, p. 12) 

is a form of triangle inequality for the distance estimators used in these domains. 

VGHA 

1. Place s in S and calculate a ws for all successors of s placing them in g. 

+ hs(xi) - r* 

wf(Xi) := 8 

similarly calculate all predecessors of t, placing them in ?! and t in T. 

Set amin := 00 

2. Decide to look at either gor “T. 
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3. If % was selected in step 2, then select node xeg which has the smallest 

wstxi). 

4. Place x from step 3 in S and check if xeSnT. If yes then 

a min :=min a 
( 

mins g,W + g,(x) - r* 

5. For each successor (predecessor) of x calculate ws(wt) and see if they 

are in g(y) yet. If not place in E (?‘) where 

ws lx) := g,(x) + I ex(x) + hs (4 - r* 
( > 

wf (x) := x 

If the successors (predecessors) are already in % (“T), but the new value is lower, 

update the values. 

6. If 

a min6max 
(XE& s 

min w (x) 
)* ~@Jt(4) 

then terminate with the path that gave this amin. Otherwise go to step 2. 

We will show that this algorithm is indeed correct for any decision procedure 

used by step 2. Before going on, note that r* is a constant throughout the compu- 

tation and may be dropped without changing the order in which nodes are found or 

the path found. The notion of waste is a didactic one and makes the algorithm 

more persuasive in its correctness. 

Also at this point it is useful to step through the algorithm using our previous 

counterexample. We again employ an alternating strategy. The reader is wel- 

come to employ any strategy he can think up. For example a forward uni-directional 

strategy clearly yields the admissible algorithm A*. 
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Iteration 1: 

s is placed in S 

t is placed in T 

b, a are placed in g 

ws(b) =3++4+- 6=1: 

ws(a) = 4 + 3 - 6 = 1 

c, a are placed in T” 

w&c) = 1; w&a) = 1 

node a is min in g and is placed in S 

r* = 6 

t is placed in g ws(t) = 8 - 6 = 2 o 

Iteration 2 : 

node a is min in T” and is placed in T 

s is placed in ? w&s) = 8 - 6 = 2 

aeSflT and a min =2 

This is not a minimum over either g or ? and so the algorithm continues, where 

before we stopped (incorrectly) at this point. 

Iteration 3: 

node b is min in g and is placed in S 

c is placed in E ws(c) = 1; 

a min is still too large. 

Iteration 4: 

node c is min in ? and is placed in T 

b is placed in “T ws(b) = 1: 

amin is still too large. 
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Iteration 5 : 

nodecisminin~andisplacedinS 

ceSn,T, a = 
mm 

13 : 
4 

which is a minimum for either set g snd T” and therefore we halt with path (6, b, c, t) 

the shortest path from s to t. 

9.3 Correctness of VGI-IA 

The argument is even simpler than the one for VGA. In essence, the algorithm 

only terminates when the actual waste of the current best path is less than any esti- 

mated waste of the set of possible paths. Since hs and ht are always a lower bound, 

actual waste must be at least as much as expected waste, and therefore we have 

the shortest path. 

Theorem 9.1: 

Upon terminatiorqthe path from s to t found by VGRA is the shortest path from 

s to t. We are assuming positive edge lengths and the existence of some path. 

Pf. 

Consider the algorithm terminated with path p = (x1,x2, . . *, xk), but that this 

is not the shortest path. The shortest path is instead cc* = (y,, y2, . . . , yl) 

x1 = y1 = s, Xk=yt-=t . 

By lemma 2 of Ref. 30, any node in S or T has a shortest path already found, leading 

back to respectively the initial or terminal node. Now there is some yi and y., such 
J 

that i < j and yieS, yi+idS and yj E T, yj-I 4 T. If this were not so, p* would 

have been found before termination. We claim: 

y. ES 1+1 

yj-l ET 
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. 

This is because hs is a lower bound and therefore ws must be a lower bound on 

waste for nodes with their least g,(n). 

Since I@*) < Q/L), its waste is smaller and so is any lower bound on this 

value. Thus, the algorithm could not have been terminated, because amin is not 

less than or equal to the minimum waste over either !% or ?. 

The algorithm must terminate since all nodes are eventually placed in either 

S or T, including those on the shortest path (Ref. 30, p. 10). m 

Corollary 9.1: 

If hs and ht satisfy the lower bound condition, but not necessarily consistency, 

then VGHA still terminates with the correct solution, if step 5 is modified. Step 

5 must add the following: If a smaller value of ws (wt) is found for a node already 

in S (T), then the node is removed from there and placed back in % (y). 

Pf. 

The above proof of theorem 9.1 is used here again as the central argument. 

However lemma 1 of Ref. 30 must now be used to show there is a node x in %, 

xe).~* with ws(x) < amin. A similar node exists in ?. 

The heuristic functions hs and ht need not be defined in similar fashion, SO 

long as each satisfies the lower bound’condition. However one ordinarily makes 

use of the best possible heuristic function available. In so far as one regards 

growing the shortest path tree S (or T), the results of Ref. 30 hold with respect 

to one heuristic function dominating another. If hsI is always a greater lower 

bound than hs2,then the tree hsI grows will be at least as sparse as the tree grown 

using hs2 (theorem 3 in Ref. 30) out to any given node along the shortest path. 
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9.4 Strategies in Bidirectional Search 

After selecting appropriate heuristic functions, we are again confronted as 

was the case with VGA, with what decision rule to use in step 2 of VGHA. In 

proposing an optimal strategy for VGA, we made two hypotheses 

1. monotonicity of g and ? 

2. equi-probability of any node in these open sets being 

the next node on the shortest path. 

The monotonicity hypothesis is usually satisfied in large graphs with an 

average degree of greater than one, which is also a characteristic of complex 

problem domains. The fifteen puzzle has a cardinality of 16!/2 with an average 

degree of three. The equi-probable hypothesis coupled with the monotonicity 

hypothesis means that as the algorithm iteratively augments S and T, the sets 

grow larger and the probability at a given iteration of finding the next node of the 

shortest path decreases proportionately to the size of the set. Under these con- 

ditions, the cardinality comparison strategy produces the best selection of either 

the forward or backward direction in the sense that the expected number of nodes 

visited is a minimum over all strategies. A further justification is that if the 

decision on a particular iteration is independent, then it is clearly better to 

choose from the smaller set. 

Our hypotheses are reasonable and VGA following the cardinality comparison 

decision rule outperforms other strategies. However, as in the case of the mono- 

tonicity hypothesis discussed previously, the equi-probable hypothesis is not exact. 

In point of fact the edges of a graph are not equi-probable in the number of 

occurrences along the shortest paths, but in some complicated fashion these 

probabilities are inversely proportional to the edge lengths suitably normalized 

with respect to the smallest edge length. The longest edge in the graph has a 
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smaller chance of lying on some shortest path than the shortest edge; providing 

they are not of equal length. 

Consider a directed graph of size n with edge lengths distributed from 1 to n. 

An edge of unit length must appear in at least one shortest path - namely the path 

it constitutes. However, an edge of length n (or even of length 2) may appear in 
49 

none. For example, the graph in Fig. 9.2 where there is a Hamilton circuit 

with each edge of unit length. Edges off the circuit are of length seven. The 

longest shortest path in this graph is of length three (p = (1,2,3,4)) and only edges 

of unit length are included in any shortest path. Theoretically, a probability 

should be assigned to a node in an open set depending on its distance from the 

root node in comparison to the other members of the set. 

A decision strategy to be optimal must select the open node that has the 

highest probability of being on the shortest path. Each set g or ? must be con- 

sidered separately. Each will have a current best candidate whose probability 

of being on the shortest path is related to the values of the distance computed for 

each member of the set. 

Set g has IsI nodes each having some distance (or waste) value. If p,,, p2, 

. . . , p ,s, are the probabilities that a given node is the next node along the shortest 

path, then we must have 
13 

where we select the node with the highest probability. We also do this for y and 

then compare, taking that direction and node with the current maximum probability. 

If for example, there is only one node in set ‘;3 then no matter what its value 

(of waste or distance), it must lie on the shortest path. 

El= 1 
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FIGi 9.2--AU shorbt paths are eubprthe of a Hamilton cirouit.. 
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and 

i p =l. 
i=l i 

Consider some computation’reaching the following situation: 

if = (x1,x2,x3) 

T = (Y,,Y,) 

f&Xl) = 5, fs(X2) = 5 

fs(X3) = 200 

ft(Y1) = 100 

Knowing nothing else about these nodes we have 

PYl = PY2 
= l/2 

P, = Px = l/2 - E 
1 2 

Px3 = 2e 

So we would select the backward direction choosing either yl or y2 even though 

ftCY1) ” fs(xl) * Since a graph is a complex structure, a distribution of edge 

lengths and the consequent probabilities induced with respect to a given shortest 

path problem is exceedingly difficult to calculate. The equi-probable assumption 

is a workable approximation which requires no additional computation. 

The theoretical results (theorem 4.4) still hold for VGHA, but the discussion 

of probabilities must now include the heuristic estimator. A node whose expected 

path length is small is better than a node with a larger expected path length. We 

also have to worry about the accuracy of our heuristic estimate. Thus VGHA 

provides a more complicated decision problem then VGA, and cardinality com- 

parison is again a pragmatic solution. However, some other problems arise in 
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bidirectional heuristic search strategies, and in our discussion of open questions 

we will make further comments on this topic. 

9.5 Associative Search as a Solution to Redundancy and Intersection 

Previously we had mentioned the antipathyto bidirectional search because 

of the extra mechanism involved - especially with regard to the termination 

problem. Step 4 of VGHA asks to check if XE S nT. If x was just placed in S, we 

must search all the nodes of T for that same state. In the VGA case we normally 

have an explicit representation of a finite graph of n nodes. We can then keep 

logical vectors for each set. 

Boolean array SVEC, TVEC [l:n]; 

comment SVEC [i] = true if node i is in set S - similarly for TVEC . 

When node i is placed in set S its SVEC [i] is set true and the check 

for intersection is: 

if TVEC [i] then E 2 intersect 

else E 2 nointersect . 

When a node i represents some state ri and the nodes are being generated by 

a successor (predecessor) routine, we do not have a predetermined node-state 

labeling. The check for whether some state Gi is in a given set requires a 

search of the set node by node with a comparison of the associated states to ci . 

This comparison is necessary not only in determining xeSnT, but is also needed 

for finding out if a new node is redundant. 

In generating search trees where the space contains cycles, the same state 

can be reached along many alternate paths. These redundant nodes can be ignored 

and left in the search tree, or for each node generated a redundancy check can be 

used. This requiree checking each new node against all others generated in the 
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same search direction. The work involved in making a simple comparison search 

would be O(n2) where n is the number of nodes in the final search tree. For spaces 

where there is likely to be a small amount of redundancy, the extra effort in 

weeding it out is greater than generating a small number of nodes redundantly. 

The redundancy problem and the intersection problem are both the same 

problem. There is a minor difference in that the redundancy problem requires 

the check to be in the same search tree as the state of interest, while the inter- 

section problem requires the check to be in the opposite tree as the state of interest. 

conceptually what is needed is an associative search. A state is a vector 

7 = i ( vy, J2), . . ‘, dk) i 1 1 
and a simple hash function over this vector would allow 

us to simulate associative search. 

One hash function possible, which we use in our implementation is 

k 
hashi = c j. vy) 

j=l I 

where each node with this hash value is chained together. Then a check for 

redundancy or intersection consists of computing the hash value and doing a 

chained search of all nodes with this hash value. The search reduction possible 

for a well-behaved hashing scheme is on the order of the number of equivalence 

classes produced by the hash. Experimentally, a function of the above form was 

used with the fifteen puzzle - dividing the 16!/2 positions into 680 equivalence 

classes. This produced two orders of magnitude increase in running time for 

1000 node searches. The hash chains were between O-30 long for a tree of size 

1000, which is a considerable improvement over searching the whole tree. 

The importance of this computational idea should not be underestimated. 

This idea recurs throughout combinatoric and enumerative programming. In 

some sense the hash provides a semi-canonical form. It is even conceivable 
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that the hash be the truncated evaluation value of the node. These uses of a hash 

places the hi-directional search inner loop almost on a par with the uni-directional 

search inner loop, which does not need to check for intersection but just if x is the 

goal. 
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CHAPTER 10 

FURTHER OBSERVATIONS, OPEN PROBLEMS, AND CONCLUSIONS 

It has been productive to use a computational approach to the shortest path 

problem. This computational - combinatoric - heuristic blend has also been 
49 useful in the Hamilton path problem, the traveling salesman problem, 35 and the 

graph isomorphism problem. 13,59 This area is pregnant with untried possibilities 

for usefully handling difficult problems. A noteworthy achievement will be the 

unification of these methods into a package 48,53 . with interactive capability. 3,38 

These will aid in solving applied problems such as optimization of resource allo- 

cation, and will also help graph theorists generate and test examples and 

conjectures. 

The work on efficient graph algorithms is just at a beginning stage. The idea 

of using local properties, 35,49,51,58,59 which may be easily computed, to aid in 

some global calculation normally requiring an exponential amount of work is gaining 

wider attention. Large graph problems, like constrained optimal path problems, 

certainly require the special intuition the computer scientist has in regard to 

efficient computation. 

10.1 Network Flow Algorithm 

One immediate extension of our work on bi-directional shortest path methods 

is to the network flow algorithm of Ford and Fulkerson. 25 The heart of their 

algorithm is the flow augmenting procedure. This is just a path finding procedure 

which can be handled by our more efficient bi-directional methods. This gains a 

factor of efficiency over the ordinary uni-directional method, which is comparable 

to the improvement in the shortest path algorithm. It is probable that bi- 

directional techniques are feasible for other search problems with similar 

computational savings 0 
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In using the path problem as a vehicle for studying artificial intelligence in 

a rigorous manner, many open problems and extensions of our work and the 

recent work of others 19,37,34,55 remain . 

10.2 Bi-directional Intersection 

In the shortest path problem we have the hi-directional search expanding like 

two wave fronts in shortest path space. In the heuristic path problem we have the 

search expanding like two cones (see Fig. 10.1). Effective use of bidirectional 

co 

0 0 
S t 

a) expansion h= 0, f =g 

‘4 expansion f =g + w * h 

FIG. 10. 1--Bi-directional search. 

heuristic search requires that the cones meet each other near the middle of their 

separation. Otherwise, if they intersect near the endpoints it is twice the work 

of uni-directional heuristic search. When bidirectional search works, it provides 

a means of finding solutions of path length 2k with only twice the computation 

needed for the uni-directional search of a solution of path length k. The uni- 

directional search would need O(pk, extra work. The payoff in making bi-directional 

heuristic search work is therefore quite large, leaving the solution to the intersection 

problem an important open question. 
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At first, we anticipated no problem and because of the symmetry of the 15 

puzzle,ran a simple alternating hi-directional search. The typical result was 

that both the forward and backward tree had grown almost complete but separate 

solution paths. Intersection would occur near one or the other endpoint rather 

than the middle of the space. It then becomes apparent that each heuristic search 

tree is a tiny sliver in the search space and very unlikely to intersect each other 

even when moving approximately toward each other. It is as if two missiles were 

independently aimed at each others base in the hope that they would collide. Two 

attempts were made to guide the trees toward each other, but neither have yet 

proved fruitful. 

Intermediate Board Conjecture 

Suppose we have an initial state Fs = ( 
(1) vs (4 , O *. , vs > and a terminal state 

ct = (vf’, 0.., vp) and we can conjecture some intermediate state Ti = ( 
(1) vi , 

. . . , vy. We then take our heuristic function which in the forward direction is 

measuring the distance from node x to node t and add a term corresponding to the 

distance from node x to node i and similarly for the backward evaluation. We 

should then have a search which would steer toward its respective endpoint by 

way of the intermediate position. 

The method does not specify that the intermediate node must be visited - 

only that it is used as part of the heuristic evaluation. We could have specifically 

subdivided the original problem into two sub-problems of finding a path from s 

to i and from i to t. This idea which is close to the notion of “lemma” in 

theorem proving is certainly an important one, and an interesting topic for further 

research. The “lemma” conjecturing problem and planning in general fit 

naturally into our model. 
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In using the intermediate board conjecture for weighting our search we hope 

to improve our intersection likelihood. For example two possible intermediate 

classes of positions in the 15 puzzle could be the ones in Fig. 10.2. We could 

1 2 3 4 1 2 3 4 

5 6 7 8 5 x x x 

x x x x 9 x x x 

x x x x 13 x x x 

a) halving b) 8-puzzle reduction 

FIG. 10.2--Intermediate board conjecture. 

calculate P for a board position and add the indicated positions twice. This was 

tried and did not work. It seems that the interaction between aiming at a goal 

position and simultaneously placing emphasis on certain vector components is 

complex and must be studied in more detail. 

Shaping 

Another possibility is the continuous updating of the heuristic function to 

measure the distance to the front of the opposite search tree. This is using our 

function to continuously re-aim our missiles at the point that the opposing missile 

just reached. In experimenting with bidirectional methods using this type of 

search tree ‘shaping, @ we also had no success. The searches produced in this 

instance were much worse than without shaping. Possibly the fact that the 

heuristic functions are inaccurate creates a severe instability when continually 

re-aiming the search. 

Both shaping and weighting intermediate positions have been examined. 

The effective use of bi-directional heuristic search is important enough to warrant 
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further investigation into pragmatic and theoretical devices for forcing search 

tree intersection. 

10.3 Learning 

In Chapter 8 we explored empirically the relation of search efficiency to 

a parameter w. The adjustment of this weight could be “learned” as HPA solved 

problems in a particular domain. In general we may have several heuristic 

functions hI, h2, . . . , hk and g. These are functions over the state space which 

we would like to use in directing our search. In a simple instance we may attempt 

to find some linear combination 

f = g + wlhl + w2h2 + . . . + “khk 

where the wits are adjusted as in Ref. 54. 

More interesting is to attempt to find automatically a useful heuristic function. 

Possibly these are observed by noting interesting structural characteristics of 

the space. 

10.4 Structural Features - Bridges 

In Ref. 2, Amarel notes the importance of ‘narrows’ in these graph spaces. 

These are in more traditional terms proper-cut-sets with bridges being especially 

important. 
9,14,28 

A cut-set of a graph is a set of edges which, when removed from the graph, 

leaves the graph unconnected. A proper cut-set is a cut-set which has no proper 

subset which in turn is a cut-set. A bridge is a cut-set of one edge, and is there- 

fore identically a proper cut-set. A graph is called h edge-connected*, when h 

is the cardinality of its smallest (proper) cut-set (see Fig. 10.3) * 

* 
Berge7 calls this h-coherent, but we will from now on refer to graphs as h- 
connected, meaning edge-connected. 
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Il64AI 

FIG. 10.3--Edge (c,d) is a bridge. 

Find all the bridges in a graph. One can do this simply by removing each 

edge in turn and checking the remaining graph for connectedness. There are up 

to n(n-1)/2 edges in a loop-free undirected graph and this approach is obviously 

too tedious. 

At this point let us note a simple theorem (Ref. 11, pa 18): 

“Every spanning tree has at least one edge in common with 

every cut-set of a graph. ” 

In particular, we note that any spanning tree must contain all bridges of the 

graph. Generating a spanning tree is a simple computation, and is onthe average 

only twice the work of generating a path. Now in a dense graph there are many 

spanning trees possible, and by suitably generating successive spanning trees and 

intersecting their edge sets, one should be left with only a smaller number of edges 

(< n) to check as bridges. This then is the method we outline below in detail. 

- 112 - 



Spanning Tree Algorithm 

1. Mark all nodes as unreached and unused. 

2. Choose some node i EG as the root node and mark it reached. 

3. Select any node 11 that is reached but unused and mark it used. 

4. Mark all nodes nk, which are connected by an edge to n and 

not previously reached as reached. Include the edges (n, nk) 

in the spanning tree. 

5. If all the nodes in G are reached then halt, else go to step 3. 

By selecting different root nodes and by suitably varying the order in which 

nodes are examined in step 3, a reasonably different sampling of spanning trees 

will be constructed, if possible. One simple possibility is to use reached nodes 

in ascending value and varying this by next choosing them in descending value. 

Also this algorithm is a test for connectedness, for if no reached but unused 

nodes exist at some stage before the computation halts, the graph must be 

unconnected. 

Bridge Finding Algorithm 

1. Compute two spanning trees in different (as possible) ways. 

2. Find the set of edges in the intersection of these two trees - set I. 

3. If I is empty halt. 

4. Take the first edge in I and delete it from the graph and from I. 

5. Generate a new spanning tree (again try to make it different from 

the previous ones). 

6. If the tree does not have all the nodes of the graph, then list the 

removed edge as a bridge. Otherwise, intersect the new tree 

with I to obtain the new I. Return to step 3. 
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Remark: At most n-l spanning trees will be constructed, where this limit is 

attainable. 

Pf. 

A spanning tree of a graph of size n has n-l edges. Therefore set I can have 

at most n-l edges initially. If the graph is just a simple circuit: 

X= {1,2,3, ..*, n) 

E = ((1,2), (2,3), . . . . @,ll~ , 

then the maximum number of intersections will be achieved. 

If the graph of interest is dense, then there will be many possible different 

spanning trees. The intersection of two of these will leave but few candidate edges. 

Outside of an iteration required for each bridge found, the algorithm will normally 

need only a few intersections before all extraneous edges are discarded. In 

implementing the algorithm, the number of intersections stayed between three 

and five over a wide range of graph sizes and densities. 

Generalization 

The more general problem of finding the minimum proper cut-sets of a graph 

is a great deal more difficult. Methods based on the repeated use of the Ford- 

Fulkerson network flow algorithm,25 with edge capacities identically one, can be 

used. The fundamental result is that the maximum flow is equal to the minimum 

cut capacity and the Ford-Fulkerson algorithm may be programmed to find the 

cut-set. In the case of bridges, obviously the tree intersection algorithm requires 

substantially less work. While the Ford-Fulkerson algorithm is efficient, it is 

more complex than the simple tree spanning algorithm, and each iteration of it is 

about the same work as a complete spanning tree computation. 

It is possible to generalize our method to cut-sets of higher order. Consider 

a cut-set of cardinality 2; name it C2’ By our theorem, each spanning tree must 
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include one or the other edge of C2. Therefore if k spanning trees are generated, 

some member of C2 will appear more than k/2 times. If edges are investigated 

in order of number of occurrences (given that they appear 2 k/2 times) the case 

of finding the other edge in C2 is reduced to finding a bridge. This scheme seems 

more reasonable, especially in very dense graphs, than the more complex flow 

algorithm. The method, of course, is iteratively applicable to Cn with a criterion 

of k/n appearances. However, it is most reasonable for n small. 

Efficient algorithms for the recognition of important structural characteristics 

of problem spaces is but one of many fruitful approaches to general problem 

solving methods in our model. 

Other areas of interest are statistical error analysis instead of worst case. 

If closed form solutions are unavailable then Monte Carlo simulations should aid 

in understanding these problems. Parallel computer organization should also 

prove important in extending the class of problems which can be solved. These 

are but a few of the possibilities for extension of the approach we have tried to 

use throughout this work. 

10.5 Some Concluding Remarks 

One is always questioned on the significance of the work. In general this leads 

to some exaggeration, especially when one has some perspective on the range of 

human thought. A simple answer is to say - here is the best shortest path method 

or a first theory of heuristic search. However, we would rather stress a notion 

of computational insight coupled to some combinatoric rigor and experimental 

investigation. In a sense this work is using the computer in the Von Neumann 

sense6’ of heuristic - to gain a feel or intuition into a difficult problem domain, 

and it is hoped some small contribution has been demonstrated. 
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APPENDIX I 

ALGOL W IMPLEMENTATION OF VGA 

This appendix contains a commented ALGOL W implementation of VGA. We 

will explain the data representation used and the purpose of each procedure. 

In my experiments two different data representations were used: 

a) adjacency-matrix 

b) edge list 

Representation (a) is a nXn matrix A, where n = ICI. An element of A, aij is the 

length of the edge (i, j) . If there is no such edge then a large positive value repre- 

senting 00 is entered. Representation (b) is for very large sparse graphs. It 

consists of two n element vectors, in-index and out-index and four n maxind 

matrices, m-edge, out-edge, in-length and out-length. Maxind is the maximum 

degree of any node in the graph. For each node i, in-index (i) is the number of 

predecessors it has, and out-index (i) is the number of successors it has. Then 

out-edge (i, l::out-index (i)) is a list of successors of node i; the lengths repre- 

sented by these edges are stored in out-length (i, l::out-index (i)). The corres- 

ponding arrays and matrices represent the predecessor. This representation 

requires n x (4 x maxind + 2) words and can save considerable storage space 

over (a) for large sparse graphs. Consider that we have 42,000 words of store, 

then representation (a) could store a complete 200 node graph. Representation (b) 

could store a complete 100 node graph, but if the maximum degree is 10 it could 

store a 1000 node graph. 
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(4 

Below we show both representations for Nicholson’s graph (Fig. 1). 

(b) node in-index 

1 3 

2 3 

3 3 

4 3 

5 2 

6 4 

7 2 

8 3 

9 3 

a! 3 (l::in-edge (node)), p = (l::out-edge (node)) 

in-edgea in-length& 

2,3,4 

1,3,5 

1,296 

1,697 

%8 

3,4,8,9 

499 

5,6,9 

f-&7,8 

3,6,7 

3,194 

6,1,2 

7,394 

4,l 

2,3, I,2 

4,5. 

1, 1,s 

2,5,2 

out-index out-edge 
P 

3 2,3,4 

3 1,395 

3 1,296 

3 L&7 

2 2,8 

4 2,3,L 2 

2 4,g 

3 5,&g 

3 ‘3,7,8 

out-length 
P 

3,697 

3,1,4 

6,L 2 

7,3,4 

491 

2,3,1,2 

495 

1, 192 

2,5,2 

The graph is undirected and this symmetry is found in each representation 

by noting 

a) A=AT 

b) in-values = out-values 
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The version listed here works with (b) and has generated and used 1000 node 

graphs. 

Graph generating procedures: 

1. RANDOM - a pseudo+xndom number generator with range (0,l). 

2. GENEDGE - uses random to generate edge-list representations of 

undirected graphs. A node is not allowed to have more than MAXIND edges. The 

lengths are randomly generated integers with range [l, WT]. 

Shortest path algorithm - VGA: 

1. WBIED - this is the ALGOL W incarnation of VGA. It consists of 

the following local procedures. 

2. DECIDE - a logical function procedure representing step 2 of VGA. 

It contains various strategies of interest in a case expression, e.g., number 1 is 

cardinality comparison. 

3. INITIAL - this does the initialization step, step 1 of VGA. 

4. MIDDLE - this is steps two through five of VGA and is the basic 

iterative loop. Both this procedure and INITIAL are distinct because of the 

OS/360 segmentation problem. 

Analysis procedures: 

1. SORT - this bubble sorts the shortest distances found to the nodes 

in set S (set T) . 

2. DLAMBA - counts the number of nodes in S (T) with distance less 

than R from initial (terminal) node. 

Graphs of different size and density and edge length distribution were gener- 

ated by GENEDGE. Node pairs were selected from these graphs and for each 

pair different decision rules in DECIDE were compared for efficiency. 
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IAL GOL 

owl 
005'2 
0003 
DO@4 
W65 
0006 
6007 
6608 
0009 
OGlO 
0011 
OUl2 
6013 
0014 
tiO15 
0016 
0617 
0018 
0019 
co21; 
GO21 
UO22 
oc23 
a24 
0025 
6026 
CM27 
wJ28 
GO29 
603C 
oc31 
OG32 
tic33 
b634 
a(;35 
CO36 
w37 
DC36 
0039 
604L 
6041 
tic42 
0043 
0044 
DC45 
CD46 
co47 
UC46 
G649 
60 5c 
lx51 
0052 
0653 
co54 
DC155 
u(r56 
UO57 
oose 

t3tG IN COMMENT IRA POHL SLAC (19681 

ALGOLW IFPLEMENTATION OF VGA - VERY GENERAL ALGORITHM 
FUR FINDING SHORTEST PATHS IN UT-GRAPH& THIS VERSION USES THE 
;;;;,:I”’ REPRESENTATION FOR ECONOMICAL STORING OF LARGE SPARSE 

EXPLANATIONS DF PARAMETtRS OCCUR THROUGHOUT THIS PROGRIM NEAR 
THEIR ACTUAL USE” i 

INTEGER SCGUNT,TCOUNT,CNTNODE; 

INTEGER N,MAXIND,START,TERMINUS,COUNT,INF: 
INTiGtH RANDOM?; LDtdG REAL RANDOMC; 
INTEGER DENSITY, DF, DB, MIND ; 
INTEGEK I,J,LAST; 

CO#4ENT ****+ DEFINITION UF GLOBAL VARIABLES ********* 

CANV OF THE VARIABLES ARE SYMMETRIC WITH REGARD TO THE FORWARD 
AND BACKWARD DIRECTIONo NORMALLY FORWARD VARIABLES ARE BEGUN WITH 
S AND dACKWAHD UNtS WITH Tu THE DEFINITIONS MILL 5E WITH RESPECT 
TO THE FURWARU VARIABLES MITH THE COKRESPONDING BACKNARD ONES IN 
PARENTHESES,: 

SCUUNT= CARDINALITY UF SET S f TCOUNT t 
DF= FORYARD DISTRIBUTION VALUE FOUND BY DLAYBD4 (DB) 
DENSITY= EDGE DENSITY UF THE OI-GRAPH,, l,'.' PER-CENT REPRESENTS 
THE COMPLETE GRAPH0 
I= CARDItiALITY OF GRAPH, START= INITIAL NODE, TERMINUS=FINAL NODEI 
lNF* REPRESENTS INFINITY, 
MlND=MININUH DISTANCE FOUhD- IS INF IF NO PATH EXISTS., 
CNTNODE= THt CENTRAL NODE ON THE SHORTEST PATH, I,:&. THE NODE FOUND 
BY BOTH THE FOKWAKC AND BACKWARD SEARCH., 

OTHERS ARE TEMPURARIES OR ARE UNIMPORTANT OR ARE EXPLAINED LATER UN: 

COYt4ENT RANDOM GENLKATES RPNOUY NUMBERS i<RANDOH<l ; 

LONG HEAL PKOCEDURE RANDCM: 
BEGIN RANDOHX:=12237~31Z5*R4NDUt4X; 

NUMBER~BITSTRINGIRANDOWX) AND #7FFFFFFFl/RANDUHC END; 

ClJMflEhT THE FOLLOWING VALUES YUST BE INITIALIZED : 

INTFIELIJSIZE I/O PARAMETER , INF INFINITE EDGE LENGTH 
MAXIND THE MAX LOCAL DEGREE ALLOUED IN THE LIST REPRESENTATION ; 

dANDUMX:=l; KAhODMC:=2**31; 
INTDVFL : = NULL ; 
INTFIELDSILE:=6; 
INF:=99Y999; 

CDHMENT UAXIND=MAX DEGREE ALLOWED K=GRAPH SIZE ; 

FU.4 MAXINO:= DO 
FOR K:=l”:L DO 
BEGIN 
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KX COHHENT ***EDGE LIST REPRESENTATION OF DI-GRAPH *** 
0061 
0062 
0063 
0064 
0065 
0066 
006-I 
0068 
0069 
0070 
0071 
0072 
0073 
0074 
0075 
0016 
0077 
0078 
0079 
008.0 
0081 
0082 
0083 
0084 
0085 
0086 
0087 
0088 
OC89 
O(r9@ 
0091 
0092 
0093 
0094 
0095 
0096 
0097 
UO98 
0099 
0106 
0101 
0102 
0103 
0104 
0105 
Olti6 
0107 
0108 
QlJ9 
6110 
6111 
0112 
0113 
0114 
6115 
3116 
0117 
0118 

THE MAXIMUM DEGREE OF A NODE IS HAXIND DEFINED IN THE OUTER 
BLOCK ALONG WITH K THE NUMBER OF NODE% THE ACTUAL DECREE 
OF EACH NODE IS FOUNO IN THE ARRAYS ININDEX AND OUTINDEX. THESL 
ARE IN AND OUT EDGE DEGREES RESPECTIVELYo EACH NODE HAS A LIST 
OF ITS SUCCESSORS AND PREDECESSORS STORED IN INEDGE AND 
OUTEDGEe CORRESPONDING TO THESE LISTS ARE THE LENGTHS OF 
THESE EDGES FOUND IN INLENGTH AND OUTLENGTH 

THE REMAINING ARRAYS ARE USED BY THE SHORTEST PATH ALGORITHn 
WHEN BUILDING MINIMUM PATH TREES. WF IS THE WHERE FROU POINTER 
FOR THE FORWARD TREE AND SDIST IS THE CURRENT BEST DISTANCE. 
ilT AND TDIST PLAY THE SYMHETRIC ROLE IN THE BACKWARD CASE- DIST 
IS A TEMPORARY NEEDED IN DOING A POSTERIOR1 ANALYSISc ; 

INTEGER ARRAY WT,SOIST~TDISTI1::K+ll; 
INTEGER ARRAY ININDEX,OUTINDEX,WF.OIST~l::U+lI: 
INTEGER ARRAY INEDGE,OUTEDGE,INLENGTH,DUTLENGTH~l::K,l::MAXINDl: 

COMMENT GENERATE SYMMETRIC WEIGHTED GRAPHS AS EDGE LISTS **** : 

PROCEDURE GENEDGEIINTEGER VALUE N.WT; REAL VALUE DENSITY): 
COMMENT N=GHAPH SIZE, WT=MAXIMUI4 EOGE LENGTH, OENSITY=EDGE DENSITY: 
BEGIN 
FOR I:=1 STEP 1 UNTIL N DO 

ININuEXlII:=OUTINOEXIIl:=O: 
FOR I:= 1 STEP 1 UNTIL N DO 
BEGIN 

FOR J:=I+l STEP 1 UNTIL N DO 
IF OUTINDEXII~=MAXINU THEN GU TO EXED ELSE 

IF IININIIEXIJI -.=MAXINDI ANDIRANDOM<DENSITYI THEN 
dEGIN 
OUTINDEXlII:=ININDEX(I):=OUTINDEXlIl +l: 
~uTINDEXIJJ:=ININDEXO:=~~TINDEX~JJ +l; 
OUTEOGE(IrOUTINOEXlI)I:=INEDGE(IIINEDGE~I,ININDEXlI~~:=J: 
DUTElJGE(J,OUTINDEX~J)):IINEDGE(JIINEDGE~J,ININDEX~Jl~:=I: 

OUTLENGTHI ItOUTINDEX ~III:=INLENGTH(J,ININDEXo:r 
OUTLENGTHlJ,OUTINDEX (Jtl:=INLENGTHII,ININDEXoI:= 

ENTIERll+RANDClM*WTI: 
END i 

EXED: : END; 
END GENEDGE : 

COMMENT **** A PUSTERIOHI ANALYSIS ROUTINES **+* 

Iiu ORDER TO FIND K-OPT, THE OPTIMUM FORWARO RADIUS, WE SOLVE 
BY BOTH THE FORWARD AND BACKWARD UNI-DIRECTIONAL SHORTEST PATH 
ALGORITHMSu THEN EACH THEE GENERATED IS SORTED HY DISTANCE FROM 
THE riESPECTIVE INITIAL NOOE, DLAMBDA THEN COUNTS THE NUMBER OF 
INUDES THAT A METHOD GOING OUT TO A GIVEN R WOULD SEARCH,. A SCAN 
OF THIS DISTRISUTION PRCDUCES THE HINIMUM GIVING R-OPT; THIS A 
POSTERIUKI ANALYSIS THEh CAN BE USED TO CHECK THE UPTIHALITY 
OF A GIVEN STRATEGY* ; 

COMMENT OLAMBUA FINDS MOW MANY NdDES ARE WITHIN DISTANCE R FROM 
THE INITIAL NODE (USE SDISTT OR TERMINAL NODELUSE TDISTit. : 

INTEGER PKOCEDURF DLAMBDAfINTEGER VALUE R: INTEGER ARRAY SOISTI*II: 
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0119 
012U 
0121 
Cl22 
0123 
0124 
0125 
0126 
(1127 
0128 
0129 
0130 
0131 
0132 
0133 
0134 
0135 
0136 
0137 
0138 
3133 
0140 
0141 
0142 
0143 
0144 
0145 
0146 
0147 
0148 
0149 
O15C 
0151 
0152 
0153 
0154 
0155 
G156 
0157 
0158 
0159 
0160 
0161 
0162 
0163 
0164 
0165 
0166 
0167 
0168 
0169 
0170 
0171 
0172 
0173 
0174 
0175 
0176 
0177 
0170 

BEGIN INTEGER I: 1:=1: 
nHILE R >= SZIST(1) DO I:=I+l; I 

END DLAMBDA; 

COMMENT SORT aUBaLE SORTS THE DISTANCES FOUND i 

PROCEDURE SORTf INTEGER VALUE N; INTEGER ARRAY DIST,SDISTt*I I: 
aEGIN COMMENT SORTS UIST INTfl SDIST IN INCREASING VALUE; 

INTEGER T; LDGICAL FLG: 
FLG:=TRUE : 
FOR I:=1 STEP 1 UNTIL N DO SDIST~Il:=DISTIII; 
FOR I:=1 STEP 1 UNTIL N 00 

BEGIN FLG:=FALSE; 
FUR J:=l STEP 1 UNTIL N-I DO 

IF SDISTIJI > SUISTlJ+l~ THEN 
BEGIN T:=SDISTI JI i SOISTIJI:=SDIST(J+ll; SDISTlJ+ll:=T: 

FLG: =TRUE END: 
IF -FLG THEN GO TO EXIT: 

END; 
EXIT: 

END SORT: 

COMMENT ****V-ERY G-ENERAL A-LGORITHM ****** 

VGA IIR WBIED IWEICHPEO BI-DIRECTIONAL ALGORITHM1 SOLVES 
THE TWO POINT SHORTEST PATH PROBLEM, THE DECISION STRATEGY, 
STEP TWO OF VGA, IS SELECTED aY DNM, THIS 1s THE DECISION 
NUMBER FOR DECIDE o DECIDE IS A CASE STATEMENT OF THE CURRENT 
STRATEGIES IN USE. : 

PROCEDURE WBIED (INTEGER VALUE N,INF.START,TERMINUS,DNM: 
INTEGER SCOUNT,TCOUNT,t’lIND,CNTNODE: 
INTEGER ARRAY WF,WT,SDIST,lOIST (*I I: 

BEGIN 

COMMENT ***GLOBAL PARAMETERS CORRESPOND TO FORMAL PARAMETERS, 
THE LOCAL PARAMETERS ARE DESCRIBED BELOW0 i 

INTEGER SMIND,THIND,TTl,T3rT41T5i LOGICAL FLG: 
INTEGER TT,NUMSTWD,NUMTTWD,TlC,T2C; INTEGER ARRAY TlrT2Il::NI: 
LOGICAL ARRAY SVEC,TVEC.STWOVEC,TTWDVEC~l::N)i 

COMMENT l *:* LOCAL VAR IAaLES ****** 

SMIND=CURRENT MINIMUM DISTANCE IN SET S-TILDA (TMINDI 
FLG=LOGICAL FLAG SET TO TRUE IF A NODE APPEARS IN THE 

INTERSECTION OF S AND T 
NUMSTkD=NUMBER OF NODES IN SET S-TILDA INUMTTWDI 
SVEC=SET MEMBERSHIP FLAG FOR SET So IF SVECIII IS TRUE THEN NODE 

I IS IN SET S LTVECI 
STWlJVEC=CORRESPONDING LOGICAL ARRAY FOR S-TILDA ITTWDVECI 
***NOTE**+ SVEC AND STWDVEC MAY BOTH BE FALSE FOR A GIVEN NODE, 

BUT THEY MAY NOT BOTH BE TRUE <> 
Tl=LIST OF NODES TLED AT MINIMUM DISTANCE IN S-TILDA IT21 

THE REMAINING VARIABLES ARE TEMPORARIES. i 
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0181 
0182 
0183 
0184 
0185 
0186 
0187 
0188 
0189 
0190 
0191 
0192 
0193 
0194 
0195 
0196 
0197 
Gl9B 
0199 
Q2OC 
0201 
0202 
0203 
0204 
0205 
0206 
0207 
0208 
0209 
0210 
0211 
0212 
0213 
0214 
0215 
0216 
0217 
0218 
0219 
022ti 
0221 
0222 
0223 
6224 
0225 
U226 
0227 
0228 
0229 
U23r! 
G231 
0232 
0233 
0234 
D235 
ci23b 
0237 
0238 

COMMENT DECIDE IS THE DECISION STRATEGY FOR VGA.. IT IS A CASE 
STATEMENT WHERE A SPECIFIC STRATEGY IS SET BY DNK ; 

LOGICAL PROCEDURE DECIDE ; 
BEGIN COMMENT DNM SELECTS APPROPRIATE RULE FOR STEP Z’OF VGA: 

CASE LDNMI OF 
I NUHSTWD<=NUMTTWD, 

SMIND<=TMIND, 
TRUE, 
FALSE, 
NUMTTWD <= NUHSTIUI 

b 

COMMENT DNH RULE 

: 
CARDINALITY COMPARISON (POHLl 
EQUIDISTANCE (NICHOLSONI 

3 UNI-DIRECTIONAL FORWARD LDIJKSTRAI 
4 UNI-DIRECTIONAL BACKWARD 
5 REVERSE OF 1 DEGENERATES TO 3 : 

END i 

COMMENT BECAUSE OF SEGMENT OVERFLOW PROBLEM THE ALGORITHM IS 
DIVIDED INTO INITIAL AND MIDDLE AND FINAL PARTS< INITIAL IS STEP 1 
OF VGAo MIDDLE IS STEPS 2 THROUGH 5, AND FIN4L IS STEP bc 

FINAL IS THE LAST PIECE CJF CODE IN WBIED AND IS NOT A SEPARATE 
PROCEDURE. 

PROCEDURE INITIAL; 
BEGIN 

SMIND:=TMINO:=D; 

COMMENT NODES INITIALLY IN NO SETS ; 

FOR I:=1 STEP 1 UNTIL N DO 
BEGIN SVECLII:=TVEClIl:=STWDVECLII:=TTUDVEC(II:=FALSE; 

SDISTlIJ:=TDIST~IJ:=INF: WFTIl:=WTLII:=-1 
END ; 
TT:=l; SCOUNT:=TCOUNT:% : NUMSTWD:=NUMTTWD: =l: 
&FL STARTl:=D’ 9 WTTTERMINUSI:=O; 

COMMENT INITIALIZE VALUES FOR ENDPOINTS i 

SDISTlSTARTI:=O; TDIST(TERMINUSI:=C; 
SVECL START) :=TVECITERMINUSI :=TRUE; 
STWDVEC(STARTI:=TTWDVEC(TERMINUSi:=TRUE: 
FLG:=FALSE; MIND:=C; 

COMMENT AN IMAGINARY EDGE OF INF LENGTH IS ADDED TO OUR 
GRAPH0 IF NO OTHER PATH IS FOUND THIS dILL BE PATH OF 
MINIMUM DiSTANCEc ; 

IF OUTINDEKLSTARTI< MAXIND THEN 
BEGIN 
~UTINDEX(STARTI:= UUTINDEX(STARTI+l: OUTEDGEISTART, 

UUTINOtXL START) I :=TERMINUS: 
DUTLtNGTHi START,OUTINDEXLSiARTI l:=INF; 

END ELSE 
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0241 
0242 
0243 
5244 
0245 
0246 
0247 
024B 
0249 
025r: 
0251 
0252 
6253 
6254 
0255 
G256 
6257 
0258 
0259 
0260 
0261 
0262 
0263 
0264 
0265 
0266 
0267 
0268 
0269 
0270 
0271 
0272 
0273 
0274 
0275 
0276 
G277 
o27a 
0279 
0280 
0281 
0282 
0283 
0284 
0285 
0206 
0287 
OZBB 
0209 
0290 
0291 
0292 
0293 
0294 
0295 
0296 
0297 
0298 

IF 

BEGIN OUTEDGELSTART,HAXINDJ:=TERMINUS: OUTLENGTHISTART,MAXINDl 
:=INF; 

END; 
ININDEXITERMINUSIC MAXIND THEN 

BEGIN 
ININDEXITERMINUSI :=I hIhDEX(TERMINUSl+li INEDGETTERMINUS, 

ININDEX(TERMINUSIl:=START: 
INLENGTHlTERYINUS,ININDEX(TERnlNUS)):=INF: 

END ELSE 
BEGIN INEDGE(TERHINUS~MAXINDl:=START; INLENGTHTTERHINUS,HAXIND 

l:=INF; 
END ; 

END INITIAL: 

PROCEDURE MI DOLE; COMMENT SEGMENT OVERFLOW BVPASS: 
WHILE l-.FLGI AND L-vLHIND=INFIl DO 
BEGIN 

IF DECIDE THEN COMMENT DECIDE UPON DIRECTION; 
BEGIN 

MIND:=INF; 

COMMENT THE CURRENT MINIMUM DISTANCE OVER NDDES IN S- 
TILDA IS FOUND” TIES ARE STORED IN ARRAV Tl WITH TlC 
THE NUMBER OF TIESo i 

FOR I:=1 STEP 1 UNTIL N DD 
IF STWDVECL II THEN 
BEGIN 

IF SDIST( II < MIND THEN 
BEGIN MIND:=SDIST(Il; TlC:=l; TlLTlCl:=I END 

ELSE IF SDISTI 1 I = MIND THEN 
BEGIN TlC’=TlC+l; TItTlCi:=I END : 

END; 

COMMENT TlC REPRESENTS THE NUMBER OF NODES TRANSFERRED 
FROM SET S TO SET S-TILDA, THE APPROPRIATE COUNTERS ARE 
CHANGED. ; 

NUMSTMD:=NUMSTWD-Tit; SCOUNT:=SCOUNT+TlC: 
SMIND:=HINDi 

COMMENT APPROPRIATE SET MEM8ERSHIP FLAGS ARE SET. EACH 
NODE BEING CHECKED FOR BEING IN S INTERSECTION T, : 

FOR I :=l STEP 1 UNTIL TlC DO 
BEGIN TT:=TllI 1; 
IF -.FLG THEN BEGIN FLG:=TVECTTTliTTl:=TT END; 
SVECTTTl:=TRUE; STWDVECLTTl:=FALSE; 
FOR J:=l STEP 1 UNTIL OUTINDEXLTTl DO 
BEGIN T3:=OUTEDGELTT,J); T4:=SDISTLT3l: 

T5:=OUTLENGTH(TT,Jl; 
IF T4 > MIND +T5 THEN 
BEGIN SDIST(T3l:=MIND+TS: WFLT3l:=TT; 

IF q STYDVECL 73 l THEN 
BEGIN NUMSThD:=NUMSTYD+l: STWDVEClT3l:=TRUE END 

END 
END 
END 

END 
ELSE 
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!Z 
0301 
0302 
0303 
0304 
0305 
0306 
0307 
0308 
0309 
0310 
0311 
0312 
0313 
0314 
0315 
0316 
0317 
0318 
0319 
0320 
0321 
0322 
0323 
0324 
0325 
0326 
0327 
0328 
0329 
033G 
0331 
0332 
0333 
0334 
0335 
0336 
0337 
0338 
0339 
0340 
0341 
0342 
0343 
0344 
0345 
0346 
0347 
0348 
0349 
0350 
0351 
0352 
0353 
0354 
0355 
0356 
0357 
0358 

BEGIN 

COMMENT SYMMETRIC TO THE ABOVE LOOP YITH RESPECT TO THE 
8ACKWARD DIRECTION. 

MIND:=INFL 
FOR I:-1 STEP 1 UNTIL N DO 
IF TTMDVECIII THEN 
BEGIN 

IF TDISTIII < MIND THEN 
BEGIN MIND:=TDIST(Ib; T2C:=l; TZ(TZCl:=I END 

ELSE IF TDISTLII = HIND THEN 
BEGIN T2C:=TZC+l; T2LT2Cl:=I END : 

EGJDi 
NUMTTWD:=NUMTTYD-TZC; TCOUNT:=TCCUJNT+TZC; 
TMIND:=HINDi 
FOR I:=1 STEP 1 UNTIL TZC DO 
BEGIN TT:=TZTIJ; 
IF .FLG THEN BEGIN FLG:=SVECLTTl;TTl:=TT END: 
TVEC(TTl:=TRUE: TTYDVECTTTl:=FALSE: 
FOR J:=l STEP 1 UNTIL ININDEXLTT) DO 
BEGIN T3:= INEDGELTT,Jl; T4:=TDISTLT3l; 

T5:= INLENGTHLTT,Jl; 
IF T4 > MIND +T5 THEN 
BEGIN TDI ST T T3J :=HI NDtT5 * 

IF _ TTWDVECLT31 THEN ’ 
WTTT3l:=TT; 

BEGIN NUMTTWD:=NUWTTWD+l; TTWDVECtT3I:=TRUE END 
END 

END 
END 

END 
END ; 

COMHENT * * * * * * * * MAIN ROUTINE * * * * * * * * ; 
INITIAL; MIDDLE ; 
YRITE I “VGA TERMINATED BY NODE “rTTlr”SD=“,SDIST(TTl)r” TD=“, 

TDISTLTTLII; 
WRITE(“SMIND=“,SMIND,” TMIND=“,THINOli 

COMMENT S INTERSECTION T-TILDA IS CHECKED AND THE DISTANCE 
OF ANY SUCH PATHS ARE COMPUTED AND COMPARED TO MINIMUM, ; 

MIND := SDISTfTTll + TDIST~TTlli i 
TlC:=TTl; 
FOR I:=1 STEP 1 UNTIL N DO 

IF SVECLI I AND TTWDVECI I I THEN 
BEGIN 

TZC:= SDISTLII + TDISTtIl; 
IF TZC< MINLI THEN BEGIN MIND:=TZCi TlC:=I END; 

END; 
CNTNDDE :=TlC : 

END WBIED; 

FOR DENS:=2 DO 
BEGIN COMMENT LOOP OVER GRAPH DENSITY IN 115r0: 

MRITET” “I; 
WH1TE~“MAX1ND=“,MAX1ND,” SYMMETRIC WITH DENS ITV-“, DENS/5C’;l i 
WAITEL”TIME TO GENERATE “,TIMEll),“SIZE “,Kl; 
GENEDGE I K, ZC, DENS/50OJ ; 
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0361 
0362 
0363 
0364 
0365 
0366 
0367 
0368 
0369 
0370 
0371 
0372 
0373 
0374 
0375 
0376 
0377 
0378 
0379 
0380 
0381 
0382 
0383 
0384 
0385 
0306 
0387 
0388 
0389 
0390 
0391 
0392 
0393 
0394 
0395 
0396 
0397 
0398 
0399 

WRITEl”TIME TO GENERATE “,TtMEtlt t; 
FOR CC:=1 STEP 1 UNTIL 5 DO 
BEGIN 
COMMENT ********* 

t AND J ARE INITIAL AND TERMINAL NDDES SELECTED AT RANDOM.,; 

I:=ENTIERiK*RANDOW 411 : 
J:=ENTIERtK*RANDON +lI; 
WRITEt’ -a, ; WRI.TEt”t,J”,t,JI; WRtTEt” “); 
WBtEDlK,INf,I,J,3,SCDUNT,TCOUNT,MtND,CNTNODE,UF,WT,SDtST, 

TDISTt : 
WRITE(“FORWARD METHOD SCOUNT”.SCOUNT,” MtND=“lHtNDl: 
SORTtK,SDISTtDISTt; 
WBIEDtK,tNF,I,J,4,SCOUNTITtDUNT~MtND,CNTNODE,~F,WT,SDtST, 

TDISTt ; 
WRtTEI”BACKWARD METHOD TCOUNT’,TCOUNT,” MIND=“,HtNDt: 
SORTtK, TDIST, SDISTt ; 
IF MIND < INF THEN 
BEGIN WRITEi”TABLE OF DISTRIBUTION FUNCTIONS”); 

FOR R:=D STEP 1 UNTIL MIND DO 
BEGIN 

DISTtK+lt := INF + 1; 
SDISTtK+ll := INF l 1:’ 
DF:=DLAMBDAtR,DtSTt; DB:=DLAHBDA(MIND-R,SDIST); 
WRITEtR, Op. DB, DB + DFI; 

END R; 
END i 
FOR D:= 1, 2 DO 
BEGIN 

WRtTEl”TIHE ENTERED WBIED NO”, D,” TIME “,TIMEtlTl: 
WBIEDtK,INF,t,J,D,SCOUNTITtOUNT,MIND,CNTNODE,WF,WT, 

SD1 ST, TDI ST) ; 
WRITEi”TtME EXITED WBIED ‘,TIMElltT; 
WRITE(“CNTNKlDE IS “t CNTNODE,” SCOUNT “9 SCOUNT, 

” TCOUNT “, TCOUNTI i 
WRtTE(“SHORTEST PATH LENGTH IS “rMINDt; WRITE{” “I: 

END: 
END 

END DENSLDOP; 
END LOOPK; 

END. 

ELAPSED TIME IS 00:00149 
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APPENDIX II 

COMPARATIVE RESULTS USING DIFFERENT STRATEGIES IN VGA 

In this appendix we list some results of actual computer runs (see, Appendix 

I for the program). Our cardmaRty comparison strategy is compared to the 

forward and backward uni-directional strategies and Nicholson’s equi-distance 

bidirectional strategy. The measure of efficiency is the number of nodes at the 

end of a computation, that have been visited by VGA, i.e., IS.1 + ITI. The data 

provides a verification of the efficiency of our method and the veracity of our 

model. 

The figures and tables in this appendix present a portion of the computational 

experience of the author. A graph of given size and edge density was generated 

randomly, as described above, and two nodes were randomly selected. The 

shortest path problem between these nodes was solved using VGA for each 

strategy and the following data collected. 

1. length - the shortest path length, which of course is the same 

for each method 

2. ISI, ITI - the number of nodes in these sets 

3. rapt - the radius the forward method should reach for optimal 

efficiency 

4. rf, rb - the forward and backward radii for a bidirectional 

method. 

For each graph 10 different shortest path problems were solved. A graph is 

characterized by its size, the average degree of its nodes and the maximum length 

of its edges. In table 5.2, we have already summarized the results of the raw 

data displayed in tables II. 1 through II. 5. The headings not previously 
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explained are: 

POHLF, POHLB - ISI and ITI respectively for the csrdinality 

comparison strategy. 

NICHOLSONF, MCHOLSONB - as above for the equi-distance 

strategy. 

rf(P), rf(N) - the forward radii of the POHL and NICHOLSON 

strategies. 

The results are summed for the ten cases in each graph and additionally 

U) length/2 - r opt i 

(ii) $, / rf(P) - ‘opt/i 

(iii) i$ / rf(N) - ‘opt Ii 

are computed. In the case of the bidirectional methods, these are indications of 

how well the methods a priori solved Eq. (3.3). The value of (i) reflects the 

asymmetry of the problems used. Since the graphs generated were undirected and 

uniformly produced, it is to be expected that the consequent densities are reasonably 

symmetric. The results for a given problem where this is not so is favorable to 

cardinality comparison. For example, table II. 1, case 5 has 

rapt length = g = l/3 

where 

r,(P) = 28, r,(P) = 48 
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and 

rf(N) = rb(N) = 42 . 

The symmetry assumptionsin the equi-distance strategy, inflexibly lead to more 

work. In all but two cases, (table II. 3, case 8 and 10) 

I rf(N) - rb(qI 5 ” 

The cardinality comparison strategy tends to equalize the cardinalities of S and 

T, which is appropriate from considerations of efficiency, as seen in our model. 

In Fig. II. 1, we plot the comparative data for each method in the 500 node 

experiments. Similarly in Fig. II. 2, we plot results from 150 node experiments 

with average degree 2 through 16. Table II. 6 presents the 500 node data for the 

forward uni-directional strategy indexed by path length. Table II. ‘7 is the same 

presentation for the csrdinality comparison data. These tables show how number 

of nodes visited is directly proportional to path length and density, as expected 

from our model of shortest path space. Overall the results in this appendix con- 

firm our theoretical insights. 
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FORkAPt CRCSSTAELE 
Table II.6 
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Table II.7 
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a 

1C 

20 

3c 

40 

5C 

6C 

76 

IJEGREE 

3 6 9 12 15 

---^---------------- --------------- 

I 5 1 1n 
I 1 I : 24 I 

-- -------~--------------------- 

24 
1 t 

43 50 71 I 
63 f 81 I 122 

I 
1 

30 I 19 I 92 I 

I 
49 67 

f 
0 1 

1:: 
I' 

36 
63 I 

I 
I 

I 
45 

22 64 I 

i 

t f 46 

t t 
79 I I 
47 I I 

_------------------I------------------- 

! 
43 I 93 I 92 
24 I 97 f I I 

--------------------------------- ---- 

:: 
1 

76 53 I 
14 : 79 t 
93 I I / I 

--------I--- ------_------------------- 

81 

1 

64 1 
51 97 

f 1 
I I 

101 I I 
___---------------------__------------ 

73 
I 

48 I 
72 I 1 I I 

----------------------- _--------------- 

I 87 I I I I 
___---------- ------ - -------I_ ---me---- 

ez I 

/ 

I 
t3 t 
51 I / 

- 137 - 



APPENDIX III 

ALGOL W IMPLEMENTATION OF VGHA FOR THE FIFTEEN PUZZLE 

This appendix describes the ALGOL W implementation of VGHA as used in 

experiments with the fifteen puzzle. The basic data representation was a list 

structure created from records and references in ALGOL W. 

RECORD NODE (STRING (17) ENCOD; INTEGER PZ, WF, DIST; 

REAL VALU; REFERENCE (NODE) SPILL) 

FIELDS: 

ENCOD is a string containing the state description. Here it has the 

values of the sixteen positions. 

PZ is the position of the blank tile. It is useful in efficiently generating 

adjacent positions. 

WF is the index to the predecessor node. 

DIST is the cardinality distance back to the initial node. 

VALU is the value of the evaluation function for this node, 

SPILL is the pointer for the hash equivalence class. It is NULL if this 

is the last node within a given class or else it points to the next member of the 

class. 

The state encoding information could of course be for any other problem 

domain. This coupled with the successor procedure and the evaluation procedure 

would be tailored to a specific problem domain. 

A short description of the procedures constituting VGHA follows below. In 

conjunction with the documented listing, this appendix allows a detailed under- 

standing of VGHA. 
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Debugging and I/O procedures 

1. WRTBRDl - this produces a square array printout of a fifteen puzzle 

configuration. 

2. WRTBRD2 - this produces a string printout and hash value of a fifteen 

puzzle configuration. 

3. DMP - this uses a case statement to printout various parts of the search 

trees. A variable CND selects the particular dump wanted. 

4. TRACE - this prints the solution path found by VGBA. 

5. I-IDISTR - this prints the number of nodes found in each hash equivalence 

class, i, e. the &ash distribution. 

Auxiliary routines 

1. ENCODE - this takes an array representation BOARD and maps it into 

a string representation VAR for a given fifteen puzzle configuration. 

2. DECOD - this is the inverse of ENCODE. 

3. HASH - this uses the array representation BOARD to compute the hash 

value of a configuration. 

4. PTABINIT - this is the PTABLE initializer. The PTABLE is a table 

lookup for the position value (see Chapters 6 and 8). 

5. INITIALIZE - this routine initializes all the necessary flags and arrays 

to their appropriate value. It also designates the initial node INIT and the ter- 

minal node GOAL. 

Principal routines 

1. SUCCESSOR - this takes a given configuration and generates the 

neighboring configurations in NXNOD ES. 

2. EVALUATE - this evaluates the board configuration provided by 

SUCCESSOR. This is a case statement incorporating the various evaluation 

functions to be tested. 
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3. NOhqEDUNDANT - this uses the hash equivalence class of a node to 

conduct a linked list search for redundancy. 

4. DECIDE - this is the step that decides which direction the search should 

take, either forward (DECIDE:=TRUE) or backward (DECIDE:=FALSE). 

5. TERMINATE - this uses the hash classes to See if a given node is in both 

the forward and backward search trees. 

The basic iteration step is coded symmetrically for the forward and backward 

search. The backward search corresponding to DECIDE=FALSE has its variable 

identifiers prefixed by B. 

- 140 - 



YALGCL 

OCOl 
ooc2 
0003 
9co4 
occ5 
0006 
oco7 
OOCB 
ooc9 
0010 
0011 
0012 
0013 
0014 
0015 
OCl6 
0017 
0010 
oc19 
0020 
0021 
0022 
0023 
0024 
0025 
0026 
0027 
OOZB 
OC29 
0030 
0031 
OG32 
oc33 
0034 
0035 
0036 
0037 
0030 
0039 
0040 
0041 
0042 
0043 
0044 
0045 
0046 
3047 
0048 
0049 
oc50 
0051 
0052 
6053 
0054 
0055 
0056 
0057 
0058 

3:55,9000 

BEGIN CCFICENT I.PCHL OCT 196.5 ISLPCl 

ALGOL W ICPLENENTATION OF VGHA-VEKY GENERAL HEURISTIC 
ALGCR ITHN. THIS VERSION SOLVES THE FIFTEEN PUZZLE. 

PAHAMETERS : l ******t*****+; 

INTEGER ~AXIlER,NU~kCOE~BhU~NODE,CURNOD,OEG~ll,T2,BCURNOD; 
INTEGER FUSE, BUSE, OECNt EVALN, OMPN. CSh. SDISI, TOIST; 
INTEGER PEX,PEXLtJ, 15, TIN; 
LOG ICAL FLG,TFLAG; REAL UT ,VAL,H IN; 
LOGICAL ARRAY TPlO::15l; REAL ARRAY kW(l::lO); 
LOGICAL 4RRAY UNDEVELUPEDtBUNDEVELCPED l1::3COOl; 
INTEGER ARRAY MAP,CAPlr8CARO,BOAROl~O::l5~; INIEGER ARRAY NZl1::4); 
STRING I161 GOAL,IhITrSTl~STZ; 
STRING 1161 ARRAY NXNODESl1::41; INTEGER ARRAY PTABLE(O::15.0::15); 
RECORO NODEISTRING 1161 ENCOD; INTEGER PL,NF.DIST: REAL VALU; 

REFERENCE (NOrJET SPILL); 
REFERENCE (NODE) ARRAY PTt1::3000); 
REFERENCE (NODE) ARRAV BPT(1::300Cli 
REFERENCE (NODE) ARRAY HSHLO::BOC); 
REFERENCE INODE) ARRAY EHSHIC::@001; 
REFERENCE INOOEI Plr PZ; 

COMMENT ***** DEFIhITICh OF INPORTANT VARIABLES ***** 

VARIABLES PREFIXEC f!Y B ARE EACKYARD CIRECTICN VARIABLES. 

NODE = RECCRO REPRESENTATING ONE hODE Ah0 ASSOCIATED 
STATE INFORMATION. 

ENCCD = STRING FIELD FOR 15 PUZZLE CCNFIGURATION. 
PZ = INTEGER FIELD NOTING POSITION CF THE BLANK. 
kF = IhDEX TO PRECECESSCR NCCE. 
DIST = CARCINALITY DISTANCE TO ENOPCINT. 
VALU = THE VALUE OF THE EVALUATIOK FUhCTICh. 
SPILL = PCINTER TO NEXT NODE Ih HASF EQUIVALENCE CLASS. 

PT LBPTT = REFEPEhCE ARRAYS POINTING TO FCRMARC(EACKYAROI 
SEARCH TREES. 

HSH (@FISH) = POIhTERS TO INITIAL NOOt Ih EACh HASH CLASS. 
CURNOO LBCURNODT = INDEX INTO REFERENCE ARRAY PT IBPTT. 

PTiCURkOOl PCINIS TO THE CURREhT NCOE BEING EXPAhDEC. 
INIT = STRING ENCCOING OF STARTING 15 PUZZLE CChFIGURATION. 
GOAL = TERNINATING CR GCAL CONFIGLRATION. 
NXNODES = ARRPY GF SUCCESSOR COFIGURATICNS OF CURNODIBCURNODI. 
MAXITER = MAXIHUN NUMBER OF NOOES EXPANDEC BEFORE SEARCH IS ENDED 
NU~NODElEhUMNODEI = NURBER OF FORhARD IBACKWAROI NODES SEARCHED. 
OECN = PICKS DECISION STRATEGY IN DECIDE. 
EVALN = PICKS EVALUATOR IN EVALUATE. 
CMPN = PICKS DUMP ROUTINE IN LIMP. 
IdT = kEIGhT OF FEURISTIC FUNCTION VERSUS GIST Ih EVALUATOR. 
UNDEVELOPEOIBUNOEVELOPEDT = IS TRbE IF NOCE IS NOT YET EXPANDED. 

OTHER VARIA@LES ARE TEWPORARIES OR HAVE SPECIAL FUACTIONS; 
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0059 
0060 
0061 
0062 
0063 
0064 
OC65 
0066 
0061 
0068 
0069 
0070 
0071 
0072 
0073 
0014 
0075 
0076 
007-I 
OC78 
oc79 
0080 
0081 
DOB2 
0083 
0084 
0085 
0086 
0087 
008.8 
00E9 
0090 
0091 
0092 
0093 
0094 
0095 
0056 
ocs7 
0098 
0099 
0100 
0101 
0102 
0103 
0104 
0105 
0106 
0107 
0108 
0109 
0110 
0111 
0112 
0113 
0114 
0115 
0116 
Oil7 
0118 

COHNENT ENCODE IAKES INTEGER ARRAY REPRESENTATION OF A 15 
PUZZLE CONFIGURATION -BOARC ANC ENCODES IN STRING FORM-VAR; 

PROCEDURE ENCOCEIINTEGER ARRAY BOAROI*I; STRIhG I161 VARI; 
CCHNENT USES ALGOLW IF’PLICIT PROCEDURE CCOEI 
FOR I:=0 STEP 1 UNTIL 15 DO VARlIilI:= CCDEiBOARLllt 1 

CCHNENT INVERSE PROCEDURE FCR ENCOOE; 

PROCEDURE CECOD (STRING I161 VAR; INTEGER ARRAY BOARLll*I 
CORMENT USES IhVERSE OF CGCE -0ECOOE; 
FOR I:=0 STEP 1 LNTIL 15 DO BOARDI II:- EECOIJEIVARII 

li 

i 

1)); 

COHMERT NONREDUhCANT ChECKS TO SEE IF THE 15 PUZZLE CONFIGURA- 
TION VAR HAS ALREACI BEEN FOUNC. i 

LOGICAL PROCEDURE hONRECUhOANlI STRING IlCI VAR; INTEGER Hl: 
LOGICAL FLGI; 

BEGIN CONRENT 
VAR= STATE BEIkG CHECKED 
Hl=HASC INDEX OF VAR 
FLG = kHICH TREE IS SEARCHED FOR REDUNOAKT NODE. 

IF TRUE TtiEN FORWARD TREE ELSE BACKYARD TREE. ; 
LOGICAL T ; 
DECO0 lVAR,ECARCI; Hl:=HASH(BOAROI; 
Pl:= IIF FLG THEN HSHIHlI ELSE BHSHlhlIJi 7 :=JRUE; 
CCRHENT CHAlKED SEARCH ; 
WHILE Pl -.= hULL 00 

IF ENCODlPlI=VAR THEN 
COCWENT NOCE ALREAOY EXISTS IN HASH CLASS; 

BEGIN T:=FALSE; GOT0 OUT END 
ELSE Pl:=sPILLIPlI; 

oli7: T 
END NONREDUNCAhT; 

CCRNENT SUCCESSCR FINOS NOOES AOJACENT TC VAR. THE hOFIBER 
IT FINDS IS CEG ,ANC THEY ARE STORED Ih NXNOOES LIITH THE ZERO 
POSITICNS RECORDED Ilr NZ; 

PROCEDURE SUCCESSOR1 STRING (16) VAR; INTEGER DEG.PZ; 
INTEGER ARRAY NZl+Ii STRING (16) ARRAV NxKcDESI*II; 
BEGIN 

LOGiCAL L,R.U,Ci INTEGER Al; 

CCNNENT L,R,U,C ARE LEFT,RIGHT,UP,OOWN FLAGS RESPECTIVELV.THEY 
TELL NXT WHICI- OF FOUR POSSIBLE MCVES TO GENERATE. ; 

PRCCEOURE NXT; 
BEGIN Al:=C; 

IF R THEh 
BEGIN Al:=l; 

NXNOOESliI:=VAR; NXNODESllIIPZIlI:=VARlPZ+lIlIi 

- 142 - 



0119 
0120 
0121 
0122 
0123 
0124 
0125 
0126 
0127 
0128 
0129 
0130 
0131 
0132 
0133 
0134 
0135 
0136 
0131 
0138 
0139 
0140 
0141 
0142 
0143 
0144 
0145 
0146 
0147 
0148 
0149 
0150 
0151 
015.2 
0153 
0154 
0155 
0156 
0157 
0158 
0159 
0160 
0161 
0162 
0163 
0164 
0165 
0166 
0167 
0168 
01t9 
0170 
0171 
0172 
a173 
0174 
0175 
0176 
0177 
(1178 

NXh00ESllllPZ*llll:=COOElO); 
EN0 RlGHTMCVE; 

NZIl):=PZ+l; 

IF L ThEN 
BEGIN Al:=Al+l: 

NXNCDES(Al):=VAR; NXMOOESlAl)lPZll~:-VARIPZ-ill); 
NXhODESlA1J4PZ-11l1:=COOElOl; NZTAl):=PZ-1; 

EN0 LEFTMOVE; 
IF IJ THEN 

BEGIN Al:=Al+l; 
NXNOOES(AlJ:=VAR: NXNOOES~Al)~PZlll:=VnR(PZ-4111; 
NXNOOESTAl~TPZ-4I1l:=COOElO~; NZTAll:=PZ-4; 

EN0 UPCOVE: 
1F 0 THEN 

BEGIN Al:=Al+l; 
NXNOOES(Al):=VAR; NXNOOES~AlllPZlll:=VARlPZ+4ill: 
NXNOOESlAlIlPZ*411~:=COOElO~; NZlAllr=PZ+4; 

END OCWNMOVE; 
END NXT; 

COMMENT SUCCESSOR USES THE PZ=POSITICh CF THE ZERO IN VAR TO FIN0 
NEW BOARD POSIT IONS; 
CASE PZil OF 
BE CIN 

BEGIN 
BEGIN 
BEGIN 
BEGIN 
BEGIN 
BEGIN 
BEGIN 
BEGIN 
BEGIN 
BEGIN 
BEGIN 
BEGIN 
BEGIN 
BEGIN 
BEGIN 

R:=O:=TRUE; L:=U:=FALSE; OEG:=Z; hXT ENO; 
R:-L:=O:=TRUE; U:=FALSE; OEG:=3; NXl END; 
R:=L:=O:=TRUE; U:=FALSE; OEG:=3; LXT END; 
L:=O:=TRUE; R:=U:=FALSk; OEG:=Z; hXT END; 
R:=U:=O:=TRUE; L:=FALSE; OEG:=3; hXT END; 
R:=L:=“:=O:=TRUE: OEG:-4; hXT END; 
R:=L:=U:=O:=TRUE; OEG:=4; hXT END; 
L:=U:=O:=TRUE; R:=FALSE; OEG:=3; hXT ENO; 
R:=U:=O:=TRUE; L:=FALSE; OEG:=3; hXT END; 
R:=L:=U:=O:-TRUE: OEG:=4; NXT END: 
R:=L:=U:=O:=TRUE; OEG:-4; *XT END; 
L:=U:=D:=TRUE; R:=FALSE; DEG:=3; hXT END; 
R:=U:=TRUE; L:=O:-FALSE; DEG:=2; hXT END; 
L:=R:=U:=TRUE; O:=FALSE; OEG:=3: NXT END: 
L:=R:=U:=TRUE; O:=FALSEi OEG:=3; hXT ENO; 

BEGIN L:=U:=TRUE; R:=O:=FALSE; OEG:=Z; NXT END; 
EN0 MOVES; 

END SUCCESSOR; 

INTEGER PROCEDURE HAShTINTEGER ARRAY BOAROl*I); 
BEGIN COW4ENT CASHES A BOAR0 POSITICh IhTO 560 TO 1240: 

INTEGER T; T:=Oi 
FOR I:=0 STEP 1 UNTIL 15 00 T:=T+BOARC(I )+I; 
(T-560) 

END HASH; 
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8::: 
0181 
0182 
0183 
0184 
0185 
0186 
0187 
0188 
0189 
0190 
0191 
0192 
ai93 
0194 
0195 
0196 
0197 
0198 
0199 
0200 
0201 
0202 
0203 
0204 
0205 
0206 
0207 
02CB 
0209 
0210 
0211 
0212 
0213 
0214 
0215 
0216 
0217 
0218 
0219 
0220 
0221 
0222 
0223 
0224 
0225 
0226 
0227 
0228 
0229 
0230 
0231 
0232 
0233 
0234 
0235 
0236 
0237 
0238 

COHMENT EVALUATE PCSITION VAR RESLLT IS VAL. EVALN SELECTS 
PARTICULAR EVALUATION FUNCTION AN0 FLG IS USE0 YHEN OIRECTION- 
AL INFORMATtCh IS hANTE0. i 

PROCEDURE EVALUATELSTRING (16) VAR; INTEGER PZi REAL VAL,hT; 
INTEGER EVALN; LOGICAL FLGJ; 

@EGIN 
INTEGER P,T,PEX,PEXl,PEXZ,R; REAL S: 
INTEGER ARRAY SEP,PP,BT,HB lO::151; 

COWHENT R IS THE REVERSAL CCUNT; 
INTEGER PROCEOURE REVERSALS; 
BEGIN 
R:=O; 
FOR J:=O STEP 4 LNTIL 12 00 

FOR 1:-O STEP 1 UNTIL 2 DC 
IF BOAROII+JJ= I + J l 2 THEN IF BOARDII*J+lJ=I+J+l THEN 

R:=R+l; 

FOR I:=0 SlEP 1 UNTIL 3 00 
FOR J:=O STEP 4 UNTIL 8 00 

IF BOARO(I+Jl=I+J+5 THEN IF BOAROII+J+4J=I+J+l THEN 
R:=R+l; 

(RI 
EN0 REVERSALS; 

CCMMENT OCRAN-RICHIE EVALUATOR WITHOUT REVERSAL TERN; 
REAL PRCCEDURE CCKR; 
BEGIN 

FOR I:=0 STEP 1 UNllL 14 00 H9IIJ:=PTABLElPZ,l+lJ; 
HB~l5J:=PTABLElPZ,l5J+JIF TPZ*lJ REM 4=0 THEN -1 ELSE II; 
s:=o; 
FOR I:=0 STEP 1 UNTIL 15 00 

S:=S + SPRTIHBlIJl*PPIIJ*PP(Ili 
IS I 
EN0 MOYR; 

CCMMENT NOYR WITH MY REVERSAL TERM : 
REAL PROCEOURE NC; LHOYR*2O*REVERSALSJ i 

CCMMENT IF BACKhARD OIRECTICh THEN PCSITION IS NAPPED INTO 
THE ANTI-SYNNETRIC CONFIGURATICN ALLOWIhG EVALUATE TO 
TREAT IT NORMALLY. i 
IF -+FLG THEN 

BEGIN OECOD iVAR,BOAROlJi 
FOR I:=0 STEP 1 UNTIL 15. 00 WAR07 IJ:=WAP~BOAROlJIJJ; 

EN0 
ELSE 

BEGIN CECOO iVAR,JJOAROlJJ 
FOR I:=0 STEP 1 UNTIL 15 00 BCAROlIJ:=NAPllBOAROllIJl; 

ENO; 

PEX:=PEXl:=P:=O; 

FOR I:=0 STEP 1 UNTIL 15 00 
BEGIN T:=BOAROIiJ; 

BTJTJ:=PPIlJ:=PTABLEoi 
P:=P+PPIIl; 

ENC; 
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:::z 
0241 
0242 
0243 
0244 
0245 
0246 
0247 
0248 
0249 
0250 
0251 
0252 
0253 
0254 
0255 
0256 
0257 
0258 
0259 
0260 
0261 
0262 
0263 
0264 
0265 
0266 
0267 
0268 
0269 
0270 
0271 
0272 
0273 
0274 
0275 
0276 
0277 
0278 
0279 
02GO 
0281 
0282 
0213 
0284 
0285 
0286 
0287 
0288 
0289 
0290 
0291 
0292 
0293 
0294 
0295 
0296 
0297 
0258 

COMMENT THE FOLLOkING VARIABLES ARE NOT CURRENTLY BEING USEC. 
PEX AND PEXl REPRESENT PARTIAL P EVALUATICN AND ARE USED IN 
SORE BI-OIRECTICNAL INTERSECTION EXPERIWEATS. THEY ARE TURNEO 
OFF FOR PURPOSES OF EFFICIENCY. ; 

COMMENT TURN OFF 
FOR I:=0 STEP 1 UNTIL 15 00 
BEGIN 

IF FLG THEN BEGIN IF TPIII THEN PEXl:=PEXl+BTiIJ EN0 
ELSE BEGIN IF wTPiIJ THEN PEXl:=PEXl+GTlIJ EN0 

END; 

COMMENT PEX SCORE REOROER L/2 OF EOARC; 
CDRRENT TURN OFF 

BEGIN FOR I:=0 STEP 1 UNTIL 7 00 PEX:=PEX+BTiIl END: 

CASE EVALN OF 
BEGIN 

VAL:=iIF FLG THEN OISTiPTJCURNOOlJ ELSE DIS7I8PTlBCURNOOl 
YT*P+l; 

VAL:=iIF FLG THEN DISTIPTTCURNDOJ I ELSE OISTlBPTl8CURNOOJ 
WT*P+1+20*REVERSALS; 

)I+ 

I I+ 

VAL:=lIF FLG THEN OISTTPTJCURNOOII ELSE OISTlEPTlJJCURNOOJ JJ 
+YT*J!OYR; 

VAL:=lIF FLG THEN OISTiPliCURNOOlJ ELSE OISTtBPTiBCURNODIJl 
.WTWO; 

VAL:=P; 
VAL:-P+ZO+REVERSALSJ 
VAL:=WOWR: 
VAL:=PO; 
VAL:=llF FLG THEN DISTlPT(CURNDDlJ ELSE OISTLBPT~BCURNODJJJ+l~ 
VAL:=(IF FLG THEN DISTIPTiCURNOOJJ ELSE OISTIJJPTTBCURNOOlJJ+P- 

+PEX +lJ 
VAL:=iIF FLG THEN OISTiPT(CURNOOJJ ELSE OIS7iBPTiBCURNODJll+P 

+P+Z+PEXl+l; 
VAL:=IIF FLG THEN OJST~PTlCURNOOll ELSE OISTIBPT(JJCURNOOJll*P 

+PEX+PEXl+l; 
VAL:=O; 

END : 
EN0 EVALUATE; 

PROCEDURE WRTBRDZI STRING 1161 VARJ: CORMEN LINEAR REPRESEhTATION; 
BEGIN 

INTFIELOSIZE:= 3; 
WRITEI” “I; CECOOIVAR, BOAROJ; 
FOR I:=0 UNTIL 15 00 URITEONiBOAROiIJI; 
URlTEI”HASH VALUE *, HASHIRCARDIJ; 
INTFIELDSIZE:=12; 

EN0 YRTBRDZ; 

PROCEDURE hRTBRD14 STRING I 161 VARI ; 
COMUENT URITES OLT 4 BY 4 ARRAY REPRESEhTATION OF FIFTEEN PUZZLE; 

BEGIN 
JNTFIELOSIZE:= 3; WRITEI” “1; CECCOIVAR, @CARE); 
FOR I:=0 UNTIL 3 00 YRIlEONTBOAROlIII; RPITEL” “I; 
FOR I:=4 UNTIL 7 00 WRITECNlBOAROiJIl; VRITEI” “I ; 
FOR I:=12 UNTIL 15 DO WRlTECN(BDAROILlI; IhTFtELOSlZE:=l2; 

EN0 YRTBRDli 
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a299 
a300 
0301 
0302 
0303 
0304 
0305 
0306 
0307 
0308 
0309 
0310 
0311 
0312 
0313 
0314 
0315 
0316 
0317 
0318 
0319 
0320 
0321 
0322 
0323 
0324 
0325 
0326 
0327 
0328 
0329 
0330 
0331 
0332 
0333 
0334 
0335 
0336 
0337 
0338 
a335 
a340 
0341 
0342 
0343 
0344 
0345 
0346 
0347 
0348 
0349 
0350 
0351 
0352 
0353 
0354 
0355 
0356 
0357 
0358 

COMUENT HOISTR COLLECTS AND PRINTS HASH CLASS DISTRIBUTION.; 

PROCEDURE HDISTR; 
BEGIN 

INTEGER ARRPY NHLO::b801; 
YRITEI*HASH TABLE NIJMRER OF CCCURRENCES”); 
FOR I:=0 STEP 1 LNTIL 680 DC NHTIl:=O; 
FOR I:=1 UNTIL hUMNODE CO 
@EGIN 

CECOCTENCOOTPTTll~, BOARD); Tl:‘HASHL2OAROT; 
NHlT11:= NHLTl) + 1; 

END; 
INTFIELCSIZE:=3; 
FOR J:=O STEP 10 UNTIL 670 00 
BEGIN YRITEIJI; 

FOR I:=0 UNTIL 9 DC YRITEONL Nh(I+J) 1; 
END; 

END hDISTR; 

COMMENT OMP DUMPS VARICUS NODES OF THE SEARCH TREES; 

PROCEDURE CPPIINTEGER CNOT; 
CASE CND GF 
BEG IN 
COMMENT CNC = 1 :FULL FGRYARD AN0 

BEGIN 
EACKWAPC TREES i 

FOR I:=1 STEP 1 UNTIL NUNNODE 00 
BEGIN 

WRTERCZ~EhCODiPTII)l ); 
WRITEI WFIPTTIT), VAL~J~PT(I~~~CIST~PT~I~~ 1: 

END: 
FOR I:=1 STEP I UNTIL BNUMNOOE 00 
RFGIN 

hRTERD2~EhCCU~BPTlI~I I; 
WRITE{ WFLBPTlI)lr VALU~EPT~II~,DISTlBPTlIll T; 

END; 
END; 

COMMENT CNC =2: FULL FCRWARO TREE; 
FOR I:=1 STEP 1 UNTIL NUHNODE 00 
BEGIN 

WRTBRDZIEhCCCTPTlItl 1; 
YRITET YFIPTTIIT, VALUlPTlI)),CISTlFTIIII 1; 

END; 

CONHENT CND = 3: FULL BACKWARD TREE ; 
FOR 1:-l STEP 1 UNTIL ENUCNOOE DO 
BEGIN 

WRTBRGZlEhCCDIBPT(IIl I; 
WRITEI WFIBPTTITT, VALU~8PTlIl~,DISl~BPTO~ Ii 

END; 

CClflMENT CND = 4: EVERY TENTH NOOE IN FORWARD TREE; 
FOR I:=1 STEP 10 UNTIL NUMNCDE CO 
BEGIN 

WRT@RCZlEKCCD(PTlIl~ I; 
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i 

I::: 
03Cl 
0362 
0363 
0364 
03e5 
0366 
0367 
0368 
0369 
0370 
0371 
0372 
0313 
0374 
0375 
0316 
0377 
0378 
0379 
0380 
0381 
0382 
0383 
0384 
0385 
0386 
0387 
0388 
0389 
0390 
0391 
0392 
0393 
0394 
0395 
C396 
0397 
0398 
0399 
0400 
0401 
0402 
0403 
0404 
0405 
0406 
0407 
04C8 
0409 
0410 
0411 
0412 
0413 
0414 
0415 
0416 
0417 
0418 

CIRITET YFTPTTIJlr VALUIPTLfJl,DIST~PT~IJl 
E&II: _ ._. 

; COMMENT CASE 5 IS hULL: 

CC&WENT CND = 6: LAST TEN NOOES IN BOTH FCRWARO Ah0 BACKYARD 
TREES; 

BEGIN 

Ii 

INTEGER TF,TBi 
IF NURNCOE<11 THEN TF :=I ELSE TF:=NUYRCOE-IO; 
IF BNUWNODE<ll THEN TB:sl ELSE TB:=BhUCNOOE-10; 
FOR I:=NUMNCOE STEP -1 UNTIL TF OC 
BEGIN 

YRTBRCZlEhCCDTPTlIJI I; 
YRITEI WFIPTTIJJ, VALULPTLIJlrDtS 

ENOi 
FOR I:=BLUWNCDE STEP -1 UhTIL TB DC 
BEGIN 

HRTBROZIEhCCO~EPTlIJJ I: 
WRITE{ WF(BPTlIJt, VALUltlPTlIJJ.0 

(FllllJ Ii 

SITBPTTIJI J: 
END ; 

END; 
END; 

COMMENT TRACE PRINTS CUT THE SOLUTION PATF; 

PROCEDURE TRACE; CCCFENT TRACES PATH LSES 71.72 AS EXTERRALLY 
SUPPLIED STARTIhG PCINTS FROM PROCEDURE TERMINATE; 
BEGIN 

INTEGER COUNT: 
iOUNl:-0; 

CDMWEhT FCRYARO CIRECTICN STARTS hITk NODE 11. USES LIF TO CHAIN 
THROUGH PATH LNTIL 0 IS ENCOUNTERED AT NODE INIT; 
WILE Tl-.=O CC 

BEGIh 
Pl:=PT(Tll; 
YRITEI”NODE “, ” TREE PCS “t Tl,” VAL l rVALUtPlJJ; 
YRT8RO11ENCCOLPliJ ; 
Tl:=YF(PlJ; 
CGUNT:=CCUNT+l; 

END; 
URITEI”FCRYARC TREE NOOES “,NUCNGOE,” PATH IS “ICOUNT); 
COUNT:=Oi 

COMMENT BICKUARO CIRECTION STARTS WITH hCtE T2. USES RF TO CHAIN 
THROUGH PATH UNTIL 0 IS ENCOUNTEREO AT NODE GCAL; 
YHILE TZ-=0 00 

BEG IN 
PZ:=BPT(TZl; 
YRJTEf”NODE *. ” 
URTBROlTENCOO(PiJJ: 

1REE PCS “, T2.” VAL “.VALUlPZlJ; 

TZ:=WFIPZJ; 
COUNT:=CCUhT+li 

END; 
WRITE~“tJACKWAR0 TREE NODES “rBNUWNCDE~” PATH IS “.COUNTI; 

END TRACE; 
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0419 
0420 
0421 
0422 
0423 
0424 
0425 
0426 
0427 
0428 
0429 
0430 
0431 
0432 
0433 
0434 
0435 
0436 
0437 
0438 
0439 
0440 
0441 
0442 
0443 
0444 
0445 
0446 
0447 
0448 
0449 
0450 
0451 
0452 
0453 
0454 
0455 
0456 
0451 
0458 
0459 
0460 
0461 
0462 
0463 
0464 
0465 
0466 
0467 
0468 
0469 
0470 
0471 
0472 
0473 
0474 
0475 
0476 
0477 
0478 

CDMMENT a**+* PTABLE INITIALlZbTION ++++I 
PTABLEiPOSJTION, TILE VALUE) EQUALS MANHATTAN DISTANCE FROM 
TILE TO ITS GOAL SQUARE ; 

PROCEOURE PTABINIT; 
BEGIN 

FOR I:=0 UNTIL 14 00 
PTABLElIrOJ:=PTABLE(I,I+lJ:=O; 

PTABLE( lS,Ol:=O; 
PTABLE(O,2l:=PTbBLE(O,5l:=PTABLE(lr3):IpTbBLE(J,bJ:=PTABLE(2,4):~ 
PTABLE(2,7t:~PTbBLE(3,Bl:~PTA~LEl4,bl:=PTABLE(4,9J:=PTbELE(5,7J 

:=1; 
PTABLE10,3l:-PTbBLElO,bl:=PTABLE(O,9l :=PTb@LE(1,4l:=PTABLE(l,5l:= 
PTbBLEll,7J:=PTA8LEll,lOl:=PTABLE(2,bJ:=PTbBLE(2,B):=2; 
PTABLE(O~4l:=PTABLElOI7):=PTA0LE(O,JOl:=PTABLE(O~l3l:= 
PTABLE(1.Bl:=PTABLE(Irll):PPTABLE(l,l4J:=PTABLE(2~5l:=3; 
PTABLElO,BJ:=PTABLE(O,llJ :“PTABLE(O,14J:=PTABLE(lrlZ):L 
PTABLEll,13l:=PTABLE(l,l5l:=PTA~LE(2,9J:=PTABLE(2,l4J:= 
PTABLEl3,51:=4; 
PTABLE(O.I2l:=PTbBLE(O,l5l:=PTbBLE(2,l3l:=PTbBLE(3,9J:~ 
PTABLE(3.141:=5; 
PTABLEl5,10J:=PTABLE(b,B) :=PTABLE(b.11I:=PTABLEl7,l2l:= 
PTABLElB,13l:=PTABLE( 9,11l:=PTABLE( 9,14l:=PTABLEllO,lZJ:= 
PTbBLEla,10l:=li 
PTABLE(2,11J:=PTbBLE(317):PPTABLEl3,l2l:=PTABLE(4,7l:= 
PTABLE(4.13l:=PTABLE(5,Bl:=PTABLE(5~9J:=PTABLE(5,lll:~ 
PTABLEl4,10):=2; 
PTABLE(2,10l:=PT4BLE(2112) :=PTABLEl2,15J:=PTAJJLE(3,bJ:= 
PTABLEl4,BJ:=PT4BLE(4,11l:=PTABLE14,141:=PTABLE(5,12J:= 
PTABLE(3.Ill:=3; 
PTABLE13,10J:=PT4BLE(3,15l:=PTABLEl4~12l:=PTABLE(4,15J:= 
PT4BLE(7.91:=PTABLEl7~14J:=PTABLEl6.13):=4; 

PTA8LElB;11l:=PTbBLE(B,l4J :=PTABLEl 9,12l:=PTb8LEl-9,13J:= 
PTbBLEl7,11):‘2i 
PTABLEI5,13J:=PlABLE(5r15):rPTIBLE(b,9J:=PTABLE(A,J4):~ 
PTABLE(7~15l:=PTbBLE(a,l2J:=PTABLE(B,l5J:=PTABLE(T~)o):~3; 
PTABLE( 9,15l:=PTABLEl10,14l :=PTABLE(11,15l:=PTA6LE(12,15):~2; 
PTABLE(10,15l:=PTbELE(l2,l4J:=PlbBLEl)3,l5l:=l; 
PTbBLE(1,9J:=PTbBLE(10113):-PT*BLE(ll,l4l:=3; 
PTAtlLE( 11,13J:=4; PTABLE(7,13J:=5; 
FOR I:=0 UNTIL 14 00 

FOR J:=I*2 UNTIL 15 00 PTABLEIJ-l,I+lJ:=PTABLE((rJJi 
PTbBLEl15rlJ:=bi PTABLE(l5.2) :=PTABLEl15,5J:=5iPTABLE(l5,l5l:=l; 
PTbBLE(15,3J:=PTbBLE(l5,bJ:=PTABLE(l5,9):=4: PTABLE(15,12J:=li 
PTABLE(15,4l:=PTABLE(l5,7J:=PTABLE(l5,(OJ:=PTbBLEll5,l3l:~3; 
PTABLE(15,Bl:=PTABLE(l5~ll):-PTbBLEll5~l4J:=2; 

END PTABINIT; 

PROCEDURE INITIALIZE; CCWMENT SEGMENT OVERFLOW i 
BEGIN 
COMMENT * INITIbLIZATICk OF PARAMETERS * i 

UNDEVELCPEO(1l:=EUNDEVELOPEO(ll:= TRUE; 
FOR I:=0 STEP 1 UNTIL BOO 00 HSH(Il1=BHSFlIl:=NULLi 

hUMNCDE:=BhUMNCCE:=1; FUSE:=BUSE:=O; SDIST:=TDIST:=O; 
FOR I:=0 STEP 1 UNTIL 14 DO BObRClII:=I+I; BCAR0(151:=0; 
ENCODEl8CbRC,GCbLl; 
FOR I:=0 UNTIL 14 DC MAP1~BCbROlIJl:=I*1: MAPl(BCARD(l5l l:=O: 
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Oots’og 
0481 
0482 
0483 
0484 
0485 
04Eb 
0487 
04ea 
0489 
0490 
0491 
a492 
0493 
0494 
0495 
0496 
0457 
0498 
0459 
0500 
0501 
0502 
0503 
0504 
0505 
0506 
0507 
05ca 
0505 
0510 
0511 
0512 
0513 
0514 
0515 
0516 
0517 
0516 
0519 
0520 
0521 
0522 
0523 
0524 
0525 
0526 
0527 
0528 
0529 
c530 
0531 
0532 
0533 
0534 
0535 
0536 
0537 
0538 

CECCDI tNIT,BObRCJ; 
FOR I:=0 UNTIL 14 DO MAPIBCAROIIlI:=I+li CAPIBCARDI 15ll:=O: 
CCHHENT INITIAL EVIL IS MEANINGLESS ANC IS SET TO 0; 
VbL:=O; PT(11:-hCDE~INIT,T5,O,O,VAL,NULLli 
BPTllI:=NCOE(G0bL,15101O1V*LINULLJi 
CECOO I INIT,BCARC~; 
kSHIHASHlBCAROJ I:=PTlll: CCMNENT INITIAL HASH CLASS; 
CECOD (GCAL,BCbRCli 
Bl’SHIHbSHlBOARDIl:=BPToi 

ENC INITIALIZE; 

PTABINIT; 

COMMENT nn IS AN ARRAY CF WEIGHTS TO BE USEC WITH EACH FUNCTION; 
nnllJ:=O.5; nYl2l:=C.75; Y1113J:=li whl41:=1.5; YYI51:=2; 
Wl6l:=3; wwi71:=4i nnl8):=16; 
FOR I:=0 STEP 1 UNTIL 15 00 TPlIl:=FbLSEi 
FOR 1:=0,1,2,3,4,E,12 DC TPIII:=TRUE; 

CVER: 
COMMENT READ IN PARAMETERS i 

REbClMAXITER,llECN,EVbLN,DpPh,CSNtUT)i 
FOR 1:=0 STEP 1 UNTIL 15 00 

BEGIN REbCCNIBObRCIIlli IF BObRDIIl=O ThEh T5:=1 ENOi 
ENCOOEIBCbRCIINITJi 
IOCCNTROLI3li 
WRITEI” BI-DIRECTICLAL GRAPH TRAVERSER WITJ GRAPHS IN RECORDS”li 
WRITEInCISE “.CSN,” CECh “,DECNr” EVALN ‘,EVbLhJ; 
WRITEI”PARbWETERS “1” kT= “.kT,” IIAXITER- “,CbXITER); 
YRITET”STAhOARD GCAL “, ” INITIALLY “I i 
KRTllRDlI INIT I; 
Tlh:=ENTIERIHTJ; 
FOR CC:=TIN UNTIL 8 DC 
BEGIN hT:=hkt(CCI; 

INITIbL’IZEi 

CCHHENT *+*+ vblh PRCGRAW Loop *******: 

J:=O; 
;;;:; J < PAXITER 00 

LOGICAL PRCCEYURE CECICE ItNTEGER VALUE CNli 
CASE CN OF 

TRUE, CCWMEhT - FCRhbRD SEARCH; 
FALSE, CCHPENT - BACKkARC SEARCH; 
IIJ REM 2J = 01, CCMPENT - ALTERhAlING BI-OIRECTICNAL SEARCH; 
IIJ REM 31 = 01, CCJIPENT &ALTERNATING 1 FORK 2 BACK; 
ISCIST < TOISTI, COMMENT - RI-DIRECTIONAL EGUIOISTANT SEARCH; 

CCllHENT A FCRH CF PEhETRANCE RULE; 
( lSCIST+ll/lkUCNOOE-FUSEI > ITOIST+lJ/iBhUMNCDE-BUSEI Jr 

CCMMENT DECISICh BASEC CN @RANCHING FOR TREE CF LEhGTH *GIST; 
I LNINUHNCDE-FUSEI*TTClST+ll < LN(BhUHNOOE-BUSEI*lSCJIST+Il J 

Ii 
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0539 
0540 
0541 
0542 
0543 
0544 
0545 
0546 
0547 
0548 
0549 
0550 
0551 
0552 
0553 
0554 
0555 
0556 
0557 
0558 
0559 
0560 
0561 
0562 
0563 
0564 
0565 
0566 
0567 
0568 
0569 
0510 
0571 
0572 
0513 
0514 
0575 
0516 
0577 
0578 
0579 
0580 
0581 
0582 
0583 
0584 
0585 
0586 
0587 
0588 
0589 
0590 
0591 
0592 
0593 
0594 
0595 
0596 
0597 
0598 

PROCEDURE TERNIHATElSTRINC (161 VAR; LOGICAL FLGl; 
BEGIN COMMENT CHECKS YHETHER CRNOO IS Ih BOTH TREES ; 

INTEGER Ti CECOO LVAR,.BOARCli T:=HAShIEOAROl; 
IF FLG THEN 

BEGIN P2:-BHSHLTI; 
WHILE P2 -.=NlJLL 00 

IF VAR-ENCODL PZ I THEN 
BEGlh 

Tl:=NUMNOOE; TZ:=hFLPZI : 
Pl:=PT(NUMNODEl; GOT0 TRACEPATH 

END 
ELSE BEGIN TZ:=hFLPZl; PZ:=SPILL(PZ) END 

END 
ELSE 

BEGIN Pl:=hSHLTli 
YHILE Pl -.= NULL 00 

IF VAR=ENCOOLPll THEN 
BEGIN 

TZ:=BNUNNODEi Tl:=CFLPll; 
PZ:=BPTIBNUHNODEli GOT0 TRACEPATH; 

EN0 
ELSE BEGIN Tl:=NFIPll; Pl:=SPILLIPll END 

END 
END TERHINATE; 

lFLAG:=TRbE; 
IF DECIOEI OECNI THEN 

BEGIN 
COMMEhT FORUARC GIRECTION i 

MIN:=100000; FLG:=TRUEi 

COMMENT SEARCH FOR UNOEVELOPEC NOOE NITH RINIMIJN VALUE; 
FOR I:=hUMhCOE STEP -1 UNTIL 1 00 

IF UNDEVELOPEOLII THEN 
BEGIN 

IF FIh>VALULPTLIll THEN 
BEGIN MIN:=VALULPTLIll; CURNOC:=I END; 

END UNOEV; 

COMMENT INCREMENT NUMBER CF NODES EXPANCEC; 
FUSE:=FUSE+ 1 i 
UNDEVELOPEDTCURNOOl:= FALSE; 
SOIST:=DIST( PTl CURNOOII; 

COMMENT GEhERATE ADJACENT NODES AND ChECK FOR REDUNDANCY; 
SUCCESSOR~ENCCD~PT~CURNODll,OEG,PZ~PT~CURNODll,NZ,NXNODESl: 
FOR I:=1 STEP 1 UNTIL OEG CO’ 
IF NONREDUNOAhTLNXNODESTIl,T2,FLGI THEA 
BEGIN 

CCNHENT ADO NEW NODE 10 FORWARD SEARCH TREE; 
EVALUATEINXNODES(lI~NZo1VILIUT,EVALN,FLGl: 
NUHNOOE:=hUWNODE+1; 
STl:=NXNCOESlIl; 
PTI~MNOOEI:=NODEIST1,NZ~Il,CURNGO,CIST~PTICURNODll.1, 

VAL.NULLl; 
UNDEVELGPEDLNUWNODEl:= TRUE; 
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- 

0599 
0600 
06Cl 
0602 
0603 
0604 
0605 
0606 
0607 
0608 
0609 
0610 
0611 
0612 
at13 
0614 
0615 
0616 
0617 
0618 
0619 
0620 
0621 
0622 
0623 
0624 
0625 
0626 
0627 
ocza 
0629 
0630 
0631 
0632 
0033 
0634 
0635 
0636 
0637 
0638 
0639 
0640 
0641 
0642 
ot43 
0044 
0645 
0646 
0647 
0048 
oc49 
0650 
0651 
0652 
oc53 
0654 
0655 
0656 
0657 
0058 

COCMENT CALCULATE SPILL PCINTEA FOR HASH CLASS; 
IF HSHlTZJ=NULL THEN HSHlT2I:~PTINUNNODEI 
ELSE 

BEGIh 

kHILE Pl -.= hULL 00 
BEGIN PZ:=Pl; Pl:=SPILLlPll END: 

INCDE I SPILLIPZI := PTIhuM 
END; 

COMMENT CHECK IF NODE IS CCNTAINEC IN BOTH SEARCH TREES; 
TERNINATElhXNOOESlIlrFLC) 

END LOOPI: 
END 
ELSE 
BEGIN COMMENT EPCKUARO OIRECTlON ; 

HIN:=100000; FLG:-FALSE; 
FOR I:=BhUNhCOE STEP -1 UhTIL 1 DO 

IF 8UNDEVELGPEDIII THEN 
BEGIN 

IF RIIN > VALUlBPTlIlI THEN 

EN0 ’ 
BEGIN NIN:= VALUl8PTlIII; BCURNOD:.I END; 

BUSE:=BUSE:l i 
BUNDEVELCPEDI@CURNOD):.FALSE; 
TDIST:=DISTl8PTlBCURNODll; 
SUCCESSOR~ENC~O~BPT~BCURNGO~~~OEG~PZIEF~I~CURNOOII,NZ,NXNOOE~~ 
: 
FOR I:=1 STEP 1 UNTIL OEG DO 
IF NONREDUNOPhTlNXNODESlII,T,2,FLGI THEN 
REGlN _-__.. 

EvALuATEINxhOOESIIIrNZIIl,vA~,hT,E~ALN,~~G~~ 
iThUNNCOE:=~hUWNCOE+l: 
ST1:=NXNOOESlIl; 
BPTIBhUNNODEI:-NCDElSTl, NZIII, BCURNOD, 

DI~TII~~T~BC~RN~~I~+I,~AL,N~LL); 
.3UNCEVELtPEClBNUHkGOEl:~ TRUE; 
IF Bt-SHlTil=NULL THEN BHSHITZI:=BPTIBhUNNCOE) 
ELSE 

BEGIN 
Pl:=WSHlTZI; 
WHILE Pl .= hULL DO 

BEGIN PZ:=Pl; Pl:=SPILLIP1l END; 
SPILLlP2I:=EPTl8hUYNOCEI 

END; 
TERWINATEIhXNOOESlIl1FLG) 

END LOOPI; 
EN0 ELSECLAUSE; 

J:=J+I; 
END JLOCP; 

T R PCEPATH: IF J<NAXITER THEN 
WRITEI” “I; WRITEl”F DEV 
HOISTR; 
IF FuSE+EUSE = HA,XITER T 
OMPIDMPNI; 
ENC CC; 

GOT0 OVER; 
END. 

TRACE ELSE URITEl"CAXIMUM ITERATIOAS" 
NODES “rFUSE,” B CEV NOOES “,WSEI; 

‘l-EN IF OMPN=5 THEN CMPN:=b: 

1; 
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