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Lamb Wave Focusing Transducer for Efficient
Coupling to Wavelength-Scale Structures in Thin

Piezoelectric Films
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Abstract—This  article describes the theoretical and
experimental investigation of interdigitated transducers (IDTs)
capable of producing focused acoustical beams in thin film piezo-
electric materials. A mathematical formalism describing focused
acoustical beams, Lamb beams, is presented and related to their
optical counterparts in two- and three-dimensions. A novel
Fourier domain transducer design methodology was developed
and utilized to produce near diffraction limited focused beams
within a thin film AIN membrane. The properties of the acoustic
beam formed by the transducer were studied by means of Doppler
vibrometry implemented with a scanning confocal balanced
homodyne interferometer. Fourier domain modal analysis
confirmed that 85% of the acoustical power was delivered to the
targeted focused beam which was constituted from the lowest
order symmetric mode, while 2% was delivered unintentionally to
the beam formed from the anti-symmetric mode, and the
remaining power was isotropically scattered. The transmission
properties of the acoustic beams as they interact with devices with
wavelength scale features were also studied, demonstrating
minimal insertion loss for devices in which a subwavelength,
pinhole apertures was included.

Index Terms—Aluminum nitride; acoustic focusing; Lamb
wave transducers, Doppler vibrometry

I. INTRODUCTION

N recent years, the development of novel phononic and radio

frequency (RF) devices has been enabled by topology
miniaturization and material quality improvements in acoustic
wavelength-scale structures. Surface acoustic wave (SAW)
device performance has been pushed well into the GHz range
and devices have been realized in compact, low-cost material
platforms [1]-[3]. Phononic crystal waveguides and cavities
have been demonstrated at both higher frequency and
increasingly higher quality factor [4]-[7]. Additionally, nano-
opto-mechanical devices exploiting strong phonon-photon
interactions have led to quantum ground state cooling, phonon
lasing and ultra-sensitive sensors and accelerometers [8]-[11].
These developments and others are expected to have a major
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Figure 1. Illustration of the typical problem encountered with large transducers
trying to excite wavelength-scale structures. The wave produced by the send
transducer suffers an insertion loss at the waveguide input of approximately the
ratio of the width of the waveguide to the width of the transducer. Intercepting
the wave immediately at the waveguide output produces a second, symmetric
insertion loss. If the transducer is offset from the waveguide output (as shown),
diffraction expands the beam but causes wave front curvature that will tend to
average the received signal to zero.

impact on applications ranging from signal processing and RF
communications, to acoustic imaging and nondestructive
testing[12].

Emerging wavelength-scale devices resulting from this push
toward higher frequency and improved functionality often
require efficient excitation at the scale of a single wavelength.
The size of practical RF piezo-electric transducers, however, is
often constrained by RF impedance-matching requirements
[13]. The electrical admittance of straight interdigital
transducers (IDTs), for example, is characterized by a static
total capacitance and a radiative conductance proportional to
the total capacitance. Impedance matching is optimized through
the radiative conductance via the static capacitance. In the
gigahertz frequency regime, in particular, the IDT aperture
must be kept sufficiently large to attain optimal matching to a
50Q line, especially when matching networks are impractical.
Straight IDTs thus have dimensions many wavelengths long
and are therefore not compatible with a wavelength-scale
excitation requirement. Thus, impedance matching
considerations essentially guarantee that the power produced by
a transducer will be spread over an area much larger than a
wavelength and directly result in significant insertion loss on
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the send or receive transducer or both [14]. Fig. 1 illustrates this
problem in a transmission configuration involving an acoustical
waveguide.

Even if the transducer length was greatly reduced, mode
mismatch due to diffraction would still lead to large insertion
loss unless electrodes were directly deposited onto the
waveguide, which from both a fabrication and impedance-
matching perspective is impractical. The large number of
electrodes in this case would also lead to excessively narrow
filter bandwidths through increased filter-Q factors. IDTs with
straight fingers, while optimized to produce straight crested
Lamb waves, are ill-suited to serve as an electrical/phononic
interface for wavelength scale phononic devices. One solution
to this problem is to use large IDTs followed by focusing
elements such as reflections from curved surfaces or
propagation through acoustical metamaterials with negative
index [15]. This approach, however, increases both the device
footprint and insertion loss and adds to the complexity of
realizing focusing elements for an acoustical beam of large
aperture.

This paper presents a new transducer that directly produces a
focused Lamb wave beam in thin piezo-electric membrane. The
properties of this beam are completely analogous to Gaussian
optical beams produced by laser resonators and can be tailored
to produce acoustical beams matched to a given wavelength
scale-device. In this work we provide a theoretical description
of focused Lamb beams and a design framework for the IDTs
that generate them. Experimentally we study the properties of
the generated acoustic waves through single and dual port
devices. We employ an all-optical scanning confocal balanced
homodyne interferometer to perform Doppler vibrometry on the
generated focused Lamb beam. We show focusing down to 5
pm from 120 um long transducers with 85% of the generated
acoustical power in the targeted focused mode. Fourier domain
analysis is performed to identify the modal composition of the
generated beams and understand effects not captured by
simulations. For the dual port devices, we study the
transmission and reflection properties of these beams as they
interact with a sub-wavelength waveguide serving as a hard
aperture interjected between send and receive ports and
demonstrate minimal impact on insertion and transmission loss.

II. GAUSSIAN BEAM FORMALISM FOR LAMB WAVES

Efficient coupling to wavelength-scale acoustical structures
requires the use of acoustical modes which focus along the
propagation direction. The treatment of focusing modes has not
been derived in the context of Lamb modes in piezo-electric
thin films. Prior work in treating mode propagation in piezo-
electric devices has employed reducing exact three dimensional
integral equation to analytical expression in two dimensions by
ignoring the lateral modal shape [16]-[19]. In the analysis that
follows, we go beyond the application of Huygens’s principle
as was done in [20] and develop a focused beam formalism for
acoustical beams which accurately captures the focusing width,
divergence, and phase curvature. Toward that end we rely on
the optical analog, namely, Gaussian optical beams and follow
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Figure 2. Gaussian Optical beam which results from complex shifting, the
Greens function solution of the optical wave equation which is a radially
symmetric function of position, r, (i.e. setting z= z + izyp such that r =

Jx2+y? 4+ (z+iz,)?).

analogous steps in the derivation. Since Gaussian optical and
focused Lamb acoustical beams can both be derived from a
wave equation formalism, there are similarities in the mode
shapes and propagation properties that we will discuss below.
[20], [21]

Generally speaking, focused mode solutions to time
harmonic field equations can be synthesized by a complex
translation of the associated Green’s function for the
corresponding wave equation. For example, the Helmholtz
wave equation in an isotropic medium is given by

(V2 +kHu(r) = 6(r) (1)

where k is the associated wave-vector, r is distance from the
origin, and &(r) is Kronecker-delta function. The Green’s
function solution for the cases of one, two and three dimensions
are shown in the Table I [22]. Focused solutions can be derived
in two and three dimensions by applying a complex
displacement to the Green’s function solution. For example, in
three dimensions in order to generate a beam propagating along
the z axis we set z 2> such that r =
Jx2 +y2+ (z +iz,)?. This procedure produces a beam as a
function of (x, y, z) propagating along the translation axes, z,
and focused at the origin [21].

In optics, u(r) in the Eq. 1 is the amplitude of the vector
potential and is proportional to the transverse electric field in
the paraxial limit, where rays that constitute the optical beam
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Table I: Solutions for Helmholz wave equation



make small angles relative to the propagation axis. More
specifically, in three dimensions, a complex displacement along
the z-axis, z = z+iz,, in the paraxial limit ( i.e. r=
X2 +y2+(z+iz,)2 D> r=(z+iz,)+ x"2+y"2)/
2(z +iz,) ) of the 3D Green’s function solution listed in Table
I results in the well-known expression for an optical Gaussian
beam [21], which is illustrated in Fig. 2:
x%+y?

—Lk(Z+lZO)—Lkm

u(z) = % € (2)

z+1iz,

Here k = 2m /A (where A is the wavelength of light), and z,, is
the confocal parameter which determines the degree of
focusing. Any transverse cross section of the beam has a profile
that varies as exp[—x%/w(z)?], where w(z)=

Wo 1+ (2/2)? and tw3 = Az,. w, is the beam radius at the
point of maximum focusing, and w(z) is the beam radius for
any cross-section. 8, = w,/z, corresponds to the divergence
angle. The wave fronts of the beam are curved, with a z-
dependent radius of curvature given by: R(z) = z(1+
(20/2)?). Additionally, the beam experiences a phase shift due
to focusing along the direction of propagation known as the
Gouy phase shift: tan6 =z/z,. The above-mentioned
quantities are plotted in Fig. 3 and Fig. 4. For 2D optical beams,
the Green’s function solution to the Helmholtz wave equation
is described by a Hankel function of the second kind, H,EZ) (kr),
and can be similarly complex shifted to produce a focused beam
in 2D. Although there is no closed form expression, the

following asymptotic expansion can be applied which expands
a Hankel function of the second kind:

HP (2)
<2)1/2 - 1 mF(v+m+2) (3)

e—z(z ——vn ——T[)
m=0 ) (—2iz)m
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where I'(x) is the Gamma function. Retaining only the lowest
order term, we arrive at an approximate expression for a 2D
focused optical beam in the Gaussian limit, [23]:
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The 2D focused optical beam is similar to the 3D version except
for the leading radical which results in the beam waist and
radius of curvature begin equal to that of the 3D Gaussian beam,
while the Gouy phase shift experiences a factor of '4; tan 8 =
z/2b. A comparison is shown in Fig. 3 and Fig. 4.

We can follow the derivation of the Gaussian beam
formulation discussed above to arrive at an analogous
description of Lamb beams, focused acoustical beam in a slab
membrane. The discussion also applies to uniaxial piezo-
electric AIN membranes considered in this work which are
isotropic in-plane since the coupled quasi-electrostatic and
elastic equations can be reduced to elastic equations with
modified effectively isotropic elastic coefficients. As such,
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Figure 4. Comparison of on-axis intensity,(a), and beam waist,(c), for a
Gaussian optical beam (black), focused 2D optical beam (blue), radial
component of focused Lamb beam (red), and out of plane component of the
focused Lamb beam (green). (b) and (d) show the fractional error of the
normalized intensity and beam waist, respectively, from that of a Gaussian
beam. All curves in (a) and (b) are offset for clarity and have intensity of 1 at
7z=0 and a beam waist of Sum. Blue circles are chosen for clarity in (b) and (d).
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Figure 3. Comparison of Gouy phase (a), and radius of curvature (c), for Gaussian
optical beam (black), focused 2D optical beam (blue), radial component of
focused Lamb beam (red), and out of plane component of the focused Lamb beam
(green). (b) and (d) show the fractional error of the Gouy phase and radius of
curvature, respectively, from that of a Gaussian beam. Curves in (a) and (c) are
offset for clarity and corresponded to beams with a Spm waist. Blue circles are
chosen in (b) and (d) for clarity.

Lamb waves in isotropic materials are solutions to the
acoustical field equations in thin films which satisfy:

(V2+k2)A=0
(5)

ou, u, OJdu,

A= or T 0z

where A is the dilation, and the gradient operator, V, is
expressed in 2 dimensions, [24], [25]. The dilation therefore is



the analogous quantity to the vector potential amplitude for
optical beams. The solution to the above equation in terms of
dilatation is the 2D Green’s function solution of the Helmholtz
wave equation given in Table 1. To arrive at the displacement
amplitude u, the dilatation needs to be integrated. This results
in a displacement field distribution in cylindrical coordinates
given by:

ue™t = fay, ., (o (k) + 28y W1 (k) (6)

where r is the radial component and z is the out of plane
component in cylindrical coordinates, J, and J, are Bessel
functions of the first kind, and the functions ay,,,(z) and
Bpm(z) are trigonometric functions of z that satisfy open
boundary conditions and account for modes that are higher
order along the film thickness [25]. The above equation is the
vector Green’s function solution for displacement amplitude for
acoustical fields in thin films. A complex translation along one
axis for both radial and out-of-plane components will yield the
mathematical description of a focused lamb wave beam.

A complex translation of Equation 6 involves shifting both
first and second order Bessel functions, which complicates
deriving expressions for the beam radius, curvature, and Gouy
phase shift. Bessel functions, J,(z), however, can be related to
each other by considering the following well known asymptotic
expansions, [26], [27]:

J»(2)
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where (v,2m) and similar expressions are combinatorial
functions (i.e. v choose 2m). The above equation can be further
expanded using Euler relation to yield:
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For loose focusing, » becomes sufficiently large that only the
lowest order term will dominate. Thus, imparting a complex
displacement, (z =z + ib), to Equation 6 and retaining only the
lowest order terms from Equation 8, we arrive at the focused
solution for acoustical beams in the Gaussian limit:
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Both the radial and the out-of-plane component of the Lamb
beam approach expressions for the field amplitude of a 2D
focused optical beam in the Gaussian limit (see Equation 4) but
are phase shifted with respect to each other by a factor of m/2.
Focused Lamb-wave beam profiles, therefore, converge to 2D
focused optical beam profiles in the limit of loose focusing and
far from the beam center. A comparison of all beams discussed
is shown in Fig. 3 and Fig. 4 which show results for a 3D
Gaussian optical beam, 2D focused optical beam, and the radial
and out-of-plane components of a focused acoustical Lamb
Beam. Differences between these beams are most prominent
under tight focusing, and the beams converge to each other
under loose focusing. Additional error correction terms for
acoustic beams described by Equation 9 can be derived from
higher order terms of Equation 8 where each error term has the
form:

x%+y?
2(z+jb)

\Z +jbm

and thus can be interpreted as a higher order correction beam.
For tight focusing where the error terms will more strongly
contribute, the overall acoustical beam will focus, but
amplitude and width modulations will appear along the axis of
propagation for tighter focus, as shown by the wiggles in Fig.
3(d). These error terms however are small.

Thus, the mathematical form of an optical focused beam in
two and three dimensions and a focused acoustical beam in a
thin film are similar and can be related through asymptotic
expansion of Bessel and Hankel functions. All beams converge
to a spot with constant phase and diverge with increasing waist,
converging to a fixed divergence angle. The focused Lamb
beam is expressed as a zeroth order beam plus higher order
correction beams. For the zeroth order beam, the waist, radius
of curvature and Gouy phase shift can be expressed as functions
of a confocal parameter and are given by:

+/—ik(z+jb)—ik
e

(10)

Uerror =

w(z)=w, |1+ (ZZ—O)Z

R(2) = z(l + (%)2)
6(z) =z

tan— = —
2 Z,

(11)

where, the beam waist, w,, the confocal parameter, z,, and the
far field divergence angle, 6, are expressed as,

nwé = Az,
W,
g, = M0 (12)
Zy

The above equations are used in the next section to facilitate
design of transducers that generate focused Lamb beams.



III. FOURIER DOMAIN TRANSDUCER DESIGN

Straight IDTs generate straight crested planar lamb waves by
imparting a modulating compressive stress profile in the
immediate vicinity of the metal/piezo-electric bonding interface
that aligns with linear constant-phase contours of the output
wave. In principle curved IDTs can provide a greater diversity
of mode shapes[25], [28]. However, with constant width IDTs,
the generated waves correspond to eigen-modes of the elastic
wave equation only in the case of straight or circular
configurations; where straight IDTs produce plane waves, and
circular rings produce Bessel-like modes (Equation 6 above). In
both cases the generated waves have constant amplitude along
phase fronts. The focused beams described in the previous
section, however, have wave amplitudes that vary along
constant phase contours, having a maximum along the
propagation axis. To generate such beams, the IDTs must be
spatially varying along the transducer length. In the following,
we show how to properly modulate the transducer width along
the transducer length in order to generate the focused Lamb
beams discussed in the previous section.

A single finger IDT on a thin film piezo-electric material
with a grounded bottom metal layer and an infinitely long top
electrode actuated by a temporally sinusoidal voltage with
angular frequency w couples to Lamb wave modes and
produces forward and backward-going waves as illustrated in
Fig. 5. The electrical excitation for a single finger is analogous
to the case where a bulk wave is excited by a spatially uniform
(in x and y) and temporally sinusoidal volumetric force in the
limit where fringing fields are neglected in which case the
amplitude of the forward and backward going waves are given
by [13]:

2F

t(z) =1F
a*(z) WV,

wly — _

sin (71) U exp(Fiwt) (13)
where F is the force density, V}, is the speed of sound, w is the
angular frequency U is the voltage amplitude z is the distance
from the electrode mid-point, and [ is the electrode width. The
amplitude of the emitted wave is therefore related to the
electrode with for a single finger IDT and is proportional to
sin(kL) where k = w/V;.

For spatially varying IDTs, we expect that the field amplitude
of waves emitted in the immediate vicinity of the IDT section
under consideration to be determined by the width and normal
along the transducer length as long as the electrode width and
direction vary slowly compared to the wavelength. In other
words, we expect the local amplitude to vary as:

alocal(s)i = yVO sin kLlocal(s) (14)
where s is the position along the electrode with and y is a
constant of proportionality determined by the film thickness
and material properties. Within the limits of this Jocal
approximation, a transducer can be tailored to emit the focused
Lamb beam described in the previous section, by varying the
transducer width to follow the Lamb beam amplitude along
constant phase contours. In the Gaussian beam limit for large z,
(i.e. far from the focus with |z| > z,, where z, is the confocal
parameter described in the previous section), the field has an

2F wl @ | _iw
= —F——sin— Vl_z = ——Sin—- _Wz
a_(2) Fw/V, sin 7 e a;(z) Fw/VI sin v e

F(2) =F

Figure 5. Excitation of a thin film piezoelectric field by an IDT with a bottom
metal ground plane, which is analogous to excitation of a bulk wave by a
spatially uniform (in x and y) and temporally sinusoidal volumetric force in the
limit where fringing fields can be neglected.

on-axis peak amplitude inversely proportional to the beam
waist at z, i.e. Ap../W(2), and decays from its on-axis maxima
as exp [—92 / HDZ]. Thus, a single finger placed far to the left of
the focus and having an on-axis local-width maximum which
decays as exp[—@2 / HDZ], will produce a wave that has a focus
at the origin.

A single curved finger would have an electrical impedance
similar to that of a single straight finger of equal area. Thus, a
set of curved IDTs is required to achieve reasonable filter
quality factors and impedance matching. We specify a set of
electrode fingers by placing the first finger (the 0 finger) an
integer multiple of wavelengths to the left of the origin at a
coordinate -Z,. Additionally, the 0" finger will have an on axis
width of L, = 4/2. Each successive finger will have a center at
Z, = —Zy —nA and an on-axis width falling inversely with
radius to maintain constant electrode area for each finger. Off-
axis, all fingers require their local widths to fall off
exponentially following the amplitude of the Lamb beam. Thus

2
L (6) = L, (0) exp [~ :?] with Ly ()~ .
Additionally, there is a maximum angle, 6p/2, out to which the
fingers are swept which ensures that all the fingers meet the bus
at a straight line.

We can more generally address beam shapes produced by
width-modulated, curved transducers by viewing points on a
transducer as source points for locally straight crested waves as
implied by Equation 14 [13], [20]. Consider the field amplitude
generated from a single ring transducer with an angle dependent
local width, as illustrated in Fig. 6. Integrating along the ring,
the displacement field at an arbitrary point can be expressed as:

u(r, ') = fA(H) explik-(#=R)|d6 (1)
Where A(0) is the amplitude generated by the IDT within the
assumptions of the local approximation in Equation (14).
Expanding vector quantities in the above expression and using
trigonometric identities we can arrive at the following:

u(r,0") = exp(—ikR)

X fA(B) exp(—ikr-cos(6' —6)) do (16)
which relates the displacement field to the convolution between
the angular-dependent local amplitude which is a function of
the local width and a complex exponential. Equation 16, can be
related to a 2D Fourier transform, expressed in cylindrical
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Figure 6. a) In the local width limit, a portion of transducer can be viewed
as a plane wave source with amplitude proportional to the local transducer
width and normal to the transducer length. b) The field at a given point 1,
©’ from a circular IDT with angular dependence width can be determined
by integrating the local contributions along the ring contour.

coordinates, which is given by:
f@r,0) =F{F(p, p)}

e , (17)

= f f F(p, p)exp(—ikpr cos(=8)) pdp dg
o Jo

where » and 6 represent radius and angle in cylindrical
coordinates in the spatial domain; and p and ¢ represent radius
and angle in cylindrical coordinates in the Fourier domain, i.e.
k-space [29].For functions having only angular dependence in
k-space, the Equation (17) can be further simplified as follows:

F(r,0) =F(0) x&(k —k,)
2m
f(@r,0) = do k,F(6) exp(—ikorcos((b — 6))

o

(18)

Comparing Equations 16 and 18 above we can see the
correspondence of the local amplitude of circular transducers,
A(8), to the Fourier amplitude, F(8), for functions comprised by
rings in k-space. Thus, we can specify the amplitude profile of
the wave emitted from circular transducers by considering their
representation in the Fourier domain. Additionally, concentric
rings of transducers can be used to increase signal strength and
electrical impedance. Fields from concentric rings can be
coherently combined as indicated by the radial phase factor in
Equation 16.

Consider the case where A(6) = F(k) = §(k — k,). This
corresponds to a physical transducer which is a ring of constant
width. From well-known Fourier transform pairs it is clear that
the amplitude of the emitted wave will be: u = f(r,0) =
Jo(k,7). Thus, from the perspective of Fourier transform pairs,
a circular transducer of constant width will excite a Bessel beam
as indicated in Fig. 7(a) and 7(b). This agrees with what we
expect given Equation 7, the Green’s function solution of the
acoustical wave equation in cylindrical coordinates. Following
the analytical method described in the previous section, a
complex shift in the direction of propagation is required in order
to generate focused beams from Green’s functions solutions.
Thus, a complex shift of the physical transducer that generated
the Bessel mode will yield the desired focused beam. A real
valued shift is expressed in the Fourier domain as a varying
phase [30]. The rule still applies if the shift is complex. Thus,
applying properties of Fourier transforms we have:

f(R +Ry) « exp(—ik - Ro) x F(k)

> - 19
f(R + izoﬁ) o exp(—zyk,cos6) x F(k) (19)

The Fourier domain function then  becomes:
F(©)=Bexp(—zyk,cos8)*x5(k-k,) and the corresponding local
amplitude becomes:

A(8) = Bexp(—zykycosB) (20)

where z, is the confocal parameter in Equations 11 and 12.
These steps are illustrated in Fig. 7(c) and 7(d). Using
Equations 14 and 20 to relate the local amplitude to the local
transducer width, we arrive at the necessary condition for the
local transducer width for a ring IDT to form a Bessel beam:
L(O) = kisin‘l(exp(zoko(l — co0sh))) (21)
0
Thus, circular transducers designed with Equation 21 will yield
focused Lamb beams. Additionally, concentric rings of
transducers separated by integer multiples of the excitation
wavelength can be used to coherently interfere focused beams
generated from each ring, in order to achieve electrical
impedance matching, although the widths should be scaled such
that the area of each finger is the same.

From the perspective of Fourier domain transducer design,
the influence of a finite aperture can be viewed as multiplying
the Fourier domain with a rectangular windowing function,
which in the spatial domain acts as convolving with a sinc
function, thus spreading the energy at the focus by an amount
proportional to the aperture size. We also note here that the
above analysis is valid in the plane-wave limit of point sources
[21]. Acoustical points sources not in the far-field limit are
better described as emitting circular waves which drop in

5 a) Ky b)
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Figure 7. Fourier transform pairs leading to transducer design. The Bessel
function in (a) consists of a ring in k-space (b). A complex translation of
the Bessel function leads to the focused beam in (c) whose k-space
composition is confined to a ring but has an angular intensity modulation
superimposed.



amplitude as //r. Thus, transducers designed too close to the
focus point in the near-field will have deviations from the above
analysis that originate from point sources better described as a
circular wave in two dimensions. However, for the cases
discussed in this work with slowly varying local widths and
transducers placed sufficiently far from the focus, the Fourier
domain view of circular transducers remains valid.

IV. FINITE ELEMENT SIMULATION

Employing the curved transducer design methodology
described in the previous section, we developed and performed
finite element method (FEM) simulations in COMSOL for a
transducer capable of producing a focused beam. We choose a
design frequency of 2GHz in a 750 nm thin film of aluminum
nitride so that ko=2n/5.1um. A confocal parameter of zo=11 pm
was selected so that the focused waist of a beam emitted from a
single transducer is 5 um. Additionally, a transducer aperture
of 8, = 1.5rad and 18 fingers were chosen so that the electrical
impedance between the figures and ground plane was nearly
matched to 50Q.

A piezo-electric FEM model of the transducer is shown in
Fig. 8. The wave is excited by an oscillatory voltage applied
between the fingers (outlined in black) and a ground plane on
the bottom face of the membrane. The bus is not included in the
simulation. The left-hand boundary is free and serves as a back
reflector making the transducer single-ended. The other
boundaries are adiabatic absorbers, which have been separately
verified to absorb without significantly reflecting back into the
simulation.

The transducer design does indeed produce the expected
focused Lamb beam, which is localized to a minimum spot-size
that agrees with that predicted by the theory and also focuses to
the correct distance from the right-most transducer. The
theoretical framework utilizes a plane wave basis of radial
displacement, essentially ignoring the vertical dependence of
the displacement field. Therefore, the relevant displacement
field for comparison in the full 3D simulation is the radial
component at the mid-plane between the top and bottom
electrodes where the field amplitude is the largest. Fig. 9 shows
a comparison of the amplitude predicted by the theoretical
model and the radial displacement field of 3D FEM simulation

max

b !
il gt

A

R
| ! WELBDEL s

min
Figure 8. Piezo-electric FEM model of a unidirectional Gaussian Lamb beam
with angular aperture 0p=1.5, produced by driving an array of width
modulated IDTs with a harmonic potential at its resonance frequency. The
first finger starts at 10 wavelengths back from the origin.

at the mid-plane. The close agreement confirms the analysis in
the previous section.

Although the FEM simulation is three-dimensional, analysis
of 2D planar sections for a fixed vertical position can be
matched with the theoretical framework developed in the
previous section. This approach is valid because the z-
dependent variations of the beam solution can be factored.
Further analysis of the simulation is conducted by considering
the Fourier domain composition of the simulated beam profile.
As shown in Fig. 10, the Fourier transform intensity profile is
constrained on rings in k-space, which decay exponentially as
the 8 deviates from —m. Energy not constrained on a ring
represents deviations from the idealized case. The angular
dependence of the Fourier amplitude along the dominant
circular contour is shown by the blue curve in Figure 11. The
intensity profile along the circular contour matches the theory
(black curve) including the sharp cut-off due to the bus.

The region in Fig. 10 outside the dashed circle shows the
amplitude outside the central ring magnified by a factor of
1000. The presence of an additional ring indicates that a higher
order beam is very weakly excited. By integrating regions in k-
space, the FEM simulation results enable characterization of
modal excitation efficiency. The majority of the drive
frequency is directed to the fundamental mode in that 85% of
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Figure 9. a) Field profile from theoretical model. b) Field profile of
radial displacement at the AIN membrane mid-plane from 3D
piezoelectric FEM model.
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Figure 10. Two dimensional Fourier Transform of radial displacement at
the central cross-sectional plane of the simulated thickness. The portion
outside the dashed line is magnified by 1000 times.

the energy resides in the inner ring. Less than 1% resides in the
outer ring, and the remaining 14% is dissipated isotopically.
The 3D FEM model, allows us to look at the z-component of
the displacement field at the bottom-plane, which is the field
component accessible to optical investigation and will be
compared to experimental data in a later section. A Fourier
domain analysis shows that energy is confined to a ring in k-
space similar to Fig. 10. The red curve in Fig. 11 plots the
angular dependence of the intensity in k-space along that ring.
The profile which contains wings around the central coordinate
is notably different than the mid-plane curve, although both are
generated from the same mode. Thus, interrogation of the z-
component of the displacement field at the bottom-plane must
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Figure 11. Angular dependence of Fourier amplitude. Black curve is

predicted from theory. Blue curve is from the radial component at the mid-
plane of the FEM simulations and corresponds to the inner ring in Figure
10. Red curve is from the vertical component at the bottom-plane.
Amplitude components centered around 7 correspond to forward
propagating Lamb waves while those centered around 0/2m correspond to
backward propagating waves.

account for the non-uniform mapping to radial mid-plane
displacement for a proper comparison to theory. This
consideration will be relevant in a later section pertaining to
confocal imaging.

Fig. 12 plots the displacement amplitude in the mid-plane
and the z-component at the bottom plane at the focus position
and also along the beam propagation direction. The agreement
of the curves indicates that the theory of the previous section
accurately predicts the focusing action of the transducers as
described by Fourier domain amplitude control. Here we have
simulated focusing to a Sum spot. The bottom-plane
displacement shows considerable structure, although the mid-
plane displacement is smooth. This again illustrates the fact that
the mid-plane displacement represents the beam composition
and the bottom-plane alone will contain artifacts. Thus,
measurements of the bottom plane need to account for the
mapping of bottom-plane to mid-plane displacement. This fact
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Figure 12. Comparison of displacement intensity profiles for focused
beam for analytical (black) and radial component of the FEM simulation
at the mid-plane (red) and bottom-plane (blue), which is experimentally
accessible, showing excellent agreement, justifying a two-dimensional
analytical theory and the fact that the mid-plane displacement represents
beam composition while the experimentally accessible bottom-plane
contains artifacts. (a) Intensity profile of displacement along center of
beam in the propagation direction. Ripples appear in the field amplitude
at the bottom plane. b) Intensity profile of displacement for cross section
at focus position illustrating the beam waist. The simulated waist has a
broad pedestal originating from the finite transducer aperture.



is particularly relevant in the experimental section where we
measure the bottom-plane displacement. Additionally, Fig.
12(a) shows the axial variation of the displacement is slightly
asymmetric with respect to the focus. This is due to the fact that
points on the transducers emit circular waves with intensity
falling inversely with distance rather than plane waves as was
mentioned in Section III.

V. FABRICATION

The fabrication steps used to realize the transducers followed
a standard AIN process developed at Sandia National Labs, [31]
and the key steps are illustrated in Fig. 13. The process begins
with high resistivity six-inch Si wafers upon which a 0.6 pm
oxide and a 4 um polysilicon release layer are consecutively
deposited. The polysilicon is then patterned to define where the
AIN membranes will be undercut and suspended from the
substrate. This is shown in Fig. 13(a). The polysilicon in this
layer will be selectively removed in later steps, and therefore
constitutes a sacrificial material that ultimately defines regions
of air.

Next, an oxide layer is deposited and chemically and
mechanically polished squaring up to the sacrificial polysilicon
release material. Additionally, in this layer, tungsten plugs are
machined into the oxide in order to make contact to the bottom
electrode. This is shown in Fig. 13(b). Ultimately, electrical
pads will be connected from above to the tungsten plug through
vias. This layer, therefore, constitutes regions of tungsten plugs

1 AI/TIN I Ti/TiN/A

[ Tungsten

B AIN B Poly-Si B Si(substrate)

Figure 13. Key fabrication steps. a) Poly-Si patterned to define the
release layer. b) Tungsten plug stop for electrical via c). Aluminum
Nitride layer deposited. d) Contact to bottom metal. e) Top electrodes
patterned. f) Poly-Si layer removed with XeF2 release.

over which vias will ultimately land, and regions of the
suspended membrane where polysilicon is defined. Next, the
electrically grounded bottom electrode, formed from 20/20/50
nm of Ti/TiN/Al is deposited, patterned and a 0.75 pm layer of
AIN is sputter deposited as shown in Fig. 13(c). Vias are then
etched in the AIN landing on the tungsten plugs. After this, a
top electrode layer of 70/20 nm of Al/TiN is deposited. The
resulting stack is shown in Fig 13(d).

The top electrode layer is then patterned to form the piezo-
electric transducers and pads as shown in Fig. 13(e). Release
trenches are finally etched through the AIN and bottom metal
to expose the polysilicon release layer and simultaneously
create the back reflectors and/or waveguides. The device is
suspended from the substrate using a dry release in XeF2. An
example a one-port device is shown in Fig. 14.

Figure 14. SEM of single-port Gaussian Lamb transducer device in AIN.

VI. OPTICAL AND ELECTRICAL CHARACTERIZATION OF ONE-
PORT DEVICES

In this section we experimentally evaluate one port devices
by imaging the displacement field profile and comparing it to
the developed theory. Additionally, we look at the k-space
composition of the measured field to understand which modes
are excited by the designed transducer and estimate the
excitation efficiency in the desired mode and spurious modes.
As will be shown below, k-space analysis is useful to
understand the actual excitation efficiencies since: the
measurement tool only senses out of plane displacement, and so
vertical modes show up strongly even though they contain
relatively little acoustic energy. K-space analysis enables us to
discriminate between modes and estimate actual efficiencies
based on well-established theoretical calculations of vertical
displacement to forward going power as a function of mode
type.

The one port-devices shown in Fig. 14 consisting of a single
focusing transducer with back reflector were designed with
long open areas for the wave to propagate unobstructed, which
allows us to optically test the transducer and visualize the beam
formation. Electrical Si; measurements, shown in Fig. 15, were
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Figure 15. S11 measurement of the single port focusing transducer depicted
in Fig. 14 which agrees with the simulated transduction efficiency.

performed and we measured an approximately 50%
transduction efficiency of RF to acoustical energy, confirming
the prediction from FEM simulations.

We employed a scanning confocal balanced homodyne
interferometer to perform Doppler vibrometry on AIN
membranes in order to image the bottom-plane displacement of
the excited acoustical modes, [32], [33]. A schematic of the
interferometer is shown in Fig. 16. Essentially, the setup is a
balanced homodyne interferometer operating at 1550 nm. A
balanced pair of photodiodes measures the difference in optical
power at the output ports of a Mach-Zehnder interferometer
(MZI) consisting of a local oscillator (LO) path and a weak
probe path, where the path of a weak probe (more than 10 dB
down in power from LO) includes a bounce off the metalized
bottom surface of the membrane. An anti-reflection coated
lensed tapered fiber (LTF) and magnetic circulator allow the
path of the MZI probe arm to focus light down to a nearly
diffraction-limited spot (2 um diameter) and collect the
reflected light with very high efficiency (~95% one-way loss
through the LTF). Because the bottom electrode of the device
is a continuous film of aluminum with 99% reflectivity at 1550
nm, the system will efficiently measure the change in path
length due to fluctuations induced by propagating Lamb waves.
Since the change in refractive index in the AIN membrane is
negligible, the optical phase change will be dominated by the
movement of the bottom metal. Thus, the system is highly
sensitive to out-of-plane displacements of the bottom metal
induced by Lamb waves propagating through the membrane.

A network analyzer simultaneously drives the device
transducer while coherently demodulating the signal from the
interferometer, which allows phase-coherent detection of the
Lamb waves propagating through the membrane. By scanning
the LTF over the surface of the device at a fixed height (and
with 10 nm in-plane resolution), we can fully reconstruct the
amplitude and phase of the Lamb waves in the device with a
signal-to-noise ratio often in excess of 60 dB with sufficiently
low RF drive power to avoid thermal effects. Fig 17. shows a
displacement amplitude image collected from the device shown
in Fig. 14 when driven with 0 dBm at ~2 GHz corresponding to

LTF

€

S > NA

Figure 16. Schematic diagram of scanning confocal balanced homodyne
interferometer used to optically characterize Lamb wave devices. MZI: Mach-
Zehnder interferometer, BPD: balanced photodetector, PC: polarization
controller. ISO: optical isolator, FS: fiber stretcher, VC: variable coupler, CIR:
circulator, LTF: lens taper fiber, NA: network analyzer.

an acoustical wavelength of A = 5.1 um. The mode produced
by the transducer shows the focusing of an acoustical beam to
a minimum waist and subsequent diffraction, thus capturing the
essential features and functionality previously described. There
is however, the notable presence of prominent interference
fringe pattern in the data.

The origin of the fringe pattern in Fig. 17 can be understood
by examining the energy distribution in the Fourier domain (k-
space) shown in Fig. 18. The energy is confined to concentric
rings consisting of an inner and an unexpected outer ring. The
inner ring with a radius of 1.1 pm™ corresponds to the k-vector
amplitude of the desired excited mode, the symmetric mode.
The outer ring, which is responsible for the fringe corresponds
to an additional mode of a larger k-vector at the same frequency.
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Figure 17. Amplitude of optically measured beam. Intensity corresponds to

out-of-plane displacement at the bottom of the membrane. Prominent fringes
are visible and due to excitation of anti-symmetric mode.
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We can identify this mode by considering the dispersion
relations for the AIN membrane. Fig. 19 and Fig. 20 show the
dispersion relation and mode profiles, respectively, as
determined from finite element modeling. As indicated, for the
given frequency of 2GHz, a symmetric, anti-symmetric, and
shear mode exists. The radius of the inner ring corresponds to
the symmetric mode k-value of 1.25 pm™! while the outer ring
corresponds to the anti-symmetric mode with a k-value of 3.15
pum!. The shear mode is not present as indicated by the absence
of aring at 2 um™’. Thus, the presence of an outer ring indicates
the excitation of the lowest order anti-symmetric mode by the
designed transducer.

Analysis in k-space, in general, provides a prescription to
deconstruct the transduction process by identifying the classes
of modes involved. Care needs to be employed, however, when
attempting to extract relative excitation efficiencies of each
mode by integration along the corresponding contours in k-
space. For the case in Figure 18, the energy of inner ring
contains approximately 1.7 times that of the outer ring. The 2D
analysis, however exaggerates the relative amplitudes for the
three-dimensional modes since the majority of the displacement
occurs in-plane at the center of the membrane in the radial
direction, while the imaging setup detects only out out-of-plane
displacement at the bottom of the membrane.

The ratio of total out-of-plane displacement at the bottom-
plane to total radial displacement at the mid-plane for a focused
acoustical beam formed with the lowest antisymmetric mode is
much larger than then for the lowest symmetric mode. The
mode profiles for the symmetric, antisymmetric and shear
modes at 2GHz are shown in Fig. 20. The modal excitation

4t |
2+ 1
£ 1
S 0 I : { 1 -
~ ¥
xx N\ :‘
Sym
ol YL |
___________ - ;4symo
4+ ]
4 2 0 2 4
K, (1/um)

Figure 18. Fourier transform of measured out-of-plane displacement at the
bottom-plane of the AIN membrane. Inner dashed ring corresponds to a k-
vector radius of 1.25 pum'! (symmetric mode) and outer dashed ring
corresponds to 3.15 pm'!(anti-symmetric mode).

efficiency can then be estimated by integrating energy in a
contour and scaling appropriately to get the forward going
power. These factors were determined from FEM simulations.
The fraction of energy in the vertical component for each mode
is .3%, 73%, and 0% respectively. The measured situation here
thus corresponds to 85% of the three-dimensional mode power
occurring in the desired symmetric mode. Thus, the above
results indicate that we have successfully focused the acoustical
energy down to Sum with 85% of the transduced RF energy
delivered to the targeted lowest-order symmetric-mode.

Since the symmetric and anti-symmetric modes appear as
rings of different radius in the k-space, the modes can be filtered
spatially to allow fair comparison to theory. Figure 21(a) shows
the amplitude of the field isolated inner ring compared to the
FEM model. We note that although the bottom-plane vertical
displacement for the FEM shows structured profile before and
after the focus with additional ripples through the focused
region, the mid-plane radial displacement which contains the
majority of the energy faithfully conforms to that of a focused
Lamb beam. The vertical displacement field at the bottom-plane
must be mapped to the field at the mid-plane in order to
accurately characterize the generated beam.

Although there is qualitative agreement, the experimental
data appears less focused. This is confirmed by looking at the
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Figure 19. Dispersion relations for symmetric (blue) Lamb wave, anti-

symmetric (red) Lamb waves and shear horizontal (green) waves for a 750nm
AIN membrane. The bar indicates the modes at the excitation frequency.
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b) shear horizontal and c) antisymmetric, at 2GHz.



N W
o o

- N
© o o
1

N
o

Perpendicular - x (um)

30+ Simulated Displacement A

I

20 10 0 10 20 30
Along Beam - z (um)

1 1 1

w
S

b)

Y
(=]

N
o

Perpendicular - x (tm)
© o o
i‘

&

30} Measured Displacement from Inner ring: k= 1.1 pm?

1

20 -10 0 10 20 30
Along Beam - z (um)

1 1

N W
o o
(@]
No—

{ 11, eeammaney

- N
© o o

Perpendicular - x ( um)

N
o

30} Measured Displacement from Quter ring: k= 3.5 pm™ -

1 1 '

20 -10 0 10 20 30
Along Beam - z (um)

Figure 21. a) Field profile of vertical displacement at the bottom-plane of the
AIN membrane from FEM simulation. b) Field profile corresponding to inner
ring in k-space of the experimental data. c¢) Field profile corresponding to the
outer ring.
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Figure 22. a) Intensity cross section of vertical displacement at the bottom-
plane of AIN membrane along center of the propagation direction. Blue curve
corresponds to FEM simulation with narrow transducer aperture (6p = .9 rad).
Red curve corresponds to simulated the wider aperture (6p = 1.5). Black curve
corresponds to experimental data. b) Corresponding intensity profile of
displacement for cross section at focus position illustrating the beam waists.

angular dependence of the frequency amplitude along the inner
ring in k-space which is shown in Fig. 23. As plotted in the
figure, the curve for the experimental data is more localized
than that predicted from the FEM model of transducer which
were designed with an angular aperture of Op = 1.5 rad.
Additionally we have plotted the corresponding curve for an
FEM simulation of a transducer with an angular aperture of Op
= .9 rad. As indicated by the agreement in the figure, the
experimental data is better represented by a transducer with a
narrower aperture. Additionally, the sectional plots in Fig. 22
show that the focused waist and Rayleigh range are better
modeled with transducers having the narrower aperture.

This deviation of the measured displacement field profile
from the predicted profile is worth addressing. Since the
measured field distribution is better matched with a narrower
aperture, the field amplitude beneath the transducers wings is
less than that predicted by the local transducer width in equation
15. Local heating is one potential explanation for the observed
reduction in transduction efficiency at these regions and
observed narrowing of predicted spread in angle in k-space. As
the transducers narrow toward the edge of the aperture range,



the electrical resistance increases and correspondingly local
resistive heating increases resulting in an impedance mismatch
due to a temperature gradient and reduced excitation efficiency.

Additionally, we observe that coupling to the first order anti-
asymmetric mode is larger than the theoretical prediction. FEM
simulations indicate less than .3% coupling into this mode but
these simulations don’t account for all sources of asymmetry.
Asymmetry due to local heating on the top plane, or mass
loading are possible sources of asymmetry that result in
enhanced coupling to the first asymmetric mode.
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Figure 24. Angular dependence of Fourier amplitude along inner (black
curve) of the experimental data. Angular dependence of Fourier amplitude
from FEM simulation with transducer aperture, 0p, set to 1.5 rad (blue curve)
and .9 rad (red curve), illustrating the experimental data more closely matches
fields generated with smaller apertures transducer.

VII. DUAL-PORT DEVICES

As a final test of the Lamb beam transducers in this work, we
experimentally evaluate their ability to focus energy in a device
architecture by studying the inclusion of a hard-stop aperture in
a send and receive configuration. The dual port devices
considered here are comprised of identical send and receive
focusing transducers, having the design studied in the previous
sections, connected by a subwavelength acoustical waveguide
serving as the aperture. The acoustical waveguide has a length
set to match the acoustical wavelength, A, and widths that vary
from A/2 to 10A. Fig. 24 shows the fabricated devices for the
cases of the narrowest and widest pinhole waveguides. Since
A=5um for the devices here these correspond to widths of
2.5um and 50 pm for the narrowest and widest waveguides
respectively.

The transmission loss of a hard aperture can be determined
by integrating the mode profile over the aperture window. Thus,
for focused lamb modes in the Gaussian limit, equation (5) can
be integrated to yield:

P, /P, = erf[D/(V2w(2)]; (22)

Where erf() is the error function, D is the aperture width, z is
the distance from the focusing point, and w(z), is the beam
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Figure 23. Fabricated dual-port devices, one with a 0.5A waveguide (2.5um
wide) (a) and the other with a 10X waveguide (b), which is essentially a wide-
open aperture.

waist. In the devices considered here, the aperture is positioned
at the focus, therefore, by setting w(z) = w, = 24/ and
evaluating the above equations for the devices in Fig. 24, we
expect 3 dB of acoustic loss due to the hard aperture for the
narrow aperture device (0.5A-wide) and negligible acoustic loss
for the wide aperture device (10A-wide). The electrical
characterization of these devices are shown in Fig. 25. The
narrow-aperture device only incurs 0.5 dB of additional loss in
reflection and ~3dB additional loss in transmission relative to
the wide-aperture device, thus confirming that the acoustical
power is indeed focused through a narrow hard aperture.

Additionally, we performed confocal imaging and k-space
analysis on the narrow-aperture devices. The corresponding
displacement field image measured with our confocal imaging
setup is shown in Fig. 26 and illustrates the focusing and
coupling action of the designed transducers. The k-space
composition of the mode, is shown and forms conceniric rings.
As with the single port devices, both the symmetric and anti-
symmetric modes are excited. The inner most ring and outer
most ring corresponds corresponding to symmetric and anti-
symmetric modes respectively have k-vector radii of 1.25 pm-
! and 3.15 um™'. For the two-port case, however, there is strong
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Figure 26. Electrical characterization of a 0.5A (red) and 10X (blue) wide
waveguide two-port devices, showing a negligible increase in insertion loss
for the 0.5A device.

amplitude at both positive and negative k on a ring, indicating
the presence of both forward and backward going waves of
nearly equal amplitude. This is expected given that the structure
essentially forms a linear confocal cavity, given the end
reflectors at the send and receive ports, with a central aperture.

The middle ring in the k-space diagram in Fig. 26, however,
identifies an additional mode involved in the interaction; a
mode not involved in the single port devices. Its value of k-
vector radii of 2 pm™ indicates that the mode is a shear
horizontal mode (SH) as determined from the dispersion
diagram in Figure 19 19. Although the transducers themselves
are not able to excite shear horizontal modes, the interaction
with the waveguide causes coupling between the symmetric,
antisymmetric, and shear horizontal modes which results in a
weak mode mixing such that the resulting quasi-shear mode has
a small but detectable out of plane component.

As was done in the previous section, the concentric rings can
each be filtered out individually to visualize the beam profile
associated with the mode class and the results are reported in
Fig. 27. Fig. 27(a) shows that the symmetric mode contribution
to the image is smooth and continuous through the waveguide
confirming that on resonance the symmetric mode is focused

_ a)
£ -10} ]
x
g O =i 8
o
o
[ o
ot
= 10} ‘
o

20720 20 0 20 40

Along Beam - z (um)

3k b) i

oL ,

Ak ‘." """" ]
s o = : ]

1 [ : “\.__..u"" )
Symo
SHoy ]
A1 e Asymg )
-3 -2 -1 0 1 2 3
K, (1/um)

Figure 25. a) Measured optical image displacement field (real part) of dual
port device with a 0.51 waveguide (2.5pm wide). b) Fourier transform (k-
space) of (a). Inner dashing ring corresponds to 1.25um!, the middle ring
corresponds to 2 um!, and the outer ring corresponds to 3.15 pm’!
corresponding to beams formed with symmetric, shear horizontal respectively
and anti-symmetric respectively.

unobstructed through the hard aperture. The prominent fringing
pattern is due to the backward going wave, and indicates that a
single wavelength contained in the waveguide. Fig. 27(b)
shows the antisymmetric mode contribution. The length of the
waveguide while resonant for the symmetric mode is not
resonant for the anti-symmetric mode, and therefore power is
not continuous through the waveguide. A small portion of the
incident wave scatters at the waveguide input into the
asymmetric mode which is contained in the side cavity formed
between the send back-reflector waveguide input. The effect
similarly happens with the backward going wave at the
waveguide output resulting in a small amount of energy leaking
into an antisymmetric mode being contained in the side cavity
formed by the waveguide output and the receiver back-
reflector. Finally, Fig. 27(c) shows the beam contribution from
the SH modes. As with the antisymmetric mode, the waveguide
length is not resonant with the SH k-vector resulting in low field
amplitude at the center of the waveguide and quasi-SH modes
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Figure 27. Filtered profiles of the inner (a), outer (b) and middle ring (c) from
k-space in Fig. 24 corresponding to beams formed with symmetric, anti-
symmetric and shear horizontal respectively.

developing in the side cavities. Interestingly the excited SH
mode is not the lowest order cavity mode but rather a higher
order exhibiting a cross pattern. This cavity mode corresponds
to aperture-limited Bessel beams in optics[21].

As was mentioned for the single port device, the measured
confocal images represent vertical displacement at the bottom
plane only, although the majority of the displacement is radial
at the mid plane. Thus, we would need to normalize the relative
energy along the contours of the symmetric, antisymmetric and
shear horizontal modes to calculate the forward going power of
the mode in order to quantify the modal efficiency of the
transducer. Hybridization of the modes for the resonant device
considered complicates this procedure. However, the effective
coupling constant of the receive transducer effectively serves as
a notch filter for the targeted symmetric mode. Therefor the

electrical measurements indicate that the majority of
displacement energy is in the symmetric mode. And the
analysis on the confocal imaging data illustrates the utility of
the k-space representation to understand the interaction of
modes of differing k-vector for the given operating frequency.

VIII. DISCUSSION AND CONCLUSIONS

In this work, we provided a comprehensive study of the
design, modeling, fabrication, and experimental verification of
transducers that produce focused Lamb wave beams in thin-
film aluminum nitride membranes. In particular, we developed
a theoretical description of focused Lamb beams in thin films
and presented a Fourier domain design methodology that we
employed to design and fabricated both single and dual-port
devices in a 750nm AIN membrane. The single-port devices
enabled demonstration of diffraction limited focusing, which
we confirmed through confocal imaging. We showed that the
transducers in this work achieve a diffraction limited focused
spot size of Sum at 2GHz where the wavelength of the
symmetric mode is 5.3 um. Modal analysis in k-space shows
that we achieve more than 85% efficiency into the desired
focused beam formed with the symmetric mode. Additionally,
we demonstrated a functional two-port device utilizing focusing
transducers. Focusing enabled coupling energy through a
wavelength scale aperture with minimal relative insertion loss.
Analysis of the confocal image in the Fourier domain allows us
to understand the roles of the symmetric, antisymmetric and
shear horizontal beams. Although the overall insertion loss of
our two-port devices was of order 10 dB, much of this loss is
completely avoidable with moderate changes in busing and
fabrication, and we are already taking steps to design devices
with much lower total insertion loss.

The theory, analysis, and results presented here with one and
two port devices, together, demonstrate the ability to efficiently
produce focused Lamb beams directly from carefully designed
curved ITDS and to excite wavelength-scale structures. We
believe this result holds great promise for the technological
utilization of microwave electromechanical devices that
incorporate wavelength scale structures, such as phononic
crystal waveguides and cavities. We are confident that focused
IDTs will find boarder use as the field of wavelength scale
phononic devices matures.

Sandia National Laboratories is a multi-mission laboratory
managed and operated by NTESS of Sandia, LLC., a wholly
owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy’s National Nuclear Security
Administration under contract DE-NA0003525. This work was
supported by the Laboratory Directed Research and
Development Program and Truman Fellowship. The views,
opinions, and/or findings expressed are those of the author(s)
and should not be interpreted as representing the official views
r policies of the Department of Defense or the U.S.
Government. The authors acknowledge fabrication support by
the Sandia MESA-Fab operations team and test and
measurement support by J. A. Trevino, J. K. Douglas, and P.



Stanfield.

(1]

[19]

[20]

L. Wang, S. M. Chen, X. Ning, Z. Chen, J. T. Liu, and J. Y. Zhang,
“Embedded nanotransducer for ultrahigh-frequency SAW utilizing
AlN/diamond layered structure,” in 2017 Joint IEEE International
Symposium on the Applications of Ferroelectric (ISAF)/International
Workshop on Acoustic Transduction Materials and Devices
(IWATMD)/Piezoresponse Force Microscopy (PFM), 2017, pp. 106—
109.

J.J. Chen, F. Zeng, D. M. Li, J. B. Niu, and F. Pan, “Deposition of
high-quality zinc oxide thin films on diamond substrates for high-
frequency surface acoustic wave filter applications,” Thin Solid Films,
vol. 485, no. 1, pp. 257-261, Aug. 2005.

K. M. Lakin, G. R. Kline, and K. T. McCarron, “High-Q microwave
acoustic resonators and filters,” IEEE Trans. Microw. Theory Tech.,
vol. 41, no. 12, pp. 2139-2146, Dec. 1993.

S. Mohammadi, A. A. Eftekhar, W. D. Hunt, and A. Adibi, “High-Q
micromechanical resonators in a two-dimensional phononic crystal
slab,” Appl. Phys. Lett., vol. 94, no. 5, p. 051906, Feb. 2009.

P. H. Otsuka et al., “Broadband evolution of phononic-crystal-
waveguide eigenstates in real- and k-spaces,” Sci. Rep., vol. 3, Nov.
2013.

D. Hatanaka, I. Mahboob, K. Onomitsu, and H. Yamaguchi, “Phonon
waveguides for electromechanical circuits,” Nat. Nanotechnol., vol. 9,
no. 7, pp. 520-524, Jul. 2014.

S. Mohammadi and A. Adibi, “Waveguide-Based Phononic Crystal
Micro/Nanomechanical High- Resonators,” J.
Microelectromechanical Syst., vol. 21, no. 2, pp. 379-384, Apr. 2012.
M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter,
“Optomechanical crystals,” Nature, vol. 462, no. 7269, pp. 78-82,
Nov. 2009.

J. Chan et al., “Laser cooling of a nanomechanical oscillator into its
quantum ground state,” Nature, vol. 478, no. 7367, pp. 89-92, Oct.
2011.

H. Shin et al., “Tailorable stimulated Brillouin scattering in nanoscale
silicon waveguides,” Nat. Commun., vol. 4, Jun. 2013.

H. Shin, J. A. Cox, R. Jarecki, A. Starbuck, Z. Wang, and P. T.
Rakich, “Control of coherent information via on-chip photonic—
phononic emitter—receivers,” Nat. Commun., vol. 6, p. 6427, Mar.
2015.

P. J. Shull, Nondestructive Evaluation: Theory, Techniques, and
Applications. CRC Press, 2016.

D. Royer and E. Dieulesaint, Elastic Waves in Solids II: Generation,
Acousto-optic Interaction, Applications. Springer Science & Business
Media, 2000.

R. H. Olsson et al., “Ultra high frequency (UHF) phononic crystal
devices operating in mobile communication bands,” in Ultrasonics
Symposium (IUS), 2009 IEEE International, 2009, pp. 1150-1153.
M.-H. Lu, L. Feng, and Y.-F. Chen, “Phononic crystals and acoustic
metamaterials,” Mater. Today, vol. 12, no. 12, pp. 34—42, Dec. 2009.
Kuypers, “Green’s function analysis of Lamb wave resonators.”

J. H. Kuypers, D. A. Eisele, and L. M. Reindl, “The k-model - green’s
function based analysis of surface acoustic wave devices,” in [EEE
Ultrasonics Symposium, 2005., 2005, vol. 3, pp. 1550-1555.

S. G. Joshi and Y. Jin, “Propagation of ultrasonic Lamb waves in
piezoelectric plates,” J. Appl. Phys., vol. 70, no. 8, pp. 41134120,
Oct. 1991.

V. Yantchev and 1. Katardjiev, “Quasistatic transduction of the
fundamental symmetric Lamb mode in longitudinal wave
transducers,” Appl. Phys. Lett., vol. 88, no. 21, p. 214101, May 2006.
P. Wilcox, R. Monkhouse, M. Lowe, and P. Cawley, “The Use of
Huygens’ Principle to Model the Acoustic Field from Interdigital
Lamb Wave Transducers,” in Review of Progress in Quantitative
Nondestructive Evaluation, D. O. Thompson and D. E. Chimenti, Eds.
Springer US, 1998, pp. 915-922.

H. A. Haus, Waves and Fields in Optoelectronics. Englewood Cliffs,
N1J: Prentice-Hall, 1984.

D. G. Duffy, Green’s Functions with Applications. CRC Press, 2001.
Y. A. Kravtsov and P. Berczynski, “Description of the 2D Gaussian
beam diffraction in a free space in frame of eikonal-based complex
geometric optics,” Wave Motion, vol. 40, no. 1, pp. 23-27, Jun. 2004.
B. A. Auld, Acoustic Fields and Waves in Solids. Krieger Publishing
Company, 1990.

[25]

[26]

[27]

(28]

G. Santoni, “Fundamental Studies in the lamb-wave interaction
between piezoelectric waffer active sensor and host structure during
structural health monitoring,” Thesis, 1999.

“A treatise on the theory of Bessel functions.” [Online]. Available:
https://archive.org/stream/treatiseontheoryOOwatsuoft#page/390/mode
/2up. [Accessed: 11-Jul-2014].

F. W.J. Olver, NIST Handbook of Mathematical Functions Hardback
and CD-ROM. Cambridge University Press, 2010.

S. G. Joshi and Y. Jin, “Excitation of ultrasonic Lamb waves in
piezoelectric plates,” J. Appl. Phys., vol. 69, no. 12, pp. 8018-8024,
Jun. 1991.

A. D. Poularikas, Handbook of Formulas and Tables for Signal
Processing. CRC Press, 1998.

A. V. Oppenheim, Signals and Systems. Prentice Hall, 1997.

G. Piazza, V. Felmetsger, P. Muralt, R. H. Olsson III, and R. Ruby,
“Piezoelectric aluminum nitride thin films for microelectromechanical
systems,” MRS Bull., vol. 37, no. 11, pp. 1051-1061, Nov. 2012.

G. G. Fattinger and P. T. Tikka, “Modified Mach—Zender laser
interferometer for probing bulk acoustic waves,” Appl. Phys. Lett.,
vol. 79, no. 3, pp. 290-292, Jul. 2001.

J. V. Knuuttila, P. T. Tikka, and M. M. Salomaa, “Scanning
Michelson interferometer for imaging surface acoustic wave fields,”
Opt. Lett., vol. 25, no. 9, pp. 613-615, May 2000.



