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T2CG1, A PACKAGE OF
PRECONDITIONED CONJUGATE GRADIENT
SOLVERS FOR TOUGH?2

G. Moridis, K. Pruess, and E. Antiinez

Earth Sciences Division, Lawrence Berkeley Laboratory
University of California, Berkeley, California 94720

ABSTRACT

T2CG1, a package of preconditioned conjugate gradient solvers, has been added to TOUGH2 to complement
its direct solver and significantly increase the size of probiems tractable on PCs. T2CG! includes three
different solvers: a Bi-Conjugate Gradient (BCG) solver, a Bi-Conjugate Gradient Squared (BCGS) solver,
and a Generalized Minimum Residual (GMRES) solver. Results from six test problems with up to 30,000
equations show tnat T2CG1 (1) is significantly (and invariably) faster and requires far less memory than the
MAZ28 direct solver, (2) it makes possible the solution of very large three-dimensional problems on PCs,
and (3) that the BCGS solver is the fastest of the three in the tested problems.

INTRODUCTION

Most of the computational work in the numerical simulation of fluid and heat flows in
permeable media arises in the solution of large systems of linear equations. The simplest
technique for solving such equations is by direct methods. However, because of large
storage requirements and accumulation of roundoff errors, the application of direct solution
techniques is limited, depending on matrix bandwidth, to systems of a few hundred to at

most a few thousand simultaneous equations.

The matrices arising in fluid and heat flow simulations are generally sparse, i.e.,
typically only a few percent of matrix elements are non-zero. Matrix bandwidth and “infill”

during direct solution increase dramatically with the dimensionality of the flow problem.
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This limits direct matrix methods to problems with a few hundred grid blocks in 3-D, while

one-dimensional calculations are feasible up to a few thousand grid blocks.

An attractive alternative for large linear systems is provided by iterative matrix
methods [Varga, 1962). Conventional iterative methods converge only for diagonally
dominant matrices, but conjugate gradient methods have no such limitation [Hestenes and
Stiefel, 1952). We have added a package of preconditioned conjugate gradient solvers to
TOUGH2 [Pruess, 1991] to complement its direct solver and significantly increase the size
of problems tractable on personal computers. The conjugate gradient solvers decrease
execution time and memory requirements substantially, and make possible the simulation of
three-dimensional flow problems with of the order of 10,000 grid blocks on workstations
and PCs.

This report briefly summarizes the selective adaptation of an off-the-shelf conjugate
gradient package to TOUGH2, and presents applications to a variety of fluid and heat flow
problems. A more complete documentation of the conjugate gradient package is in
preparation, which will include a full suite of sample problems, and a diskette with

TOUGH?2 input files and code enhancements.
CONJUGATE GRADIENT PACKAGE

T2CG1 was derived from SLAP Version 2.0 [Seager, 1988], a package developed

for the solution of large sparse linear N X N systems
Aex=b (1)

where N is the order of the A matrix. SLAP is a collection of various conjugate gradient
solvers, which come with two possible matrix preconditioning options: diagonal scaling

(DS) and modified incomplete LU factorization (ILU).

In TOUGH?2 the matrix A is a Jacobian with certain consistent characteristics. In

systems with regular geometry, A has a known block structure with well defined sparsity
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patterns. In general, A matrices arising in TOUGH2 simulations are non-symmetric M-
matrices with typically no diagonal dominance. Although A can be positive definite in
regular systems with homogeneous property distributions, it usually is not, and ill-
conditioning is expected in realistic heterogeneous large-scale simulations. Due to the fact
that A is a Jacobian, the elements of A in a single row often vary by several orders of
magnitude. In TOUGH2 simulations of flow and transport through fractured media, the
implementation of the "multiple interacting continua” concept results in a large number of
zeroes on the main diagonal of A, making pivoting impossible and resulting in very ill-
conditioned matrices. It is evident that TOUGH?2 simulations create matrices which are
among the most challenging, with all the features that cause most iterative techniques to
fail. In addition, the general-purpose nature of TOUGH2 means that different matrix
characteristics may arise for different types of problems. This explains the past heavy

reliance of TOUGH2 on the direct solver Ma28 [Duff, 1977].

Extensive testing of the SLAP package in a variety of flow and transport problems
identified the most promising conjugate gradient methods. The properties of the A matrix
essentially precluded the use of DS preconditioning, a fact which was confirmed in the
process of iesting SLAP. Without exception, ILU preconditioning was far more effective
and often the only possible option. Of the 15 methods available in SLAP, three were
identified as the ones with the most potential. In order of increasing robustness, these were
the (1) Bi-Conjugate Gradient (BCG) method, (2) the Lanczos-type Bi-Conjugate Gradient
Squared (BCGS) method, and (3) the Generalized Minimum Residual (GMRES) method.
In terms of the SLAP terminology, these methods corresponded to the subroutines

DSLUBC, DSLUCS, and DSLUGM, respectively.

Fletcher [1976] proposed BCG for the solution of linear, but not necessarily positive
definite or symmetric systems. Theoretical analysis of the properties of BCG indicates that

as long as the recurrences in the method do not break down, it must terminate in m < N
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iterations. Although there is no guarantee of reduction of the quadratic functionals (i.e. that
the recurrences will not break down or become unstable), in practice this is rare [Press et

al., 1986]. If a good preconditioner is used, BCG is an effective method [Seager, 1988].

The BCGS [Sonneveld, 1989] method is related to the BCG, but it does not involve
adjoint matrix-vector multiplications, requires half the computational work, and the
expected convergence rate is about twice that of BCG. Fora N x N problem, BCGS was
theoretically shown to terminate in at most N steps. Seager [1988] reports that when BCG
divérges, BCGS diverges twice as fast, and when BCG stagnates, BCGS is more likely to
diverge. He also suggested using BCGS after first successfully applying BCG. However,
in most TOUGH2 1pplications, we did not observe similar behavior. We observed a non-
monotonic reducticr in the error of BCGS, with many (and sometimes significant) local
peaks in the convergence performance. These local peaks are also observed in BCG, but
they are usually smaller in magnitude.

The GMRES method of Saad and Schultz [1986] is a Lanczos-type extension of
conjugate gradients for general non-symmetric systems which is expected to converge in
m< N steps for any non-singular matrix if truncation errors are not considered. It

generates an orthonormal basis from the Krylov subspace
K(m) = span{r,,Ar,,A’r,,A’r,,...,A™"'r,} )

'where r, =b-Ar, is the initial residual. Since storage requirements increase with m and
the number of multiplications with m*, m has to be much smaller than N. If the
convergence criterion 1s not met within m iterations, the iteration can be restarted using as a
starting value of x the one obtained at the m-th iteration of the previous cycle. The
GMRES we used employs this approach. We found that a m=20 to 30 is needed in most
TOUGH?2 simulations. For m<15 we generally obtain unsatisfactory performance, and it

is usually pointless to use m>35 (since this probably indicates that GMRES may not be a

March 30, 1994



good method in that particular problem). A unique feature of GMRES is that the residual

norm is diminished at every iteration, i.e. the error decreases monotonically.

In the T2CG1 package we maintained the nomenclature of SLAP, but substantially
modified the structure and content of the subroutines. We eliminated most subroutines used
in the SLAP structure and reprogrammed large segments of the code to take advantage of
the well-defined sparsity pattern of matrix A. This resulted in a compact code optimized
for TOUGH?2, which is substantially faster, but which lacks the modular structure of
SLAP. The native TOUGH2 mode uses a matrix storage scheme which is identical to the
SLAP Triad Matrix Storage Format, which was maintained unaltered in T2CG1. The ILU
preconditioner was maintained for use in simulations with irregular geometry. However,
for simulations with regular geometry we made use of the known structure of the A matrix
(determined by the integrated finite difference formulation of TOUGH2) to develop an
optimized Incomplete Block LU factorization (IBLU) preconditioner [Sonneveld, 1989].
The IBLU preconditioner was based on an approach proposed by Meyerink [1983], and
significantly sped up the convergence rate of the three methods compared to the ILU.
Moreover, we confirmed Sonneveld's observation that the IBLU factorization has the
additional advantage of being less sensitive to special directions in the problem (e.g. the

advection direction in the advection-diffusion equation, layering, etc.).

Storage requirements in T2CG1 remained the same as in SLAP and are described in
detail in Seager [1988]. DSLUBC and DSLUCS have the same storage requirements,
while DSL_UGM needs several times more memory. In terms of speed, our experience in a
large number of TOUGH2 simulations indicated that DSLUCS is the fastest by a
substantial margin, followed by BCG. DSLUGM was the slowest, but also the most
robust, and managed to solve efficiently some of the most demanding problems. Contrary
to Seager's observations, DSLUCS was the second most robust. Although one or two
methods in the T2CG1 package occasionally failed to converge successfully, we have not

encountered a case where all three methods failed.
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SAMPLE PROBLEMS
REPOSITORY PERFORMANCE ASSESSMENT AT YUCCA MOUNTAIN

This is a two-dimensional radially symmetric model that represents, in a schematic
way, alternating layers of fractured-porous (welded) and porous (non-welded) tuffs (see
Fig. 1). The flow domain extends from the land surface to the water table and has a radius
of 5000 m. It consists of 630 grid blocks with 1209 connections between them. With the
EOS4 fluid property module a total of 1890 simultaneous equations have to be solved. The
repository is modeled as a circular disk of 1500 m radius. Heterogeneity is moderately
strong, with permeability contrast between different layers of up to 104. The system is
initialized with gravity-capillary equilibrium at zero net infiltration, and the response to
repository heating is simulated. Special features include effective continuum treatment for
the fractured units, and strong vapor pressure lowering effects from formation drying. Full
problem specifications and discussion of simulated system behavior are given in Pruess

and Tsang [1993] and Tsang and Pruess [1990).

The problem was run on an IBM RS/6000 workstation, using 64-bit arithmetic.
Execution time for 10 time steps, corresponding to a simulated time of 6.48 days, was
693.5 seconds for the MA28 direct solver [Duff, 1977). The same simulation required
456.5 seconds with the DSLUCS iterative linear equation solution. For the specified

convergence criterion of 10-6 only 3-5 iterations were needed for each equation solution.
CHANNELIZED WATER FLOW AT YUCCA MOUNTAIN

Among the concerns being addressed in site suitability studies for Yucca Mountain is
the possibility of rapid channelized water flow along fast paths. Such fast paths may arise
from the heterogeneity within individual fractures as well as fracture networks. Effects
such as capillary imbibition into the rock matrix and vaporization from radioactive decay
heat would tend to diminish channelized water flow in fractures. We have set up several

models to examine the conditions under which liquid water flow may serve as a pathway
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for contaminants. The model discussed here is a three-dimensional X-Y-Z model with 6 x 8
x 21 = 1008 grid blocks and 2682 connections between them. It represents a one-fourth
symmetry element of the area of a single waste package in an idealized vertical emplacement
configuration as shown in Fig. 2. The gridding in the vertical (Z) direction is identical to
the previous R-Z model. The first Y-gridding has a width of 1 mm and represents a fracture
with a high permeability of 9x10-12 m2. The issue to be addressed by the model is whether
vapor generated near the waste packages can be discharged into fractures and then
condense at some distance from the waste packages in a sufficiently focused manner to
cause rapid and persistent downflow of water past the repository horizon. With the
Topopah Spring matrix rock assigned a permeability of 1.9x10-18 m2, heterogeneity is

rather strong with a maximum permeability contrast of approximately 5x106.

Using the EOS4 fluid property module, 3x1008 = 3024 simultaneous equations are to
be solved. The simulations were again carried out in 64-bit arithmetic on an IBM RS/6000
workstation. With the DSLUCS iterative solver, a run to 10 years of simulated time
required 36 time steps and 4603.9 CPU-seconds. The linear equation solution with a
specified convergence tolerance of 10-6 required an average of 40 iterations. MA28 failed
for this problem. After 2 hours of CPU time it had not yet completed a single linear
equation solution whereupon the run was terminated. The failure of MA28 occurred in spite
of the fact that very large memory allocations were made for the problem-size dependent
arrays, which would in fact have been sufficient for 10,000 grid blocks and 24,000

connections with the iterative solvers.
ENVIRONMENTAL REMEDIATION

This is a modified version of a problem developed by S. Webb [private
communication, 1993] to study the TEVES (Thermal Enhanced Vapor Extraction System)
process being designed and built at Sandia National Laboratories. In this process the

ground is electrically heated, and borehole(s) at the center of the heated zone are maintained
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at a vacuum to draw air and vaporized contaminants into the borehole and to a subsequent
treatment facility. The ground above the heated zone and beyond is insulated to minimize
heat loss to the environment. A vapor barrier is also used over a larger area to provide a
more complete air sweep of the contaminated soil. The simulated domain consists of 1300
elements in a three-dimensional grid. The problem is to be run with the EOS3 fluid
property module for water, air, and heat, resulting in a system of 3,900 simultaneous
equations. Repeated attempts to solve this problem using the MA28 direct solver failed
because of insufficient memory. We allowed a maximum of 10 time steps, and tested two

of the three conjugate gradient methods, DSLUCS and DSLUGM.

Both methods performed remarkably well. On a Macintosh Quadra 800
microcomputer, DSLUCS required 658.12 seconds (109.08 for input and 549.03 for
calculations) when the convergence criterion was set to 10-10, and needed a minimum of 7
and a maximum of 23 iterations for each matrix solution. This compares very favorably
with the total number of equations N = 3900, which is equal to the maximum number of

iterations for convergence.

For a convergence criterion of 10-8, DSLUCS required 619.57 seconds (108.64 for
input and 510.94 for calculations) and needed a minimum of 6 and a maximum of 17
iterations for each matrix solution. DSLUGM also performed very well, but was slower
than DSLUCS. It required 703.69 seconds (108.17 for input, 595.52 for calculations) to
reach the closure criterion of 10-10, and reached convergence after a minimum of 12 and a
maximum of 32 iterations for each matrix solution. It must be noted that the calculation
times in this and all subsequent examples include a significant amount of overhead (e.g. the
time needed for the initial set-up, to write voluminous results in the output files, etc.).

Therefore, an even better performance is expected in longer runs.
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VERTICAL SECTION OF WIPP

The WIPP (Waste Isolation Pilot Plant) is a planned repository for defense nuclear
wastes in a bedded salt formation near Carlsbad, New Mexico. The present simulation
problem as designed by S. Webb [private communication, 1993] includes a preliminary
model of the repository and the surrounding detailed stratigraphy with explicit
representation of the various layers of pure halite, argillaceous halite, polyhalitic halite, and
anhydrite. The purpose of the model is to evaluate effects of gas generation and two-phase
flow on repository performance within a complex stratigraphy, and to compare with other

models that use a simplified representation of the stratigraphy.

The simulated domain consists of 1200 elements in a two-dimensional vertical section
grid. This is an isothermal two-phase flow problem to be run with EOS3 (water, air), and
results in a system of 2,400 simultaneous equations. Permeabilities in the problem were
stratified, generally very low, with extremely high permeability contrast in the vicinity of
the more permeable repository. This type of problem is among the most challenging for
iterative solvers because elements of the Jacobian matrix along the same row may differ by
many orders of magnitude. We tested the direct solver MA28 and two of the three
conjugate gradient methods, DSLUCS and DSLUGM, in 10 time step runs on 2 Macintosh

Quadra 800 microcomputer.

MAZ28 was able to solve the problem and required 531.47 seconds (448.87 for
calculations, 82.60 for input). Both conjugate gradient methods significantly outperformed
the direct solver. DSLUCS concluded the 10-time step simulation in 355.42 seconds
(272.78 for calculations, 82.63 for input), and reached the specified convergence criterion
of 10-10 in a minimum of 7 and a maximum of 11 iterations for each matrix solution. When
the convergence criterion was increased to 10-8, 346.62 seconds‘v)cre needed (263.53 for
calculations, 83.08 for input) and the number of iterations per matrix solution varied

between 6 and 10. The performance of DSLUGM for a closure criterion of 10-8 was very
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similar: 354.38 seconds were required (272.25 for calculations, 82.13 for input), and 7 to
12 iterations were needed per matrix solution. Comparing calculation times only (and
disregarding the fact that theée include the substantial times spent on overhead), the
conjugate gradient solvers are about 1.7 times faster than the direct solver. It is expected

that the relative speed will increase in longer runs.

THREE-DIMENSIONAL GEOTHERMAL RESERVOIR MODEL

Five three-dimensional simulation models with different discretization were
constructed [Antiinez et al., 1994]. The different discretizations ranged between 500 and
10,000 elements and resulted in (2) 1,000 to 20,000 equations in single-phase systems and
(b) 1,500 to 30,000 equations in two-phase systems. The simulation models have an areal
extent of 5 x 4 km (20 kin2) and a thickness of 1000 m, divided in ten layers of 100 m
each (Fig. 3). The same discretization of the vertical reservoir dimension was maintained
in all cases, but finer discretizations were used in the X and Y directions. All grids have a
well producing at a constant rate of 30 kg/s in the sixth layer, an injection well operating at
a rate of 30 kg/s in the third layer, 5.nd a 30 MW heat source at the bottom layer (layer 10).
The wells are located at the node of the element closer to the points (500, 500, 550) for the
producer and (4500, 3500, 250) for the injector. The heat source is distributed among the
required elements to cover an area of 4x10° m2 (1000 m in x-and 400 m in y) at the center
of bottom layer (Fig. 3). All of the models were used to perform simulations for single-
phase and two-phase conditions.

For the single-phase cases the initial conditions are 40 MPa and 280°C in all blocks;
for the two-phase cases, 10 MPa and Sg=0.20 in all blocks. No-flow boundaries to mass
and heat are employed. Relative permeabilities correspond to Corey's curves with residual
saturations of liquid and steam equal to 0.3 and 0.05, respectively. Capillary pressures are

neglected.
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CERRO PRIETO GEOTHERMAL FIELD

The Cerro Prieto geothermal field developed by the Comisién Federal de
Electricidad (CFE), is located approximately 35 km south of Mexicali, Baja California,
México. Since the beginning of the exploitation of Cerro Prieto in 1973, one of the most
important operational problems that CFE has had to face was the handlicg of the waste
brine [Hiriart and Gutiérrez Puente, 1992]. Up to date most of the brine is sent to
evaporation ponds that presently cover an area of 18.6 km?2, Figure 4. An infiltration area

west of the ponds is used during the winter, when the evaporation rate is lower.

Recently (1992-93), CFE started a series of cold brine (approximately at 20°C)
injection tests, using brine from the evaporation ponds. The objective of these tests was to
monitor the reservoir's response to the injection and to test the injectivity of different areas
of CP1 in the western part of the field. Under the DOE/CFE cooperative agreement on
geotherrial energy, a numerical model for CP1 was developed, using data provided by
CFE. The computational grid, covering an area of 89 kmZ, was defined based on the
geological model of the field and the location and completion of the production and

injection wells (Fig. 4).

In the vertical direction the model extends from the surface to 5,000 m depth, and is
divided into six layers. All the layers have the same discretization aﬁd have 235 grid
elements (Fig. 4), except layer five that has 47 additional blocks in the NE simulating the
volume of the CP2, CP3 and CP4 areas. The numerical model has a total of 1,411
elements (resulting in 4233 simultaneous equations) and was developed as a single porosity
model [Antinez and Lippmann, 1993). Finer discretizations in the vertical direction
resulted in discretizations of 5,644 to 8,466 elements and 16,932 to 25,398 equations. The
model was calibrated with production and piezometric data, and was used to test several

injection strategies.

11
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For the Cerro Prieto model, the timing of the Newtonian iterations was conducted
using the following scenario: Inject 3,500 t/h of 200C brine evenly distributed between
injection wells M-48, 101, 104, E-6, 0-473 and M-6. Production wells will continue
producing at a rate equai o that measured at the end of 1991 (for that year, the average field
production was 5,459 t/h of steam and 6,394 t/h of separated brine). Injection well

locations are shown in Figure 4.

Table 1 presents a summary of the results of testing the different solvers [Antunez
etal., 1994]). Case 1 and 2 correspond to the Cartesian models for single and two-phase
conditions. Cases 3 and 4 are for the two-phase conditions using an irregular grid with
single and double pofosity. The reported total number of iterations are the sum of: a) the
Newtonian iterations (external iterations); b) the repeated external iterations due to
convergence failure (after 9 Newtonian iterations without reaching convergence, the
incremental time used in the current time step is divided by five and the iteration procedure
for that time step is repeated); and c) the convergence iterations (iterations that do not need
to call the solver since convergence has been attained) one per prescribed time step. The
average timing per Newtonian iteration only includes thé completed Newtonian iterations;
convergence iterations are not considered in this column. The CPU time corresponds to
execution time for all iterations Newtonian and non-Newtonian, plus the time to write the

output files.

Time comparisons for the different cases indicates that conjugate gradients
outperformed the direct solver in all the cases where MA28 could be applied. The BCGS
solver was consistently the fastest method, followed by the BCG solver. The GMRES
method does not seem to be a good choice for the geothermal systems tested, as it was
often slower than the direct solver MA28. However, due to significantly lower memory
requirements, the GMRES method could be used for the solution of large three-
dimensional problems intractable with MA28. In terms of CPU time, BCGS was between

1.5 to 3.2 faster than MA28 in the smaller three-dimensional cartesian grid problems (up to
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2,000 elements and 4,000 equations). Due to very large memory requirements, MA28
could not be used in larger problems, in which BCGS was the only method used.

However, it is important to emphasize that iterative methods are problem-specific.
A solver that performs well in a given problem is not guaranteed to worl; with all problems.
The GMRES solver was found to be the slowest of the three tested conjugate gradient
solvers but in previous testing of some highly heterogeneous fluid and heat flow problems
it was the only one that could converge. Preliminary testing of the CG solvers in a specific
problem is strongly recommended in order to select the best for the task.

CONCLUSIONS

~ A suite of preconditioned conjugate gradient solvers has been implemented in
TOUGH2, considerably enhancing the size of tractable problems. On PCs,
microcomputers and workstations two and three-dimensional flow problems can be run
with as many as 10,000 or grid blocks or more. This compares with problem size limits of
a few thousand grid blocks (for 2-D) when using the MA28 diréct solver , and a few
hundred grid blocks for 3-D problems. Memory requirements and execution times of the
conjugate gradient routines are modest, increasing only approximately linearly with

problem size.
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Table 1: Timing of the test runs for TOUGH2/PC with the solvers package

Newtonian iteration tolerance = 1x10-2
Closure in CG solvers = 1x10-6

Number of iterations Time (sec)
Repeated per I
fcase| Grid | Solver | Totall [Newtonian| dueto |Newtonian|Input| CPU | Total |Simulated| Observations
size convergence | iteration execution

failure
1} 500 | MA28 | 96 71 0 10.84 | 4.07 | 791.31 | 795.38 | 7.1677E9| Standard vers.

GMRES| 108 82 1035 ] 3.63 | 870.73 | 874.36 | 4.5053E9
BCG 104 78 7.56 3.46 | 611.21 | 614.67 |4.7101E9
BCGS | 97 71 6.79 346 | 518.06 | 521.52 |4.7101E9

1,000 MA28 { 96 71 77.57 ] 9.12 | 5551.59 |5560.71 | 19.660E9 | Standard vers.

GMRES| 126 97 46.78 | 8.08 | 4593.14 14601.22 | 4.0957E9
BCG 103 75 2745 | 7.74 | 2246.84 |2254.58 | 6.9629E9
BCGS | 98 70 20.60 ] 7.97 1 1726.42 |1734.39 | 4.3005E9

2,000} MA28 | 100 75 226.01 |21.64] 17041.46 |17063.10] 4.3005E9 | Standard vers.

GMRES] 144 113 227.88 ]19.55]25878.42 |25897.97| 1.2285E9
BCG 112 82 127.92 119.06] 11947.56 |11966.62 1.3821E9
BCGS | 99 70. 77.68 |18.95| 6655.65 | 6674.60 | 1.9453E9

5,000 |GMRES] 101 68 1381.20 | 80.57 | 94437.19 |94517.76| 1.7250E8
BCG 106 75 471.38 |79.20] 48964.26 149043.46] 5.5501E8

BCGS | 102 74 244.97 180.91 | 31495.60 {31580.51f 7.1650E8

10,0000 GMRES| 57 39 4803.00 |261.83{187576.22|188138.1]4.1110E7| 15 time steps

BCG 109 77 1287.75 |268.80163326.51]163595.3] 2.1730E8

BCGS | 97 64 472.05 269.85/106601.76|106871.6 3.3250E8

2 | 500 | BCGS | 140 113 4.02 | 3.79 | 485.38 | 489.17 | 9.0900E7
1,000 " 122 97 10.00 | 7.85 | 1017.44 |1025.29 | 9.0900E7
2,000 " 134 108 2575 118.73] 2910.39 |2929.12 | 9.0900E7
5,000 ! 132 107 69.95 |82.77| 7732.52 | 7815.29 | 3.8100E7
10,0000 " 134 109 162.41 |274.29 18203.14 |18477.43] 2.5300E7

21.20 ]33.51] 2595.45 | 2628.96 | 4.8061E8
55.56 1114.85] 10347.09 {10461.94] 4.1001E8 | 3 MINC shells
85.53 ]169.94] 16808.09 {16978.13]| 4.1003E8 | S MINC shells

w

1411| BCGS | 145 117
4 15644 | BCGS | 194 154
- | 8466 " 179 142

;GWOOHONOO\IWWO\OO&MO\OWN&O.—A»—:;—-

! The total number of iterations includes one additional convergence iteration per prescribed time step, 25
in total. At each iteration convergence is checked and if convergence is satisfied a new time step is
started.
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