
SLAC-104
UC-32
(MISC)

BI-DIRECTIONAL AND HEURISTIC SEARCH IN PATH PROBLEMS

IRA POHL

STANFORD LINEAR ACCELERATOR CENTER
Stanford University

Stanford, California 94305

PREPARED FOR THE U.S. ATOMIC ENERGY
COMMISSION UNDER CONTRACT NO. AT(04-3)-515

May 1969

Reproduced in the USA. Available from the Clearinghouse for Federal Scientific
and Technical Information, Springfield, Virginia 22151.
Price: Full size copy $3.00; microfiche copy $.65.

ABSTRACT

Path finding is a key process in many areas of computation. Optimization

problems and heuristic search problems are two notable examples. The first

part of this dissertation presents a class of algorithms, denoted VGA, for solving

the two point shortest path problem in directed graphs with non-negative edge

weights. This class is a bi-directional extension of the most efficient known

uni-directional shortest path algorithms. While it has long been realized that

hi-directional algorithms often provide computational savings, a theory of this

has not been forthcoming until now. This theory shows how a hi-directional

method using the proposed cardinal@ comparison strategy is a priori the best

shortest path algorithm within the class of algorithms VGA.

These theoretical results are verified by extensive tests of VGA. A computer

program was written where several standard uni-directional and bi-directional

strategies were compared with cardinality comparison. The program randomly

generated a number of large directed graphs and each strategy in turn was tried

on numerous path problems within these graphs.

In heuristic search for artificial intelligence problems, algorithms similar

to the two point shortest path problem are used. The spaces searched are enor-

mous, often infinite, and in consequence the constraint on finding the shortest

path is abandoned. The concern is for finding any solution path with minimum

effort. The second part of the dissertation presents a theory of these problems

and some experiments with the fifteen puzzle in using the methods suggested by

this theory of heuristic search.

The evaluation function directing the search is the sum of the distance from

the starting node and an estimate of the distance to the goal. This second com-

ponent is the heuristic term, and if accurate, allows efficient path finding in

- iii -

large spaces. Some results on the effect of error in the heuristic term are pre-

sented. Especially interesting is theorem ‘7.9, showing that the distance from

the start should be incorporated in the evaluation function. This particular result

runs counter to the reliance strictly on the heuristic term, a practice which is

widespread.

Bi-directional heuristic search is also proposed. VGHA, a bi-directional

class of algorithms, is an extension of the Hart, Nilsson, and Raphael uni-

directional heuristic search algorithms. Their results are extended to this more

general class.

These methods are used in solving fifteen puzzle problems and comparing

the number of nodes explored. It is a continuance of the empirical work started

by Doran and Michie with the Graph Traverser. The most interesting results

show the importance of appropriately weighting the heuristic term in the evalua-

tion function. For example, overrelaxation seems to be an important principle,

which means weighting the heuristic term on an average slightly more than the

cost-to-date term. This data is a successful prediction from the theory.

Some further results include the extension of hi-directional methods to the

network flow problem; the description of a new efficient algorithm for finding

bridges in directed graphs, which are structurally interesting as they can be

used for finding partitions; and applications of hashing techniques to remove

problems of intersection in hi-directional search.

- iv -

PREFACE

The range of topics and ideas in computer science is so extensive that it is

often criticized as an amorphous mass rather than a discipline. Where is the

thread that runs from numerical analysis to systems programming and on to

artificial intelligence? As a student of this wilderness several points of unity

impressed me. The aim of all people in the discipline is to solve problems algo-

rithmically, and the tool used inherently discretizes the problems to be solved.

Graph Theory is one Qnguage” that provides a description for many areas of

computer science. It is therefore important to be able to manipulate these struc-

tures computationally. One of the basic problems in this representation is finding

paths between two nodes. It is a core problem in such disparate fields as opera-

tions research, circuit theory, and artificial intelligence, hence the importance

of efficient algorithms for this problem. This then is the chief concern of our

work.

0.1 Organization

This dissertation is divided into two major parts. First, Chapters 1 through

6 are concerned with the classical two node shortest path problem. Secondly,

Chapters 6 through 9 are concerned with heuristic search. The connection be-

tween the two problems is that our model of heuristic search is a path problem

in a directed graph. In each case we are interested in a computationally efficient

solution. The insights from the better understood shortest path problem provide

the tools for formalizing and solving the heuristic path problem.

Chapter 1 is an introduction to the shortest path problem, exhibiting some of

the principal methods to solve the problem. Chapter 2 contains our general bi-

directional shortest path algorithm which subsumes the current best algorithms

as special cases. This allows us to prove that this class of algorithms is correct

and to ask which is the best member of this class. We then propose the cardinality

-v-

comparison algorithm and in Chapter 3 discuss a model of efficiency for this clast

of algorithms. Chapter 4 proves that a priori expected work performed by cardi-

nality comparison is a minimum for our class of algorithms. Finally in

Chapter 5 we show some results of extensive experimental tests confirming the

theoretical conclusions of the previous two chapters.

Chapter 6 introduces a directed graph model of artificial intelligence problen

as path problems. It discusses how the search for a solution path is expedited by

appropriate use of heuristic functions. Chapter 7 presents a theory of uni-

directional heuristic search. It presents a formal characterization of the effect

of error in the heuristic function on search efficiency. Chapter 8 presents some

results of using the ideas developed in formally characterizing heuristic search

in solving fifteen puzzle problems in the mode of Doran and Michie. 18 Chapter 9

is the extension of the Hart, Nilsson and Raphael Theory 30 to bi-directional heu-

ristic search. This unifies some of the work on the shortest path problem with the

heuristic search problem, as the solution paths obtained must be shortest.

Chapter 10 presents some further observations on computational graph theory and

its use as a model of artificial intelligence, It notes some unsolved problems and

presents conclusions on the problem area and our particular approach.

0.2 Contributions

The contributions to the field have been:

a. A formulation and proof of correctness of a class of algorithms

for efficiently solving the two node shortest path problem.

b. A theory of efficiency in solving these problems (shortest path

space).

C. The discovery and proof of the cardinality comparison strategy

as the most efficient a priori hi-directional shortest path

- vi -

method. This is demonstrated by theorem 4.5, which is

an interesting probabilistic result on this type of decision

problem.

d. Empirical verification of this theory and the gain in effi-

ciency by cardinality comparison over other standard

methods.

e. A theory of efficient heuristic search and associated worst

case analysis of heuristic functions.

f. Extensions of the Hart, Nilsson and Raphael results to bi-

directional heuristic search.

g- The use of associative search (hashing techniques) to solve

the redundancy problem and the tree intersection problem.

h. An efficient bridge (“narrows”) finder in graph spaces.

We feel that these explicit contributions are the result of a computational

approach to these problem areas. One keeps in mind algorithmic efficiency

without failing to justify rigorously the method. Theory and practice naturally

develop in step, each bringing insight to the other.

- vii -

ACKNOWLEDGMENTS

I am profoundly grateful to my thesis advisor, Professor William F. Miller,

for his constant encouragement and guidance throughout the course of this re-

search. I wish to thank Professors David Gries and Nils Nilsson for their many

astute remarks and their reading of the dissertation. In addition many friends

and colleagues provided stimulating discussion and encouragement. In this re-

gard Susan Graham, Alan Shaw, Charles Zahn and James George were particularly

helpful.

During my work, I have also had the cooperation and assistance of Linda

Lorenzetti, Kathleen Maddern and Carla West.

. . .
- Vlll -

TABLE OF CONTENTS

1.

2.

3.

4.

5.

6.

The Shortest Path Problem

1.1 Introduction.

1.2 Problem Statement

1.3 E. W. Dijkstra’s Method

1.4 Da&zig’s Bi-directional Method

1.5 Nicholson’s Bi-directional Method

1.6 Stopping Conditions

Generalization of the Shortest Path Algorithm

2.1 Intuitive Description

2.2 Formal Description of the Very General Algorithm

2.3 Proof of the Correctness of VGA.

2.4 Extensions of VGA

Shortest Path Space

3.1 Graph Density.

3.2 A Locally Optimal Decision Rule.

On the Optimality of Our Decision Strategy

4.1 Probabilistic Analysis

4.2 Pathological Possibilities

Empirical Results

5.1 Data

5.2 Evaluation.

5.3 Results

Heuristic Search as a Path Problem

6.1 Introduction

6.2 Problem Spaces and Heuristic Search

-ix-

1

1

2

4

8

12

13

15

15

17

19

24

26

27

31

33

33

41

44

44

44

45

50

50

52

. .
Chanter page

7. Theory of Uni-directional Heuristic Search 60

7.1 Some Theorems on Searching 60

7.2 Heuristic Error 62

7.3 How Error Affects Heuristic Search 69

a. Some Uni-directional Experiments with the Fifteen Puzzle. 78

8.1 Heuristic Functions 79

8.2 Data 81

8.3 Experiment. 81

8.4 Results. 83

8.5 Remarks 90

9. Bi-directional Heuristic Search 91

9.1 Extension to Bi-directional Heuristic Search 92

9.2 Correct Extension - The Very General Heuristic Algorithm. . 94

9.3 Correctness of VGHA 98

9.4 Strategies in Bi-directionaI Search 100

9.5 Associative Search as a Solution to Redundancy

and Intersection 104

10. Further Observations, Cpen Problems, and Conclusions 107

10.1 Network Flow Algorithm. 107

10.2 Bi-directional Intersection 108

10.3 Learning 111

10.4 Structural Features - Bridges 111

10.5 Some Concluding Remarks. 115

Appendix I ALGOL W Implementation of VGA 116

Appendix II Comparative Results Using Different Strategies in VGA . . 126

-x-

Chapter

Appendix I3I ALGOL W Implementation of VGHA for the Fifteen

Puzzle . . . ,. 138

References . 152

LIST OF TABLES

5.1

5.2

7.1

8.1

8.2

8.3

8.4

8.5

8.6

II.1

II.2

II.3

lI.4

II.5

II.6

II.7

Distribution functions, Example A: 200 node graph

Cumulative results on 500 node graphs.

Commonly used evaluators

ResuRsforfl=g+w*P

Results for f2 = g + w(P + 20 . R)

ResuItsforf3=g+w*S

Results for f4 = S + w ; (S + 20 . R)

Initial values of the heuristic functions and the shortest

solution paths found

Density vs. path length for function f4, problem A5

Graph size 500, average degree 3

Graph size 500, average degree 6

Graph size 500, average degree 9

Graph size 500, average degree 12.

Graph size 500, average degree 15.

.Fommd crosstable

Pohl crosstable

page

46

49

60

84

85

86

87

88

90

127

128

129

130

131

136

137

1.1

1.2

2.1

3.1

3.2

4.1

6.1

6.2

6.3

7.1

7.2

7.3

7.4

8.1

8.2

8.3

9.1

LIST OF FIGURES

Example: Nicholson’s graph

Nicholson’s graph after “conceptual replacement” of edges.

A shortest path from s to t of length 21 is shown in the above

graph. Each edge is undirected and may be thought of as

representing two directed edges pointing in opposite directions. .

Mapping Nicholson’s graph into shortest path space.

Graph with edge lengths all unity.

A pathological example

15puzzle

Some puzzle configurations and descriptions

An example of a puzzle solution. How HPA with h=P and w= 00

solves a particular 15 puzzle

Regular infinite trees.

Nodes numbered in order visited by a depth first search

tolevel

The goal node is marked by an x. Other nodes are labeled by

order of search (inside) and f value outside. Five nodes are

searched when x is found

Comparison between two possible W’S for h*:

(a) w=m (b) w=l

Tile 5 is easier to move in (i) because it is next to the blank . . o .

Initial positions and code numbers used in experiments.

Performance of each evaluator with respect to w . . , . . , . . e .

Euclidean counterexample

6

11

16

29

31

42

53

55

57

64

68

70

72

80

82

89

93

. . .
-xlll-

page

9.2 All shortest paths axe subpaths of a Hamilton circuit 102

10.1 Bi-directional search t 108

10.2 Intermediate board conjecture 110

10.3 Edge(c,d) isabridge 112

II. 1 Results -5OOnodegraphs 134

II.2 Results-150nodegraphs 135

- xiv -

CHAPTER 1

THE SHORTEST PATH PROBLEM

1.1 Introduction

The problem of finding the shortest path between two points pervades many

fields of science. It is of fundamental importance to operations research, 7,8 > 11,32

and has wide application in computer science, 18,30,61 especially in modeling

various artificial intelligence problems involving searches of large but effectively

defined spaces. The discrete nature of the problem and its simplicity argue for

an elegant computer algorithm. Over the years, many computer scientists, 17,23

operations researchers, 6,7,15 and applied scientists4” 63 have attempted to solve

the problem in an efficient manner. While one school, the operations researchers,

have characterized the problem in linear programming terms 15 and dynamic pro-

gramming terms, 6 the pragmatic computer scientists unencumbered by tradition,

have attempted to intuit a naive but efficient computational method and have been

remarkably successful. 17,20,23 Historically the work derives its impetus from

this computer science tradition and this work is an attempt to generalize this

approach and generate a theory of efficient solutions to the shortest path problem

and analogous discrete algorithms which benefit from these ideas.

Shortest path work as noted above covers many disciplines and the literature

is widespread and difficult to survey. Often a particular method or discovery is

attributed to several authors regardless of temporal primacy because of the dif-

ferent disciplines using these results. Dreyfus 20 has gone to great lengths to

appropriately credit the originators of various of the shortest path algorithms.

In this regard my work owes its allegience to Dijkstra’s method which in opera-

tions research is attributed to Dantzig. I would emphasize that Dantzig’s work

-l-

in both a computer science, \ (>in .~:!tl an operations research vein has been impor-

tant. Nevertheless, my work was initiated and pursued in computer science

terms. This may be characterized as an eclectic pragmatic approach with effi-

ciency the paramount goal.

In generalizing the Dijkstra approach, an attempt is made to provide a unified

theory for efficiency in this class of algorithms. This unification has led to a

more efficient cardinality comparison strategy and extensions of this approach to

heuristic search. 30,57

1.2 Problem Statement

Consider a directed graph G(X, v) where X is a collection of nodes and U is a

collection of edges. Each member of U may be considered an ordered pair of nodes

of x. Let the nodes of X be mapped into the integers in increasing order starting

from 1; then some member of Q E U may be written as eij where i is the initial node

of a! and j is the terminal node of o!. A person standing on the ith node of G could

walk along street (Y and reach the jth node of G, where a! is a one-way street.

The cardinality of a set will be denoted by “1 1”. The cardinality of G will be

the cardinality of its vertex* set X.

A path p from node s to node t is a sequence of edges

P = eXlxZy -wsp
eXK-lXK)

where X 0 =sandX K = t. Alternatively we write

P = (X0, x 1’ ..*, XK) ,
or

,u=(U,, U2, .-., UK) whereUi=eX x .
i-l i

*
Node and vertex will be used interchangeably as will arc and edge.

-2-

The graphs we will consider have their edge set mapped into the non-negative

reals. These values will be called the lengths of the edges and will be represented

as

Q(e po .

The length of a path ~1 will also be written as Q(p) where

P =uJ 1, . . . , UK) and Q@) = c Q(U,) .
i

The shortest path problem considered in this paper is:

given s,teX find some p*, a path from s to t such that

Q@*) is a minimum over all paths from s to t.

There are many important variants of this problem. 20 One such is the spe-

cialization of length to take on only a value of unity. Then the shortest path be-

tween two nodes is the one which traverses the fewest edges. This is the cardi-

nality or Manhattan distance of a path. This problem can be solved by the methods

described here; some other variants like the kth-shortest path cannot. However,

the two node problem is the basic shortest path problem with many areas of

applicability.

The problem is clearly solvable, a most primitive solution being

a search over all possible paths. 24,26 An improvement over this exhaustive

enumeration is to recognize that if p = (s, x1,x2, m S *, xk, t) is optimal then all

its subpaths are optimal. This satisfies the fundamental dynamic programming

principle and therefore one can use Bellman’s method (see Ref, 6, p. 230).

(0) =o gt

i = 1,2, . . . n, (9 = o gt

-3-

Step 2 is iterated up to n-l times (stop when two successive iterations are

the same) and gives the shortest paths from all nodes to t. This requires O(n3)

(order n-cubed) operations - a manageable amount of work. Nevertheless,

better methods of O(n2) have subsequently been developed. These are acknowl-

edged as the current best methods 20 and are unlikely to be superceded by better

methods on ordinary Von Neumann machines. The O(n2) methods constitute the

precursors of this work.

In order to place this work in perspective, we must describe the antecedents

of the general algorithm and theory. This will give the reader insight into the

development of this work as a generalization of shortest path algorithms. In doinl

this, we will use an example of Nicholson’s 44 to demonstrate the mechanics of

each method.

I.3 E. W. Dijkstra’s Method 17

This algorithm was independently discovered by G. Dantzig 15 and others. 2oy ’

Dijkstra defines three sets:

A The nodes having their minimum path from s (the initial

or starting node) known.

B The direct successors of the above set which are not in it.

C The remaining nodes.

The computation proceeds in two stages.

1. A node in set B with current minimum distance to s is

transferred to set A. If this node is t (terminal node) the

computation halts.

2. The successors of the node just placed in A by step 1 are

calculated. Of these, the nodes that are in C are trans-

ferred to B. The value of the distance from s, of the

-4-

nodes already in B, are changed if the new distance

calculated is smaller than their current value.

So, with each node, let us associate its d value and its wf value.

d(n) = current best distance from s

wf(n) = immediate predecessor of n along path from s,

for which d(n) was calculated.

fnitially all nodes have

d(xi) = m and wf(xi) = undefined.

We always begin by placing s in set A with d(s) = 0.

Let us look at this method applied to Nicholson’s graph and find the shortest

path from node 1 to node 9 (see Fig. 1.1).

Step 1

Set A d(xi) “f(xi) Set B d(x.J wf(xi) Set C d(xi) “f(“$

1 0 -- 2 3 1 5 c-2 --

3 6 1 6 co --

4 7 1 7 00 --

8 03 --

g m --

We will no longer show set C, since it can be found from complementing

AUB.

node 2 has minimum distance in B. Step 2

Set A d(Xi) “f(xi) Set B d(Xi) wf(xi)

1 0 -- 3 4 2

2 3 1 4 7 1

5 7 2

-5-

4
1269Al

FIG. l.l--Example: Nicholson’s graph.

-6-

step 3

SetA d(Xi) “f(Xil Set B d@$ “f@$
1 ,o -- 4 7 1

2 3 1 5 7 2

3 4 2 6 6 3

step 4

Set A d(Xi) "f(Xil Set B d(x,) "f(xil

1 0 -- 4 7 1

2 3 1 5 7 1

3 4 2 8 7 6

6 6 3 9 8 6

Step 5

Set A d(Xi) "f(Xi)

1 0 --

2 3 1

3 4 2

4 7 1

6 6 3

Steps 6 and 7

Set A

1

2

3

4

5

6

8

d(Xi) "f(xil

0 --

3 1

4 2

7 1

7 2

6 3

7 6

Set B d(Xi) "fixi)

5 7 2

7 11 4

8 7 6

9 8 6

Set B d(Xi) "fCxi)

7 11 4

9 8 6

-7-

Step 8

Set A d(Xi) wf(xil Set B d(Xi) “f(xi)

1 0 -- 7 11 4

2 3 1

3 4 2

4 7 1

5 7 2

6 6 3

8 7 6

9 8 6

The computation halts with d(9) = 8. By tracing back through wf we have

9, wf(9), wf(wf(9)) . . . , 1

or that the shortest path is

Dantzig in proposing a similar algorithm, recommended that the edge lists

.

be ordered by length. This makes for fewer comparisons and additions when

augmenting sets A and B. However, as Dreyfus 20 points out, any savings are

outweighed by the computation required to order the edges.

1.4 Dantzig’s Bi-directional Method

The earliest widely published mention of a bidirectional algorithm occurs

in Dantzig.
15

The description of this algorithm is ambiguous and vague, Ieading

to subsequent misinterpretation by Dreyfus. 20 In fact, a computer scientist

would label the description as violating the principle of effectiveness. 33 For this

reason much of the credit for a correct bidirectional algorithm has accrued to

Nicholson. However, when asked by G. Da&zig 16 to investigate this issue, I

discovered an interpretation that leads to a correct algorithm.

-8-

Damzig’s” description was as follows: (p. 365)

“If the problem is to determine the shortest path from
a given origin to a given terminal, the number of compari-
sons can often be reduced in practice by fanning out from
both the origin and the terminal, as if they were two sep-
arate independent problems.

“However, once the shortest path between a node and
the origin or the terminal is found in one problem, the path
is conceptually replaced by a single arc in the other problem.
The algorithm terminates whenever the fan of one of the prob-
lems reaches its terminal in the other. I’

In terminology analogous to Dijkstra’s, the algorithm can be described as

alternating between sets A, B, and C in a forward manner, and sets D, E, and

F in a backward manner. Where

D The set of nodes having their minimum path to t known.

E The direct predecessors of set D, which are not in D.

F The remaining nodes.

In the Dijkstra algorithm, the set A starts initially with node s, and with each

iteration grows until it includes t. The nodes xieA form a rooted tree with s as

the root, where

T = {CX, E)j

x = {xi: xi’A}

E = (s, xi): xieA
1 >

with

m(s, xi) =d(xi)

b Dantzig’s algorithm a similar tree exists for set D which is rooted from

node t. We interpret “conceptually replaced” as modifying the original graph by

rooted trees grown in the fashion described above. In this algorithm the sets A
and D are expanded alternately; the first of these sets to include both s and t con-

tains the shortest path.

-9-

%onceptually replaced”:

Let some iteration place n in A, then all edges connecting n with any xie A

are deleted from the graph and replaced by edge (s, n) with length d(n). Corre-

spondingly, if n is placed in set D the edge (n,t) is included in the graph.

Again we use Nicholson’s example, where in addition to quantities in Dijkstra’s

algorithm we have:

dt(n) = current best distance to t

wt(n) = immediate successor of n

along path to t, for which

dt(n) was calculated.

Initially all nodes have d(xi) = dt(xi) = 00 and wf(x.J = wt(xi) = undefined. We

begin by placing s in set A with d(s) = 0 and t in set D with dt(t) = 0.

Step 1 We expand set A

A d(Xi) “f(Xil B d(Xi) “f(Xi)

1 0 -- 3 4 2

2 3 1 4 7 1

5 7 2

Step 2 We expand set D

D dt(X3 Wt(Xi) E dt@i). “tCx$

6 2 9 3 4 6

9 0 -- 4 5 6

7 5 9

8 2 9

- 10 -

Step 3 We expand set A

A d(Xi) wf(xi) B d(Xi) wf(xi)

1 0 -- 6 2 9

2 3 1 8 2 9

3 4 2 9 0 --

Step 4 We expand set D

D dt(Xi) Wt(Xi) E dt(Xi) wt(Xi)

6 2 9 3 4 6

8 2 9 4 5 6

9 0 -- 5 3 8

7 5 9

At the end of step 4 the revised graph looks like Fig. 1.2. Note that (2,3) and

(6,8) are no longer of interest and have been

FIG. 1. Z--Nicholson’s graph after ‘bonceptual repIacement” of edges,

%onceptually replaced. ” The above alternating expansion of sets A and D con-

tinues until step 11.

- 11 -

Step 11 We expand set A

A Wi)

1 0

2 3

3 4

4 7

5 7

6 6

9 8

wf(xi) B d@i) wf(xi)
-- 7 11 4

The algorithm halts with node 9 being placed in set A. Only six expansions of

set A were required, as opposed to seven expansions with the Dijkstra algorithm.

Node 8 was not included in set A because of conceptual replacement of its edges.

However, in this example more work was done by the Da&zig bi-direction algo-

rithm than by the Dijkstra algorithm. The Dantzig method is to use two separate

shortest path methods where the savings are made as each reduces the complexity

of its end of the graph. However, as will be seen later, the termination condition

is needlessly bad, and several refinements will be discussed below. In light of

the above elaboration of Dantzig’s method, he must be credited as an early

(earliest ?) correct innovator in bi-directional methods.

1. 5 Nicholson’s Bi-directional Method

Nicholson’s algorithm44 differs from Dantzig’s in two important ways. Firstly,

Nicholson’s is not strictly alternating between forward and backward sets. Secondly,

his termination condition is more complex, but allows the algorithm to terminate

much sooner, in general, than Dantzig’s.

- 12 -

Once again we have the sets A, B, C,D, E, and F as described above. How-

ever, instead of alternating, the set expanded depends on

xi such that xic BUE and

d(xi) or d&xi) is a minimum.

As long as nodes are closer to s than to t,set B is used and the algorithm augments

the forward set A, otherwise set E is used and set D is augmented. All nodes tied

at the minimum distance are simultaneously expanded, and no conceptual replace-

ment occurs. The algorithm terminates when

mm
xieAnD

d(xi) + dt(xi) ,< min d(xi) + min d (x.)
xicB xieE ’ ’

Nicholson proves this condition is correct, and works out the example in Fig. 1.1.

1.6 Stopping Conditions

Dreyfus 20 suggests an alternate terminating condition to that of Nicholson.

Terminate when there is some node

neAflD and look at

nUY Y = xi: xieAnE

The shortest path will be found by

min v EY d(xi) +’ dt(Xi) , d(n) + dp) -
i

This condition is simpler to check and ordinarily saves computation, Nicholson’s

condition requires recomputation every iteration, whereas the Dreyfus criterion

is a test on set inclusion, and can be done by means of simple Boolean flags (see

Appendix I) a

A further refinement of the Dreyfus condition is possible. Nicholson requires

that all ties be treated in the same iteration. This is unnecessary. Assume, that

- 13 -

only one at a time is handled, ties being broken in order of node number. Then

consider that a given node n occurs in the intersection of A and D stopping the

computation. If n was last placed in set A, and if there are some rules in set B

with d(xi) = d(n), xie B then place these nodes in A. The termination step need

only look at xicAnE and n. However, set E in this case may not include some

nodes on its perimeter which would have been simultaneously included in the

Dreyfus-Nicholson method. Therefore the terminating condition treats a smaller

set. A formalization of this refinement appears later, along with a proof of

correctness.

The importance of these stopping procedures is that they allow an essentially

analogue process to be treated digitally. Early proposals of bidirectional methods

were in error because of an incorrect terminating condition. The typical mistake

was to assume neAnD was always on the shortest path. 8,20 Unfortunately, nota-

tion and complex terminating conditions obscure a basically simple and naive

algorithm. Hopefully, the following amoeba model will elucidate the ideas de-

scribed above.

- 14 -

CHAPTER 2

GENERALIZATION OF THE SHORTEST PATH ALGORITHM

2.1 Intuitive Description

Picture two amoeba, one dyed red and the other dyed blue. The red one is

placed on the starting node s, and the blue one is placed on the terminating node t.

Only the behavior of the red amoeba will be described in detail as the blue amoeba

behaves analogously. The red amoeba moves at a velocity VrO If the red amoeba

reaches a node, it splits into the number of outgoing edges (edges where the ini-

tial node is the node where the amoeba is), with one progeny traveling each edge.

The red amoeba and its progeny all travel at the same speed Vr. The blue amoeba

and progeny have speed Vb and are performing in the same fashion with respect to

ingoing edges. The first two amoeba of diiferent lineage to meet have traveled

the shortest path from s to t. Let dr(t) = the distance covered by red amoeba in

time t and let db(t) = the distance covered by a blue amoeba in time t. At any time

t these functions represent the distance covered by all amoeba of the corresponding -

color. If t* is the time at which two amoeba of different color meet, then the dis-

tance traveled would be dr(t*) + db(t*) . Since dr and db are both monotonic functions with

respect to time, any pair of amoeba meeting at t* + E , E > 0 would have traveled

more than the pair that met first. Therefore the above procedure is correct.

The major complication in implementing the above algorithm by a discrete

process is to have a correct stopping criterion. t

This intuitive description covers all the standard shortest path methods and

one type not previously proposed.

a. Vr # 0, Vb = 0 forward uni-directional algorithm 17

b. vr = 0, Vb + 0 backward uni-directional algorithm

t Reference 8, p0 174 gives a bi-directional algorithm with an incorrect termina-
tion criterion (also see Ref. 7).

- 15 -

c. Vr=VbfO unbiased bi-directional algorithm 44

d. vr f ‘b’ V, f 0, Vb f 0 weighted bi-directional algorithm

(proposed here)

If properly trained amoeba could be found, the above represents an effective

procedure for finding the shortest path, providing a path of finite length exists.

However, there is no guarantee that the amoebas traveling the shortest path will

meet at a node. A digital simulation of the above algorithm must have a compli-

cated stopping criterion.

Before going on to a formal description of my method the reader should try

to apply variants a, b, and c described above to Fig. 2.1 with results as follows:

Each finds the shortest path ~1 = (s,c,f,d,t), (i-4 = 21

a. Red amoebas visit all nodes of the graph.

b. Blue amoebas visit all but node e.

c. Red amoebas visit s,e,c,g

Blue amoebas visit t,d,b,f.

t
S

I

FIG. 2.1--A shortest path from s to t of length 21 is shown in the above graph.
Each edge is undirected and may be thought of as representing two
directed edges pointing in opposite directions.

- 16 -

2.2 Formal Description of the Very General Algorithm

Notation

s = starting node

t = terminal node

S = set of nodes reached from s

T = set of nodes reached from t

g = set of nodes reachable along one edge from S but not in S

? = set of nodes reachable along one edge from T but not in T

g,(x) = current distance from s to x

g,(x) = current distance from x to t

wf(x) = immediate predecessor node from which x was reached

wt(x) = immediate successor node from which x was reached

S, T, g, T, g,(x), g,(x), wf(x), wt(x) will change throughout the computation;

they are functions of the iteration step in the computation.

Algorithm

1. Place s in S and calculate all successors,placing them in s.

For each successor xi, calculate

gs(xi): = P esx. , wf(xi): = s .
(1 1

Similarly place t in T and calculate all predecessors of t,

placing them in F. Each predecessor of t has

gt(xi) : = 1 exit 3
(1

wt(Xi) : = t .

2. Decide to look at either !% or ?.

3. If g was selected in step 2, then select a node XC~ which has

the smallest value of gs. If %? was selected then this step

and the following would be carried out with respect to !?

and associated functions. If more than one node minimizes

gs, then select all of them XI, . . , , xk .

- I7 -

4. Remove x1, . . . , xk from set 3 and place in set S. If any

of these nodes satisfy xieSflT, then go to the terminal

step 6.

5. For each xi, calculate its successors (predecessors in

case of T) and their values of gs. If these nodes already

have a value of g, and the new calculation is greater or

equal to the old value, then leave alone. If g,(x) is calcu-

lated where y is its predecessor, then g,(x) = g,(y) + P(eyx).

However, if the new value is less or has not previously been

calculated, then place the node in set g and make xi the value

of wf. Return to step 2.

6. The minimum distance is for

w xi such that xic Sfl (T U!?) pick xi such that gs(xi) +

g&xi) is a minimum. The path can be found by tracing

through wf and wt. (Note xi’ Tn (SU$ would work

equally well.)

In the above algorithm, step 2 is not an effective computational rule. The

point here is that any decision rule can be used as will be proved below. If rule

2 is always to choose 3, we would have the forward uni-directional method. The

unbiased bi-directional method selects g, if

otherwise it selects T” where

gr = min (g,(x))
XC3

g$@ = min (g,(x)) .
XC?

- 18 -

2.3 Proof of the Correctness of VGA

We wish to prove that regardless of what decision rule is used in step 2 of VGA,

the algorithm will correctly find a shortest path. The graphs of interest will be

finite connected graphs with positive edge weights.

Notation

Let the successive sets created by iterations of VGA be So, Si, S2, , . .

Similarly 3’, gl, . . . Let gs(S’, be the maximum of the current values gs(xj) for

xjeSi, and gs(?$ be th e current minimum for x.6?. So is {sl with g,(S’) = 0
J

always. The corresponding notation will be used for T and !?. It is obvious from

VGA that the order of creation of sets S1 and T1 by different decision rules in

step 2 of VGA do not affect their composition.

Lemma 2.1

A node placed in set S is never returned to set g. The corresponding result

is true for nodes in set T.

Proof

Consider step 3 of VGA. This states that nodes xi with g,(xi) = g,(??) are

selected on the jth use of set !?. Since edge lengths are positive, any successor

of these nodes will have a larger distance value.

so once a node is placed in set S, any future value must be larger.
a

By this lemma VGA need never recompute a distance for any node placed in

S on a previous iteration. This is not true of nodes in s, which can have better

values calculated in later iterations.

- 19 -

Lemma 2.2

All nodes x with a path of length less than or equal to gs(S’, from s are in S1.

The corresponding result is true for nodes in set T.

Proof

Consider the first set, S”, for which the lemma is false. There is some

optimal path

with the fewest number of nodes for which it fails.

Now xkeSn since it is along a path of fewer nodes.

If Xk’ sn-l then y E??-’ and step 3 would have placed y in S” since g,(y) < gs(Sn).

so xktSn and x&S”-’

. l 0 is@7 = g&l

but gs(%) < a@) 6 is(S) Contradiction. 8

The lemma is true for So = (~1; so there can be no first S” for which it is false.

This shows that sets S and T are shortest path trees grown from s and t

respectively.

Theorem 2.1: VGA terminates, always finding the shortest path from s to t, with

any decision rule used in step 2.

Proof

a. The algorithm terminates.

I S I + 1 T I is monotonically increasing with each iteration of VGA.

Step 4 always adds at least one node. When 1 SI + IT I > 1 GI , there is

some node n such that neSfIT. (Note that even if set g is always

- 20 -

selected in step 2, eventually by the above argument, and the fact

that teT, VGA would halt with teSflT.)

b. Upon termination a path from s to t is found.

At termination there exists some neSnT. Therefore as noted in

lemma 2.2 there is some path from s to n, and some path from n

to t. So, here is at least one path through n, which goes from s

to t.

C. The path found in step 6 of VGA is the shortest path from s to t.

Node n was found in step 4, where neSnT, and step 4 placed n in

S during the final iteration of VGA. The argument is symmetric

if n was last placed in set T.

Lf n was placed in S on the kth use of g, and in T on the jth use of

y, then the path through n has length = gs(Sk) + &(Tj) or abbreviated

to g, + pt.

Now assume that this is not the shortest path, but that it is CL*.

P*=tYl’ Y2’ ---t Yj), Yl=s’ Yj=t

For path CL* there is some yi such that

gs(Yi) ~ gs and gs(Yi+l) > gs .

P&Y,) = &(SO) = 0 5 is

or if gs(Yi+l) p’ iis9 then yi = t and consequently by lemma 2.2, n = t and the

shortest path would be found.

Let gi(xi) and g,*(xi) denote optimal distances from s and t respectively.

Since p* is the shortest path

g,*(Yi+l) * g;(Yi+l) ’ gs + gt

gs c gs(yi+l) from above and thus g;(yi+l) < itO

- 21 -

By lemma 2,2, yi+l must be in T. Therefore yic? from the execution of step 5

of VGA. So yieSn?, and the shortest path would have been found by step 6. n

So we have proved that any decision rule inserted in step 2 leaves VGA cor-

rect. Some examples of previously used decision rules are:

1. Always use set s

Dijkstra’s procedure - what we call the forward

uni-directional method.

2. Always use set T”

The backward uni-directional method.

3. Alternate between g and ?

Da&zig’s procedure.

4. Let gs . be the current minimum for 3 and gt . be
mm mm

the current minimum for T. If gs 5 gt use X
min min

otherwise use ?.

NicholsonPs procedure.

VGA as described uses Dreyfus’ terminating condition. In section 1.6 we

proposed a further refinement to this terminating condition which we now prove

to be equivalent to the Dreyfus condition.

Change step 3 to read: “If more than one node minimizes gs, then select any

one of them D ” Change step 6 to read: “If n found by step 4 is last placed in set S,

then include all nodes xi with g,(n) = gs(xi) in set S” (their successors need not

be computed). Correspondingly, if n is last placed in set T, perform the sym-

metric calculation, and look at xieTn(SUg).

- 22 -

Theorem 2.2: VGA as redefined above is still correct.

Proof

The proof will consider the case where n is placed in set S last. The argu-

ment is symmetric for set T.

In the regular VGA let S, g, T, y be the sets upon termination and in the

redefined VGA (called VGAR) call these sets S, s, T-, ?-.

a. S=S -

be _ TIT

In step 6 of the VGAR set S- is completed with respect to ties. Now in VGA the

terminating step considers

s n (TUT)

and in VGAR the terminating step considers

s- n(T-U?J

T-U?-cTUT

This is true from b and the fact that the successors of the subset must be either

in the set T or in the successor set ?!.

Let k be the last node included in T-by VGAR at a distance gt(k). If there

were no ties at this distance T = T and ?-I? and the shortest path would be

found by VGAR.

Call the optimum path

,.i = (s, xl’ x2, * 0 * Xk’ t,

with xieS, xi+I #S. If xi+IeT then x~+~cT-U?-. This is because the only nodes

in T that are not in T-must be nodes at gt(k), but all these nodes must be in ?-,

since they are predecessors of nodes xi with gt(xi) < gt(k). So if xi+IeT then the

path would be found. Assume xi+.,,e?! but not in y-S Then x~+~ET and so

gt(‘ti+2) g gt(k), In fact gt(Xi+2) = q(k) D If gt(xi+2) < gt(k) then xi+2~ T- ad

CT xi+l -’
- 23 -

how e(p) < g,(n) + g,(n) and g,(n) I gt(k) since gt(k) is the last value used for

set T.

gs(xi+l) + gtCxi+z) I gs(Xi+2) + gt(Xi+2) I g,(n) +gt(k)

. - . gs(xi+l) 5 g,(n) and x~+~CS contradiction. n

The refinement allows a smaller set of nodes to be calculated, in that nodes

which are tied on the periphery of set T need not be computed. The refinement

is of practical interest for graphs with identical integral length edges.

2.4 Extensions of VGA

The two point shortest path problem is the basic problem in the area. There

are numerous variants of this problem 20,23 and some of these can be computed

by VGA with minimal modification.

Multiple Endpoints

Instead of a path from s to t, we may be interested in the shortest path in G

from any node in subset A to any node in subset B, where A and B are subsets

of x.

Given sieA, tjeB find some II*, a path from si to tj such that P&J*) is a mini-

mum over all paths for Vij from si to t..
.l

Initialize set S in VGA to set A and set T to set B and proceed as usual, and

we have an algorithm for this problem.

Disjoint Components

We cannot always be sure the graphs of interest are connected, thus there

may not be a path from s to t. If we always include an edge from s to t of length

inf where -

inf >IGI * -
1.l

- 24 -

then if the algorithm terminates with a path of length inf we know that no path -

exists.

All Shortest Paths

Ordinarily we want any shortest path from s to t, but a secondary criterion

may be of interest (most scenic shortest path). So, first we want to find all

shortest paths. This is done by modifying step 6 of VGA to return all paths of

minimum length. Along with this,wf(xi) must be extended to a multiple entry

table in or&r that ties be stored as the algorithm places nodes ins. Then step

5 is modified to allow predecessors (successors in expansion from t) which are

along equal length sub-paths to all be stored in the wf(wt) table.

- 25 -

CHAPTER 3

SHORTEST PATH SPACE

The correctness of VGA regardless of what decision rule is used in step 2

brings up the question of what rule to use. If one wanted, set 3 or ? could be

chosen by using a coin toss or a pseudorandom number generator. This seems

an unintelligent way to make the decision. Similarly, there seems no apparent

point to always picking set % (or set T), which is the uni-directional approach.

To determine a good rule, we must have the appropriate criterion.

VGA has an inner loop of steps 2 through 5 and the work the algorithm does

is related directly to number of nodes placed in set S and set T. This places an

upper bound on the number of iterations, IGI . E ac node involves calculating the h

g value of its successors and can have up to [Gl successors. This places a bound

on the computation of 0()G12) operations. Ordinarily, the search does not include

all the nodes of G. The cardinality of S and T, 1 S 1 + ITI provides a natural meas-

ure of computational efficiency. For a particular problem where p is the shortest

path of interest:

P = @ 1’ ***, xk)

s=x 1’ t = Xk

k=lptJIISI+ IT;I,G(.

- 26 -

3.1 Graph Density

To explore more exactly the meaning of efficiency in shortest path computa-

tion, some concepts on density and distribution of nodes in a graph will be

developed.

Consider h = the shortest distance from s to t in graph G.

Let d:(n) * = the number of nodes reachable in 5. distance h from node n.

Let d:(n) = the number of nodes that can reach node n in _< distance h .

In Fig. 2.1

d:(s) = 4 nodes s, e, g, c

dI’(t) = 4 nodes t d b f b , 3 3

d;l(t) = 11

The number of nodes placed in set S by a forward uni-directional method is

d;(s) q The corresponding number for the backward uni-directional method is

d;(t) D The unbiased bi-directional method looks at approximately

dx/2 f (S) + <‘2(t) .

this is not exact because there may not be a node at distance x/2 from each end-

point. However, we will assume that for sufficiently large problems the above

expression is accurate.

A weighted graph does not necessarily have a Euclidean representation when

the edges are considered straight lines. The triangle inequality is often violated.

We may induce a useful planar representation of the nodes in a graph for a

* i r (n) is the normal notation for the nodes i edges from node n. This is the
sense of our superscript notation.

- 27 -

particular shortest path problem. Place node s at the origin and note t at distance

h on the x-axis. Each node xi in the graph under consideration will have two coor-

dinates, rI and r2. The first coordinate is the shortest distance from node s to x.
1

and the second coordinate is the shortest distance from node xi to t. The node x.
1

will be placed in the upper half plane with distance rI from the origin and r2 from

node t. If a node in our graph is not connected to s or t we will not be interested in

it. In Fig. 3.1 this mapping is shown for Nicholson’s graph (see Fig. 1.1).

Theorem 3.1: For all xicG

r +A 1 >r r +Alr 2’ 2 1

Proof

1. if for some ncG,rI + r2 < h then there is a path p, through

n such that J!(J+,) < h which contradicts the fact that h is a

mini:rlum distance.

2. Suppose rI + h < r2

Then there is a path from n to s and from s to t of length rI + h and therefore

r2 is not the shortest distance from n to t. q

VGA expands a la Huygens’ wavefronts from both s and t. The space these

wavefronts are propagating in is the one just described. The most efficient

decision rule for VGA is the one where r is found such that

(3.3)

is a minimum over 0 _< r 5 L We wish to approximate the above description by

a continuous one which is easier to discuss analytically.

d;+*‘(s) - d;(s)
P&W *,h

- 28 -

(a) PLACING NODE 4 IN SHORTEST PATH SPACE

0 8

(b) THE FULL GRAPH

6 8

FIG. 3.1--Mapping Nicholson’s graph into shortest path space.

- 29 -

and

These functions may be considered as density functions for a given shortest path

problem. The most efficient algorithm is now the one which goes distance r from

s and distance A-r from t such that

[

r h-r

s
P&A) dh +

I-
Pt(h) dh

I
. (3.3’)

0 0

is a minimum over 0 5 r -< X.

To find r requires a priori knowledge of es and pt, where in most cases these

can only be determined a posteriori. Therefore unless the shortest path space is

in some way characterized previous to solving problems in it, there is no assured

way of having an optimum decision rule (namely one which says pick set 2 as long

as g- p I r; otherwise pick set ‘VT). For example if someone told you the problems

of interest are in lattices in Eswhere most of the possible connections exist, then

P,(A), PtO) x n-l CA
r

/
n-l A-r

CA dh+
n-l

CA dA = c $ + c(h-r)n = F(r)
n

0 0

dF n-l n-l T=cr - c(X-r)

dF -=o :. i
dr minimum at r = z

(3.3’) evaluates to
-n

2c h
0 112

where a u&-directional method would give

a factor of (l/2)“-1 is gained,

*
These are n-tuples (x1,x2, . . . , x,) where all xi are integers.

- 30 -

The above argument underlies the obvious choice of unbiased bi-directional

methods, and is why some experts have been moved to dismiss weighted methods. 12

It seems that they implicitly assume a symmetric distribution of nodes.

3.2 A Locally Optimal Decision Rule

In using VGA, on each iteration the cardinality of g and the cardinality of ?

would be known. These numbers would reflect the local density of the regions

adjoining S and T. This information on cardinalities requires no additional compu-

tation and is a simple a priori estimate of density. Then one reasonable decision

rule for step 2 of VGA would be if 131 < IT”1 use set g or else use set !? (cardinality

comparison strategy). VGA with this rule will be called a weighted bi-directional

(WBIDI) method. (IJBIDI will mean the unbiased hi-directional method.)

Examine Fig. 3.2 where each edge is of length one. The most efficient algo-

rithm is the backward uni-directional method. It would visit only those nodes on

b d

n n n n ” ” ”
m n p q rt

FIG. 3.2--Graph with edge lengths all unity.

- 31 -

the shortest path from s to t. The forward uni-directional method and UBIDI

would visit all nodes in the graph. The WBIDI method, described above, would

also visit &those nodes on the shortest path. If s and t were interchanged,

the best method would now be the forward uni-directional method and WBIDI.

UBIDI in no way accounts for the difference in densities. In each case distance

h needs to be covered by the respective versions of VGA. A local approximation

to density in regions g and ?? are known and without other information, progress

in the sparser region requires less work. To add substance to this argument we

take two complementary approaches to verifying this optimality. One approach

is to generate large numbers of graphs and compare the efficiency of the different

strategies. Additionally one can analyze a posteriori how close each strategy

came to minimize r opt’ The other approach is to calculate the expected number

of nodes placed in S and T over a given class of path problems and compare the

strategies on this basis. In both instances our geometric intuition outlined above

is vindicated.

- 32 -

CHAPTER 4

ON THE OPTIMALITY OF OUR DECISION STRATEGY

4.1 Probabilistic Analysis

We wish to analyse the efficiency of different decision strategies, and to

demonstrate the efficacy of cardinality comparison. In order to do this, we will

take a probabilistic model of our algorithm as applied to some path problem, and

attempt to calculate the expected number of steps needed by a given decision

strategy, VGA for a given problem finds a path

p = (s, x1, X2’ 0”“) xk’ t) .

At each iteration of the algorithm, sets S, g, T, and “T are changed, with IS/ and

ITI increasing. For simplicity, we will use VGAR, where /Si+Il = lSil + 1,

1. e. , only one node is added at a time. The sequences ISol, /S’\, . . . , and ITot,

T , .o* are monotonically increasing. Also, ingeneral, ISi/ and /?I are mono-

tonically increasing, since the graphs of interest are connected with average

degree greater than one. Monotonicity of these tilde sets, g and T, is our hypothesis

and our experiments show this. *

Our algorithm must find and place in set S or in set T the nodes XI, x2,

. . . xk. On any given iteration some node ne? (or ne?) is selected. At this

point in the computation some xfep is in set “s’ and likewise some x
m Ep is in

set TJ - to see this go back to the proofs of the correctness of VGA and VGAR.

When a node along ~1 is placed in set S its successor and the associated minimal

distance function is placed in set g. Thus, if we have a unique shortest path p,

then at any time in the computation we are interested in finding the next successor

A violation of this condition is called pathological, and is discussed later.

- 33 -

node from s currently in S and the next predecessor node from t in T. Since,

we have no additional information, only the fact that some node on the shortest path is in

3’ or ?, the probability on a given iteration of finding a node along the shortest path

is l/l%‘) or l/l?1 depending on which set is selected by VGAR step two. A

decision rule in VGAR corresponds to some sequence of choosing either s” or !?,

and is expressible as D = SSTST. D D T for a given problem, Each strategy has

an expected number of steps until success which may be calculated and compared

with other strategies for a given path problem. The k nodes along the shortest

path p must be found one at a time from either end, and we will show that cardi-

nality comparison has the smallest number of expected steps over all strategies

for doing this, under the monotonicity hypothesis for the tilde sets. To prove

this rigorously, we now derive some fundamental results from probability theory

about expected values of decision problems of this type.

Theorem 4.1:

Let al, a2, . . ‘, ak be a monotonic increasing sequence, and bl, b2, -. . , bk

be some other sequence. Consider
k

E(T) = c aib7(i) where T is a permutation over the index set,
i=l

C 1, 2, -*. k]. Then

Emin = min [E(T)] is given by a permutation where
w-r

b r(l)’ b b
r(2)‘“” r(k)

is a monotonic decreasing sequence.

Proof
k

Consider E(I) = c a.b. (The identity permutation)
i=l l l

- 34 -

Take the first

*) bi such that bi < bi+l, and interchange bi with bi+l.

aibi + a. b r+l i+l ’ “ibi+l + ai+lbi

(ai+l - ai) bi+l > @i+l - ai) bi

b >b i+l i

The sequence formed by the interchange has a smaller value of E than the

original sequence. For any ordering b
r(i)’

if an interchange of the form (*) is

possible, then the new value of E(r) is smaller. The only sequence where this

interchange is not possible is b
T(i)

> b r(i+l) for all i and this is a monotonic

decreasing system. n

Corollary 4.1:

For Emax = max [E(T)]
W-T

we have b r(l)’ b
T(2)’ “” b r(k)

a monotonic increasing sequence.

Proof

The argument is completely symmetric with the above. n

We call the above proof a proof by bubble sort. This result is also found in

Ref. 29.

We wish to calculate the expected number of steps until one success occurs for some

permutation of probabilities pl, p2, . . . , pkS

E = c i a (probability of success on the ith step but not before)

(4.1)

where qj = 1 - pj and pk+l = 1. This last probability means that the sequence always

terminates on the k+lst turn if success has not been previously achieved.

- 35 -

Theorem 4.2:

The value of the expectation (41) is a minimum if the probabilities are in

monotonically decreasing order.

Proof

Let us assume that the sequence pl, p2, a D *, pk is in monotonic decreasing

order. Then ql, q2, q3, . . . qk will be in monotonic increasing order. By

theorem 4.1 xi . pi is a minimum, since al = 1, a2 = 2, . . * ak = k is a mono-

tonic increasing sequence.

If p1 is the largest value then q1 is the smallest value. Now the product

terms are
k

and these terms, corresponding to the ordering of the p’s, are the smallest pos-

sible. Any other ordering of p’s gives larger product terms, since in the original

case we use a smallest first criterion. So

xi. pi is a minimum and xi. pi. flqi must also be a minimum

since the nqi are the smallest possible factors. The k+lst term

of the expectation

k
with pk+l = 1

is the same for all possible orderings and as a constant does not

affect the arguments from monotonicity. n

So if our game consists of continuing to play until one success occurs, then

playing it with the probabilities of success in monotonic decreasing order is our

best strategy for finishing fastest. Now, we may want to play until two successes

have occurred and are interested in how best to proceed.

- 36 -

If PI’ P2’ P3’ *a -9 pk is the order of probabilities of single success then

r2 = PIP2

r3 = P3(Plq2 + qlP2)

.

.
e

(

i-l i-l i-2
r.

1
= pi p1 17 qj + P2 n qj + .’ l + Pi-1 ff

j=2 j=l j=l >
qj

jP2

where the rss represent the probability of success on a given step but not before.

For any ordering prti) there is a corresponding set of r’s.

Theorem 4.3:

The expected number of steps in the two success game will be minimized for

pi monotonic decreasing.

Proof
k+l

E= c i-r.
i=2 1

rl
= 0 since the game cannot end in one step

k-l

rk+l = hq+pl iq.+..;+Pk n
j=l j j=2 J j=l

qj

rk+l is a constant and is independent of the original order of the p’s.

We shall proceed akin to the method of theorem 4.1. Consider the first pi,

such that pi < P~+~. In this regard we always make p1 > p2, since the order of

p1 and p2 has no effect on E. Let us calculate how the interchange of these two

- 37 -

terms will change E.

r2’ l - - 9 rim1 will remain the same

r. 1+2’ ‘- ” ‘k+l will remain the same

i
(

p1 i; qj+-
i-2

ri = p
j=2

+ Pi-l n
j=l

qj

>

Let r* represent the redefined sequence.

rr =Pi+l
i-l i-2
I7 qj + a* a + Pi-l I7
j=2 j=l

qj

i-l i-l P.
%4 ’ piqi+l Pl R 4j + *‘* + pi-l

(

1+1 i-1

j=2 j11 ‘j + 9j,l ’ n qj
j=l

j=i-1)

1) ri + ri+l = rr + r;+1

(

pi ri + r i+l = Pi’y + Pi+1 qi (y + S * i; q
i j=l j)

where
/ i-l i-2 \

rf + r*
1+1

= p.
1+1 o! + Piqi+l

(
O1 +

picl i;T’ q
qi+l j=l j >

i-l
Let P = I7 qj

j=l

Pioc + Pi+lqi (> cl: + q 3 P = pi+p + Pi qi+l
‘i+l

i (>
ff f Q- P

i+l

pi(y + P i+l 9i’y + PiPi+lp = Pi+l” + Pi qi+l (y + Pi Pi+1/3

Iy (pi + (l - pi) Pi+l) + PiPi+lp = a! (Pi+1 + Pi (l - Pi+l)) + piPi+lP

Q! ! Pi + Pi+l - PiPi+l) + PiPi+lp = (y (Pi + Pi+1 - PiPi+l) + piPi+lp

1) is true.
- 38 -

2) i . ri + (i+l) ri+l > i * rf + (i+l) ri*+l

i(ri + ri+l) + ri+l > i(rr + ri+l*) + ri+l*

by (1) this reduces to showing

ri+l >r * i+l

“Pi+lqi + PiPi+lP ’ cuPi9i+l + PiPi+ P

“Pi+lqi ’ “Piqi+l

Since

P i+l ’ pi then 1 -pi > 1 - pi+l so pi+l>pi and qi>qi+l

.
’ ’ Pi+lqi > Pigi+

Therefore the interchange reduces the value of E and by the argument in theorem

4.1 (the bubble sort device), the p
r(i)

which is monotonic decreasing is the best

ordering for the two success game.

We now generalize theorem 4.3 to cover the k success game. The proof is

identical and parallel to theorem 4..3 exactly.

Theorem 4.4:

The expected number of steps in the k success game will be minimized for

pi
monotonic decreasing.

Proof

- 39 -

Consider the first pi, such that i 2 k and pi < piil. The order of the p's

before this is irrelevant. Let us calculate how the interchange of these terms

will change E.

Then using the same notation as in theorem 4.3 we have:

ri = pi. (all combinations of k-l pfs with the rest q’s)

pi r. I+1 = pi+l ‘i ’ all combinations of k-l p’s with the rest q’s + ;J-
i

(all combinations of k-2 p’s with the rest q’s)).

Let (Y = all combinations of k-l p's with the rest q’s

Let p = all combinations of k-2 p’s with the rest q’s

pi ri = piO, ri+l = piilqi * a + c P () 1

rr = pi+lQ, pi+l
ri+l * = piqi+l a + $--- P (> i+l

But these are the same as in theorem 4.3 and the same proof holds& m

The introductory discussion of the probabilistic analysis of VGAR showed it

to be a k success game where the probabilities of success at a given point are

l/1$\ or l/\??(depending on the set chosen. This leads us naturally to the

following theorem as a consequence of theorem 4.4.

Theorem 4,5:

An optimal strategy in the sense of the apriori-expected work, is to choose the set
. .

withthecurrently fewest nodes, i.e., use set ;3’ if @1< I?[otherwise use set ?!I0

Proof

The value of a given strategy is the expected number of steps it will take to

find the k nodes along the shortest path. For a given problem a strategy cor-

responds to some sequence of choosing ? and ? where the probability of success

at any given point is the inverse of their cardinality.

- 40 -

Let us call D* the decision sequence for cardinality comparison, and let the

sequence of probabilities corresponding to this strategy be pl, p2, . . . , pf’ This

sequence is monotonic decreasing since using D* together with the monotonicity

hypothesis assure this. Therefore according to theorem 4.4 any reordering

corresponding to some other bi-directional strategy must be worse.

However a uni-directional method could be used. This would mean that some

pips will not occur. The sequence that does arise is a subset of the pi’s which are

again monotonic. If we call the probabilities arising from a uni-directional

strategy qi then we have pi 2 qi and therefore D* must be at least as good as any uni-

directional strategy. 8

4.2 Pathological Possibilities

It has been shown that given no a priori information about the structure of

shortest path graph, the optimal strategy is cardinality comparison. However,

it is possible to produce examples where cardinality comparison is significantly

worse than other strategies. The understanding of these examples confirms the

validity of the analysis.

Consider Fig. 4.1, where the shortest path of interest is between s and t and

is a path of length ‘7. The forward uni-directional algorithm would visit nodes 1

through 9 (including s and t, of course). The backward method would visit 4

through 19. The cardinality comparison method would find that Is\ is 4 and I??/ is

3 initially. The set T would be used and its cardinality as is evident from the

construction would remain 3. In effect the cardinality comparison method would

duplicate the behavior of the backward method.

If some observer were looking down on the graph and watching the behavior

of the cardinality comparison algorithm, he could say that two steps away g dies

out and therefore one should in fact explore this path in the forward direction.

- 41 -

12 14 16 I8

(FIG. 4.1--A pathological example,

This behavior could be built into a two step look-ahead, but this increases the cost

of each individual decision. The anomolous behavior exhibited in this problem

could then be replicated over a graph which was constructed to be dense two steps

away from s. If the particular class of problems is noted for highly irregular

behavior then a look-ahead feature could be useful as a smoothing out device which

is similar to measures needed by hill climbers in avoiding local maxima.

In terms of shortest path space, we have three distinct regions appearing in

this graph. A small region around s of high density 4, a large constant region

near t of density 3 and a region in between of density 1. So p,, near s is 4 but

changes to 1 while pt stays 3. In a graph where ps = pt = C, any method works

with the same efficiency. Ordinarily a graph with average degree > 1 will have

a monotonic increasing set of nearest neighbors. Then if one direction is favored

for many steps the cardinality of the tilde set on that side grows to exceed the

cardinality of the other tilde set. Thus a dynamic balance is maintained which

is not appreciably influenced by a local distortion. Another point is that local

- 42 -

distortions of the space are not a priori detectable by one step methods and

strategies and in practice rarelyoccur.

One further anomaly is seen in very dense graphs where a node is just a few

nodes away from every other node along some shortest path. In this case g and ?

will soon exhaust the graph and further iterations will only deplete these sets. In

this case the algorithm using cardinality comparison will continue with only one

set, where a more symmetric procedure would be efficient. This case, like the

previous, does not frequently occur. In standard shortest path problems the

graphs are large and sparse. The cases of interest are rarely ones where all

shortest path are only 2 or 3 edges long. However in generating high symmetric

dense graphs of reasonably uniform weight, these graphs were produced.

- 43 -

CHAPTER 5

EMPIRICAL RESULTS

As a practical test, VGA was programmed in ALGOL W5’ 62 (see Appendix I)

and tried on a large number of shortest path problems. Corresponding to step 2

of VGA, was a logical procedure written as a case expression which included

decision rules for Dijkstra’s forward method, the analogous backward uni-

directional method, Nicholson’s equi-distance method, and our cardinality com-

parison rule. The results were gratifying, in that VGA with our rule was the

most efficient algorithm.

5.1 Data

In order to obtain a meaningful result, a large number of graphs and path

problems using them were needed. A 200 node graph involves 40,000 bits of in-

formation, a rather large amount of input. We therefore used a random graph

generator.
48 It provided randomly generated graphs of appropriate size and den-

sity, weighted or unweighted according to the substituted parameters. For each

edge a random number generator produced values over (0, 1), which were compared

to the density; if less the edge was included with a length generated randomly over

1,2, s.0, weight (if unweighted then length was uniformly 1). The data was repre-

sented in edge list fashion to enable the program to generate very large sparse

graphs up to 1000 nodes, 4000 edges.

5.2 Evaluation

The basic measure of efficiency was the number of nodes ISI + IT/ at the end

of the computation, each method being run for exactly the same data. In addition,

a system of a posteriori analysis routines were incorporated into the program to

- 44 -

measure the distribution of nodes in the shortest path spaces used. These routines

printed out d:(s) and d$t), allowing rapt to be found by inspection (see Eq. (3.3)).

In addition the radii of S and T were printed for each method to compare with r opt’

5.3 Results

The results clearly show the advantage of the bi-directional methods over the

uni-directional. Ln all cases investigated, the uni-directional methods visited at

least twice the number of nodes as the bi-directional. The Nicholson method and

the cardinality comparison method are the same order of magnitude, but invariably

the latter is more efficient. The closeness of these methods is because the graphs

used were in general symmetric, where r
opt

+ 0.5*A most of the time. However,

the Nicholson method is badly out-performed in those examples which a pos-

teriori analysis shows are highly unsymmetrical. A general measure

of optimality is the absolute value of the difference between r
opt

and the r found by

the given method. This measure along with the overall comparison of nodes

visited favors the cardinality comparison algorithm. The models used in analyzing

these algorithms formally are borne out in the empirical test. One note in this

regard is the verification of the monotone increasing nature of the sets g and !?

throughout a computation for even sparse graphs of average degree 2 or 3.

Let us pursue in detail one example in terms of our shortest path space model.

We will make the assumption that the space of interest is E2, because the average

degree of our example is approximately the same as for a lattice in E2* The

graph is symmetric and unweighted, of size 200 and average degree 4. The full

distribution table is given in the tables marked Example A, table 5.1.

- 45 -

Table 5.1

Distribution Functions, Example A: 200 N4e Graph

200 Nodes

Maximum Length is 20

Symmetric with Average Degree 4

Distribution from S

0

1

2

3

4

5

6

7

8

9

10

II

12

13

14

15

16

17

dfW d&t, df +db

1 85 86

2 71 73

3 63 65

5 55 60

6 49 55

8 40 48

10 37 47

12 33 45

14 26 40

16 24 40

19 22 41

22 19 41

26 17 43

32 11 43

39 8 47

44 6 50

48 5 53

54 4 58

- 46 -

Table 5.1 (cont.)

Distribution from S df(s) $0) df+db

18 63 3 66

19 68 3 71

20 77 3 80

21 90 3 93

22 101 2 103

23 111 2 113

24 124 2 126

25 129 2 131

26 136 2 138

27 141 2 143

28 149 1 150

Nodes Visited

Forward method 149 nodes

Backward method 85 nodes

Nicholson’s method 44 + 11 = 55 nodes

Pohl’s method 22 + 22 = 44 nodes

Distance Traveled

Nicholson’s method ’ 15 forward 15 backward

Pohl’s method 11 forward 18 backward

Uni-directional methods 28

- 47 -

In E we have

8f = density of nodes per unit volume in the forward

direction

This is a minimum at

& 7r/2 6fr2 + fib(h-r2)
([I) = 0

6fr + Eb(r -A) = 0

Sb. h
r = af -I- cYb

If we assume that 15~ and ?ib are proportional to the results of the uni-

directional forward and backward methods, then

r lTb(’ A
opt = IsfI + lTbl

where Sf is the set of nodes visited by the forward method and Tb is the set visited

by the backward method. Then for Example A (table 5.1) we have r
opt

= 10.1,

Sf = 0.12, Sb = 0.07. u . smg these parameters and the observed radii of sets S

and T, the cardinality comparison method would investigate 22.8 + 35.6 nodes -

a total of 58.4 nodes, while Nicholson’s method-would visit 42.3 + 24.7 nodes -

a total of 67 nodes. In our case, we have rs = 11 and rt = 18 while in Nicholson’s

case it is r
S

= 15 and rt = 15. A posteriori one sees r
opt

= 9, which is very close

to what the cardinality comparison method found. The equi-distance approach,

while achieving a symmetric search, was less efficient.

The results are in favorable agreement with the model, and reflect the

cardinality comparison rule’s attempt a priori to minimize Eq. (3.3). While the

- 48 -

discrete nature of the spaces, and the random nature of generation do not make

for an exact correspondence of the model to the test cases, the closeness of rs

to r
opt

in virtually all examples demonstrates the correctness of this approach.

Table 5.2 summarizes the results of tests using 500 node graphs with average

degree 3,6,9,12, and 15. Our method requires l/4 the work of the uni-

directionally methods. Nicholson’s method visits over l/3 more nodes than ours,

but it compares favorably to uni-directionally methods. These results and more

data are presented in greater detail in Appendix II. Our model and the optimality

of our cardinality comparison strategy are validated by these experiments.

Table 5.2

Cumulative Results on 500 Node Graphs

Degree Forward

3 2583

6 3406

9 2724

12 2627

15 2521

Average per case

277

Ratio to Pohl’s method

4.6

Backward Pohl Nicholson

1991 563 662

3336 707 1151

2924 510 828

2434 581 742

2596 619 681

266 60 81

4.4 1 1,4

- 49 -

CHAPTER 6

HEURISTIC SEARCH As A PATH PROBLEM

6-l Introduction

In many areas of artificial intelligence, improvement has not been evident

over the early paradigms.
39 The GPS model 42 has not been superceded and the

ideas in what heuristic search is and how to do it have remained the same over

the past decade. The situation reminds me of the state of mechanical translation

of natural language in the early 1960’s. It was at this point that the criticism of

Bar-Hillel4 was becoming convincing. The original ideas of a simple syntactic

model and dictionary look-up were seen to not be able to bear the weight of the

problem. It was clear that mathematical linguistics had to be better understood.

I think in heuristic search the same situation exists. The formal tools need to be

developed to better understand and increase the power of heuristic programming.

The precise characterizing of these ideas allows not only a quantitative improve-

ment in computational performance, but through a deeper understanding can lead

to a qualitative improvement from generalizing and extending these methods. * It

is with this spirit and intent that this work is carried out. The formal model of

heuristic search prssented here has led to a new understanding of solving problems

with occasionally unexpected results.

One of the important general models of artificial intelligence is the directed

One noteworthy example of this is the current sophisticated use of or-/3 by Samuels’
checker program54 and Greenblatt’s chess program. 27 Early researchers in
game playing21,42 had used the idea without considering it significant enough to
explore its ramifications or write on its usefulness.

t For graph theory terminology, see Berge8 or Ore. 46,47

- 50 -

contains a description of a possible problem state. If it is possible to get from

some state x to state y in a single move (rule of inference, operator, etc.) then

there is a directed edge from x to y. More generally, we wish to know if a path

exists between two nodes. We distinguish one as the initial node and look for a

path to the other, designated the goal ncde. Such a path is called the solution to

our problem. Sometimes we are interested in the shortest path between two nodes,

but normally any solution path will be acceptable.

The work of Amarel, 122 Michie and Doran 18,19,37 and Hart, Nilsson, and

Raphael”’ 45 contributed to different aspects of formulating problems in this

model. Amarel worked principally on the representation of different problems

in this model. Michie and Dorsn have developed a general problem-solving pro-

gram, called the Graph Traverser, for finding paths using heuristic functions to

control the search for the goal node. Hart, Nilsson and Raphael have given

sufficient conditions on heuristic functions to guarantee that a class of path finding

algorithms will find the shortest solution path in the space. Algorithms which

fall in this class are called admissible.

This work will consider how problems represented in the directed graph

model can be solved efficiently. There are two basic extensions over the efforts

outlined above. First, the pure heuristic uni-directional search of the Graph

Traverser is examined mathematically; This leads to results on the efficient

use of the heuristic function and a first theory of the effect of error in the

heuristic function. Secondly, the notion of admissible heuristic functions (algo-

30 rithms) is extended to bi-directional search. Along with admissibility, the

question of pragmatically implementing a bi-directional procedure is examined.

Associative search implemented by hashing schemes is shown to be a very

powerful technique for the redundancy and tree intersection problems. These

- 51 -

questions are not only dealt with theoretically, but our approach is tested using

the 15 puzzle as an experimental environment. In all these areas the spirit of

the shortest path work is found. We feel, that it is just this viewpoint that has

allowed us to discover many new results, some mildly surprising, and to under-

stand more deeply the mechanics of heuristic search. Artificial intelligence is

in many ways a branch of discrete mathematics and a science of effective and

intelligent enumeration in spirit close to enumerative combinatorics. It is not

surprising to see that Polya,this century’s outstanding combinatorialist,also

wrote extensively on how to attack and solve problems. 52

6.2 Problem Spaces and Heuristic Search

A directed graph G is a set of nodes X and a mapping IY from the nodes into

themselves.

G: x = x1, x2, xn { I

I-: x-x

E = (xi, xj)IxieX/\xje r(xi)

The size or cardinality of the graph is denoted by IGI and can be unbounded. When

using directed graphs to characterize problem domains we attach to each xi a data

structure which contains the complete description of the problem. For example, in the

caseofthe 15puzzle (see Fig. 6.1) adatastructuredescribingitwouldbethevector (9,5,1,

3,13,7,2,8,14,6,4,11,10,15,12,0) where 0 denoted the blank position. The

mapping iY would represent possible single moves from one problem state to

another. In this domain we are at some initial node (or set of nodes) and wish to

reach some goal node (or goal set). We must produce a path from the initial node

to the goal node. Purely exhaustive methods are impractical in complicated

spaces with IGI and IEl large or possibly infinite. In most instances we have

- 52 -

9

13

14

IO

5

7

6

15

I 3

2 8

4 I I

12 b

FIG. 6.1--E puzzle.

heuristics which aid in narrowing the search. For our discussion, heuristic infor-

mation is a function over state vectorsTi, attached to the nodes, into the non-negative

reals.

An Algorithm for Heuristic Search

When solving most artificial intelligence problems we are not ordinarily

interested in the most ‘elegant’ or shortest path, but in how to obtain any path

cheaply. A search method visits a number of nodes in G to find a path. We want

this number to be as few as possible, so that it may be computationally feasible

to find solution paths which are inherently long; i.e., the shortest path is long.

HPA - Heuristic Path Algorithm

s = initial node

t = goal node

- 53 -

g(x) = the number of edges from s to x,

as found in our search

h(x) = an estimate of the number of edges

from x to t, our heuristic function

f(x) = g(x) + we h(x) O<Wl=J

By convention if w = m then f(x) = h(x)

S = the nodes that have been visited

g = the nodes which can be reached from S

along an edge, but are not in S

r(x) = the set of successors of node x

1. Place s in S and calculate l?(s), placing them in g.

If XE I’(s) then g(x) = 1 and f(x) = 1 + w - h(x).

2. Select nes such that f(n) is a minimum.

3. Place n in S and T(n) in g (if not already ins) and calculate

f for the successors of n.

If XE I(n) then g(x) = 1 + g(n) and

f(x) = g(x) + w . h(x).

4. If n is the goal state then halt, otherwise go to step 2.

Note: HPA builds a tree; as each node is reached a pointer to its predecessor is

maintained. Upon termination the solution path is traced back from the

goal node through each predecessor.

An Example of the Use of HPA

The 15 puzzle is a simple, but combinatorially.large problem space.

Each space* contains 16!/2 configurations, too large to be searched exhaustively.

The average degree (number of moves) of a node is 3, allowing exhaustive search

to find solutions of about 10 steps. On the other hand, the space is simple enough

to study as an heuristic search problem and heuristic functions are easy to formulate.

*
A particular 15 puzzIe configuration may be in one of two spaces. A configuration
in one space cannot be manipulated by any sequence of moves into a configuration
of the other space.

- 54 -

The standard problem is - given some initial configuration, * how can we

push the tiles around to reach the standard goal configuration? In Fig. 6.2, we

see a possible initial configuration and its state description as given by a 16-tuple.

12 3 4

5 6 7 8
E (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,0)

9 10 11 12

13 14 15 b

(a) Standard goal

1 2 3 4

an initial 5 6 7 8
E (1,2,3,4,5,6,7,8,13,15,14,11,10,9,12,0)

configuration 13 15 14 11

10 9 12 b

o/~s~=fpi=12
2 3

1 2 3 4 1 2 3 4
E (1,2,3,4,5,6,

5 6 7 8 = (1,2,3,4,5,6,7,8,13, 5 6 7 8
7,8,13,15,14,

13 15 14 b 15,14,0,10,9,12,11) 13 15 14 11
11, 10,9,0,12)

10 9 12 11 10 9 b 12

P2 = 13 P3 = 11

(b) Successor states and their heuristic value

FIG. 6.2--Some puzzle configurations and descriptions.

*
In the appropriate parity space.

- 55 -

From the initial configuration, there are two successor states possible. These

correspond to switching any tile adjacent to the blank into the blank’s position.

The position of the blank in ,the center of the board allows four possible moves,

on the sides three possible moves and in the corners two possible moves.

In applying HPA to our problem, we ordinarily attempt to find a good heuristic

function h. If for example we chose h=O, then we have an exhaustive search which

will ordinarily require too much time and space. Now one simple heuristic meas-

urel’ ’ 1s a position count. We have a 16-tuple of tile values which are out of order.

Any particular tile is so many squares away from its position in the goal con-

figuration.

We can say, as in the Graph Traverser 18
work, that

p. = the Manhattan distance of the tile in position i from
1

its goal position

P=&L.
i=l ’

Note, if P = 0 then we are finished; also P represents a lower bound on how many

moves to the goal. In Fig. 6.2(b) we show the initial configuration with its two

successor states and their position count. The first step of HPA would place

nodes 2 and 3 (number in circles) in set g and then node 3 would be placed in

set S because it has the smaller value. This process continues until the goal

state is reached or the computational resources allotted to the problem are

exhausted.

In Fig. 3, we show the entire search tree that HPA would visit in solving this

problem. While this particular instance is simple enough so that HPA is never

misled, it still presents the flavor of heuristic search as thought of in our model.

- 56 -

4

3

1269A6

FIG. 6.3--An example of a puzzle solution. How HPA with h=P
and w= m solves a ptiticular 15 puzzle.

- 57 -

FIG. 6.3 (cont.)

Node

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

State

(1,2,3,4,5,6,7,8,13,15,14,11,10,9,12,0)

(1,2,3,4,5,6,7,8,13,15,14,0,10,9,12,11)

(1,2,3,4,5,6,7,8,13,15,14,11,10,9,0,12)

(1,2,3,4,5,6,7,8,13,15,0,11,10,9,14,12)

(1,2,3,4,5,6,7,8,13,15,14,11,10,0,9,12)

(1,2,3,4,5,6,0,8,13,15,7,11,10,9,14,12)

(1,2,3,4,5,6,7,8,13,0,15,11,10,9,14,12)

(1,2,3,4,5,6,7,8,13,15,11,0,10,9,14,12)

(1,2,3,4,5,0,7,8,13,6,15,11,10,9,14,12)

(1,2,3,4,5,6,7,8,13,9,15,11,10,0,14,12)

(1,2,3,4,5,6,7,8,0,13,15,11,10,9,14,12)

(1,2,3,4,5,6,7,8,13,9,15,11,0,10,14,12)

(1,2,3,4,5,6,7,8,13,9,15,11,10,14,0,12)

(1,2,3,4,5,6,7,8,0,9,15,11,13,10,14,12)

(1,2,3,4,0,6,7,8,5,9,15,11,13,10,14,12)

(1,2,3,4,5,6,7,8,9,0,15,11,13,10,14,12)

(1,2,3,4,5,0,7,8,9,6,15,11,13,10,14,12)

(1,2,3,4,5,6,7,8,9,15,0,11,13,10,14,12)

(1,2,3,4,5,6,7,8,9,10,15,11,13,0,14,12)

(1,2,3,4,5,6,7,8,9,10,15,11,0,13,14,12)

(1,2,3,4,5,6,7,8,9,10,15,11,13,14-,0,12)

(1,2,3,4,5,6,7,8,9,10,0,11,13,14,15,12)

(1,2,3,4,5,6,7,8,9,10,15,11,13,14,12,0)

(1,2,3,4,5,6,0,8,9,10,7,11,13,14,15,12)

(1,2,3,4,5,6,7,8,9,10,11,0,13,14,15,12)

(1,2,3,4,5,6,7,8,9,0,10,11,13,14,15,12)

(1,2,3,4,5,6,7,0,9,10,11,8,13,14,15,12)

(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,0)
- 58 -

P

12

13

11

10

12

11

9

9

10

8

10

7

7

6

7

5

6

6

4

5

3

2

4

3

1

3

2

0

The search was conducted using f(x) = h(x) - pure heuristic search. However,

if f(x) = g(x) + h(x) was used,the exact same search would have occurred. The

nature of efficient heuristic search is clearly visible in this type of problem

environment, and leads to questions of how to appropriately use the heuristic

information.

- 59 -

CHAF’TER 7

THEORY OF UNI-DIRECTIONAL HEURISTIC SEARCH

HRA is a typical path finding algorithm and is similar to the algorithms used

in the work of Michie and Doran, and Hart, Nilsson and Raphael. It will find a

path if one exists and the graph is finite, and can fail if the graph is infinite.

In the Graph Traverser
18 only h is used, by our convention w = *. The intuitive

reason for this weighting is that prior distance in reaching a node is so much

‘water over the dam. ” Indeed, if h is an accurate estimator of distance from

the goal, it will indicate the node nearest the goal. This remaining distance is

what determines the fewest nodes to visit. This argument is plausible, but relies

on the accuracy of the heuristic function. Any space for which an accurate esti-

mator exists is a solved problem domain. Only domains with inaccurate esti-

mators are interesting, and it is these cases for which the efficient use of

heuristic information is necessary. In table 7.1 we list some common weights

and the type of search produced.

Table 7.1

Commonly Used Evaluators

w = 0, f(n) = g(n) exhaustive parallel or breadth first search

WZC-3 , f(n) = h(n) simple or pure heuristic search -

Graph Traverser

0 = 1, f(n) = g(n) + h(n) compound heuristic search

7.1 Some Theorems on Searching

In examining formally the claims of the above argument two extremes are

easily dealt with. First, we could have a heuristic function which always returned

the exact distance to the goal, a function having this property we call perfect.

- 60 -

Secondly, we could have a heuristic function which is completely in error; this

would be the inverse of the perfect function.

Theorem 7.1:

If h is perfect (exact, correct) then for w 1 1, the search by HPA is optimal,

i.e., visits the fewest nodes possible.

Proof

Case 1. W=m.

Let the shortest path be k steps long. p = (s, x1, . . . , “k,, xk = t. Since h

is perfect then h(xi) = k - i. NOW when s is expanded xle P(s) and since other

nodes are off the shortest path they must have an h value greater than k - 1. So

x1 is picked on the next iteration, and is expanded in turn. At each iteration the

node along the shortest path and currently in g is placed in S. Therefore only

nodes on the shortest path are expanded, and so our method is optimal.

Case2. w=l.

The argument is the same as above, except that along)J, f(xi) = g(xi) + h(xi)

=i+k-i=k. So along the shortest path, all nodes evaluate to k, and other nodes

evaluate to greater than k.

Case 3. 1 < w < 00.

Consider f*(n) = w !@ =c+ h(n). .Each step from s adds l/w from the first

term, and along the shortest path the second term is reduced by 1. Now l/w < 1,

so along shortest path f* decreases with f*(xj) = k - j + j/w. Each node along p

decreases in value by 1 - l/w while nodes off p increase by at least l/w. Thus

f* will expand only the nodes on p, and so is optimal. Now f* determines the

same search order as f, so f is optimal. m

We see that for h perfect and for w 11 I-IPA only expands nodes on the shortest

path. If w C 1, then additional nodes may be expanded, with w = 0 the worst case.

- 61 -

This case is the exhaustive parallel search (see table 7.1). However, the key

point of this result is that using g(x) in our evaluator does not decrease the

efficiency of search, when appropriately weighted. This is already in some

measure refutes the “common sense” arguments of the pure heuristic searchers.

Theorem 7.2:

If h* is the inverse of the perfect heuristic function h, then the search by

HPA using pure heuristic search (w =-) will always visit the goal node last. If

the space is infinite, the goal will never be found. Therefore w = 0 gives the best

search under these conditions.

Proof

Since we are using the reciprocal of the perfect function, the further from

the goal node the smaller h*. So HPA (w = -) will be led away from the goal,

and only if it exhausts the rest of the space will it reach the goal. It is obvious

that the larger w, the more misleading the evaluator

f=g+w.h*.

. ’ . using w = 0, HPA visits the fewest nodes. n

So in the case where the heuristic function is counterproductive, the less we

rely on it the better. It now remains to investigate cases where h is somewhere

between these extremes in its accuracy.

7.2 Heuristic Error

To do this rigorously will require easily analyzable spaces. However, as

will become clear, this should shed much light on the use of heuristic search,

where previously only heated “intuitively” justifiable arguments were used. The

spaces used will be regular infinite rooted trees with unique goal nodes. The

root is the only node without predecessors, and a regular tree is one in which

each node has the same number of descendants.

- 62 -

The simplest such space is the unary tree (Fig. 7.1(a)). Over this space all

functions, representing any heuristic function and weighting, are equivalent. The

search always proceeds from node 1 to node 2, . . . until the goal node is

encountered. This case is without interest and we move on to the binary tree

space (Fig. 7.1(b)). This is already non-trivial and complex enough to represent

reasonable problem domains such as Lisp programs. 36

Theorem 7.1 applies regardless of the specific directed graph structure,

thus the use of a perfect h in our evaluator f is optimal for 1 5 w < 00. Perhaps

no heuristic information exists for our domain, and we therefore have h identically

zero throughout the binary tree space. The evaluators we could use are then:

(4 f=g+w.h=g (h=O) O<w<m

(‘3 f=h=O WC00

The use of g constitutes a parallel search, while the use of 0 is a search where

all the nodes in 3 (open nodes) will be tied. At each iteration, step 2 of HPA will

randomly choose from the nodes tied, and therefore (b) produces a random search.

If instead our tie-break rule was first-in/first-out (FIFO) we would have parallel

search. Last-in/first-out (LIFO) would be a depth first rule.

Theorem 7.3:

Over an infinite binary tree, a parallel search on the average requires

2k + g-1 - l/2 nodes expanded to find a node k steps from the root.

Proof

The number of nodes in a binary tree of diameter k (maximum length from

k+l
the root) is Bk = 2 - 1. Since a node may be anywhere along the kth level with

equal probability, we must search Bk + 1 to E%l+l nodes with the average being

Lemma: A binary tree of diameter k has I?! +’ - 1 nodes.

- 63 -

-em

N f-0 * m (D id
----- !3

3

- 64 -

Proof: By induction.

Case k = 0: B. is just the root node. B. = 2’+l - 1=2-l=l.

Case k = 1: B1 is just the root node and two successors. B1 = 3 = 2 l+1 - 1 .

Inductive step: Assume Bk = 2 k+l - 1, to show Bk+l = 2k+2 - 1.

Each level has gk nodes, where k is the distance from the root.

Bk+l = Bk + (k + 1 level)

= s + $+I = $+I+ gk+l - 1 = $+2 _ 1. n

So in a parallel search of a binary tree, we have the above formula deter-

mining, on average, how many nodes must be visited. It is exponentially varying

with the distance from the root; typical behavior in complex problem spaces.

In contrast, let us examine the expected number of nodes visited by a random

search in finding a goal node k steps from the root. In the simplest non-trivial

case k equals 1 (k = 0 is trivial).

Theorem 7.4:

Over an infinite binary tree, a random search expects to visit an unbounded

number of nodes to find a goal node 1 step from the root.

Note: HPA is not told that the node is only 1 away and consequently does not

restrict its search to this level.

Proof

E = Expected number of nodes visited

ri = Probability of finding the goal node in exactly i steps

pi = Probability of finding the goal node on the ith step,

having reached this step

- 65 -

Iii = Probability of not finding the goal node on any step

before the ith step

The 1 is for the root node

ri = pi - Pi .

We show
,’ 1

Pi = i+l’

With each step of HPA over a binary tree one node is removed from 2 and

placed in S, but two nodes are placed in g. This means at step i there are i + 1

nodes in g. In the case of f = 0 and random tie-breaking, they all are equally

likely to be picked. Furthermore since the goal node is 1 away from the root and

1 it is always in set g until found by HPA so pi = -
i+l’

Pi=+, we show this by induction

i-l
$=I- C r., Q=l

j=l J

f2=1-rl=l-plfl=l-i. l=f.

Assume fk = l/k, we must show J$+~ = l/k+1

=%-rk=ek(l-%)=~~-~l)=l
k+l *

- 66 -

Therefore

= E t the harmonic series which
i=l

does not converge. n

22,50 This result is similar to gambler’s ruin problems Essentially the

space grows too fast, and when not lucky enough to initially find the goal node,

we soon find it disappearing in the growth of g.

Normally, a search is restricted by time or space limitations. This is

akin to limiting our infinite space to some maximum depth. If we are interested

in finding a goal node in a binary tree of diameter k, then a maximum of 2 k+l -1

nodes need be searched. If each of these nodes is with equal probability the

goal node, then any exhanstive non-repeating search would yield the same

expected value for nodes visited i (Bk + Bo) , or 2k. Each method would get

better performance for different groups of nodes. The parallel search visits

the closer nodes soonest, and for goal nodes near the root this method has a

better expected value than random or depth first (LIFO) search.

In our theorem, HPA was unaware that the goal was at level 1, and so with

finite probability it searchedportions of the space which were beyond the solution.

A modification on this would be to tell our procedure that the goal was on level

k. When this is known, the depth first (see Fig. 7.2) or backtrack track method
24,26

is optimal. The algorithm should go down to a depth of k and check to see if this

is the goal node. If not it backs up one level and goes down to the next node at

level k. It continues backing up and going forward to the next node on level k

until it finds the goal. Since this search pattern looks at nodes on the kth level

- 67 -

Il97A3

FIG. 7.2 --Nodes numbered in order visited by a depth first search to level 3.

as soon as possible, it must be best in the sense of the expected number of

nodes visited. It would be the worst search pattern if the goal node was

actually at level 1. Here it either finds the goal on the first try (like any other

method) or must look at half the tree before returning to the goal node. A

parallel search is a conservative strategy, you are guaranteed not to penetrate

below the part of the tree containing the goal, while you pay by always investi-

gating the whole subtree up to that level.

7.3 How Error Affects Heuristic Search

In general we have neither a complete lack of information nor perfectly

accurate information, but instead we have a heuristic function which has error.

We wish to resolve for this more typical instance how best to use a heuristic

function. To investigate this question, we stay in our binary tree space using

HPA. We will do a worst case analysis in the spirit of error analysis

in numerical problems.

Consider

h = perfect estimator

e=aboundontheerror 0,1,2,3, . . .

h* = actual heuristic function

h-elh*<h+e

We will choose values of h* conforming to the above limits, but in such a

manner as to mislead HPA to the greatest extent. In doing this, we assume

that HPA will always choose the worst nodes in case of ties, i.e., nodes off

the solution path. An example of this analysis is Fig. ‘7.3, where HPA just

uses the h* function as the evaluator. The order of search is according to the

numbers inside the nodes with x, the goal being reached in 5 steps. To make

h* as bad as possible (E = 1), we add E to each node on the shortest path, and

- 69 -

E=l

f =h* 1197A4

FIG. 7.3- -The goal node is marked by an x. Other nodes are labeled by order of search
(inside) and f value outside. Five nodes are searched when x is found.

we subtract E from each node off the shortest path. If h itself was used HPA

would only visit the 3 nodes on the shortest path which is a consequence of

theorem 7.1.

One of the principal questions is the comparison between h* and g + h* as

evaluators. Both to get more of a flavor of our error analysis and some inklings

as to this comparison, we work through the example of Fig. 7.4. Let us examine

HPA using f = h* + g, as in Fig. 7.4(b). At the goal node x,

h(x) = 0, P(X) = 1

h*(x) = h(x) + E = 0 + 2 = 2

f(x) = 3;

while at node 2 we have

h(2) = 2, g(2) = 1

h*(2) = h(2) - E = 2 - 2 = 0

f(2) = 1.

Node 3 has

h(3) = 3, g(3) = 2

and so both have increased by 1 from the values of its predecessor node 2.

Thus

h*(3) = 3 - 2 = 1

f(3) = 3

an increase of 2 from its predecessor. In contrast when using only h* (Fig. 7.4(a)),

f increases by 1. This allows the search in Fig. 7.4(b) to cut-off sooner along an

incorrect path. The results of Fig. 7.4 are:

distance to goal = 1

maximum error s = 2

- 71 -

- 72 -

nodes visited f = h* are 9

nodes visited f = h* + g are 5

We can generalize this result and find a formula giving the number of nodes

visited for different errors and path lengths in our binary tree space.

In analyzing the worst case behavior, we must show that h* = h + E on the

solution path and h* = h - E off the shortest path leads to the poorest searches.

Theorem 7.5:

If hI = h2 except on the solution path where

h+x) 2 h2(% x on solution path

Then the search by HPA using hI always visits all the nodes visited when using

Let p = (XI, x2, . . . , “k, be the solution path.

S(xi) will be the tree explored by HPA, when xi is included in set S. So

sw is the set of nodes searched when HPA finds the solution path.

Let SI(xi) be the trees searched by HPA using hI and S2(xi) will be the

corresponding trees for h2. We show by induction that

a) S1(xl) 2 s2(q
Since hl(xl) Z h2(x1) and nodes off the solution path

have the same values.

b) Assume SI(xi) 1 S2(xi)s then SI(xi+l) 2 S2(xi+I)*

This is obvious from the same argument as in case (a).

Therefore increasing the value of the heuristic function along the solution path

can only increase the number of nodes searched. m

- 73 -

Theorem 7.6:

If hI = h2 on the solution path, but everywhere else

hi(x) 5 h2(% x off the solution path

Then the search by HPA using hI always visits all the nodes visited when using

h2’

Proof

The argument is similar to theorem 7.5. Now the reason more nodes may

be visited using hl is that the values off the solution path are lower using hl and

hence sooner included in set S. l

Taken together the above theorems show that a worst case search occurs

when h+e is used on the solution path and h-E is used off the solution path. These

results extend to using any particular value of w in making the corresponding fl and f, ‘

Theorem 7.7:

Let k be the distance from the root node to the goal node and f = g + h* be

the function used by HPA, then the maximum number of nodes visited in our

binary tree space is

2s .k+l.

Proof

If the goal node is distance k from the root, then if h* is perfect HPA visits

k + 1 nodes (theorem 7.1). In the worst case with an error of E, all nodes E off

the shortest path will be visited, excluding the nodes succeeding thegoal node.

This is shown in our discussion of Fig. 7.4.

Case E = 0.

This is as stated above k + 1.

- 74 -

CaseE=l.

These are the nodes on the shortest path plus those one off the shortest

path. There are k nodes one off the shortest path so we have

k+k+l=2k+l.

At this point each unexpanded node (leaf) has two not yet explored successors.

The number of leaves in a binary tree grows as 2
E-l ,. k. So the tree for error

E I2is

%+1+2*k+22k+ . ..+2 E-l k
Y

E=l

=1+2k+k ‘2’ ai
i=l

=1+2e.k

Similarly we prove

Theorem 7.8:

Let k be the distance from the root node to the goal node and f = h* be the

function used by HPA, then the maximum number of nodes visited in our binary

tree space is

Proof

Case E = 0.

k+l E =o

Again by theorem 7.1 a path to a goal node distance k from the root is found

by HPA visiting k + 1 nodes, if h* is perfect.

- 75 -

Case c = 1.

Here as in the previous theorem HPA visits nodes 1 off the solution path

and we have

&+1=$ k+l nodes visited.

Case s Z 2.

After the first level each increment in the error allows a maximum of two

additional levels to be visited. This is because along the solution path we use

h + E and off the solution path we use h - E giving a 2~ leeway. The trees with

the maximum number of explored nodes are

2k+ 1 + 2k + 22k + 23k+ + . . .
--

e=l e=2 e=3

+ 22e-3k + 22e-2k

26-2

=l+W+k
c .

bE 2l= l+T.k

i=l

These results suggest two plausible conclusions for general heuristic search.

1. The more accurate h*, the fewer nodes visited by HPA.

2. It is better to include g in the evaluator.

Furthermore the results are extendable to any tree structured problem space

with a unique goal node of interest. Namely

Theorem 7.9:

If HPA is searching any tree structured space for some goal node then

a) f = h* will visit at least as many nodes f = g + h* in the sense

of the above worst case analysis.

- 76 -

(b) Ifh-elSh;Ih+slandh-e2<h;<h+s2, e2>sl.

Then the number of nodes visited by HPA using hg will be at

least as many as when using hZ in the sense of the worst

case and with w being the same for both evaluators.

Proof

Part (b) is obvious.

Part (a) follows from theorems 4 and 5. n

The major defect of the above analysis and consequently the generality of

the results is that problem spaces are ordinarily not trees. In a tree each node

has a unique path back to the root. Problem domains have circuits normally

and many alternate solution paths. Also the above analysis is for the worst

case and while these results are attainable, in practice they are unlikely. It is

important to monitor the behavior of HPA in actual problems.

- 77 -

CHAPTER 8

SOME UNI-DIRECTIONAL EXPERIMENTS WITH THE FIFTEEN PUZZLE

Each problem space and each heuristic function for this space presents a

problem in selecting an appropriate w. Exclusive use of g guarantees finding

the shortest solution path, however, a price is paid in the breadth of the search.

On the other hand, using only h is possibly unstable; HPA then runs down the

search tree to great depths before changing its search to another part of the

space. This behavior is analogous to the situation described by theorem 7.4.

It is appropriate to look for a middle ground between the pitfalls of these extremes.

Let us consider a specific heuristic function, h*, used by HPA to solve prob-

lems in some problem space. We can characterize its effectiveness for a given

problem by the number of nodes N it visits in finding a solution path of length K,

A further number describing its search is its branch rate. t The branch rate p

is the number of successors a node has in a regular tree of diameter K and size

N. So given a particular heuristic function and a weighted evaluator, we solve

a number of sample problems in our space, obtaining for each solution

NW = nodes searched for this weighting

Kw = solution path length.

We can then determine

pw = branch rate for this weighting

by solving for pw in

t . This is a suggestion of Nils Nilsson.

- 78 -

We then use this information to select the most successful value of w for our

evaluation function,

The fifteen puzzle represents a general problem domain in having many pos-

sible alternate solution paths. It is therefore reasonable tc study the behavior of

HPA using different heuristic functions with respect to some sample of problems.

8.1 Heuristic Functions

In the previous chapter, we stepped through an example of a typical fifteen

puzzle problem using a function P referred to as position count. This function

has the lower bound property 30 with respect to the actua.I metric on the space,

and therefore

4 f=g+wP O<w<l

is admissible.

In the Graph Traverser experiments, Doran and Michie developed a more

sophisticated function which had two separate terms.

16
S = c hy pf

i=l

pi is the position value as in P; hi is the.Manhattan distance from the blank square

to tile i. The experiments with the Graph Traverser found o = 0.5, /3 = 2 to be

best. The addition of hi into our evaluation ((Y = 0, p = 1 makes S = P) adds the

fact that a tile may not be moved unless it is adjacent to the blank position. Con-

sequently rearrangement is harder the more distance between tile and blank

(see Fig. 8.1). S still was found tc be impractical by Doran and Michie and they

included the ‘ad hoc@ (their terminology) reversal term. The reversal term is

not precisely defined in Ref. 18. The interpretation given it in our experiments

- 79 -

1 2 3 4 1 2 3 4

6 7 8 12 6 7 8 12

14 13 9 b b 14 13 9

15 11 10 5 15 11 10
/

(9 (ii)

FIG. 8.1--Tile 5 is easier to move in (i) because it is next to the blank.

is described by the following Algol segment.

R:=O;

for i := 0 step 4 until 12 do - - -

for j := 1 S&J 1 until 3 do - --

if board [i + j] = board [i + j + l] + 1

and board [i + j] = i + j + 1 then R := R + 1; -

for i := 1 step 1 until 4 do - --

for j - := 0 step 4 until I.2 do - -

ifboard[i+j]=board[i+j+1]+4

&board [i+ j]=i+ j+4 then R :=R+ 1;

The reversal count R as defined above is incremented whenever two adjacent

tiles are interchanged from the goal position. The reversal term used by the

Graph Traverser* differs from ours in relaxing- the requirement that the tiles be

in their goal positions. Instead, they may be in any adjacent positions within

their goal column or row. Since our purpose is to test the effect of w weightings

on heuristic search it is unnecessary to have the same heuristic functions as the

Graph Traverser. In fact the function developed using the Graph Traverser is

too good to be interesting. A function so reliable behaves well over a wide

range of w values as expected from theorem 7.1. This situation is unrealistic in

Private communication with Jim Doran.

- 80 -

difficult problem domains, and heuristic functions with significant error but of

positive benefit are more interesting. ’

The above terms were combined into four different functions.

1. fl=g+w* P

2. f2 = g + w . (P + 20 * R)

3. f3=g+w*S

4. f4 = g + w 0 (S + 20. R)

The reversal term was weighted by 20 because this is approximately the number

of moves times reversals it takes to solve a position whose only defect is a pair

of reversals. The functions fi and f2 constitute one pair of related functions and

f3 and f4 are another pair. The basic term of the first pair P is a naive heuristic

in comparison to S, the basic term in the second pair.

8.2 Data

Figure 8.2 shows the ten positions used in our experiment. They cover a

wide range of difficulty and special features. Al and A6 have their top two rows

already in order. However A6 has many reversals. A9 is almost in reverse

order, so the individual tiles are quite far from their goal squares. A8 is the

configuration appearing in Ref. 18 and A10 is a puzzle used by Ref. 56. The rest

of the positions are randomly selected.

8 o 3 Experiment

An Algol W program (Appendix III) incorporating the HPA procedure was run

with positions Al - AlO. Functions fI and f2 were run with w = 1,2,3,4,8,16, m.

Functionsf3andf4wererunwithw=0.5,0.75,1,1.5,2,3,4,16,~a. Foreach

case the solution path length and the number of nodes expanded were recorded.

If the number of nodes expanded reached 1000 the search was terminated without

a solution. This then was an arbitrary limit selected as being the highest price

we would pay for a solution.
- 81 -

1234 9513 6247 1374

5 6 7 8 13 7 2 8 51511 8 9 5 8 11

13 15 14 11

=s

2 5 6 4 1 2 3 4 1 4 2 3

9 1 15 7 5 6 7 8 6 5 8 11

14 13 3 8 10 12 11 13 14 9 12 15

,10
A5

15 14 9 b

A6

10 13 7 b

Y

14 6 4 11 10 1 3 12

10 15 12 b

A2

15 11 14 12

7 10 13 9

,13
A3

9 2 13 10

5 12 7 4

13 6 2 12

10 14 15 b

7 13 11 1

b 4 14 6

8 5 2 12

10 15 9 3

8 4 6 5 14 1 b 15

,3_2
A9 A10

FIG. 8. %--Initial positions and code numbers used in experiments.

The different values of w tested for fl and f2 versus f3 and f4 come from

normalizing h with respect to g. P normally underestimates the actual distance

to the goal, while S generally overestimates the actual distance to the goal. In

making these calculations for position Al we have P=12 and S=47 where the actual

distance is 12. To have equal importance in the evaluator, the h term must be

normalized or scaled to the g values. Since S is an overestimator, we use

smaller values of w in our tests with it.

- 82 -

8.4 Results

The performance of the different heuristic functions varied significantly with

w. Tables 8.1 - 8.4 show the results for the four functions and ten positions.

All of these functions were of positive benefit in pruning the search space. In

conducting a parallel search (f=g) with position Al, the search was terminated

when 1000 nodes were expanded. The tree depth was 9 which is 3 away from the

solution. This, being the simplest puzzle, shows that exhaustive search could

not within the 1000 node limitation solve any of our problems.

Function f4 was the most powerful evaluator, followed in order by f2, fl

and f3. f4 solved problems most consistently and with the fewest nodes expanded.

The P functions fI and f2 were much nearer in performance than the S functions

f3 and f4. The reversal term was much more significant in improving the S

functions than the P function.

Function f2 was better than function fI in 37 cases,while fl was better than

f2 7 times (this is out of a total of 70 cases). The scorecard for f4 versus f3

was 60 to 1 out of 90 cases. Case Al was not significant in these comparisons

and other ties normally occurred because 1000 nodes were reached by both func-

tions. Function f4 with w = 1.5,2,16,00 solved all the problems. Function f2

with w = 4,16 m solved all but one problem. The best performance for f3 was

w = 0.75 which solved 6 problems; while fI with 0 = 3,4,8,~ solved 6 problems.

Except for w = 0.5, f4 solves at least 9 out of 10 problems for each w value. It

was also best in the sense of visiting fewer nodes, on the average, than f2 the

next best function. For example, comparing f2 with f4 with w =m , f4 was better

in 5 problems than f2 and looks at 2928 nodes; while f2 is better in 4 problems

and looks at 3459 nodes. Comparing the fewest total nodes visited, fI was best

withw=3, f2withw=4, f3withw=1.5andf4withw=1.5.

- 83 -

Table 8.1

Results for fl =g+ w. P

Al A2 A3 A4 A5 A6 A7 A8 A9 A10 Total N

NKNKNKNKNKNKNKNKNKNK

1 28 12 129 26 1000 - 120 20 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 7277

2 12 12 66 28 585 36 69 20 1000 - 1000 - 1000 - 1000 - 801 86 1000 - 6533

3 12 12 35 28 930 48 122 20 1000 - 393 36 317 38 1000 - 1000 - 1000 - 5809

4 12 12 36 28 1000 - 228 20 368 44 447 36 900 42 1000 - 1000 - 1000 - 5991

8 12 12 36 28 1000 - 326 32 516 44 834 40 431 62 1000 - 1000 - 1000 - 6156

6 12 12 36 28 1000 - 418 32 1000 - 1000 - 279 62 1000 - 1000 - 1000 - 6745

I) 12 12 996 86 853 148 119 21 1000 - 1000 - 514 80 1000 - 360 152 1000 - 6854

N=nodesvisited

K = solution path length

Table 8.2

Results for f2 = g+ w(P+ 20 9 R)

Al A2 A3 A4 A5 A6 A7 A8 A9 Al.0 TotalN

N K N K N K NKNKNK N K N K

12 12 66 26

12 12 35 28

12 12 36 28

12 12 36 28

12 12 36 28

12 12 36 28

12 12 433 104

1000 -

1000 -

1000 -

705 62

598 66

1000 ,-

121 58

106 20 1000 - 1000 - 1000 -

60 20 1000 - 443 32 81 36

84 20 653 46 663 40 97 36

124 20 206 46 317 36 118 48

320 38 189 46 248 48 124 48

209 34 323 66 129 58 610 66

119 20 123 46 133 56 138 58

N=nodesvisited

K = solution path length

1000 -

1000 -

1000 -

1000 -

240 85

245 85

742 203

N K N K

1000 - 1000 -

'1000 - 1000 -

313 92 655 64

155 92 270 64

1000 - 1000 -

691 120 865 90

648 196 1000 -

\

7184

5631

4513

2943

3762

4120

3469

Table 8.3

Results forf3 =g+ wq s

0.5

0.7:

1

1.5

w2
co
aa 3
I

4

16

m

Al A2 A3

NK N K N K

13 12 48 26 1000 -

12 12 1000 - 286 42

12 12 1000 - 488 40

12 12 1000 - 394 48

12 12 1000 - 203 48

12 12 1000 - 1000 -

12 12 1000 - 1000 -

12 12 1000 - 1000 -

12 12 1000 - 178 80

A4

N K

31 20

26 20

26 20

26 20

26 20

24 20

24 20

24 20

24 20

A5

N K

1000 -

783 38

1000 -

108 46

1000 -

1000 -

1000 -

1000 -

377 106

A6

N K

1000 -

401 32

754 38

269 44

441 44

250 40

438 40

1000 -

1000 -

N =nodes visited

A7 A8 A9

N K N K N K

1000 - 1000 - 1000 -

1000 - 1000 - 1000 -

1000 - 1000 - 1000 -

1000 - 1000 - 1000 -

1000 - 1000 - 1000 -

1000 - 1000 - 619 196

1000 - 1000 - 1000 -

1000 - 1000 - 1000 -

1000 - 1000 - 1000 -

Al0 To&IN

N K

1000 - 7092

737 74 6245

51i 78 6791

1000 - 5809

1000 - 6682

1000 - 6905

1000 - 7474

1000 - 8036

1000 - 6591

K = solution path length

+ rn

Overrelaxation

The initial p values of the ten problems (table 8.5) show that P is roughly an

underestimate of about l/2, the shortest solution paLi. S is an overestimate of

about twice the shortest solution path. The results for both the P functions and

the S functions are better for w values that cause an overestimate of the distance.

This is similar to theorem 7.1 which said that for w 2 1 the perfect heuristic esti-

mator was optimal. In underestimating we suffer from broadening the search; in

overestimating this does not occur (see Fig. 8.3). The behavior of search with

respect to w is akin to relaxation in elliptic differential equation methods.

Table 8.5

Initial values of the heuristic functions and the shortest solution paths found.

I AI A2 A3 A4 A5 A6 A7 A8 A9 A10 Total
\

P 12 24 18 14 24 12 20 39 52 32 247

S 32.2 82.2 68.4 39.3 80.2 40.9 51.8 183.6 344 139.8 1062.4

k min 12 26 36 20 38 32 36 85 86 64 435

Dead-ends

The significant effects of reversals on the more depth first heuristic, S, is

also noteworthy. In backtrack search, the main efficiency is a result of the

immediate abandonment of a dead-end, as soon as it is detected. 26 In a heuristic

search application to checkmates, Hubermsn’s worse functions 31 provide examples

of dead-end detectors. Similarly to place a large value on reversals produces

dead-end behavior in the fifteen puzzle. The more depth first the search, the

more important to detect dead-ends. It is the difference between the worst

evaluator f3 and the best evaluator f4. Dead-end detection serves an analogous

purpose to using compound heuristic search as opposed to pure heuristic search.

- 88 -

2000 I I
0.5 0.75 1.0 1.5 2 3 4 8 16 a

w
126987

FIG. 8.3--Performance of each evaluator with respect to w.

- 99 -

In compound search a particular path is no longer searched when its progress

does not justify initial expectations. Dead-end detection is a more cathartic

form of recognizing that progress is not keeping up to expectations.

8.5 Remarks

In general as w increased, path length kw increased and branching rate p,

decreased (see table 8.6). These results, along with the observations on dead-

end detection and overrelaxation are more qualitative than quantitative. It is

indicative of the importance of developing this theory in general problem solving

domains. Minimally one could say that compound heuristic search is a more

general and efficient procedure than pure heuristic search.

Table 8.6

Density vs. Path Length for Function f4, Problem A5

W

0.5

0.75

1

1.5

2

3

4

.6

a

k
W

38

38

46

46

76

76

76

76

78

PW
N

1.129 868

1.083 258

1.054 203

1.029 98

1.023 202

1.918 163

1.017 157

1.016 147

1.016 155

- 90 -

CHAPTER 9

BI-DIRECTIONAL HEURISTIC SEARCH

After seeing the sizable gains in computational efficiency made by bi-

directional methods in the shortest path problem, it is desirable to extend these

benefits to the heuristic case. Many problems have a known goal or goal set, and m
the additional power of the bi-directional technique is a welcome aid in these

cases. At first, as in Ref. 30, we want the extension of VGA to the heuristic

case preserving admissibility.

Before going on to the extension, we would like to deal with two common

objections to the use of bi-directional techniques.

1. They are only useful when both the goal node and the initial node are

specified and the graph is symmetric. (This remark is inferred from Ref. 18,

p. 257.)

As we have already seen with VGA:

a) We may have a goal set and an initial set rather than

single nodes;

b) The graphs may be directed (unsymmetric);

c) If a property specifies the goal, it normally determines

a set, which as we note in section 2.4 can be handled.

2. The extra bookkeeping for bi-directional methods, especially the test

for a node lying in the intersection of forward and backward trees makes the

method cumbersome.

This was not the case in VGA and in the description (to follow) of the program

a general method based on hashing, simulates associative search and efficiently

finds nodes in the tree intersection along with providing a simple test for redundancy.

- 91-

9.1 Extension to Bi-directional Heuristic Search

The extension of the class of uni-directional admissible algorithms A*3o

to bidirectional algorithms at first appears simple. Naively, one would in VGA

replace g, by fs = gs + hs. This seems reasonable and worked in the uni-

directional case where Dijkstra’s algorithm was so extended to the class A*.

However, a modification of our canonical counterexample,to include Euclidean

information (see Fig. 9.1) as the heuristic informatiosrefutes the above extension

of VGA. In the figure the Euclidean distances are marked above the dotted lines,

with the example drawn accurately to show it is realizable in the plane. We step

through VGA modified as described above using for step 2 the alternating rule:

on odd iterations use the forward direction and on even iterations use the backward

direction.

Iteration 1:

s is placed in S fs(s) = 6

t is placed in T f,(t) = 6

nodes a and b are placed in g

fp) = 7,

nodes a and c are placed in !?

fs(b) = 7;

fp) = 7, f&c) ? 7;

node a is min in g and is placed in S, t is placed in s, f,(t) = 8 .

Iteration 2:

node a is min in !? and is placed in T a eSnT and therefore we go to step

6 of VGA to terminate.

- 92 -

b 3/4 c

FIG. 9. l--Euclidean counterexample. 1269AS

- 93 -

The only path found is (8, a, t) with length 8. However this is the wrong result,

the path (8, b, c, t) has length 7: . Thus the algorithm is not admissible even

though the Euclidean metric satisfies the lower bound criterion and the ‘consis-

tency’ (Ref. 30, p. 12) condition for heuristic functions. The problem is more

complex than the uni-directional extension, and possibly the more complete use of

the heuristic information must go into the selection of the next node to be expanded

An attractive criterion for expansionis the minimum over

WxcS WY~T (g,(x) + W,Y) + gtW)

where h(x, y) is a heuristic estimate of the distance from x to y. We want h to

behave nicely and we use an h which satisfies consistency so

h&t) I h(xsy) + g,(Y)

This means that we need only look at te T (and it must always be in T from the

initialization step). Then we have come back to the original algorithm which was

shown to fail. So even this calculation, almost exhaustive with respect to both

the forward and backward sets adds nothing. In fact if we had not deduced its

equivalence to our previous method, we would have to calculate O(lgl l I?I)

computations per iteration which is not computationally feasible in problems of

interest.

9.2 Correct Extension - The Very General Heuristic Algorithm

The above attempts are of interest in displaying the subtlety of the problem

in bidirectional approaches. when dealing with the shortest path problem, Rerge

and others had trouble because of the terminating condition. We have been hesitant

in our extension to the heuristic case of challenging one previously well oiled ter-

minating condition. Once again, it is just this point that is the stumbling block.

- 94 -

In reconsidering the problem, an elegant device will be used, which hopefully

clarifies and lays to rest the termination confusion. In place of distance we will

substitute the concept of excess or waste. Waste will be the amount a solution

takes over some optimum which is estimated initially. Equivalent to finding the

least wasteful path is finding the shortest path. We define r* to denote our original

estimate of optional distance.

r* = hs(s) = h&t) .

the waste in the forward direction is

ws(n) = f&n) - r* = g,(n) + Q(n) - r*

and in the backward direction is

w,(n) = ftW - r* = g,(n) + h&n) - r* .

We can now describe VGIIA - the very general heuristic algorithm, where

the changes from VGA will be that ws and wt are used in place of gs and gt. Also

the termination condition is changed and the h used in computing f satisfies both

lower boundedness and consistency. The consistency assumption (Ref. 30, p. 12)

is a form of triangle inequality for the distance estimators used in these domains.

VGHA

1. Place s in S and calculate a ws for all successors of s placing them in g.

+ hs(xi) - r*

wf(Xi) := 8

similarly calculate all predecessors of t, placing them in ?! and t in T.

Set amin := 00

2. Decide to look at either gor “T.

- 95 -

3. If % was selected in step 2, then select node xeg which has the smallest

wstxi).

4. Place x from step 3 in S and check if xeSnT. If yes then

a min :=min a
(

mins g,W + g,(x) - r*

5. For each successor (predecessor) of x calculate ws(wt) and see if they

are in g(y) yet. If not place in E (?‘) where

ws lx) := g,(x) + I ex(x) + hs (4 - r*
(>

wf (x) := x

If the successors (predecessors) are already in % (“T), but the new value is lower,

update the values.

6. If

a min6max
(XE& s

min w (x)
)* ~@Jt(4)

then terminate with the path that gave this amin. Otherwise go to step 2.

We will show that this algorithm is indeed correct for any decision procedure

used by step 2. Before going on, note that r* is a constant throughout the compu-

tation and may be dropped without changing the order in which nodes are found or

the path found. The notion of waste is a didactic one and makes the algorithm

more persuasive in its correctness.

Also at this point it is useful to step through the algorithm using our previous

counterexample. We again employ an alternating strategy. The reader is wel-

come to employ any strategy he can think up. For example a forward uni-directional

strategy clearly yields the admissible algorithm A*.

- 96 -

Iteration 1:

s is placed in S

t is placed in T

b, a are placed in g

ws(b) =3++4+- 6=1:

ws(a) = 4 + 3 - 6 = 1

c, a are placed in T”

w&c) = 1; w&a) = 1

node a is min in g and is placed in S

r* = 6

t is placed in g ws(t) = 8 - 6 = 2 o

Iteration 2 :

node a is min in T” and is placed in T

s is placed in ? w&s) = 8 - 6 = 2

aeSflT and a min =2

This is not a minimum over either g or ? and so the algorithm continues, where

before we stopped (incorrectly) at this point.

Iteration 3:

node b is min in g and is placed in S

c is placed in E ws(c) = 1;

a min is still too large.

Iteration 4:

node c is min in ? and is placed in T

b is placed in “T ws(b) = 1:

amin is still too large.

- 97 -

Iteration 5 :

nodecisminin~andisplacedinS

ceSn,T, a =
mm

13 :
4

which is a minimum for either set g snd T” and therefore we halt with path (6, b, c, t)

the shortest path from s to t.

9.3 Correctness of VGI-IA

The argument is even simpler than the one for VGA. In essence, the algorithm

only terminates when the actual waste of the current best path is less than any esti-

mated waste of the set of possible paths. Since hs and ht are always a lower bound,

actual waste must be at least as much as expected waste, and therefore we have

the shortest path.

Theorem 9.1:

Upon terminatiorqthe path from s to t found by VGRA is the shortest path from

s to t. We are assuming positive edge lengths and the existence of some path.

Pf.

Consider the algorithm terminated with path p = (x1,x2, . . *, xk), but that this

is not the shortest path. The shortest path is instead cc* = (y,, y2, . . . , yl)

x1 = y1 = s, Xk=yt-=t .

By lemma 2 of Ref. 30, any node in S or T has a shortest path already found, leading

back to respectively the initial or terminal node. Now there is some yi and y., such
J

that i < j and yieS, yi+idS and yj E T, yj-I 4 T. If this were not so, p* would

have been found before termination. We claim:

y. ES 1+1

yj-l ET

- 98 -

.

This is because hs is a lower bound and therefore ws must be a lower bound on

waste for nodes with their least g,(n).

Since I@*) < Q/L), its waste is smaller and so is any lower bound on this

value. Thus, the algorithm could not have been terminated, because amin is not

less than or equal to the minimum waste over either !% or ?.

The algorithm must terminate since all nodes are eventually placed in either

S or T, including those on the shortest path (Ref. 30, p. 10). m

Corollary 9.1:

If hs and ht satisfy the lower bound condition, but not necessarily consistency,

then VGHA still terminates with the correct solution, if step 5 is modified. Step

5 must add the following: If a smaller value of ws (wt) is found for a node already

in S (T), then the node is removed from there and placed back in % (y).

Pf.

The above proof of theorem 9.1 is used here again as the central argument.

However lemma 1 of Ref. 30 must now be used to show there is a node x in %,

xe).~* with ws(x) < amin. A similar node exists in ?.

The heuristic functions hs and ht need not be defined in similar fashion, SO

long as each satisfies the lower bound’condition. However one ordinarily makes

use of the best possible heuristic function available. In so far as one regards

growing the shortest path tree S (or T), the results of Ref. 30 hold with respect

to one heuristic function dominating another. If hsI is always a greater lower

bound than hs2,then the tree hsI grows will be at least as sparse as the tree grown

using hs2 (theorem 3 in Ref. 30) out to any given node along the shortest path.

- 99 -

9.4 Strategies in Bidirectional Search

After selecting appropriate heuristic functions, we are again confronted as

was the case with VGA, with what decision rule to use in step 2 of VGHA. In

proposing an optimal strategy for VGA, we made two hypotheses

1. monotonicity of g and ?

2. equi-probability of any node in these open sets being

the next node on the shortest path.

The monotonicity hypothesis is usually satisfied in large graphs with an

average degree of greater than one, which is also a characteristic of complex

problem domains. The fifteen puzzle has a cardinality of 16!/2 with an average

degree of three. The equi-probable hypothesis coupled with the monotonicity

hypothesis means that as the algorithm iteratively augments S and T, the sets

grow larger and the probability at a given iteration of finding the next node of the

shortest path decreases proportionately to the size of the set. Under these con-

ditions, the cardinality comparison strategy produces the best selection of either

the forward or backward direction in the sense that the expected number of nodes

visited is a minimum over all strategies. A further justification is that if the

decision on a particular iteration is independent, then it is clearly better to

choose from the smaller set.

Our hypotheses are reasonable and VGA following the cardinality comparison

decision rule outperforms other strategies. However, as in the case of the mono-

tonicity hypothesis discussed previously, the equi-probable hypothesis is not exact.

In point of fact the edges of a graph are not equi-probable in the number of

occurrences along the shortest paths, but in some complicated fashion these

probabilities are inversely proportional to the edge lengths suitably normalized

with respect to the smallest edge length. The longest edge in the graph has a

- 100 -

smaller chance of lying on some shortest path than the shortest edge; providing

they are not of equal length.

Consider a directed graph of size n with edge lengths distributed from 1 to n.

An edge of unit length must appear in at least one shortest path - namely the path

it constitutes. However, an edge of length n (or even of length 2) may appear in
49

none. For example, the graph in Fig. 9.2 where there is a Hamilton circuit

with each edge of unit length. Edges off the circuit are of length seven. The

longest shortest path in this graph is of length three (p = (1,2,3,4)) and only edges

of unit length are included in any shortest path. Theoretically, a probability

should be assigned to a node in an open set depending on its distance from the

root node in comparison to the other members of the set.

A decision strategy to be optimal must select the open node that has the

highest probability of being on the shortest path. Each set g or ? must be con-

sidered separately. Each will have a current best candidate whose probability

of being on the shortest path is related to the values of the distance computed for

each member of the set.

Set g has IsI nodes each having some distance (or waste) value. If p,,, p2,

. . . , p ,s, are the probabilities that a given node is the next node along the shortest

path, then we must have
13

where we select the node with the highest probability. We also do this for y and

then compare, taking that direction and node with the current maximum probability.

If for example, there is only one node in set ‘;3 then no matter what its value

(of waste or distance), it must lie on the shortest path.

El= 1

- 101 -

1269A9

FIGi 9.2--AU shorbt paths are eubprthe of a Hamilton cirouit..

- 102 -

and

i p =l.
i=l i

Consider some computation’reaching the following situation:

if = (x1,x2,x3)

T = (Y,,Y,)

f&Xl) = 5, fs(X2) = 5

fs(X3) = 200

ft(Y1) = 100

Knowing nothing else about these nodes we have

PYl = PY2
= l/2

P, = Px = l/2 - E
1 2

Px3 = 2e

So we would select the backward direction choosing either yl or y2 even though

ftCY1) ” fs(xl) * Since a graph is a complex structure, a distribution of edge

lengths and the consequent probabilities induced with respect to a given shortest

path problem is exceedingly difficult to calculate. The equi-probable assumption

is a workable approximation which requires no additional computation.

The theoretical results (theorem 4.4) still hold for VGHA, but the discussion

of probabilities must now include the heuristic estimator. A node whose expected

path length is small is better than a node with a larger expected path length. We

also have to worry about the accuracy of our heuristic estimate. Thus VGHA

provides a more complicated decision problem then VGA, and cardinality com-

parison is again a pragmatic solution. However, some other problems arise in

- 103 -

bidirectional heuristic search strategies, and in our discussion of open questions

we will make further comments on this topic.

9.5 Associative Search as a Solution to Redundancy and Intersection

Previously we had mentioned the antipathyto bidirectional search because

of the extra mechanism involved - especially with regard to the termination

problem. Step 4 of VGHA asks to check if XE S nT. If x was just placed in S, we

must search all the nodes of T for that same state. In the VGA case we normally

have an explicit representation of a finite graph of n nodes. We can then keep

logical vectors for each set.

Boolean array SVEC, TVEC [l:n];

comment SVEC [i] = true if node i is in set S - similarly for TVEC .

When node i is placed in set S its SVEC [i] is set true and the check

for intersection is:

if TVEC [i] then E 2 intersect

else E 2 nointersect .

When a node i represents some state ri and the nodes are being generated by

a successor (predecessor) routine, we do not have a predetermined node-state

labeling. The check for whether some state Gi is in a given set requires a

search of the set node by node with a comparison of the associated states to ci .

This comparison is necessary not only in determining xeSnT, but is also needed

for finding out if a new node is redundant.

In generating search trees where the space contains cycles, the same state

can be reached along many alternate paths. These redundant nodes can be ignored

and left in the search tree, or for each node generated a redundancy check can be

used. This requiree checking each new node against all others generated in the

- 104 -

same search direction. The work involved in making a simple comparison search

would be O(n2) where n is the number of nodes in the final search tree. For spaces

where there is likely to be a small amount of redundancy, the extra effort in

weeding it out is greater than generating a small number of nodes redundantly.

The redundancy problem and the intersection problem are both the same

problem. There is a minor difference in that the redundancy problem requires

the check to be in the same search tree as the state of interest, while the inter-

section problem requires the check to be in the opposite tree as the state of interest.

conceptually what is needed is an associative search. A state is a vector

7 = i (vy, J2), . . ‘, dk) i 1 1
and a simple hash function over this vector would allow

us to simulate associative search.

One hash function possible, which we use in our implementation is

k
hashi = c j. vy)

j=l I

where each node with this hash value is chained together. Then a check for

redundancy or intersection consists of computing the hash value and doing a

chained search of all nodes with this hash value. The search reduction possible

for a well-behaved hashing scheme is on the order of the number of equivalence

classes produced by the hash. Experimentally, a function of the above form was

used with the fifteen puzzle - dividing the 16!/2 positions into 680 equivalence

classes. This produced two orders of magnitude increase in running time for

1000 node searches. The hash chains were between O-30 long for a tree of size

1000, which is a considerable improvement over searching the whole tree.

The importance of this computational idea should not be underestimated.

This idea recurs throughout combinatoric and enumerative programming. In

some sense the hash provides a semi-canonical form. It is even conceivable

- 105 -

that the hash be the truncated evaluation value of the node. These uses of a hash

places the hi-directional search inner loop almost on a par with the uni-directional

search inner loop, which does not need to check for intersection but just if x is the

goal.

- 106-

CHAPTER 10

FURTHER OBSERVATIONS, OPEN PROBLEMS, AND CONCLUSIONS

It has been productive to use a computational approach to the shortest path

problem. This computational - combinatoric - heuristic blend has also been
49 useful in the Hamilton path problem, the traveling salesman problem, 35 and the

graph isomorphism problem. 13,59 This area is pregnant with untried possibilities

for usefully handling difficult problems. A noteworthy achievement will be the

unification of these methods into a package 48,53 . with interactive capability. 3,38

These will aid in solving applied problems such as optimization of resource allo-

cation, and will also help graph theorists generate and test examples and

conjectures.

The work on efficient graph algorithms is just at a beginning stage. The idea

of using local properties, 35,49,51,58,59 which may be easily computed, to aid in

some global calculation normally requiring an exponential amount of work is gaining

wider attention. Large graph problems, like constrained optimal path problems,

certainly require the special intuition the computer scientist has in regard to

efficient computation.

10.1 Network Flow Algorithm

One immediate extension of our work on bi-directional shortest path methods

is to the network flow algorithm of Ford and Fulkerson. 25 The heart of their

algorithm is the flow augmenting procedure. This is just a path finding procedure

which can be handled by our more efficient bi-directional methods. This gains a

factor of efficiency over the ordinary uni-directional method, which is comparable

to the improvement in the shortest path algorithm. It is probable that bi-

directional techniques are feasible for other search problems with similar

computational savings 0
- 107 -

In using the path problem as a vehicle for studying artificial intelligence in

a rigorous manner, many open problems and extensions of our work and the

recent work of others 19,37,34,55 remain .

10.2 Bi-directional Intersection

In the shortest path problem we have the hi-directional search expanding like

two wave fronts in shortest path space. In the heuristic path problem we have the

search expanding like two cones (see Fig. 10.1). Effective use of bidirectional

co

0 0
S t

a) expansion h= 0, f =g

‘4 expansion f =g + w * h

FIG. 10. 1--Bi-directional search.

heuristic search requires that the cones meet each other near the middle of their

separation. Otherwise, if they intersect near the endpoints it is twice the work

of uni-directional heuristic search. When bidirectional search works, it provides

a means of finding solutions of path length 2k with only twice the computation

needed for the uni-directional search of a solution of path length k. The uni-

directional search would need O(pk, extra work. The payoff in making bi-directional

heuristic search work is therefore quite large, leaving the solution to the intersection

problem an important open question.

- 108 -

At first, we anticipated no problem and because of the symmetry of the 15

puzzle,ran a simple alternating hi-directional search. The typical result was

that both the forward and backward tree had grown almost complete but separate

solution paths. Intersection would occur near one or the other endpoint rather

than the middle of the space. It then becomes apparent that each heuristic search

tree is a tiny sliver in the search space and very unlikely to intersect each other

even when moving approximately toward each other. It is as if two missiles were

independently aimed at each others base in the hope that they would collide. Two

attempts were made to guide the trees toward each other, but neither have yet

proved fruitful.

Intermediate Board Conjecture

Suppose we have an initial state Fs = (
(1) vs (4 , O *. , vs > and a terminal state

ct = (vf’, 0.., vp) and we can conjecture some intermediate state Ti = (
(1) vi ,

. . . , vy. We then take our heuristic function which in the forward direction is

measuring the distance from node x to node t and add a term corresponding to the

distance from node x to node i and similarly for the backward evaluation. We

should then have a search which would steer toward its respective endpoint by

way of the intermediate position.

The method does not specify that the intermediate node must be visited -

only that it is used as part of the heuristic evaluation. We could have specifically

subdivided the original problem into two sub-problems of finding a path from s

to i and from i to t. This idea which is close to the notion of “lemma” in

theorem proving is certainly an important one, and an interesting topic for further

research. The “lemma” conjecturing problem and planning in general fit

naturally into our model.

- 109 -

In using the intermediate board conjecture for weighting our search we hope

to improve our intersection likelihood. For example two possible intermediate

classes of positions in the 15 puzzle could be the ones in Fig. 10.2. We could

1 2 3 4 1 2 3 4

5 6 7 8 5 x x x

x x x x 9 x x x

x x x x 13 x x x

a) halving b) 8-puzzle reduction

FIG. 10.2--Intermediate board conjecture.

calculate P for a board position and add the indicated positions twice. This was

tried and did not work. It seems that the interaction between aiming at a goal

position and simultaneously placing emphasis on certain vector components is

complex and must be studied in more detail.

Shaping

Another possibility is the continuous updating of the heuristic function to

measure the distance to the front of the opposite search tree. This is using our

function to continuously re-aim our missiles at the point that the opposing missile

just reached. In experimenting with bidirectional methods using this type of

search tree ‘shaping, @ we also had no success. The searches produced in this

instance were much worse than without shaping. Possibly the fact that the

heuristic functions are inaccurate creates a severe instability when continually

re-aiming the search.

Both shaping and weighting intermediate positions have been examined.

The effective use of bi-directional heuristic search is important enough to warrant

- 110 -

further investigation into pragmatic and theoretical devices for forcing search

tree intersection.

10.3 Learning

In Chapter 8 we explored empirically the relation of search efficiency to

a parameter w. The adjustment of this weight could be “learned” as HPA solved

problems in a particular domain. In general we may have several heuristic

functions hI, h2, . . . , hk and g. These are functions over the state space which

we would like to use in directing our search. In a simple instance we may attempt

to find some linear combination

f = g + wlhl + w2h2 + . . . + “khk

where the wits are adjusted as in Ref. 54.

More interesting is to attempt to find automatically a useful heuristic function.

Possibly these are observed by noting interesting structural characteristics of

the space.

10.4 Structural Features - Bridges

In Ref. 2, Amarel notes the importance of ‘narrows’ in these graph spaces.

These are in more traditional terms proper-cut-sets with bridges being especially

important.
9,14,28

A cut-set of a graph is a set of edges which, when removed from the graph,

leaves the graph unconnected. A proper cut-set is a cut-set which has no proper

subset which in turn is a cut-set. A bridge is a cut-set of one edge, and is there-

fore identically a proper cut-set. A graph is called h edge-connected*, when h

is the cardinality of its smallest (proper) cut-set (see Fig. 10.3) *

*
Berge7 calls this h-coherent, but we will from now on refer to graphs as h-
connected, meaning edge-connected.

- 111 -

e

Il64AI

FIG. 10.3--Edge (c,d) is a bridge.

Find all the bridges in a graph. One can do this simply by removing each

edge in turn and checking the remaining graph for connectedness. There are up

to n(n-1)/2 edges in a loop-free undirected graph and this approach is obviously

too tedious.

At this point let us note a simple theorem (Ref. 11, pa 18):

“Every spanning tree has at least one edge in common with

every cut-set of a graph. ”

In particular, we note that any spanning tree must contain all bridges of the

graph. Generating a spanning tree is a simple computation, and is onthe average

only twice the work of generating a path. Now in a dense graph there are many

spanning trees possible, and by suitably generating successive spanning trees and

intersecting their edge sets, one should be left with only a smaller number of edges

(< n) to check as bridges. This then is the method we outline below in detail.

- 112 -

Spanning Tree Algorithm

1. Mark all nodes as unreached and unused.

2. Choose some node i EG as the root node and mark it reached.

3. Select any node 11 that is reached but unused and mark it used.

4. Mark all nodes nk, which are connected by an edge to n and

not previously reached as reached. Include the edges (n, nk)

in the spanning tree.

5. If all the nodes in G are reached then halt, else go to step 3.

By selecting different root nodes and by suitably varying the order in which

nodes are examined in step 3, a reasonably different sampling of spanning trees

will be constructed, if possible. One simple possibility is to use reached nodes

in ascending value and varying this by next choosing them in descending value.

Also this algorithm is a test for connectedness, for if no reached but unused

nodes exist at some stage before the computation halts, the graph must be

unconnected.

Bridge Finding Algorithm

1. Compute two spanning trees in different (as possible) ways.

2. Find the set of edges in the intersection of these two trees - set I.

3. If I is empty halt.

4. Take the first edge in I and delete it from the graph and from I.

5. Generate a new spanning tree (again try to make it different from

the previous ones).

6. If the tree does not have all the nodes of the graph, then list the

removed edge as a bridge. Otherwise, intersect the new tree

with I to obtain the new I. Return to step 3.

- 113 -

,

Remark: At most n-l spanning trees will be constructed, where this limit is

attainable.

Pf.

A spanning tree of a graph of size n has n-l edges. Therefore set I can have

at most n-l edges initially. If the graph is just a simple circuit:

X= {1,2,3, ..*, n)

E = ((1,2), (2,3), @,ll~ ,

then the maximum number of intersections will be achieved.

If the graph of interest is dense, then there will be many possible different

spanning trees. The intersection of two of these will leave but few candidate edges.

Outside of an iteration required for each bridge found, the algorithm will normally

need only a few intersections before all extraneous edges are discarded. In

implementing the algorithm, the number of intersections stayed between three

and five over a wide range of graph sizes and densities.

Generalization

The more general problem of finding the minimum proper cut-sets of a graph

is a great deal more difficult. Methods based on the repeated use of the Ford-

Fulkerson network flow algorithm,25 with edge capacities identically one, can be

used. The fundamental result is that the maximum flow is equal to the minimum

cut capacity and the Ford-Fulkerson algorithm may be programmed to find the

cut-set. In the case of bridges, obviously the tree intersection algorithm requires

substantially less work. While the Ford-Fulkerson algorithm is efficient, it is

more complex than the simple tree spanning algorithm, and each iteration of it is

about the same work as a complete spanning tree computation.

It is possible to generalize our method to cut-sets of higher order. Consider

a cut-set of cardinality 2; name it C2’ By our theorem, each spanning tree must

- 114 -

include one or the other edge of C2. Therefore if k spanning trees are generated,

some member of C2 will appear more than k/2 times. If edges are investigated

in order of number of occurrences (given that they appear 2 k/2 times) the case

of finding the other edge in C2 is reduced to finding a bridge. This scheme seems

more reasonable, especially in very dense graphs, than the more complex flow

algorithm. The method, of course, is iteratively applicable to Cn with a criterion

of k/n appearances. However, it is most reasonable for n small.

Efficient algorithms for the recognition of important structural characteristics

of problem spaces is but one of many fruitful approaches to general problem

solving methods in our model.

Other areas of interest are statistical error analysis instead of worst case.

If closed form solutions are unavailable then Monte Carlo simulations should aid

in understanding these problems. Parallel computer organization should also

prove important in extending the class of problems which can be solved. These

are but a few of the possibilities for extension of the approach we have tried to

use throughout this work.

10.5 Some Concluding Remarks

One is always questioned on the significance of the work. In general this leads

to some exaggeration, especially when one has some perspective on the range of

human thought. A simple answer is to say - here is the best shortest path method

or a first theory of heuristic search. However, we would rather stress a notion

of computational insight coupled to some combinatoric rigor and experimental

investigation. In a sense this work is using the computer in the Von Neumann

sense6’ of heuristic - to gain a feel or intuition into a difficult problem domain,

and it is hoped some small contribution has been demonstrated.

- 115 -

APPENDIX I

ALGOL W IMPLEMENTATION OF VGA

This appendix contains a commented ALGOL W implementation of VGA. We

will explain the data representation used and the purpose of each procedure.

In my experiments two different data representations were used:

a) adjacency-matrix

b) edge list

Representation (a) is a nXn matrix A, where n = ICI. An element of A, aij is the

length of the edge (i, j) . If there is no such edge then a large positive value repre-

senting 00 is entered. Representation (b) is for very large sparse graphs. It

consists of two n element vectors, in-index and out-index and four n maxind

matrices, m-edge, out-edge, in-length and out-length. Maxind is the maximum

degree of any node in the graph. For each node i, in-index (i) is the number of

predecessors it has, and out-index (i) is the number of successors it has. Then

out-edge (i, l::out-index (i)) is a list of successors of node i; the lengths repre-

sented by these edges are stored in out-length (i, l::out-index (i)). The corres-

ponding arrays and matrices represent the predecessor. This representation

requires n x (4 x maxind + 2) words and can save considerable storage space

over (a) for large sparse graphs. Consider that we have 42,000 words of store,

then representation (a) could store a complete 200 node graph. Representation (b)

could store a complete 100 node graph, but if the maximum degree is 10 it could

store a 1000 node graph.

- 116 -

(4

Below we show both representations for Nicholson’s graph (Fig. 1).

(b) node in-index

1 3

2 3

3 3

4 3

5 2

6 4

7 2

8 3

9 3

a! 3 (l::in-edge (node)), p = (l::out-edge (node))

in-edgea in-length&

2,3,4

1,3,5

1,296

1,697

%8

3,4,8,9

499

5,6,9

f-&7,8

3,6,7

3,194

6,1,2

7,394

4,l

2,3, I,2

4,5.

1, 1,s

2,5,2

out-index out-edge
P

3 2,3,4

3 1,395

3 1,296

3 L&7

2 2,8

4 2,3,L 2

2 4,g

3 5,&g

3 ‘3,7,8

out-length
P

3,697

3,1,4

6,L 2

7,3,4

491

2,3,1,2

495

1, 192

2,5,2

The graph is undirected and this symmetry is found in each representation

by noting

a) A=AT

b) in-values = out-values

- 117 -

The version listed here works with (b) and has generated and used 1000 node

graphs.

Graph generating procedures:

1. RANDOM - a pseudo+xndom number generator with range (0,l).

2. GENEDGE - uses random to generate edge-list representations of

undirected graphs. A node is not allowed to have more than MAXIND edges. The

lengths are randomly generated integers with range [l, WT].

Shortest path algorithm - VGA:

1. WBIED - this is the ALGOL W incarnation of VGA. It consists of

the following local procedures.

2. DECIDE - a logical function procedure representing step 2 of VGA.

It contains various strategies of interest in a case expression, e.g., number 1 is

cardinality comparison.

3. INITIAL - this does the initialization step, step 1 of VGA.

4. MIDDLE - this is steps two through five of VGA and is the basic

iterative loop. Both this procedure and INITIAL are distinct because of the

OS/360 segmentation problem.

Analysis procedures:

1. SORT - this bubble sorts the shortest distances found to the nodes

in set S (set T) .

2. DLAMBA - counts the number of nodes in S (T) with distance less

than R from initial (terminal) node.

Graphs of different size and density and edge length distribution were gener-

ated by GENEDGE. Node pairs were selected from these graphs and for each

pair different decision rules in DECIDE were compared for efficiency.

- 118 -

IAL GOL

owl
005'2
0003
DO@4
W65
0006
6007
6608
0009
OGlO
0011
OUl2
6013
0014
tiO15
0016
0617
0018
0019
co21;
GO21
UO22
oc23
a24
0025
6026
CM27
wJ28
GO29
603C
oc31
OG32
tic33
b634
a(;35
CO36
w37
DC36
0039
604L
6041
tic42
0043
0044
DC45
CD46
co47
UC46
G649
60 5c
lx51
0052
0653
co54
DC155
u(r56
UO57
oose

t3tG IN COMMENT IRA POHL SLAC (19681

ALGOLW IFPLEMENTATION OF VGA - VERY GENERAL ALGORITHM
FUR FINDING SHORTEST PATHS IN UT-GRAPH& THIS VERSION USES THE
;;;;,:I”’ REPRESENTATION FOR ECONOMICAL STORING OF LARGE SPARSE

EXPLANATIONS DF PARAMETtRS OCCUR THROUGHOUT THIS PROGRIM NEAR
THEIR ACTUAL USE” i

INTEGER SCGUNT,TCOUNT,CNTNODE;

INTEGER N,MAXIND,START,TERMINUS,COUNT,INF:
INTiGtH RANDOM?; LDtdG REAL RANDOMC;
INTEGER DENSITY, DF, DB, MIND ;
INTEGEK I,J,LAST;

CO#4ENT ****+ DEFINITION UF GLOBAL VARIABLES *********

CANV OF THE VARIABLES ARE SYMMETRIC WITH REGARD TO THE FORWARD
AND BACKWARD DIRECTIONo NORMALLY FORWARD VARIABLES ARE BEGUN WITH
S AND dACKWAHD UNtS WITH Tu THE DEFINITIONS MILL 5E WITH RESPECT
TO THE FURWARU VARIABLES MITH THE COKRESPONDING BACKNARD ONES IN
PARENTHESES,:

SCUUNT= CARDINALITY UF SET S f TCOUNT t
DF= FORYARD DISTRIBUTION VALUE FOUND BY DLAYBD4 (DB)
DENSITY= EDGE DENSITY UF THE OI-GRAPH,, l,'.' PER-CENT REPRESENTS
THE COMPLETE GRAPH0
I= CARDItiALITY OF GRAPH, START= INITIAL NODE, TERMINUS=FINAL NODEI
lNF* REPRESENTS INFINITY,
MlND=MININUH DISTANCE FOUhD- IS INF IF NO PATH EXISTS.,
CNTNODE= THt CENTRAL NODE ON THE SHORTEST PATH, I,:&. THE NODE FOUND
BY BOTH THE FOKWAKC AND BACKWARD SEARCH.,

OTHERS ARE TEMPURARIES OR ARE UNIMPORTANT OR ARE EXPLAINED LATER UN:

COYt4ENT RANDOM GENLKATES RPNOUY NUMBERS i<RANDOH<l ;

LONG HEAL PKOCEDURE RANDCM:
BEGIN RANDOHX:=12237~31Z5*R4NDUt4X;

NUMBER~BITSTRINGIRANDOWX) AND #7FFFFFFFl/RANDUHC END;

ClJMflEhT THE FOLLOWING VALUES YUST BE INITIALIZED :

INTFIELIJSIZE I/O PARAMETER , INF INFINITE EDGE LENGTH
MAXIND THE MAX LOCAL DEGREE ALLOUED IN THE LIST REPRESENTATION ;

dANDUMX:=l; KAhODMC:=2**31;
INTDVFL : = NULL ;
INTFIELDSILE:=6;
INF:=99Y999;

CDHMENT UAXIND=MAX DEGREE ALLOWED K=GRAPH SIZE ;

FU.4 MAXINO:= DO
FOR K:=l”:L DO
BEGIN

- 119 -

KX COHHENT ***EDGE LIST REPRESENTATION OF DI-GRAPH ***
0061
0062
0063
0064
0065
0066
006-I
0068
0069
0070
0071
0072
0073
0074
0075
0016
0077
0078
0079
008.0
0081
0082
0083
0084
0085
0086
0087
0088
OC89
O(r9@
0091
0092
0093
0094
0095
0096
0097
UO98
0099
0106
0101
0102
0103
0104
0105
Olti6
0107
0108
QlJ9
6110
6111
0112
0113
0114
6115
3116
0117
0118

THE MAXIMUM DEGREE OF A NODE IS HAXIND DEFINED IN THE OUTER
BLOCK ALONG WITH K THE NUMBER OF NODE% THE ACTUAL DECREE
OF EACH NODE IS FOUNO IN THE ARRAYS ININDEX AND OUTINDEX. THESL
ARE IN AND OUT EDGE DEGREES RESPECTIVELYo EACH NODE HAS A LIST
OF ITS SUCCESSORS AND PREDECESSORS STORED IN INEDGE AND
OUTEDGEe CORRESPONDING TO THESE LISTS ARE THE LENGTHS OF
THESE EDGES FOUND IN INLENGTH AND OUTLENGTH

THE REMAINING ARRAYS ARE USED BY THE SHORTEST PATH ALGORITHn
WHEN BUILDING MINIMUM PATH TREES. WF IS THE WHERE FROU POINTER
FOR THE FORWARD TREE AND SDIST IS THE CURRENT BEST DISTANCE.
ilT AND TDIST PLAY THE SYMHETRIC ROLE IN THE BACKWARD CASE- DIST
IS A TEMPORARY NEEDED IN DOING A POSTERIOR1 ANALYSISc ;

INTEGER ARRAY WT,SOIST~TDISTI1::K+ll;
INTEGER ARRAY ININDEX,OUTINDEX,WF.OIST~l::U+lI:
INTEGER ARRAY INEDGE,OUTEDGE,INLENGTH,DUTLENGTH~l::K,l::MAXINDl:

COMMENT GENERATE SYMMETRIC WEIGHTED GRAPHS AS EDGE LISTS **** :

PROCEDURE GENEDGEIINTEGER VALUE N.WT; REAL VALUE DENSITY):
COMMENT N=GHAPH SIZE, WT=MAXIMUI4 EOGE LENGTH, OENSITY=EDGE DENSITY:
BEGIN
FOR I:=1 STEP 1 UNTIL N DO

ININuEXlII:=OUTINOEXIIl:=O:
FOR I:= 1 STEP 1 UNTIL N DO
BEGIN

FOR J:=I+l STEP 1 UNTIL N DO
IF OUTINDEXII~=MAXINU THEN GU TO EXED ELSE

IF IININIIEXIJI -.=MAXINDI ANDIRANDOM<DENSITYI THEN
dEGIN
OUTINDEXlII:=ININDEX(I):=OUTINDEXlIl +l:
~uTINDEXIJJ:=ININDEXO:=~~TINDEX~JJ +l;
OUTEOGE(IrOUTINOEXlI)I:=INEDGE(IIINEDGE~I,ININDEXlI~~:=J:
DUTElJGE(J,OUTINDEX~J)):IINEDGE(JIINEDGE~J,ININDEX~Jl~:=I:

OUTLENGTHI ItOUTINDEX ~III:=INLENGTH(J,ININDEXo:r
OUTLENGTHlJ,OUTINDEX (Jtl:=INLENGTHII,ININDEXoI:=

ENTIERll+RANDClM*WTI:
END i

EXED: : END;
END GENEDGE :

COMMENT **** A PUSTERIOHI ANALYSIS ROUTINES **+*

Iiu ORDER TO FIND K-OPT, THE OPTIMUM FORWARO RADIUS, WE SOLVE
BY BOTH THE FORWARD AND BACKWARD UNI-DIRECTIONAL SHORTEST PATH
ALGORITHMSu THEN EACH THEE GENERATED IS SORTED HY DISTANCE FROM
THE riESPECTIVE INITIAL NOOE, DLAMBDA THEN COUNTS THE NUMBER OF
INUDES THAT A METHOD GOING OUT TO A GIVEN R WOULD SEARCH,. A SCAN
OF THIS DISTRISUTION PRCDUCES THE HINIMUM GIVING R-OPT; THIS A
POSTERIUKI ANALYSIS THEh CAN BE USED TO CHECK THE UPTIHALITY
OF A GIVEN STRATEGY* ;

COMMENT OLAMBUA FINDS MOW MANY NdDES ARE WITHIN DISTANCE R FROM
THE INITIAL NODE (USE SDISTT OR TERMINAL NODELUSE TDISTit. :

INTEGER PKOCEDURF DLAMBDAfINTEGER VALUE R: INTEGER ARRAY SOISTI*II:

- 120 -

0119
012U
0121
Cl22
0123
0124
0125
0126
(1127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
3133
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
O15C
0151
0152
0153
0154
0155
G156
0157
0158
0159
0160
0161
0162
0163
0164
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0170

BEGIN INTEGER I: 1:=1:
nHILE R >= SZIST(1) DO I:=I+l; I

END DLAMBDA;

COMMENT SORT aUBaLE SORTS THE DISTANCES FOUND i

PROCEDURE SORTf INTEGER VALUE N; INTEGER ARRAY DIST,SDISTt*I I:
aEGIN COMMENT SORTS UIST INTfl SDIST IN INCREASING VALUE;

INTEGER T; LDGICAL FLG:
FLG:=TRUE :
FOR I:=1 STEP 1 UNTIL N DO SDIST~Il:=DISTIII;
FOR I:=1 STEP 1 UNTIL N 00

BEGIN FLG:=FALSE;
FUR J:=l STEP 1 UNTIL N-I DO

IF SDISTIJI > SUISTlJ+l~ THEN
BEGIN T:=SDISTI JI i SOISTIJI:=SDIST(J+ll; SDISTlJ+ll:=T:

FLG: =TRUE END:
IF -FLG THEN GO TO EXIT:

END;
EXIT:

END SORT:

COMMENT ****V-ERY G-ENERAL A-LGORITHM ******

VGA IIR WBIED IWEICHPEO BI-DIRECTIONAL ALGORITHM1 SOLVES
THE TWO POINT SHORTEST PATH PROBLEM, THE DECISION STRATEGY,
STEP TWO OF VGA, IS SELECTED aY DNM, THIS 1s THE DECISION
NUMBER FOR DECIDE o DECIDE IS A CASE STATEMENT OF THE CURRENT
STRATEGIES IN USE. :

PROCEDURE WBIED (INTEGER VALUE N,INF.START,TERMINUS,DNM:
INTEGER SCOUNT,TCOUNT,t’lIND,CNTNODE:
INTEGER ARRAY WF,WT,SDIST,lOIST (*I I:

BEGIN

COMMENT ***GLOBAL PARAMETERS CORRESPOND TO FORMAL PARAMETERS,
THE LOCAL PARAMETERS ARE DESCRIBED BELOW0 i

INTEGER SMIND,THIND,TTl,T3rT41T5i LOGICAL FLG:
INTEGER TT,NUMSTWD,NUMTTWD,TlC,T2C; INTEGER ARRAY TlrT2Il::NI:
LOGICAL ARRAY SVEC,TVEC.STWOVEC,TTWDVEC~l::N)i

COMMENT l *:* LOCAL VAR IAaLES ******

SMIND=CURRENT MINIMUM DISTANCE IN SET S-TILDA (TMINDI
FLG=LOGICAL FLAG SET TO TRUE IF A NODE APPEARS IN THE

INTERSECTION OF S AND T
NUMSTkD=NUMBER OF NODES IN SET S-TILDA INUMTTWDI
SVEC=SET MEMBERSHIP FLAG FOR SET So IF SVECIII IS TRUE THEN NODE

I IS IN SET S LTVECI
STWlJVEC=CORRESPONDING LOGICAL ARRAY FOR S-TILDA ITTWDVECI
***NOTE**+ SVEC AND STWDVEC MAY BOTH BE FALSE FOR A GIVEN NODE,

BUT THEY MAY NOT BOTH BE TRUE <>
Tl=LIST OF NODES TLED AT MINIMUM DISTANCE IN S-TILDA IT21

THE REMAINING VARIABLES ARE TEMPORARIES. i

- 121 -

0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
Gl9B
0199
Q2OC
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
022ti
0221
0222
0223
6224
0225
U226
0227
0228
0229
U23r!
G231
0232
0233
0234
D235
ci23b
0237
0238

COMMENT DECIDE IS THE DECISION STRATEGY FOR VGA.. IT IS A CASE
STATEMENT WHERE A SPECIFIC STRATEGY IS SET BY DNK ;

LOGICAL PROCEDURE DECIDE ;
BEGIN COMMENT DNM SELECTS APPROPRIATE RULE FOR STEP Z’OF VGA:

CASE LDNMI OF
I NUHSTWD<=NUMTTWD,

SMIND<=TMIND,
TRUE,
FALSE,
NUMTTWD <= NUHSTIUI

b

COMMENT DNH RULE

:
CARDINALITY COMPARISON (POHLl
EQUIDISTANCE (NICHOLSONI

3 UNI-DIRECTIONAL FORWARD LDIJKSTRAI
4 UNI-DIRECTIONAL BACKWARD
5 REVERSE OF 1 DEGENERATES TO 3 :

END i

COMMENT BECAUSE OF SEGMENT OVERFLOW PROBLEM THE ALGORITHM IS
DIVIDED INTO INITIAL AND MIDDLE AND FINAL PARTS< INITIAL IS STEP 1
OF VGAo MIDDLE IS STEPS 2 THROUGH 5, AND FIN4L IS STEP bc

FINAL IS THE LAST PIECE CJF CODE IN WBIED AND IS NOT A SEPARATE
PROCEDURE.

PROCEDURE INITIAL;
BEGIN

SMIND:=TMINO:=D;

COMMENT NODES INITIALLY IN NO SETS ;

FOR I:=1 STEP 1 UNTIL N DO
BEGIN SVECLII:=TVEClIl:=STWDVECLII:=TTUDVEC(II:=FALSE;

SDISTlIJ:=TDIST~IJ:=INF: WFTIl:=WTLII:=-1
END ;
TT:=l; SCOUNT:=TCOUNT:% : NUMSTWD:=NUMTTWD: =l:
&FL STARTl:=D’ 9 WTTTERMINUSI:=O;

COMMENT INITIALIZE VALUES FOR ENDPOINTS i

SDISTlSTARTI:=O; TDIST(TERMINUSI:=C;
SVECL START) :=TVECITERMINUSI :=TRUE;
STWDVEC(STARTI:=TTWDVEC(TERMINUSi:=TRUE:
FLG:=FALSE; MIND:=C;

COMMENT AN IMAGINARY EDGE OF INF LENGTH IS ADDED TO OUR
GRAPH0 IF NO OTHER PATH IS FOUND THIS dILL BE PATH OF
MINIMUM DiSTANCEc ;

IF OUTINDEKLSTARTI< MAXIND THEN
BEGIN
~UTINDEX(STARTI:= UUTINDEX(STARTI+l: OUTEDGEISTART,

UUTINOtXL START) I :=TERMINUS:
DUTLtNGTHi START,OUTINDEXLSiARTI l:=INF;

END ELSE

- 122 -

0241
0242
0243
5244
0245
0246
0247
024B
0249
025r:
0251
0252
6253
6254
0255
G256
6257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270
0271
0272
0273
0274
0275
0276
G277
o27a
0279
0280
0281
0282
0283
0284
0285
0206
0287
OZBB
0209
0290
0291
0292
0293
0294
0295
0296
0297
0298

IF

BEGIN OUTEDGELSTART,HAXINDJ:=TERMINUS: OUTLENGTHISTART,MAXINDl
:=INF;

END;
ININDEXITERMINUSIC MAXIND THEN

BEGIN
ININDEXITERMINUSI :=I hIhDEX(TERMINUSl+li INEDGETTERMINUS,

ININDEX(TERMINUSIl:=START:
INLENGTHlTERYINUS,ININDEX(TERnlNUS)):=INF:

END ELSE
BEGIN INEDGE(TERHINUS~MAXINDl:=START; INLENGTHTTERHINUS,HAXIND

l:=INF;
END ;

END INITIAL:

PROCEDURE MI DOLE; COMMENT SEGMENT OVERFLOW BVPASS:
WHILE l-.FLGI AND L-vLHIND=INFIl DO
BEGIN

IF DECIDE THEN COMMENT DECIDE UPON DIRECTION;
BEGIN

MIND:=INF;

COMMENT THE CURRENT MINIMUM DISTANCE OVER NDDES IN S-
TILDA IS FOUND” TIES ARE STORED IN ARRAV Tl WITH TlC
THE NUMBER OF TIESo i

FOR I:=1 STEP 1 UNTIL N DD
IF STWDVECL II THEN
BEGIN

IF SDIST(II < MIND THEN
BEGIN MIND:=SDIST(Il; TlC:=l; TlLTlCl:=I END

ELSE IF SDISTI 1 I = MIND THEN
BEGIN TlC’=TlC+l; TItTlCi:=I END :

END;

COMMENT TlC REPRESENTS THE NUMBER OF NODES TRANSFERRED
FROM SET S TO SET S-TILDA, THE APPROPRIATE COUNTERS ARE
CHANGED. ;

NUMSTMD:=NUMSTWD-Tit; SCOUNT:=SCOUNT+TlC:
SMIND:=HINDi

COMMENT APPROPRIATE SET MEM8ERSHIP FLAGS ARE SET. EACH
NODE BEING CHECKED FOR BEING IN S INTERSECTION T, :

FOR I :=l STEP 1 UNTIL TlC DO
BEGIN TT:=TllI 1;
IF -.FLG THEN BEGIN FLG:=TVECTTTliTTl:=TT END;
SVECTTTl:=TRUE; STWDVECLTTl:=FALSE;
FOR J:=l STEP 1 UNTIL OUTINDEXLTTl DO
BEGIN T3:=OUTEDGELTT,J); T4:=SDISTLT3l:

T5:=OUTLENGTH(TT,Jl;
IF T4 > MIND +T5 THEN
BEGIN SDIST(T3l:=MIND+TS: WFLT3l:=TT;

IF q STYDVECL 73 l THEN
BEGIN NUMSThD:=NUMSTYD+l: STWDVEClT3l:=TRUE END

END
END
END

END
ELSE

- 123 -

!Z
0301
0302
0303
0304
0305
0306
0307
0308
0309
0310
0311
0312
0313
0314
0315
0316
0317
0318
0319
0320
0321
0322
0323
0324
0325
0326
0327
0328
0329
033G
0331
0332
0333
0334
0335
0336
0337
0338
0339
0340
0341
0342
0343
0344
0345
0346
0347
0348
0349
0350
0351
0352
0353
0354
0355
0356
0357
0358

BEGIN

COMMENT SYMMETRIC TO THE ABOVE LOOP YITH RESPECT TO THE
8ACKWARD DIRECTION.

MIND:=INFL
FOR I:-1 STEP 1 UNTIL N DO
IF TTMDVECIII THEN
BEGIN

IF TDISTIII < MIND THEN
BEGIN MIND:=TDIST(Ib; T2C:=l; TZ(TZCl:=I END

ELSE IF TDISTLII = HIND THEN
BEGIN T2C:=TZC+l; T2LT2Cl:=I END :

EGJDi
NUMTTWD:=NUMTTYD-TZC; TCOUNT:=TCCUJNT+TZC;
TMIND:=HINDi
FOR I:=1 STEP 1 UNTIL TZC DO
BEGIN TT:=TZTIJ;
IF .FLG THEN BEGIN FLG:=SVECLTTl;TTl:=TT END:
TVEC(TTl:=TRUE: TTYDVECTTTl:=FALSE:
FOR J:=l STEP 1 UNTIL ININDEXLTT) DO
BEGIN T3:= INEDGELTT,Jl; T4:=TDISTLT3l;

T5:= INLENGTHLTT,Jl;
IF T4 > MIND +T5 THEN
BEGIN TDI ST T T3J :=HI NDtT5 *

IF _ TTWDVECLT31 THEN ’
WTTT3l:=TT;

BEGIN NUMTTWD:=NUWTTWD+l; TTWDVECtT3I:=TRUE END
END

END
END

END
END ;

COMHENT * * * * * * * * MAIN ROUTINE * * * * * * * * ;
INITIAL; MIDDLE ;
YRITE I “VGA TERMINATED BY NODE “rTTlr”SD=“,SDIST(TTl)r” TD=“,

TDISTLTTLII;
WRITE(“SMIND=“,SMIND,” TMIND=“,THINOli

COMMENT S INTERSECTION T-TILDA IS CHECKED AND THE DISTANCE
OF ANY SUCH PATHS ARE COMPUTED AND COMPARED TO MINIMUM, ;

MIND := SDISTfTTll + TDIST~TTlli i
TlC:=TTl;
FOR I:=1 STEP 1 UNTIL N DO

IF SVECLI I AND TTWDVECI I I THEN
BEGIN

TZC:= SDISTLII + TDISTtIl;
IF TZC< MINLI THEN BEGIN MIND:=TZCi TlC:=I END;

END;
CNTNDDE :=TlC :

END WBIED;

FOR DENS:=2 DO
BEGIN COMMENT LOOP OVER GRAPH DENSITY IN 115r0:

MRITET” “I;
WH1TE~“MAX1ND=“,MAX1ND,” SYMMETRIC WITH DENS ITV-“, DENS/5C’;l i
WAITEL”TIME TO GENERATE “,TIMEll),“SIZE “,Kl;
GENEDGE I K, ZC, DENS/50OJ ;

- 124 -

0361
0362
0363
0364
0365
0366
0367
0368
0369
0370
0371
0372
0373
0374
0375
0376
0377
0378
0379
0380
0381
0382
0383
0384
0385
0306
0387
0388
0389
0390
0391
0392
0393
0394
0395
0396
0397
0398
0399

WRITEl”TIME TO GENERATE “,TtMEtlt t;
FOR CC:=1 STEP 1 UNTIL 5 DO
BEGIN
COMMENT *********

t AND J ARE INITIAL AND TERMINAL NDDES SELECTED AT RANDOM.,;

I:=ENTIERiK*RANDOW 411 :
J:=ENTIERtK*RANDON +lI;
WRITEt’ -a, ; WRI.TEt”t,J”,t,JI; WRtTEt” “);
WBtEDlK,INf,I,J,3,SCDUNT,TCOUNT,MtND,CNTNODE,UF,WT,SDtST,

TDISTt :
WRITE(“FORWARD METHOD SCOUNT”.SCOUNT,” MtND=“lHtNDl:
SORTtK,SDISTtDISTt;
WBIEDtK,tNF,I,J,4,SCOUNTITtDUNT~MtND,CNTNODE,~F,WT,SDtST,

TDISTt ;
WRtTEI”BACKWARD METHOD TCOUNT’,TCOUNT,” MIND=“,HtNDt:
SORTtK, TDIST, SDISTt ;
IF MIND < INF THEN
BEGIN WRITEi”TABLE OF DISTRIBUTION FUNCTIONS”);

FOR R:=D STEP 1 UNTIL MIND DO
BEGIN

DISTtK+lt := INF + 1;
SDISTtK+ll := INF l 1:’
DF:=DLAMBDAtR,DtSTt; DB:=DLAHBDA(MIND-R,SDIST);
WRITEtR, Op. DB, DB + DFI;

END R;
END i
FOR D:= 1, 2 DO
BEGIN

WRtTEl”TIHE ENTERED WBIED NO”, D,” TIME “,TIMEtlTl:
WBIEDtK,INF,t,J,D,SCOUNTITtOUNT,MIND,CNTNODE,WF,WT,

SD1 ST, TDI ST) ;
WRITEi”TtME EXITED WBIED ‘,TIMElltT;
WRITE(“CNTNKlDE IS “t CNTNODE,” SCOUNT “9 SCOUNT,

” TCOUNT “, TCOUNTI i
WRtTE(“SHORTEST PATH LENGTH IS “rMINDt; WRITE{” “I:

END:
END

END DENSLDOP;
END LOOPK;

END.

ELAPSED TIME IS 00:00149

- 125 -

APPENDIX II

COMPARATIVE RESULTS USING DIFFERENT STRATEGIES IN VGA

In this appendix we list some results of actual computer runs (see, Appendix

I for the program). Our cardmaRty comparison strategy is compared to the

forward and backward uni-directional strategies and Nicholson’s equi-distance

bidirectional strategy. The measure of efficiency is the number of nodes at the

end of a computation, that have been visited by VGA, i.e., IS.1 + ITI. The data

provides a verification of the efficiency of our method and the veracity of our

model.

The figures and tables in this appendix present a portion of the computational

experience of the author. A graph of given size and edge density was generated

randomly, as described above, and two nodes were randomly selected. The

shortest path problem between these nodes was solved using VGA for each

strategy and the following data collected.

1. length - the shortest path length, which of course is the same

for each method

2. ISI, ITI - the number of nodes in these sets

3. rapt - the radius the forward method should reach for optimal

efficiency

4. rf, rb - the forward and backward radii for a bidirectional

method.

For each graph 10 different shortest path problems were solved. A graph is

characterized by its size, the average degree of its nodes and the maximum length

of its edges. In table 5.2, we have already summarized the results of the raw

data displayed in tables II. 1 through II. 5. The headings not previously

- 126 -

---‘i------;?--

2 ;i

: t:

: 7: li
7 51
2 55

‘6

- 127 -

--------c----
::
23 :i

:: ::

:t ::

:: :7
34 34

- 128 -

- 129 -

- 130 -

‘
______ li ___---- ‘;--- ^--ir ,_____- ij--

----i----
‘rl
,5
‘L

‘.---------i-------~------~------~----.--~-------~----~----
2 65 3c I c 6 6 6

- 131-

explained are:

POHLF, POHLB - ISI and ITI respectively for the csrdinality

comparison strategy.

NICHOLSONF, MCHOLSONB - as above for the equi-distance

strategy.

rf(P), rf(N) - the forward radii of the POHL and NICHOLSON

strategies.

The results are summed for the ten cases in each graph and additionally

U) length/2 - r opt i

(ii) $, / rf(P) - ‘opt/i

(iii) i$ / rf(N) - ‘opt Ii

are computed. In the case of the bidirectional methods, these are indications of

how well the methods a priori solved Eq. (3.3). The value of (i) reflects the

asymmetry of the problems used. Since the graphs generated were undirected and

uniformly produced, it is to be expected that the consequent densities are reasonably

symmetric. The results for a given problem where this is not so is favorable to

cardinality comparison. For example, table II. 1, case 5 has

rapt length = g = l/3

where

r,(P) = 28, r,(P) = 48

- 132 -

and

rf(N) = rb(N) = 42 .

The symmetry assumptionsin the equi-distance strategy, inflexibly lead to more

work. In all but two cases, (table II. 3, case 8 and 10)

I rf(N) - rb(qI 5 ”

The cardinality comparison strategy tends to equalize the cardinalities of S and

T, which is appropriate from considerations of efficiency, as seen in our model.

In Fig. II. 1, we plot the comparative data for each method in the 500 node

experiments. Similarly in Fig. II. 2, we plot results from 150 node experiments

with average degree 2 through 16. Table II. 6 presents the 500 node data for the

forward uni-directional strategy indexed by path length. Table II. ‘7 is the same

presentation for the csrdinality comparison data. These tables show how number

of nodes visited is directly proportional to path length and density, as expected

from our model of shortest path space. Overall the results in this appendix con-

firm our theoretical insights.

- 133 -

400

D 300
P
i7j
3

2

!2
az 200

i
z

/

4’

3 6 9 12 15

DEGREE
ii%%5

FIG. II. l--Results - 500 node gnpb.

- 134 -

AV
ER

AG
E

N
U

M
BE

R

N
O

D
ES

VI

SI
TE

D

s
G

0

g
0

. . . i i

FORkAPt CRCSSTAELE
Table II.6

LE hGTh

cl

10

2C

30

40

56

6C

7c

DEGREE

3 6 9 12 15

1 I
54

t 1
34
45

__----------------- --- ----------w--m

25
1

i

122
1

321
275 191 I

366
392 f

1
225 266 1 445

I
I

196 I 2Q6 132 I
252

I
f

246 I 371. I
469

I i
370 i

I.25
123 1

f
I

52
355 I

I 1 159 I i
___-----------------I-- ---------_-___-___

!
122 292 1 468

53 I 441 I ; I
___----------__-------~~----~---~--~~~-~------

142 1 329 I 497 I I
92

t
386 370
311 f f I i

--e------v- -------------e _------------- --

209

i

369 I I
230 367

440 I / I i
_____________-__----_______l_l_^________ ---

I 465 I I I I
__---_-_--_____--_-_----_-----------------

437 t I
I

3c3 1 i 1
431 I I I I

- 136 -

FOHL CRCSSTLBLE
Table II.7

LE hGTH

a

1C

20

3c

40

5C

6C

76

IJEGREE

3 6 9 12 15

---^---------------- ---------------

I 5 1 1n
I 1 I : 24 I

-- -------~---------------------

24
1 t

43 50 71 I
63 f 81 I 122

I
1

30 I 19 I 92 I

I
49 67

f
0 1

1::
I'

36
63 I

I
I

I
45

22 64 I

i

t f 46

t t
79 I I
47 I I

_------------------I-------------------

!
43 I 93 I 92
24 I 97 f I I

--------------------------------- ----

::
1

76 53 I
14 : 79 t
93 I I / I

--------I--- ------_-------------------

81

1

64 1
51 97

f 1
I I

101 I I
___---------------------__------------

73
I

48 I
72 I 1 I I

----------------------- _---------------

I 87 I I I I
___---------- ------ - -------I_ ---me----

ez I

/

I
t3 t
51 I /

- 137 -

APPENDIX III

ALGOL W IMPLEMENTATION OF VGHA FOR THE FIFTEEN PUZZLE

This appendix describes the ALGOL W implementation of VGHA as used in

experiments with the fifteen puzzle. The basic data representation was a list

structure created from records and references in ALGOL W.

RECORD NODE (STRING (17) ENCOD; INTEGER PZ, WF, DIST;

REAL VALU; REFERENCE (NODE) SPILL)

FIELDS:

ENCOD is a string containing the state description. Here it has the

values of the sixteen positions.

PZ is the position of the blank tile. It is useful in efficiently generating

adjacent positions.

WF is the index to the predecessor node.

DIST is the cardinality distance back to the initial node.

VALU is the value of the evaluation function for this node,

SPILL is the pointer for the hash equivalence class. It is NULL if this

is the last node within a given class or else it points to the next member of the

class.

The state encoding information could of course be for any other problem

domain. This coupled with the successor procedure and the evaluation procedure

would be tailored to a specific problem domain.

A short description of the procedures constituting VGHA follows below. In

conjunction with the documented listing, this appendix allows a detailed under-

standing of VGHA.

- 138 -

Debugging and I/O procedures

1. WRTBRDl - this produces a square array printout of a fifteen puzzle

configuration.

2. WRTBRD2 - this produces a string printout and hash value of a fifteen

puzzle configuration.

3. DMP - this uses a case statement to printout various parts of the search

trees. A variable CND selects the particular dump wanted.

4. TRACE - this prints the solution path found by VGBA.

5. I-IDISTR - this prints the number of nodes found in each hash equivalence

class, i, e. the &ash distribution.

Auxiliary routines

1. ENCODE - this takes an array representation BOARD and maps it into

a string representation VAR for a given fifteen puzzle configuration.

2. DECOD - this is the inverse of ENCODE.

3. HASH - this uses the array representation BOARD to compute the hash

value of a configuration.

4. PTABINIT - this is the PTABLE initializer. The PTABLE is a table

lookup for the position value (see Chapters 6 and 8).

5. INITIALIZE - this routine initializes all the necessary flags and arrays

to their appropriate value. It also designates the initial node INIT and the ter-

minal node GOAL.

Principal routines

1. SUCCESSOR - this takes a given configuration and generates the

neighboring configurations in NXNOD ES.

2. EVALUATE - this evaluates the board configuration provided by

SUCCESSOR. This is a case statement incorporating the various evaluation

functions to be tested.

- 139 -

3. NOhqEDUNDANT - this uses the hash equivalence class of a node to

conduct a linked list search for redundancy.

4. DECIDE - this is the step that decides which direction the search should

take, either forward (DECIDE:=TRUE) or backward (DECIDE:=FALSE).

5. TERMINATE - this uses the hash classes to See if a given node is in both

the forward and backward search trees.

The basic iteration step is coded symmetrically for the forward and backward

search. The backward search corresponding to DECIDE=FALSE has its variable

identifiers prefixed by B.

- 140 -

YALGCL

OCOl
ooc2
0003
9co4
occ5
0006
oco7
OOCB
ooc9
0010
0011
0012
0013
0014
0015
OCl6
0017
0010
oc19
0020
0021
0022
0023
0024
0025
0026
0027
OOZB
OC29
0030
0031
OG32
oc33
0034
0035
0036
0037
0030
0039
0040
0041
0042
0043
0044
0045
0046
3047
0048
0049
oc50
0051
0052
6053
0054
0055
0056
0057
0058

3:55,9000

BEGIN CCFICENT I.PCHL OCT 196.5 ISLPCl

ALGOL W ICPLENENTATION OF VGHA-VEKY GENERAL HEURISTIC
ALGCR ITHN. THIS VERSION SOLVES THE FIFTEEN PUZZLE.

PAHAMETERS : l ******t*****+;

INTEGER ~AXIlER,NU~kCOE~BhU~NODE,CURNOD,OEG~ll,T2,BCURNOD;
INTEGER FUSE, BUSE, OECNt EVALN, OMPN. CSh. SDISI, TOIST;
INTEGER PEX,PEXLtJ, 15, TIN;
LOG ICAL FLG,TFLAG; REAL UT ,VAL,H IN;
LOGICAL ARRAY TPlO::15l; REAL ARRAY kW(l::lO);
LOGICAL 4RRAY UNDEVELUPEDtBUNDEVELCPED l1::3COOl;
INTEGER ARRAY MAP,CAPlr8CARO,BOAROl~O::l5~; INIEGER ARRAY NZl1::4);
STRING I161 GOAL,IhITrSTl~STZ;
STRING 1161 ARRAY NXNODESl1::41; INTEGER ARRAY PTABLE(O::15.0::15);
RECORO NODEISTRING 1161 ENCOD; INTEGER PL,NF.DIST: REAL VALU;

REFERENCE (NOrJET SPILL);
REFERENCE (NODE) ARRAY PTt1::3000);
REFERENCE (NODE) ARRAV BPT(1::300Cli
REFERENCE (NODE) ARRAY HSHLO::BOC);
REFERENCE INODE) ARRAY EHSHIC::@001;
REFERENCE INOOEI Plr PZ;

COMMENT ***** DEFIhITICh OF INPORTANT VARIABLES *****

VARIABLES PREFIXEC f!Y B ARE EACKYARD CIRECTICN VARIABLES.

NODE = RECCRO REPRESENTATING ONE hODE Ah0 ASSOCIATED
STATE INFORMATION.

ENCCD = STRING FIELD FOR 15 PUZZLE CCNFIGURATION.
PZ = INTEGER FIELD NOTING POSITION CF THE BLANK.
kF = IhDEX TO PRECECESSCR NCCE.
DIST = CARCINALITY DISTANCE TO ENOPCINT.
VALU = THE VALUE OF THE EVALUATIOK FUhCTICh.
SPILL = PCINTER TO NEXT NODE Ih HASF EQUIVALENCE CLASS.

PT LBPTT = REFEPEhCE ARRAYS POINTING TO FCRMARC(EACKYAROI
SEARCH TREES.

HSH (@FISH) = POIhTERS TO INITIAL NOOt Ih EACh HASH CLASS.
CURNOO LBCURNODT = INDEX INTO REFERENCE ARRAY PT IBPTT.

PTiCURkOOl PCINIS TO THE CURREhT NCOE BEING EXPAhDEC.
INIT = STRING ENCCOING OF STARTING 15 PUZZLE CChFIGURATION.
GOAL = TERNINATING CR GCAL CONFIGLRATION.
NXNODES = ARRPY GF SUCCESSOR COFIGURATICNS OF CURNODIBCURNODI.
MAXITER = MAXIHUN NUMBER OF NOOES EXPANDEC BEFORE SEARCH IS ENDED
NU~NODElEhUMNODEI = NURBER OF FORhARD IBACKWAROI NODES SEARCHED.
OECN = PICKS DECISION STRATEGY IN DECIDE.
EVALN = PICKS EVALUATOR IN EVALUATE.
CMPN = PICKS DUMP ROUTINE IN LIMP.
IdT = kEIGhT OF FEURISTIC FUNCTION VERSUS GIST Ih EVALUATOR.
UNDEVELOPEOIBUNOEVELOPEDT = IS TRbE IF NOCE IS NOT YET EXPANDED.

OTHER VARIA@LES ARE TEWPORARIES OR HAVE SPECIAL FUACTIONS;

- 141-

0059
0060
0061
0062
0063
0064
OC65
0066
0061
0068
0069
0070
0071
0072
0073
0014
0075
0076
007-I
OC78
oc79
0080
0081
DOB2
0083
0084
0085
0086
0087
008.8
00E9
0090
0091
0092
0093
0094
0095
0056
ocs7
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
Oil7
0118

COHNENT ENCODE IAKES INTEGER ARRAY REPRESENTATION OF A 15
PUZZLE CONFIGURATION -BOARC ANC ENCODES IN STRING FORM-VAR;

PROCEDURE ENCOCEIINTEGER ARRAY BOAROI*I; STRIhG I161 VARI;
CCHNENT USES ALGOLW IF’PLICIT PROCEDURE CCOEI
FOR I:=0 STEP 1 UNTIL 15 DO VARlIilI:= CCDEiBOARLllt 1

CCHNENT INVERSE PROCEDURE FCR ENCOOE;

PROCEDURE CECOD (STRING I161 VAR; INTEGER ARRAY BOARLll*I
CORMENT USES IhVERSE OF CGCE -0ECOOE;
FOR I:=0 STEP 1 LNTIL 15 DO BOARDI II:- EECOIJEIVARII

li

i

1));

COHMERT NONREDUhCANT ChECKS TO SEE IF THE 15 PUZZLE CONFIGURA-
TION VAR HAS ALREACI BEEN FOUNC. i

LOGICAL PROCEDURE hONRECUhOANlI STRING IlCI VAR; INTEGER Hl:
LOGICAL FLGI;

BEGIN CONRENT
VAR= STATE BEIkG CHECKED
Hl=HASC INDEX OF VAR
FLG = kHICH TREE IS SEARCHED FOR REDUNOAKT NODE.

IF TRUE TtiEN FORWARD TREE ELSE BACKYARD TREE. ;
LOGICAL T ;
DECO0 lVAR,ECARCI; Hl:=HASH(BOAROI;
Pl:= IIF FLG THEN HSHIHlI ELSE BHSHlhlIJi 7 :=JRUE;
CCRHENT CHAlKED SEARCH ;
WHILE Pl -.= hULL 00

IF ENCODlPlI=VAR THEN
COCWENT NOCE ALREAOY EXISTS IN HASH CLASS;

BEGIN T:=FALSE; GOT0 OUT END
ELSE Pl:=sPILLIPlI;

oli7: T
END NONREDUNCAhT;

CCRNENT SUCCESSCR FINOS NOOES AOJACENT TC VAR. THE hOFIBER
IT FINDS IS CEG ,ANC THEY ARE STORED Ih NXNOOES LIITH THE ZERO
POSITICNS RECORDED Ilr NZ;

PROCEDURE SUCCESSOR1 STRING (16) VAR; INTEGER DEG.PZ;
INTEGER ARRAY NZl+Ii STRING (16) ARRAV NxKcDESI*II;
BEGIN

LOGiCAL L,R.U,Ci INTEGER Al;

CCNNENT L,R,U,C ARE LEFT,RIGHT,UP,OOWN FLAGS RESPECTIVELV.THEY
TELL NXT WHICI- OF FOUR POSSIBLE MCVES TO GENERATE. ;

PRCCEOURE NXT;
BEGIN Al:=C;

IF R THEh
BEGIN Al:=l;

NXNOOESliI:=VAR; NXNODESllIIPZIlI:=VARlPZ+lIlIi

- 142 -

0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0131
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
015.2
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165
0166
0167
0168
01t9
0170
0171
0172
a173
0174
0175
0176
0177
(1178

NXh00ESllllPZ*llll:=COOElO);
EN0 RlGHTMCVE;

NZIl):=PZ+l;

IF L ThEN
BEGIN Al:=Al+l:

NXNCDES(Al):=VAR; NXMOOESlAl)lPZll~:-VARIPZ-ill);
NXhODESlA1J4PZ-11l1:=COOElOl; NZTAl):=PZ-1;

EN0 LEFTMOVE;
IF IJ THEN

BEGIN Al:=Al+l;
NXNOOES(AlJ:=VAR: NXNOOES~Al)~PZlll:=VnR(PZ-4111;
NXNOOESTAl~TPZ-4I1l:=COOElO~; NZTAll:=PZ-4;

EN0 UPCOVE:
1F 0 THEN

BEGIN Al:=Al+l;
NXNOOES(Al):=VAR; NXNOOES~AlllPZlll:=VARlPZ+4ill:
NXNOOESlAlIlPZ*411~:=COOElO~; NZlAllr=PZ+4;

END OCWNMOVE;
END NXT;

COMMENT SUCCESSOR USES THE PZ=POSITICh CF THE ZERO IN VAR TO FIN0
NEW BOARD POSIT IONS;
CASE PZil OF
BE CIN

BEGIN
BEGIN
BEGIN
BEGIN
BEGIN
BEGIN
BEGIN
BEGIN
BEGIN
BEGIN
BEGIN
BEGIN
BEGIN
BEGIN
BEGIN

R:=O:=TRUE; L:=U:=FALSE; OEG:=Z; hXT ENO;
R:-L:=O:=TRUE; U:=FALSE; OEG:=3; NXl END;
R:=L:=O:=TRUE; U:=FALSE; OEG:=3; LXT END;
L:=O:=TRUE; R:=U:=FALSk; OEG:=Z; hXT END;
R:=U:=O:=TRUE; L:=FALSE; OEG:=3; hXT END;
R:=L:=“:=O:=TRUE: OEG:-4; hXT END;
R:=L:=U:=O:=TRUE; OEG:=4; hXT END;
L:=U:=O:=TRUE; R:=FALSE; OEG:=3; hXT ENO;
R:=U:=O:=TRUE; L:=FALSE; OEG:=3; hXT END;
R:=L:=U:=O:-TRUE: OEG:=4; NXT END:
R:=L:=U:=O:=TRUE; OEG:-4; *XT END;
L:=U:=D:=TRUE; R:=FALSE; DEG:=3; hXT END;
R:=U:=TRUE; L:=O:-FALSE; DEG:=2; hXT END;
L:=R:=U:=TRUE; O:=FALSE; OEG:=3: NXT END:
L:=R:=U:=TRUE; O:=FALSEi OEG:=3; hXT ENO;

BEGIN L:=U:=TRUE; R:=O:=FALSE; OEG:=Z; NXT END;
EN0 MOVES;

END SUCCESSOR;

INTEGER PROCEDURE HAShTINTEGER ARRAY BOAROl*I);
BEGIN COW4ENT CASHES A BOAR0 POSITICh IhTO 560 TO 1240:

INTEGER T; T:=Oi
FOR I:=0 STEP 1 UNTIL 15 00 T:=T+BOARC(I)+I;
(T-560)

END HASH;

- 143 -

8:::
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
ai93
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
02CB
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238

COHMENT EVALUATE PCSITION VAR RESLLT IS VAL. EVALN SELECTS
PARTICULAR EVALUATION FUNCTION AN0 FLG IS USE0 YHEN OIRECTION-
AL INFORMATtCh IS hANTE0. i

PROCEDURE EVALUATELSTRING (16) VAR; INTEGER PZi REAL VAL,hT;
INTEGER EVALN; LOGICAL FLGJ;

@EGIN
INTEGER P,T,PEX,PEXl,PEXZ,R; REAL S:
INTEGER ARRAY SEP,PP,BT,HB lO::151;

COWHENT R IS THE REVERSAL CCUNT;
INTEGER PROCEOURE REVERSALS;
BEGIN
R:=O;
FOR J:=O STEP 4 LNTIL 12 00

FOR 1:-O STEP 1 UNTIL 2 DC
IF BOAROII+JJ= I + J l 2 THEN IF BOARDII*J+lJ=I+J+l THEN

R:=R+l;

FOR I:=0 SlEP 1 UNTIL 3 00
FOR J:=O STEP 4 UNTIL 8 00

IF BOARO(I+Jl=I+J+5 THEN IF BOAROII+J+4J=I+J+l THEN
R:=R+l;

(RI
EN0 REVERSALS;

CCMMENT OCRAN-RICHIE EVALUATOR WITHOUT REVERSAL TERN;
REAL PRCCEDURE CCKR;
BEGIN

FOR I:=0 STEP 1 UNllL 14 00 H9IIJ:=PTABLElPZ,l+lJ;
HB~l5J:=PTABLElPZ,l5J+JIF TPZ*lJ REM 4=0 THEN -1 ELSE II;
s:=o;
FOR I:=0 STEP 1 UNTIL 15 00

S:=S + SPRTIHBlIJl*PPIIJ*PP(Ili
IS I
EN0 MOYR;

CCMMENT NOYR WITH MY REVERSAL TERM :
REAL PROCEOURE NC; LHOYR*2O*REVERSALSJ i

CCMMENT IF BACKhARD OIRECTICh THEN PCSITION IS NAPPED INTO
THE ANTI-SYNNETRIC CONFIGURATICN ALLOWIhG EVALUATE TO
TREAT IT NORMALLY. i
IF -+FLG THEN

BEGIN OECOD iVAR,BOAROlJi
FOR I:=0 STEP 1 UNTIL 15. 00 WAR07 IJ:=WAP~BOAROlJIJJ;

EN0
ELSE

BEGIN CECOO iVAR,JJOAROlJJ
FOR I:=0 STEP 1 UNTIL 15 00 BCAROlIJ:=NAPllBOAROllIJl;

ENO;

PEX:=PEXl:=P:=O;

FOR I:=0 STEP 1 UNTIL 15 00
BEGIN T:=BOAROIiJ;

BTJTJ:=PPIlJ:=PTABLEoi
P:=P+PPIIl;

ENC;

- 144 -

:::z
0241
0242
0243
0244
0245
0246
0247
0248
0249
0250
0251
0252
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270
0271
0272
0273
0274
0275
0276
0277
0278
0279
02GO
0281
0282
0213
0284
0285
0286
0287
0288
0289
0290
0291
0292
0293
0294
0295
0296
0297
0258

COMMENT THE FOLLOkING VARIABLES ARE NOT CURRENTLY BEING USEC.
PEX AND PEXl REPRESENT PARTIAL P EVALUATICN AND ARE USED IN
SORE BI-OIRECTICNAL INTERSECTION EXPERIWEATS. THEY ARE TURNEO
OFF FOR PURPOSES OF EFFICIENCY. ;

COMMENT TURN OFF
FOR I:=0 STEP 1 UNTIL 15 00
BEGIN

IF FLG THEN BEGIN IF TPIII THEN PEXl:=PEXl+BTiIJ EN0
ELSE BEGIN IF wTPiIJ THEN PEXl:=PEXl+GTlIJ EN0

END;

COMMENT PEX SCORE REOROER L/2 OF EOARC;
CDRRENT TURN OFF

BEGIN FOR I:=0 STEP 1 UNTIL 7 00 PEX:=PEX+BTiIl END:

CASE EVALN OF
BEGIN

VAL:=iIF FLG THEN OISTiPTJCURNOOlJ ELSE DIS7I8PTlBCURNOOl
YT*P+l;

VAL:=iIF FLG THEN DISTIPTTCURNDOJ I ELSE OISTlBPTl8CURNOOJ
WT*P+1+20*REVERSALS;

)I+

I I+

VAL:=lIF FLG THEN OISTTPTJCURNOOII ELSE OISTlEPTlJJCURNOOJ JJ
+YT*J!OYR;

VAL:=lIF FLG THEN OISTiPliCURNOOlJ ELSE OISTtBPTiBCURNODIJl
.WTWO;

VAL:=P;
VAL:-P+ZO+REVERSALSJ
VAL:=WOWR:
VAL:=PO;
VAL:=llF FLG THEN DISTlPT(CURNDDlJ ELSE OISTLBPT~BCURNODJJJ+l~
VAL:=(IF FLG THEN DISTIPTiCURNOOJJ ELSE OISTIJJPTTBCURNOOlJJ+P-

+PEX +lJ
VAL:=iIF FLG THEN OISTiPT(CURNOOJJ ELSE OIS7iBPTiBCURNODJll+P

+P+Z+PEXl+l;
VAL:=IIF FLG THEN OJST~PTlCURNOOll ELSE OISTIBPT(JJCURNOOJll*P

+PEX+PEXl+l;
VAL:=O;

END :
EN0 EVALUATE;

PROCEDURE WRTBRDZI STRING 1161 VARJ: CORMEN LINEAR REPRESEhTATION;
BEGIN

INTFIELOSIZE:= 3;
WRITEI” “I; CECOOIVAR, BOAROJ;
FOR I:=0 UNTIL 15 00 URITEONiBOAROiIJI;
URlTEI”HASH VALUE *, HASHIRCARDIJ;
INTFIELDSIZE:=12;

EN0 YRTBRDZ;

PROCEDURE hRTBRD14 STRING I 161 VARI ;
COMUENT URITES OLT 4 BY 4 ARRAY REPRESEhTATION OF FIFTEEN PUZZLE;

BEGIN
JNTFIELOSIZE:= 3; WRITEI” “1; CECCOIVAR, @CARE);
FOR I:=0 UNTIL 3 00 YRIlEONTBOAROlIII; RPITEL” “I;
FOR I:=4 UNTIL 7 00 WRITECNlBOAROiJIl; VRITEI” “I ;
FOR I:=12 UNTIL 15 DO WRlTECN(BDAROILlI; IhTFtELOSlZE:=l2;

EN0 YRTBRDli

- 145 -

a299
a300
0301
0302
0303
0304
0305
0306
0307
0308
0309
0310
0311
0312
0313
0314
0315
0316
0317
0318
0319
0320
0321
0322
0323
0324
0325
0326
0327
0328
0329
0330
0331
0332
0333
0334
0335
0336
0337
0338
a335
a340
0341
0342
0343
0344
0345
0346
0347
0348
0349
0350
0351
0352
0353
0354
0355
0356
0357
0358

COMUENT HOISTR COLLECTS AND PRINTS HASH CLASS DISTRIBUTION.;

PROCEDURE HDISTR;
BEGIN

INTEGER ARRPY NHLO::b801;
YRITEI*HASH TABLE NIJMRER OF CCCURRENCES”);
FOR I:=0 STEP 1 LNTIL 680 DC NHTIl:=O;
FOR I:=1 UNTIL hUMNODE CO
@EGIN

CECOCTENCOOTPTTll~, BOARD); Tl:‘HASHL2OAROT;
NHlT11:= NHLTl) + 1;

END;
INTFIELCSIZE:=3;
FOR J:=O STEP 10 UNTIL 670 00
BEGIN YRITEIJI;

FOR I:=0 UNTIL 9 DC YRITEONL Nh(I+J) 1;
END;

END hDISTR;

COMMENT OMP DUMPS VARICUS NODES OF THE SEARCH TREES;

PROCEDURE CPPIINTEGER CNOT;
CASE CND GF
BEG IN
COMMENT CNC = 1 :FULL FGRYARD AN0

BEGIN
EACKWAPC TREES i

FOR I:=1 STEP 1 UNTIL NUNNODE 00
BEGIN

WRTERCZ~EhCODiPTII)l);
WRITEI WFIPTTIT), VAL~J~PT(I~~~CIST~PT~I~~ 1:

END:
FOR I:=1 STEP I UNTIL BNUMNOOE 00
RFGIN

hRTERD2~EhCCU~BPTlI~I I;
WRITE{ WFLBPTlI)lr VALU~EPT~II~,DISTlBPTlIll T;

END;
END;

COMMENT CNC =2: FULL FCRWARO TREE;
FOR I:=1 STEP 1 UNTIL NUHNODE 00
BEGIN

WRTBRDZIEhCCCTPTlItl 1;
YRITET YFIPTTIIT, VALUlPTlI)),CISTlFTIIII 1;

END;

CONHENT CND = 3: FULL BACKWARD TREE ;
FOR 1:-l STEP 1 UNTIL ENUCNOOE DO
BEGIN

WRTBRGZlEhCCDIBPT(IIl I;
WRITEI WFIBPTTITT, VALU~8PTlIl~,DISl~BPTO~ Ii

END;

CClflMENT CND = 4: EVERY TENTH NOOE IN FORWARD TREE;
FOR I:=1 STEP 10 UNTIL NUMNCDE CO
BEGIN

WRT@RCZlEKCCD(PTlIl~ I;

-146-

i

I:::
03Cl
0362
0363
0364
03e5
0366
0367
0368
0369
0370
0371
0372
0313
0374
0375
0316
0377
0378
0379
0380
0381
0382
0383
0384
0385
0386
0387
0388
0389
0390
0391
0392
0393
0394
0395
C396
0397
0398
0399
0400
0401
0402
0403
0404
0405
0406
0407
04C8
0409
0410
0411
0412
0413
0414
0415
0416
0417
0418

CIRITET YFTPTTIJlr VALUIPTLfJl,DIST~PT~IJl
E&II: _ ._.

; COMMENT CASE 5 IS hULL:

CC&WENT CND = 6: LAST TEN NOOES IN BOTH FCRWARO Ah0 BACKYARD
TREES;

BEGIN

Ii

INTEGER TF,TBi
IF NURNCOE<11 THEN TF :=I ELSE TF:=NUYRCOE-IO;
IF BNUWNODE<ll THEN TB:sl ELSE TB:=BhUCNOOE-10;
FOR I:=NUMNCOE STEP -1 UNTIL TF OC
BEGIN

YRTBRCZlEhCCDTPTlIJI I;
YRITEI WFIPTTIJJ, VALULPTLIJlrDtS

ENOi
FOR I:=BLUWNCDE STEP -1 UhTIL TB DC
BEGIN

HRTBROZIEhCCO~EPTlIJJ I:
WRITE{ WF(BPTlIJt, VALUltlPTlIJJ.0

(FllllJ Ii

SITBPTTIJI J:
END ;

END;
END;

COMMENT TRACE PRINTS CUT THE SOLUTION PATF;

PROCEDURE TRACE; CCCFENT TRACES PATH LSES 71.72 AS EXTERRALLY
SUPPLIED STARTIhG PCINTS FROM PROCEDURE TERMINATE;
BEGIN

INTEGER COUNT:
iOUNl:-0;

CDMWEhT FCRYARO CIRECTICN STARTS hITk NODE 11. USES LIF TO CHAIN
THROUGH PATH LNTIL 0 IS ENCOUNTERED AT NODE INIT;
WILE Tl-.=O CC

BEGIh
Pl:=PT(Tll;
YRITEI”NODE “, ” TREE PCS “t Tl,” VAL l rVALUtPlJJ;
YRT8RO11ENCCOLPliJ ;
Tl:=YF(PlJ;
CGUNT:=CCUNT+l;

END;
URITEI”FCRYARC TREE NOOES “,NUCNGOE,” PATH IS “ICOUNT);
COUNT:=Oi

COMMENT BICKUARO CIRECTION STARTS WITH hCtE T2. USES RF TO CHAIN
THROUGH PATH UNTIL 0 IS ENCOUNTEREO AT NODE GCAL;
YHILE TZ-=0 00

BEG IN
PZ:=BPT(TZl;
YRJTEf”NODE *. ”
URTBROlTENCOO(PiJJ:

1REE PCS “, T2.” VAL “.VALUlPZlJ;

TZ:=WFIPZJ;
COUNT:=CCUhT+li

END;
WRITE~“tJACKWAR0 TREE NODES “rBNUWNCDE~” PATH IS “.COUNTI;

END TRACE;

- 147 -

0419
0420
0421
0422
0423
0424
0425
0426
0427
0428
0429
0430
0431
0432
0433
0434
0435
0436
0437
0438
0439
0440
0441
0442
0443
0444
0445
0446
0447
0448
0449
0450
0451
0452
0453
0454
0455
0456
0451
0458
0459
0460
0461
0462
0463
0464
0465
0466
0467
0468
0469
0470
0471
0472
0473
0474
0475
0476
0477
0478

CDMMENT a**+* PTABLE INITIALlZbTION ++++I
PTABLEiPOSJTION, TILE VALUE) EQUALS MANHATTAN DISTANCE FROM
TILE TO ITS GOAL SQUARE ;

PROCEOURE PTABINIT;
BEGIN

FOR I:=0 UNTIL 14 00
PTABLElIrOJ:=PTABLE(I,I+lJ:=O;

PTABLE(lS,Ol:=O;
PTABLE(O,2l:=PTbBLE(O,5l:=PTABLE(lr3):IpTbBLE(J,bJ:=PTABLE(2,4):~
PTABLE(2,7t:~PTbBLE(3,Bl:~PTA~LEl4,bl:=PTABLE(4,9J:=PTbELE(5,7J

:=1;
PTABLE10,3l:-PTbBLElO,bl:=PTABLE(O,9l :=PTb@LE(1,4l:=PTABLE(l,5l:=
PTbBLEll,7J:=PTA8LEll,lOl:=PTABLE(2,bJ:=PTbBLE(2,B):=2;
PTABLE(O~4l:=PTABLElOI7):=PTA0LE(O,JOl:=PTABLE(O~l3l:=
PTABLE(1.Bl:=PTABLE(Irll):PPTABLE(l,l4J:=PTABLE(2~5l:=3;
PTABLElO,BJ:=PTABLE(O,llJ :“PTABLE(O,14J:=PTABLE(lrlZ):L
PTABLEll,13l:=PTABLE(l,l5l:=PTA~LE(2,9J:=PTABLE(2,l4J:=
PTABLEl3,51:=4;
PTABLE(O.I2l:=PTbBLE(O,l5l:=PTbBLE(2,l3l:=PTbBLE(3,9J:~
PTABLE(3.141:=5;
PTABLEl5,10J:=PTABLE(b,B) :=PTABLE(b.11I:=PTABLEl7,l2l:=
PTABLElB,13l:=PTABLE(9,11l:=PTABLE(9,14l:=PTABLEllO,lZJ:=
PTbBLEla,10l:=li
PTABLE(2,11J:=PTbBLE(317):PPTABLEl3,l2l:=PTABLE(4,7l:=
PTABLE(4.13l:=PTABLE(5,Bl:=PTABLE(5~9J:=PTABLE(5,lll:~
PTABLEl4,10):=2;
PTABLE(2,10l:=PT4BLE(2112) :=PTABLEl2,15J:=PTAJJLE(3,bJ:=
PTABLEl4,BJ:=PT4BLE(4,11l:=PTABLE14,141:=PTABLE(5,12J:=
PTABLE(3.Ill:=3;
PTABLE13,10J:=PT4BLE(3,15l:=PTABLEl4~12l:=PTABLE(4,15J:=
PT4BLE(7.91:=PTABLEl7~14J:=PTABLEl6.13):=4;

PTA8LElB;11l:=PTbBLE(B,l4J :=PTABLEl 9,12l:=PTb8LEl-9,13J:=
PTbBLEl7,11):‘2i
PTABLEI5,13J:=PlABLE(5r15):rPTIBLE(b,9J:=PTABLE(A,J4):~
PTABLE(7~15l:=PTbBLE(a,l2J:=PTABLE(B,l5J:=PTABLE(T~)o):~3;
PTABLE(9,15l:=PTABLEl10,14l :=PTABLE(11,15l:=PTA6LE(12,15):~2;
PTABLE(10,15l:=PTbELE(l2,l4J:=PlbBLEl)3,l5l:=l;
PTbBLE(1,9J:=PTbBLE(10113):-PT*BLE(ll,l4l:=3;
PTAtlLE(11,13J:=4; PTABLE(7,13J:=5;
FOR I:=0 UNTIL 14 00

FOR J:=I*2 UNTIL 15 00 PTABLEIJ-l,I+lJ:=PTABLE((rJJi
PTbBLEl15rlJ:=bi PTABLE(l5.2) :=PTABLEl15,5J:=5iPTABLE(l5,l5l:=l;
PTbBLE(15,3J:=PTbBLE(l5,bJ:=PTABLE(l5,9):=4: PTABLE(15,12J:=li
PTABLE(15,4l:=PTABLE(l5,7J:=PTABLE(l5,(OJ:=PTbBLEll5,l3l:~3;
PTABLE(15,Bl:=PTABLE(l5~ll):-PTbBLEll5~l4J:=2;

END PTABINIT;

PROCEDURE INITIALIZE; CCWMENT SEGMENT OVERFLOW i
BEGIN
COMMENT * INITIbLIZATICk OF PARAMETERS * i

UNDEVELCPEO(1l:=EUNDEVELOPEO(ll:= TRUE;
FOR I:=0 STEP 1 UNTIL BOO 00 HSH(Il1=BHSFlIl:=NULLi

hUMNCDE:=BhUMNCCE:=1; FUSE:=BUSE:=O; SDIST:=TDIST:=O;
FOR I:=0 STEP 1 UNTIL 14 DO BObRClII:=I+I; BCAR0(151:=0;
ENCODEl8CbRC,GCbLl;
FOR I:=0 UNTIL 14 DC MAP1~BCbROlIJl:=I*1: MAPl(BCARD(l5l l:=O:

- 148 -

Oots’og
0481
0482
0483
0484
0485
04Eb
0487
04ea
0489
0490
0491
a492
0493
0494
0495
0496
0457
0498
0459
0500
0501
0502
0503
0504
0505
0506
0507
05ca
0505
0510
0511
0512
0513
0514
0515
0516
0517
0516
0519
0520
0521
0522
0523
0524
0525
0526
0527
0528
0529
c530
0531
0532
0533
0534
0535
0536
0537
0538

CECCDI tNIT,BObRCJ;
FOR I:=0 UNTIL 14 DO MAPIBCAROIIlI:=I+li CAPIBCARDI 15ll:=O:
CCHHENT INITIAL EVIL IS MEANINGLESS ANC IS SET TO 0;
VbL:=O; PT(11:-hCDE~INIT,T5,O,O,VAL,NULLli
BPTllI:=NCOE(G0bL,15101O1V*LINULLJi
CECOO I INIT,BCARC~;
kSHIHASHlBCAROJ I:=PTlll: CCMNENT INITIAL HASH CLASS;
CECOD (GCAL,BCbRCli
Bl’SHIHbSHlBOARDIl:=BPToi

ENC INITIALIZE;

PTABINIT;

COMMENT nn IS AN ARRAY CF WEIGHTS TO BE USEC WITH EACH FUNCTION;
nnllJ:=O.5; nYl2l:=C.75; Y1113J:=li whl41:=1.5; YYI51:=2;
Wl6l:=3; wwi71:=4i nnl8):=16;
FOR I:=0 STEP 1 UNTIL 15 00 TPlIl:=FbLSEi
FOR 1:=0,1,2,3,4,E,12 DC TPIII:=TRUE;

CVER:
COMMENT READ IN PARAMETERS i

REbClMAXITER,llECN,EVbLN,DpPh,CSNtUT)i
FOR 1:=0 STEP 1 UNTIL 15 00

BEGIN REbCCNIBObRCIIlli IF BObRDIIl=O ThEh T5:=1 ENOi
ENCOOEIBCbRCIINITJi
IOCCNTROLI3li
WRITEI” BI-DIRECTICLAL GRAPH TRAVERSER WITJ GRAPHS IN RECORDS”li
WRITEInCISE “.CSN,” CECh “,DECNr” EVALN ‘,EVbLhJ;
WRITEI”PARbWETERS “1” kT= “.kT,” IIAXITER- “,CbXITER);
YRITET”STAhOARD GCAL “, ” INITIALLY “I i
KRTllRDlI INIT I;
Tlh:=ENTIERIHTJ;
FOR CC:=TIN UNTIL 8 DC
BEGIN hT:=hkt(CCI;

INITIbL’IZEi

CCHHENT *+*+ vblh PRCGRAW Loop *******:

J:=O;
;;;:; J < PAXITER 00

LOGICAL PRCCEYURE CECICE ItNTEGER VALUE CNli
CASE CN OF

TRUE, CCWMEhT - FCRhbRD SEARCH;
FALSE, CCHPENT - BACKkARC SEARCH;
IIJ REM 2J = 01, CCMPENT - ALTERhAlING BI-OIRECTICNAL SEARCH;
IIJ REM 31 = 01, CCJIPENT &ALTERNATING 1 FORK 2 BACK;
ISCIST < TOISTI, COMMENT - RI-DIRECTIONAL EGUIOISTANT SEARCH;

CCllHENT A FCRH CF PEhETRANCE RULE;
(lSCIST+ll/lkUCNOOE-FUSEI > ITOIST+lJ/iBhUMNCDE-BUSEI Jr

CCMMENT DECISICh BASEC CN @RANCHING FOR TREE CF LEhGTH *GIST;
I LNINUHNCDE-FUSEI*TTClST+ll < LN(BhUHNOOE-BUSEI*lSCJIST+Il J

Ii

- 149 -

0539
0540
0541
0542
0543
0544
0545
0546
0547
0548
0549
0550
0551
0552
0553
0554
0555
0556
0557
0558
0559
0560
0561
0562
0563
0564
0565
0566
0567
0568
0569
0510
0571
0572
0513
0514
0575
0516
0577
0578
0579
0580
0581
0582
0583
0584
0585
0586
0587
0588
0589
0590
0591
0592
0593
0594
0595
0596
0597
0598

PROCEDURE TERNIHATElSTRINC (161 VAR; LOGICAL FLGl;
BEGIN COMMENT CHECKS YHETHER CRNOO IS Ih BOTH TREES ;

INTEGER Ti CECOO LVAR,.BOARCli T:=HAShIEOAROl;
IF FLG THEN

BEGIN P2:-BHSHLTI;
WHILE P2 -.=NlJLL 00

IF VAR-ENCODL PZ I THEN
BEGlh

Tl:=NUMNOOE; TZ:=hFLPZI :
Pl:=PT(NUMNODEl; GOT0 TRACEPATH

END
ELSE BEGIN TZ:=hFLPZl; PZ:=SPILL(PZ) END

END
ELSE

BEGIN Pl:=hSHLTli
YHILE Pl -.= NULL 00

IF VAR=ENCOOLPll THEN
BEGIN

TZ:=BNUNNODEi Tl:=CFLPll;
PZ:=BPTIBNUHNODEli GOT0 TRACEPATH;

EN0
ELSE BEGIN Tl:=NFIPll; Pl:=SPILLIPll END

END
END TERHINATE;

lFLAG:=TRbE;
IF DECIOEI OECNI THEN

BEGIN
COMMEhT FORUARC GIRECTION i

MIN:=100000; FLG:=TRUEi

COMMENT SEARCH FOR UNOEVELOPEC NOOE NITH RINIMIJN VALUE;
FOR I:=hUMhCOE STEP -1 UNTIL 1 00

IF UNDEVELOPEOLII THEN
BEGIN

IF FIh>VALULPTLIll THEN
BEGIN MIN:=VALULPTLIll; CURNOC:=I END;

END UNOEV;

COMMENT INCREMENT NUMBER CF NODES EXPANCEC;
FUSE:=FUSE+ 1 i
UNDEVELOPEDTCURNOOl:= FALSE;
SOIST:=DIST(PTl CURNOOII;

COMMENT GEhERATE ADJACENT NODES AND ChECK FOR REDUNDANCY;
SUCCESSOR~ENCCD~PT~CURNODll,OEG,PZ~PT~CURNODll,NZ,NXNODESl:
FOR I:=1 STEP 1 UNTIL OEG CO’
IF NONREDUNOAhTLNXNODESTIl,T2,FLGI THEA
BEGIN

CCNHENT ADO NEW NODE 10 FORWARD SEARCH TREE;
EVALUATEINXNODES(lI~NZo1VILIUT,EVALN,FLGl:
NUHNOOE:=hUWNODE+1;
STl:=NXNCOESlIl;
PTI~MNOOEI:=NODEIST1,NZ~Il,CURNGO,CIST~PTICURNODll.1,

VAL.NULLl;
UNDEVELGPEDLNUWNODEl:= TRUE;

-150 -

-

0599
0600
06Cl
0602
0603
0604
0605
0606
0607
0608
0609
0610
0611
0612
at13
0614
0615
0616
0617
0618
0619
0620
0621
0622
0623
0624
0625
0626
0627
ocza
0629
0630
0631
0632
0033
0634
0635
0636
0637
0638
0639
0640
0641
0642
ot43
0044
0645
0646
0647
0048
oc49
0650
0651
0652
oc53
0654
0655
0656
0657
0058

COCMENT CALCULATE SPILL PCINTEA FOR HASH CLASS;
IF HSHlTZJ=NULL THEN HSHlT2I:~PTINUNNODEI
ELSE

BEGIh

kHILE Pl -.= hULL 00
BEGIN PZ:=Pl; Pl:=SPILLlPll END:

INCDE I SPILLIPZI := PTIhuM
END;

COMMENT CHECK IF NODE IS CCNTAINEC IN BOTH SEARCH TREES;
TERNINATElhXNOOESlIlrFLC)

END LOOPI:
END
ELSE
BEGIN COMMENT EPCKUARO OIRECTlON ;

HIN:=100000; FLG:-FALSE;
FOR I:=BhUNhCOE STEP -1 UhTIL 1 DO

IF 8UNDEVELGPEDIII THEN
BEGIN

IF RIIN > VALUlBPTlIlI THEN

EN0 ’
BEGIN NIN:= VALUl8PTlIII; BCURNOD:.I END;

BUSE:=BUSE:l i
BUNDEVELCPEDI@CURNOD):.FALSE;
TDIST:=DISTl8PTlBCURNODll;
SUCCESSOR~ENC~O~BPT~BCURNGO~~~OEG~PZIEF~I~CURNOOII,NZ,NXNOOE~~
:
FOR I:=1 STEP 1 UNTIL OEG DO
IF NONREDUNOPhTlNXNODESlII,T,2,FLGI THEN
REGlN _-__..

EvALuATEINxhOOESIIIrNZIIl,vA~,hT,E~ALN,~~G~~
iThUNNCOE:=~hUWNCOE+l:
ST1:=NXNOOESlIl;
BPTIBhUNNODEI:-NCDElSTl, NZIII, BCURNOD,

DI~TII~~T~BC~RN~~I~+I,~AL,N~LL);
.3UNCEVELtPEClBNUHkGOEl:~ TRUE;
IF Bt-SHlTil=NULL THEN BHSHITZI:=BPTIBhUNNCOE)
ELSE

BEGIN
Pl:=WSHlTZI;
WHILE Pl .= hULL DO

BEGIN PZ:=Pl; Pl:=SPILLIP1l END;
SPILLlP2I:=EPTl8hUYNOCEI

END;
TERWINATEIhXNOOESlIl1FLG)

END LOOPI;
EN0 ELSECLAUSE;

J:=J+I;
END JLOCP;

T R PCEPATH: IF J<NAXITER THEN
WRITEI” “I; WRITEl”F DEV
HOISTR;
IF FuSE+EUSE = HA,XITER T
OMPIDMPNI;
ENC CC;

GOT0 OVER;
END.

TRACE ELSE URITEl"CAXIMUM ITERATIOAS"
NODES “rFUSE,” B CEV NOOES “,WSEI;

‘l-EN IF OMPN=5 THEN CMPN:=b:

1;

- 151-

REFERENCES

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Amarel, S., “An approach to heuristic problem solving and theorem proving

in the propositional calculus, ” Carnegie Institute of Technology, Pittsburgh,

Pennsylvania (June 1966).

Amarel, S., “On machine representations of problems of reasoning about

actions - The missionaries and cannibals problem, ” Carnegie Institute of

Technology, Pittsburgh, Pennsylvania (June, 1966).

Baecker, Il., “Planar representations of complex graphs, ‘I Report No.

TN-ESD-TR-67-61, Lincoln Laboratory, MIT, Cambridge, Massachusetts,

(1967).

Bar-Hillel, Y. , (Editor), Language and Information, (Addison-Wesley, Palo

Alto, California, 1964), especially “Nonfeasibility of FAHQT,” pp. 174-179.

Bauer, H., S. Becker, and S. Graham, “ALGOL W implementation’,’ Report

No. TR-CS-98, Stanford Computer Science Department, Stanford University,

Stanford, California (May 1968).

Bellman, R. and S. Dreyfus, Applied Dynamic Programming, (Princeton

University Press, Princeton, New Jersey, 1962).

Berge, C., The Theory of Graphs and Its Applications, (Metheum Co. Ltd.,

London, England, 1962).

Berge, C., and A. Ghouila-Houri, Programming, Games, and Transportation

Networks, (Metheun Co. Ltd., London, England, 1965).

Berztiss, A., “A note on segmentation of computer programs, I’ Information

and Control, 12, 21-22 (January 1968).

Bur stall, R . , “Writing search algorithms in functional form, ” Machine

Intelligence 3, D. Michie, Editor (Oliver & Boyd, Edinburgh, England, 1968); -

pp. 3’73-385.

- 152 -

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Busacker, R. and T. Saaty, Finite Graphs and Networks, (McGraw Hill

Company, New York, New York, 1965).

Chartres, B., “Letter to the Editor, If Computer Journal, 2, 118-119,

(May 1967).

Corneil, D . , “Graph isomorphism, ” Ph.D. Thesis, University of Toronto,

Toronto, Canada, (1968).

Corneil, D. , and C . Gotlieb, “Algorithm for finding a fundamental set of

cycles for an undirected graph, ” Communications of the ACM, lo, 780-783,

(December 1967).

Dantzig, G., Linear Programming and Extensions, (Princeton University

Press, Princeton, New Jersey, 1963).

Dantzig, G., (personal communications, 1968).

Dijkstra, E. , “A note on two problems in connection with graphs, ”

Numerische Mathematik, 1, 269-2’71, (1959).

Doran, J. and D. Michie, “Experiments with the graph traverser program, ”

Proceedings of the Royal Society (A), 294, 235-259, (1966). -

Doran, J., “An approach to automatic problem-solving, ” Machine Intelligence

1, N. Collins and D. Michie, Editors, (Oliver and Boyd, Edinburg, England,

1967); pp. 105-123.

Dreyfus, D., “An appraisal of some shortest path algorithms, ‘I Report No.

RM-5433, Rand Corporation, Santa Monica, California, (August 1967).

Feigenbaum, E. , “Artificial intelligence: Themes in the second decade, ”

Memo-67, A. I. project, Stanford University, Stanford, California, (August

1968).

Feller, W., An Introduction to Probability Theory and Its Applications 1,

(John Wiley & Sons, London, England, 1950).

- 153 -

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Floyd, R., “Algorithm 97, shortest path, ” Communications of the ACM, 2,

345, (1962).

Floyd, R., “Nondeterministic algorithms, ” Journal of the ACM, 14, 636-644,

(October 1967).

Ford, L., and D. Fulkerson, Flows in Networks, (Princeton University

Press, Princeton, New Jersey, 1962).

Golomb, S., and L. Baumert, “Backtrack programming,” Journal of the ACM,

I& 516-524, (October 1965).

Greenblatt, R. E . , D. E. Eastlake, and S. Cracker, “The Greenblatt chess

program, ” Proceedings Fall Joint Computer Conference, (1967); pp. 801-810.

Harary, F. , R. Normal, and D. Cartwright, Structural Models: An Introduction

to the Theory of Directed Graphs, (John Wiley and Sons, Inc., New York, New

York, 1965).

Hardy, G., J. Littlewood, and G. Polya, Inequalities, (Cambridge University

Press, Cambridge, Massachusetts, 1964).

Hart, P., N. Nilsson, and B. Raphael, “A formal basis for the heuristic

determination of minimum cost paths, ” Stanford Research Institute report,

(June 1967); and IEEE Trans. on Sys. Sci. and Cybernetics,(July 1968).

Huberman, B. , “A program to play chess end games,” Report No. CS-106,

Computer Science Department, Stanford University, Stanford, California,

(1968).

Kaufmann, A. , Graphs, Dynamic Programming and Finite Games,

(Academic Press, New York, New York, 1967).

Knuth, D., “Fundamental algorithms, ” The Art of Computer Programming 1,

(Addison-Wesley, Reading, Massachusetts, 1968).

Kozdrowicki, E. , “An adaptive tree pruning system: A language for pro-

gramming heuristic tree searches, ” Proceedings of the ACM, (1968); pp. 725-735.

- 154 -

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

Lin, Shen, “Computer solution of the traveling salesman problem, ” Bell

System Technical Journal, (December 1965); pp. 2245-2269.

McCarthy, J., LISP 1.5 Programmer’s Manual, (MIT Press, Cambridge,

Massachusetts, 1964).

Michie, D., “Strategy building with the graph traverser, ” Machine Intelligence

1, (Oliver and Boyd, Edinburg, England, 1967); pp. 135-152.

Michie, D . , J. G. Fleming, and J. V. Oldfield, “A comparison of heuristic,

interactive, and unaided methods of solving a shortest-route problem, I’

Machine Intelligence 3, (Oliver and Boyd, Edinburg, England, 1968);

pp. 245-255.

Minsky, M., “Steps toward artificial intelligence, ” Computers and Thought,

E. Feigenbaum, and J. Feldman, Editors, (McGraw Hill Company, New York,

New York, 1963); pp. 406-450.

Moore, E., “The shortest path through a maze, I’ Proceedings of an International

Symposium on the theory of switching, Part II, April 1957, (Harvard University

Press, Cambridge, Massachusetts, 1959); pp. 285-292.

Newell, A. , and G. Ernst, “The search for generality, ” Proceeding of IFIP

Congress (1965); pp. 17-22.

Newell, A. , and H. Simon, “GPS, a program that simulates human thought, ”

Computers and ThouPht, E. Feigenbaum, and J. Feldman, Editors, (McGraw

Hill Company, New York, New York, 1963); pp. 279-293.

Newell, A., J. C. Shaw and H. Simon, “Chess-playing programs and the

problem of complexity, ” Computers and Thought, E. Feigenbaum, and

J. Feldman, Editors, (McGraw Hill Company, New York, New York, 1963);

pp. 39-70.

Nicholson, T. , “Finding the shortest route between two points in a network, ”

Computer Journal, 2, 275-280 (November 1966).

- 155 -

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

Nilsson, N., “Searching problem - solving and game playing trees for

minimal cost solutions, ” IFIPS Congress preprints (1968); pp. H125-H130.

Ore, O., Graphs and Their Uses, (Random House, New York, New York, 1963).

Ore, O., Theory of Graphs, (AMS Colloquium Publications, Providence,

Rhode Island, 1962); p. 38.

Pohl, I., “Graph package, ” GSG Memo-43, Stanford Linear Accelerator

Center, Stanford University, Stanford, California (June 1967).

Pohl, I., “A method for finding Hamilton paths and Knight’s tours, ” Com-

munications of the ACM, lo, 446-449, (July 1967).

Pohl, I., “Phrase-structure productions in PL/I, ” Letter to Communications

of the ACM, lo, 757, (December 1967).

Pohl, I., “A generalized extension to shortest path methods, ” GSG Memo-56,

Stanford Linear Accelerator Center, Stanford University, Stanford, California,

(March 1968).

Polya, G. , How to Solve It, (Doubleday, Garden City, New York, 1957); 2nd Ed.

Ramamoorthy , C . , “Analysis of graphs by connectivity considerations, ”

Journal ACM, 2, 211-222, (April 1966).

Samuel, A., “Some studies in machine learning using the game of checkers, ”

Computers and Thought, E. Feigenbaum, and J. Feldman, Editors, (McGraw

Hill Company, New York, New York, 1963); pp. ‘71-105.

Sandewall, E. , “A planning problem solver based on look-ahead in Stochastic

game trees, ” Report No. NR-13, Department of Computer Science, Uppsala

University, Uppsala, Sweden, (1968).

Shaw, A., “The fifteen puzzle, ” (private communication, 1965).

Slagle, J., and P. Bursky, “Experiments with a multipurpose, theorem-

proving heuristic program,” Journal of the ACM, 15, 85-99, (January 1968).

- 156 -

58.

59.

60.

61.

62.

63.

Tonge, F., “Summary of a heuristic line balancing procedure, ” Computer

and Thought, E. Feigenbaum, and J. Feldman, Editors, (McGraw Hill

Company, New York, New York, 1963); pp. 168-190.

Unger, S., “G.I.T. - A heuristic program for testing pairs of directed line

graphs for isomorphism, ” Communications of the ACM, 1, 26-34, (January

19 64) .

Von Neumann, J., Theory of Self-Reproducing Automata, Edited and completed

by Arthur W. Burks, (University of Illinois Press, Urbana, Illinois, 1966).

Warshall, S. 9 “A theorem on Boolean matrices, It Journal of the ACM, 2,

11-12, (January 1962).

Wirth, N. 9 and C . Hoare, “A contribution to the development of ALGOL, ”

Communications of the ACM, 2, 413-431, (June 1966).

Witzgall, C . p “On labeling algorithms for determining shortest paths in

networks,” Report No. 9840, U. S. National Bureau of Standards, Washington,

D.C., (May 1968).

- 157 -

