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Abstract—This article describes the theoretical and 
experimental investigation of interdigitated transducers (IDTs) 
capable of producing focused acoustical beams in thin film piezo-
electric materials. A mathematical formalism describing focused 
acoustical beams, Lamb beams, is presented and related to their 
optical counterparts in two- and three-dimensions. A novel 
Fourier domain transducer design methodology was developed 
and utilized to produce near diffraction limited focused beams
within a thin film AlN membrane. The properties of the acoustic 
beam formed by the transducer were studied by means of Doppler 
vibrometry implemented with a scanning confocal balanced 
homodyne interferometer. Fourier domain modal analysis 
confirmed that 85% of the acoustical power was delivered to the 
targeted focused beam which was constituted from the lowest 
order symmetric mode, while 2% was delivered unintentionally to 
the beam formed from the anti-symmetric mode, and the 
remaining power was isotropically scattered. The transmission
properties of the acoustic beams as they interact with devices with 
wavelength scale features were also studied, demonstrating
minimal insertion loss for devices in which a subwavelength, 
pinhole apertures was included.

Index Terms—Aluminum nitride; acoustic focusing; Lamb 
wave transducers, Doppler vibrometry

I. INTRODUCTION

N recent years, the development of novel phononic and radio 
frequency (RF) devices has been enabled by topology 

miniaturization and material quality improvements in acoustic
wavelength-scale structures. Surface acoustic wave (SAW)
device performance has been pushed well into the GHz range
and devices have been realized in compact, low-cost material 
platforms [1]–[3]. Phononic crystal waveguides and cavities
have been demonstrated at both higher frequency and 
increasingly higher quality factor [4]–[7]. Additionally, nano-
opto-mechanical devices exploiting strong phonon-photon 
interactions have led to quantum ground state cooling, phonon 
lasing and ultra-sensitive sensors and accelerometers [8]–[11]. 
These developments and others are expected to have a major 
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Figure 1.  Illustration of the typical problem encountered with large transducers 
trying to excite wavelength-scale structures. The wave produced by the send 
transducer suffers an insertion loss at the waveguide input of approximately the 
ratio of the width of the waveguide to the width of the transducer. Intercepting 
the wave immediately at the waveguide output produces a second, symmetric 
insertion loss. If the transducer is offset from the waveguide output (as shown), 
diffraction expands the beam but causes wave front curvature that will tend to 
average the received signal to zero.

impact on applications ranging from signal processing and RF 
communications, to acoustic imaging and nondestructive 
testing[12]. 

Emerging wavelength-scale devices resulting from this push 
toward higher frequency and improved functionality often 
require efficient excitation at the scale of a single wavelength. 
The size of practical RF piezo-electric transducers, however, is
often constrained by RF impedance-matching requirements
[13]. The electrical admittance of straight interdigital 
transducers (IDTs), for example, is characterized by a static 
total capacitance and a radiative conductance proportional to 
the total capacitance. Impedance matching is optimized through 
the radiative conductance via the static capacitance. In the 
gigahertz frequency regime, in particular, the IDT aperture 
must be kept sufficiently large to attain optimal matching to a 
50Ω line, especially when matching networks are impractical. 
Straight IDTs thus have dimensions many wavelengths long 
and are therefore not compatible with a wavelength-scale 
excitation requirement. Thus, impedance matching
considerations essentially guarantee that the power produced by 
a transducer will be spread over an area much larger than a 
wavelength and directly result in significant insertion loss on 
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the send or receive transducer or both [14]. Fig. 1 illustrates this 
problem in a transmission configuration involving an acoustical 
waveguide.

Even if the transducer length was greatly reduced, mode 
mismatch due to diffraction would still lead to large insertion 
loss unless electrodes were directly deposited onto the 
waveguide, which from both a fabrication and impedance-
matching perspective is impractical. The large number of 
electrodes in this case would also lead to excessively narrow 
filter bandwidths through increased filter-Q factors. IDTs with 
straight fingers, while optimized to produce straight crested 
Lamb waves, are ill-suited to serve as an electrical/phononic 
interface for wavelength scale phononic devices. One solution 
to this problem is to use large IDTs followed by focusing 
elements such as reflections from curved surfaces or 
propagation through acoustical metamaterials with negative 
index [15]. This approach, however, increases both the device 
footprint and insertion loss and adds to the complexity of 
realizing focusing elements for an acoustical beam of large 
aperture.

This paper presents a new transducer that directly produces a 
focused Lamb wave beam in thin piezo-electric membrane. The 
properties of this beam are completely analogous to Gaussian 
optical beams produced by laser resonators and can be tailored 
to produce acoustical beams matched to a given wavelength 
scale-device. In this work we provide a theoretical description 
of focused Lamb beams and a design framework for the IDTs 
that generate them. Experimentally we study the properties of 
the generated acoustic waves through single and dual port 
devices. We employ an all-optical scanning confocal balanced 
homodyne interferometer to perform Doppler vibrometry on the
generated focused Lamb beam. We show focusing down to 5
µm from 120 µm long transducers with 85% of the generated 
acoustical power in the targeted focused mode. Fourier domain 
analysis is performed to identify the modal composition of the 
generated beams and understand effects not captured by 
simulations. For the dual port devices, we study the 
transmission and reflection properties of these beams as they 
interact with a sub-wavelength waveguide serving as a hard 
aperture interjected between send and receive ports and 
demonstrate minimal impact on insertion and transmission loss.

II. GAUSSIAN BEAM FORMALISM FOR LAMB WAVES

Efficient coupling to wavelength-scale acoustical structures 
requires the use of acoustical modes which focus along the 
propagation direction. The treatment of focusing modes has not 
been derived in the context of Lamb modes in piezo-electric 
thin films. Prior work in treating mode propagation in piezo-
electric devices has employed reducing exact three dimensional 
integral equation to analytical expression in two dimensions by 
ignoring the lateral modal shape [16]–[19]. In the analysis that 
follows, we go beyond the application of Huygens’s principle 
as was done in [20] and develop a focused beam formalism for 
acoustical beams which accurately captures the focusing width, 
divergence, and phase curvature. Toward that end we rely on 
the optical analog, namely, Gaussian optical beams and follow

Figure 2.  Gaussian Optical beam which results from complex shifting, the 
Greens function solution of the optical wave equation which is a radially 
symmetric function of position, �, (i.e. setting z z + iz0 such that � =

��� + �� + (� + ���)�).

analogous steps in the derivation. Since Gaussian optical and 
focused Lamb acoustical beams can both be derived from a 
wave equation formalism, there are similarities in the mode 
shapes and propagation properties that we will discuss below. 
[20], [21]

Generally speaking, focused mode solutions to time 
harmonic field equations can be synthesized by a complex 
translation of the associated Green’s function for the 
corresponding wave equation. For example, the Helmholtz 
wave equation in an isotropic medium is given by 

(��+��)�(�) = �(�) (1)

where � is the associated wave-vector, � is distance from the 
origin, and �(�) is Kronecker-delta function. The Green’s 
function solution for the cases of one, two and three dimensions 
are shown in the Table I [22]. Focused solutions can be derived 
in two and three dimensions by applying a complex 
displacement to the Green’s function solution. For example, in 
three dimensions in order to generate a beam propagating along 
the z axis we set z  z+izo, such that � =

��� + �� + (� + ���)�. This procedure produces a beam as a 

function of (�, �, �) propagating along the translation axes, �, 
and focused at the origin [21]. 

In optics, u(r) in the Eq. 1 is the amplitude of the vector 
potential and is proportional to the transverse electric field in 
the paraxial limit, where rays that constitute the optical beam 
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Table I: Solutions for Helmholz wave equation



make small angles relative to the propagation axis. More 
specifically, in three dimensions, a complex displacement along 
the z-axis, z  z+izo, in the paraxial limit ( i.e.   r =

��� + �� + (� + ���)�  � = (� + ���) + (�^2 + �^2)/

2(� + ���) ) of the 3D Green’s function solution listed in Table 
I results in the well-known expression for an optical Gaussian 
beam  [21], which is illustrated in Fig. 2:

�(�) =
1
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���(�����)���
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�(�����)

� + ���

(2)

Here � = 2�/� (where � is the wavelength of light), and �� is 
the confocal parameter which determines the degree of 
focusing. Any transverse cross section of the beam has a profile 
that varies as exp[−��/�(�)�], where �(�) =

���1 + (�/��)� and ���
� = ���. �� is the beam radius at the 

point of maximum focusing, and �(�) is the beam radius for
any cross-section. �� = ��/�� corresponds to the divergence 
angle. The wave fronts of the beam are curved, with a z-
dependent radius of curvature given by: �(�) = �(1 +
(��/�)�). Additionally, the beam experiences a phase shift due 
to focusing along the direction of propagation known as the 
Gouy phase shift: tan � = �/��. The above-mentioned
quantities are plotted in Fig. 3 and Fig. 4. For 2D optical beams, 
the Green’s function solution to the Helmholtz wave equation 

is described by a Hankel function of the second kind, ��
(�)(��), 

and can be similarly complex shifted to produce a focused beam 
in 2D. Although there is no closed form expression, the 
following asymptotic expansion can be applied which expands 
a Hankel function of the second kind:
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where Г(x) is the Gamma function. Retaining only the lowest
order term, we arrive at an approximate expression for a 2D 
focused optical beam in the Gaussian limit, [23]:
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(4)

The 2D focused optical beam is similar to the 3D version except 
for the leading radical which results in the beam waist and 
radius of curvature begin equal to that of the 3D Gaussian beam, 
while the Gouy phase shift experiences a factor of ½; tan � =
�/2�. A comparison is shown in Fig. 3 and Fig. 4.

We can follow the derivation of the Gaussian beam 
formulation discussed above to arrive at an analogous 
description of Lamb beams, focused acoustical beam in a slab 
membrane. The discussion also applies to uniaxial piezo-
electric AlN membranes considered in this work which are 
isotropic in-plane since the coupled quasi-electrostatic and 
elastic equations can be reduced to elastic equations with 
modified effectively isotropic elastic coefficients. As such, 

Lamb waves in isotropic materials are solutions to the 
acoustical field equations in thin films which satisfy: 

(��+��)∆= 0
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where Δ is the dilation, and the gradient operator, ∇, is 
expressed in 2 dimensions, [24], [25]. The dilation therefore is 

Figure 3. Comparison of Gouy phase (a), and radius of curvature (c), for Gaussian
optical beam (black), focused 2D optical beam (blue), radial component of 
focused Lamb beam (red), and out of plane component of the focused Lamb beam 
(green). (b) and (d) show the fractional error of the Gouy phase and radius of 
curvature, respectively, from that of a Gaussian beam. Curves in (a) and (c) are 
offset for clarity and corresponded to beams with a 5µm waist. Blue circles are 
chosen in (b) and (d) for clarity.

Figure 4.  Comparison of on-axis intensity,(a), and beam waist,(c), for a 
Gaussian optical beam (black), focused 2D optical beam (blue), radial 
component of focused Lamb beam (red), and out of plane component of the 
focused Lamb beam (green). (b) and (d) show the fractional error of the 
normalized intensity and beam waist, respectively, from that of a Gaussian 
beam. All curves in (a) and (b) are offset for clarity and have intensity of 1 at 
z=0 and a beam waist of 5µm. Blue circles are chosen for clarity in (b) and (d).



the analogous quantity to the vector potential amplitude for 
optical beams. The solution to the above equation in terms of 
dilatation is the 2D Green’s function solution of the Helmholtz
wave equation given in Table 1. To arrive at the displacement 
amplitude u, the dilatation needs to be integrated. This results
in a displacement field distribution in cylindrical coordinates 
given by:

������ = ����,�(�)��(��) + ����,�(�)��(��) (6)

where r is the radial component and z is the out of plane
component in cylindrical coordinates, �� and �� are Bessel 
functions of the first kind, and the functions ��,�(�) and

��,�(�) are trigonometric functions of z that satisfy open 

boundary conditions and account for modes that are higher 
order along the film thickness [25]. The above equation is the 
vector Green’s function solution for displacement amplitude for 
acoustical fields in thin films. A complex translation along one 
axis for both radial and out-of-plane components will yield the 
mathematical description of a focused lamb wave beam.

A complex translation of Equation 6 involves shifting both 
first and second order Bessel functions, which complicates 
deriving expressions for the beam radius, curvature, and Gouy 
phase shift. Bessel functions, ��(�), however, can be related to 
each other by considering the following well known asymptotic 
expansions, [26], [27]:
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where (�, 2�) and similar expressions are combinatorial 
functions (i.e. � choose 2�). The above equation can be further 
expanded using Euler relation to yield:
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For loose focusing, r becomes sufficiently large that only the 
lowest order term will dominate. Thus, imparting a complex 
displacement, (z  z + ib), to Equation 6 and retaining only the 
lowest order terms from Equation 8, we arrive at the focused 
solution for acoustical beams in the Gaussian limit:

� = ����,�(�)
1

4�

�
���(����)���

�����

�(����)

�� + ��

+����,�(�)
�

���(�����
�
�

�)���
�����

�(����)

�� + ��

(9)

Both the radial and the out-of-plane component of the Lamb 
beam approach expressions for the field amplitude of a 2D 
focused optical beam in the Gaussian limit (see Equation 4) but 
are phase shifted with respect to each other by a factor of π/2. 
Focused Lamb-wave beam profiles, therefore, converge to 2D 
focused optical beam profiles in the limit of loose focusing and 
far from the beam center. A comparison of all beams discussed 
is shown in Fig. 3 and Fig. 4 which show results for a 3D 
Gaussian optical beam, 2D focused optical beam, and the radial 
and out-of-plane components of a focused acoustical Lamb 
Beam. Differences between these beams are most prominent 
under tight focusing, and the beams converge to each other 
under loose focusing. Additional error correction terms for 
acoustic beams described by Equation 9 can be derived from 
higher order terms of Equation 8 where each error term has the 
form:
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(10)

and thus can be interpreted as a higher order correction beam. 
For tight focusing where the error terms will more strongly 
contribute, the overall acoustical beam will focus, but 
amplitude and width modulations will appear along the axis of 
propagation for tighter focus, as shown by the wiggles in Fig. 
3(d). These error terms however are small.

Thus, the mathematical form of an optical focused beam in 
two and three dimensions and a focused acoustical beam in a 
thin film are similar and can be related through asymptotic 
expansion of Bessel and Hankel functions. All beams converge 
to a spot with constant phase and diverge with increasing waist, 
converging to a fixed divergence angle. The focused Lamb
beam is expressed as a zeroth order beam plus higher order 
correction beams. For the zeroth order beam, the waist, radius 
of curvature and Gouy phase shift can be expressed as functions 
of a confocal parameter and are given by:
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where, the beam waist, ��, the confocal parameter, ��, and the 
far field divergence angle, ��, are expressed as,

���
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�� =
��
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� (12)

The above equations are used in the next section to facilitate 
design of transducers that generate focused Lamb beams.



III. FOURIER DOMAIN TRANSDUCER DESIGN

Straight IDTs generate straight crested planar lamb waves by 
imparting a modulating compressive stress profile in the 
immediate vicinity of the metal/piezo-electric bonding interface 
that aligns with linear constant-phase contours of the output 
wave. In principle curved IDTs can provide a greater diversity 
of mode shapes[25], [28]. However, with constant width IDTs,
the generated waves correspond to eigen-modes of the elastic 
wave equation only in the case of straight or circular 
configurations; where straight IDTs produce plane waves, and 
circular rings produce Bessel-like modes (Equation 6 above). In 
both cases the generated waves have constant amplitude along 
phase fronts. The focused beams described in the previous 
section, however, have wave amplitudes that vary along 
constant phase contours, having a maximum along the 
propagation axis. To generate such beams, the IDTs must be 
spatially varying along the transducer length. In the following, 
we show how to properly modulate the transducer width along 
the transducer length in order to generate the focused Lamb 
beams discussed in the previous section.

A single finger IDT on a thin film piezo-electric material
with a grounded bottom metal layer and an infinitely long top 
electrode actuated by a temporally sinusoidal voltage with 
angular frequency � couples to Lamb wave modes and 
produces forward and backward-going waves as illustrated in 
Fig. 5. The  electrical excitation for a single finger is analogous 
to the case where a bulk wave is excited by a spatially uniform 
(in x and y) and temporally sinusoidal volumetric force in the 
limit where fringing fields are neglected in which case the 
amplitude of the forward and backward going waves are given 
by [13]:

�±(�) = ±�
2�

�/��
sin �

��

��
� �� exp(∓���) (13)

where � is the force density, �� , is the speed of sound, � is the 
angular frequency �� is the voltage amplitude � is the distance 
from the electrode mid-point, and � is the electrode width. The 
amplitude of the emitted wave is therefore related to the 
electrode with for a single finger IDT and is proportional to 
sin(��) where � = �/��.

For spatially varying IDTs, we expect that the field amplitude 
of waves emitted in the immediate vicinity of the IDT section 
under consideration to be determined by the width and normal 
along the transducer length as long as the electrode width and 
direction vary slowly compared to the wavelength. In other 
words, we expect the local amplitude to vary as:

  �local(�)± = ��� sin ��local(�)
(14)

where s is the position along the electrode with and � is a 
constant of proportionality determined by the film thickness
and material properties. Within the limits of this local 
approximation, a transducer can be tailored to emit the focused 
Lamb beam described in the previous section, by varying the 
transducer width to follow the Lamb beam amplitude along 
constant phase contours. In the Gaussian beam limit for large z, 
(i.e. far from the focus with |�| ≫ ��, where �� is the confocal 
parameter described in the previous section), the field has an 

on-axis peak amplitude inversely proportional to the beam 
waist at z, i.e. �max/�(�), and decays from its on-axis maxima 

as exp�−��/��
��.  Thus, a single finger placed far to the left of 

the focus and having an on-axis local-width maximum which 

decays as exp�−��/��
��, will produce a wave that has a focus 

at the origin. 
A single curved finger would have an electrical impedance 

similar to that of a single straight finger of equal area. Thus, a 
set of curved IDTs is required to achieve reasonable filter 
quality factors and impedance matching. We specify a set of 
electrode fingers by placing the first finger (the 0th finger) an 
integer multiple of wavelengths to the left of the origin at a 
coordinate -�̅�. Additionally, the 0th finger will have an on axis 
width of �� = �/2. Each successive finger will have a center at 
�̅� = −�̅� − �� and an on-axis width falling inversely with 
radius to maintain constant electrode area for each finger. Off-
axis, all fingers require their local widths to fall off 
exponentially following the amplitude of the Lamb beam. Thus 

��(�) = ��(0) exp �−
��

��
��, with ��(0)~

�

���(�)
.  

Additionally, there is a maximum angle, θD/2, out to which the 
fingers are swept which ensures that all the fingers meet the bus 
at a straight line.

We can more generally address beam shapes produced by 
width-modulated, curved transducers by viewing points on a 
transducer as source points for locally straight crested waves as 
implied by Equation 14 [13], [20]. Consider the field amplitude
generated from a single ring transducer with an angle dependent
local width, as illustrated in Fig. 6. Integrating along the ring,
the displacement field at an arbitrary point can be expressed as:

�(�, ��) = � �(�) exp�����⃗ ∙ � ��⃗ − ���⃗ �� �� (15)

Where �(�) is the amplitude generated by the IDT within the 
assumptions of the local approximation in Equation (14). 
Expanding vector quantities in the above expression and using 
trigonometric identities we can arrive at the following:

�(�, ��) = exp(−���) 

× � �(�) exp(−��� ∙ cos(�� − �)) ��
(16)

which relates the displacement field to the convolution between 
the angular-dependent local amplitude which is a function of 
the local width and a complex exponential. Equation 16, can be 
related to a 2D Fourier transform, expressed in cylindrical 

Figure 5.  Excitation of a thin film piezoelectric field by an IDT with a bottom 
metal ground plane, which is analogous to excitation of a bulk wave by a 
spatially uniform (in x and y) and temporally sinusoidal volumetric force in the 
limit where fringing fields can be neglected.



coordinates, which is given by:

�(�, �) = ℱ��{�(�, �)}

= � � �(�, �)��� (−���� ���(−�))  ���
�

�

��

�

��
(17)

where r and θ represent radius and angle in cylindrical 
coordinates in the spatial domain; and ρ and  φ represent radius 
and angle in cylindrical coordinates in the Fourier domain, i.e. 
k-space [29].For functions having only angular dependence in 
k-space, the Equation (17) can be further simplified as follows:

�(�, �) = �(�) × �(� − ��)

�(�, �) = � �∅ ���(�) exp�−�������(∅ − �)�
��

�

 
(18)

Comparing Equations 16 and 18 above we can see the 
correspondence of the local amplitude of circular transducers, 
A(θ), to the Fourier amplitude, F(θ), for functions comprised by 
rings in k-space. Thus, we can specify the amplitude profile of
the wave emitted from circular transducers by considering their 
representation in the Fourier domain. Additionally, concentric 
rings of transducers can be used to increase signal strength and
electrical impedance. Fields from concentric rings can be 
coherently combined as indicated by the radial phase factor in 
Equation 16.

Consider the case where A(θ) = �(�)  =  �(� − ��). This 
corresponds to a physical transducer which is a ring of constant 
width. From well-known Fourier transform pairs it is clear that 
the amplitude of the emitted wave will be: u = �(�, �)  =
 ��(���). Thus, from the perspective of Fourier transform pairs, 
a circular transducer of constant width will excite a Bessel beam 
as indicated in Fig. 7(a) and 7(b). This agrees with what we 
expect given Equation 7, the Green’s function solution of the 
acoustical wave equation in cylindrical coordinates. Following 
the analytical method described in the previous section, a 
complex shift in the direction of propagation is required in order
to generate focused beams from Green’s functions solutions. 
Thus, a complex shift of the physical transducer that generated
the Bessel mode will yield the desired focused beam. A real 
valued shift is expressed in the Fourier domain as a varying 
phase [30]. The rule still applies if the shift is complex. Thus, 
applying properties of Fourier transforms we have:

f���⃗  + ��
����⃗ �   ↔  exp(−���⃗ ∙ ��

����⃗ ) × F���⃗ �

          f���⃗  + ������   ↔  exp(−��������) × F���⃗ �
(19)

The Fourier domain function then becomes:
F(Ѳ)=�exp(−�0������)×δ(k-ko) and the corresponding local 
amplitude becomes: 

�(�) = �exp (−�0������) (20)

where �� is the confocal parameter in Equations 11 and 12. 
These steps are illustrated in Fig. 7(c) and 7(d). Using 
Equations 14 and 20 to relate the local amplitude to the local 
transducer width, we arrive at the necessary condition for the 
local transducer width for a ring IDT to form a Bessel beam:

�(�) =
�

��

�����(exp(�0��(1 − ����))) (21)

Thus, circular transducers designed with Equation 21 will yield 
focused Lamb beams. Additionally, concentric rings of 
transducers separated by integer multiples of the excitation 
wavelength can be used to coherently interfere focused beams 
generated from each ring, in order to achieve electrical 
impedance matching, although the widths should be scaled such 
that the area of each finger is the same.

From the perspective of Fourier domain transducer design,
the influence of a finite aperture can be viewed as multiplying
the Fourier domain with a rectangular windowing function, 
which in the spatial domain acts as convolving with a sinc
function, thus spreading the energy at the focus by an amount 
proportional to the aperture size. We also note here that the 
above analysis is valid in the plane-wave limit of point sources
[21]. Acoustical points sources not in the far-field limit are 
better described as emitting circular waves which drop in 

Figure 6.  a) In the local width limit, a portion of transducer can be viewed 
as a plane wave source with amplitude proportional to the local transducer 
width and normal to the transducer length. b) The field at a given point r’, 
Ѳ’ from a circular IDT with angular dependence width can be determined 
by integrating the local contributions along the ring contour.

Figure 7. Fourier transform pairs leading to transducer design. The Bessel 
function in (a) consists of a ring in k-space (b). A complex translation of 
the Bessel function leads to the focused beam in (c) whose k-space 
composition is confined to a ring but has an angular intensity modulation 
superimposed.



amplitude as 1/r. Thus, transducers designed too close to the 
focus point in the near-field will have deviations from the above 
analysis that originate from point sources better described as a 
circular wave in two dimensions. However, for the cases 
discussed in this work with slowly varying local widths and 
transducers placed sufficiently far from the focus, the Fourier 
domain view of circular transducers remains valid.

IV. FINITE ELEMENT SIMULATION 

Employing the curved transducer design methodology 
described in the previous section, we developed and performed 
finite element method (FEM) simulations in COMSOL for a 
transducer capable of producing a focused beam. We choose a 
design frequency of 2GHz in a 750 nm thin film of aluminum 
nitride so that k0=2π/5.1µm. A confocal parameter of z0 =11 µm 
was selected so that the focused waist of a beam emitted from a 
single transducer is 5 µm. Additionally, a transducer aperture 
of �� = 1.5 rad and 18 fingers were chosen so that the electrical 
impedance between the figures and ground plane was nearly
matched to 50Ω.

A piezo-electric FEM model of the transducer is shown in 
Fig. 8. The wave is excited by an oscillatory voltage applied 
between the fingers (outlined in black) and a ground plane on 
the bottom face of the membrane. The bus is not included in the 
simulation. The left-hand boundary is free and serves as a back 
reflector making the transducer single-ended. The other 
boundaries are adiabatic absorbers, which have been separately 
verified to absorb without significantly reflecting back into the 
simulation.

The transducer design does indeed produce the expected 
focused Lamb beam, which is localized to a minimum spot-size 
that agrees with that predicted by the theory and also focuses to 
the correct distance from the right-most transducer. The 
theoretical framework utilizes a plane wave basis of radial 
displacement, essentially ignoring the vertical dependence of 
the displacement field. Therefore, the relevant displacement 
field for comparison in the full 3D simulation is the radial 
component at the mid-plane between the top and bottom 
electrodes where the field amplitude is the largest. Fig. 9 shows 
a comparison of the amplitude predicted by the theoretical 
model and the radial displacement field of 3D FEM simulation 

at the mid-plane. The close agreement confirms the analysis in 
the previous section.

Although the FEM simulation is three-dimensional, analysis 
of 2D planar sections for a fixed vertical position can be 
matched with the theoretical framework developed in the 
previous section. This approach is valid because the z-
dependent variations of the beam solution can be factored. 
Further analysis of the simulation is conducted by considering 
the Fourier domain composition of the simulated beam profile. 
As shown in Fig. 10, the Fourier transform intensity profile is 
constrained on rings in k-space, which decay exponentially as 
the θ deviates from –π. Energy not constrained on a ring 
represents deviations from the idealized case. The angular 
dependence of the Fourier amplitude along the dominant 
circular contour is shown by the blue curve in Figure 11. The 
intensity profile along the circular contour matches the theory 
(black curve) including the sharp cut-off due to the bus.

The region in Fig. 10 outside the dashed circle shows the 
amplitude outside the central ring magnified by a factor of 
1000. The presence of an additional ring indicates that a higher 
order beam is very weakly excited. By integrating regions in k-
space, the FEM simulation results enable characterization of 
modal excitation efficiency. The majority of the drive 
frequency is directed to the fundamental mode in that 85% of 

Figure 9. a) Field profile from theoretical model. b) Field profile of 
radial displacement at the AlN membrane mid-plane from 3D
piezoelectric FEM model.

Figure 8.  Piezo-electric FEM model of a unidirectional Gaussian Lamb beam 
with angular aperture θD=1.5, produced by driving an array of width 
modulated IDTs with a harmonic potential at its resonance frequency. The 
first finger starts at 10 wavelengths back from the origin.



the energy resides in the inner ring. Less than 1% resides in the 
outer ring, and the remaining 14% is dissipated isotopically.

The 3D FEM model, allows us to look at the z-component of 
the displacement field at the bottom-plane, which is the field 
component accessible to optical investigation and will be 
compared to experimental data in a later section. A Fourier 
domain analysis shows that energy is confined to a ring in k-
space similar to Fig. 10. The red curve in Fig. 11 plots the 
angular dependence of the intensity in k-space along that ring. 
The profile which contains wings around the central coordinate 
is notably different than the mid-plane curve, although both are 
generated from the same mode. Thus, interrogation of the z-
component of the displacement field at the bottom-plane must 

account for the non-uniform mapping to radial mid-plane 
displacement for a proper comparison to theory. This 
consideration will be relevant in a later section pertaining to 
confocal imaging.

Fig. 12 plots the displacement amplitude in the mid-plane 
and the z-component at the bottom plane at the focus position 
and also along the beam propagation direction. The agreement 
of the curves indicates that the theory of the previous section 
accurately predicts the focusing action of the transducers as 
described by Fourier domain amplitude control. Here we have 
simulated focusing to a 5µm spot. The bottom-plane 
displacement shows considerable structure, although the mid-
plane displacement is smooth. This again illustrates the fact that 
the mid-plane displacement represents the beam composition 
and the bottom-plane alone will contain artifacts. Thus,
measurements of the bottom plane need to account for the 
mapping of bottom-plane to mid-plane displacement. This fact 

Figure 11.  Angular dependence of Fourier amplitude. Black curve is 
predicted from theory. Blue curve is from the radial component at the mid-
plane of the FEM simulations and corresponds to the inner ring in  Figure 
10. Red curve is from the vertical component at the bottom-plane. 
Amplitude components centered around π correspond to forward 
propagating Lamb waves while those centered around 0/2π correspond to 
backward propagating waves.

Figure 12.  Comparison of displacement intensity profiles for focused 
beam for analytical (black) and radial component of the FEM simulation 
at the mid-plane (red) and bottom-plane (blue), which is experimentally 
accessible, showing excellent agreement, justifying a two-dimensional 
analytical theory and the fact that the mid-plane displacement represents 
beam composition while the experimentally accessible bottom-plane 
contains artifacts. (a) Intensity profile of displacement along center of 
beam in the propagation direction. Ripples appear in the field amplitude 
at the bottom plane. b) Intensity profile of displacement for cross section 
at focus position illustrating the beam waist. The simulated waist has a 
broad pedestal originating from the finite transducer aperture. 

Figure 10.  Two dimensional Fourier Transform of radial displacement at 
the central cross-sectional plane of the simulated thickness. The portion 
outside the dashed line is magnified by 1000 times.



is particularly relevant in the experimental section where we 
measure the bottom-plane displacement. Additionally, Fig. 
12(a) shows the axial variation of the displacement is slightly 
asymmetric with respect to the focus. This is due to the fact that 
points on the transducers emit circular waves with intensity 
falling inversely with distance rather than plane waves as was 
mentioned in Section III.

V. FABRICATION

The fabrication steps used to realize the transducers followed 
a standard AlN process developed at Sandia National Labs, [31]
and the key steps are illustrated in Fig. 13. The process begins 
with high resistivity six-inch Si wafers upon which a 0.6 µm 
oxide and a 4 µm polysilicon release layer are consecutively 
deposited. The polysilicon is then patterned to define where the 
AlN membranes will be undercut and suspended from the 
substrate. This is shown in Fig. 13(a). The polysilicon in this 
layer will be selectively removed in later steps, and therefore
constitutes a sacrificial material that ultimately defines regions 
of air.

Next, an oxide layer is deposited and chemically and 
mechanically polished squaring up to the sacrificial polysilicon 
release material. Additionally, in this layer, tungsten plugs are 
machined into the oxide in order to make contact to the bottom 
electrode. This is shown in Fig. 13(b). Ultimately, electrical 
pads will be connected from above to the tungsten plug through 
vias. This layer, therefore, constitutes regions of tungsten plugs 

over which vias will ultimately land, and regions of the 
suspended membrane where polysilicon is defined. Next, the 
electrically grounded bottom electrode, formed from 20/20/50 
nm of Ti/TiN/Al is deposited, patterned and a 0.75 µm layer of 
AlN is sputter deposited as shown in Fig. 13(c).  Vias are then 
etched in the AlN landing on the tungsten plugs. After this, a 
top electrode layer of 70/20 nm of Al/TiN is deposited.  The 
resulting stack is shown in Fig 13(d).

The top electrode layer is then patterned to form the piezo-
electric transducers and pads as shown in Fig. 13(e). Release 
trenches are finally etched through the AlN and bottom metal
to expose the polysilicon release layer and simultaneously 
create the back reflectors and/or waveguides. The device is 
suspended from the substrate using a dry release in XeF2. An 
example a one-port device is shown in Fig. 14.

Figure 14.  SEM of single-port Gaussian Lamb transducer device in AlN.

VI. OPTICAL AND ELECTRICAL CHARACTERIZATION OF ONE-
PORT DEVICES

In this section we experimentally evaluate one port devices 
by imaging the displacement field profile and comparing it to 
the developed theory. Additionally, we look at the k-space 
composition of the measured field to understand which modes 
are excited by the designed transducer and estimate the 
excitation efficiency in the desired mode and spurious modes. 
As will be shown below, k-space analysis is useful to 
understand the actual excitation efficiencies since: the 
measurement tool only senses out of plane displacement, and so 
vertical modes show up strongly even though they contain
relatively little acoustic energy. K-space analysis enables us to 
discriminate between modes and estimate actual efficiencies 
based on well-established theoretical calculations of vertical 
displacement to forward going power as a function of mode 
type.

The one port-devices shown in Fig. 14 consisting of a single 
focusing transducer with back reflector were designed with 
long open areas for the wave to propagate unobstructed, which
allows us to optically test the transducer and visualize the beam 
formation. Electrical S11 measurements, shown in Fig. 15, were 

Figure 13.  Key fabrication steps. a) Poly-Si patterned to define the 
release layer. b) Tungsten plug stop for electrical via c). Aluminum 
Nitride layer deposited. d) Contact to bottom metal. e) Top electrodes 
patterned. f) Poly-Si layer removed with XeF2 release.



performed and we measured an approximately 50%
transduction efficiency of RF to acoustical energy, confirming 
the prediction from FEM simulations.

We employed a scanning confocal balanced homodyne 
interferometer to perform Doppler vibrometry on AlN 
membranes in order to image the bottom-plane displacement of 
the excited acoustical modes, [32], [33]. A schematic of the 
interferometer is shown in Fig. 16. Essentially, the setup is a 
balanced homodyne interferometer operating at 1550 nm. A 
balanced pair of photodiodes measures the difference in optical 
power at the output ports of a Mach-Zehnder interferometer 
(MZI) consisting of a local oscillator (LO) path and a weak 
probe path, where the path of a weak probe (more than 10 dB 
down in power from LO) includes a bounce off the metalized 
bottom surface of the membrane. An anti-reflection coated 
lensed tapered fiber (LTF) and magnetic circulator allow the 
path of the MZI probe arm to focus light down to a nearly 
diffraction-limited spot (2 um diameter) and collect the 
reflected light with very high efficiency (~95% one-way loss 
through the LTF). Because the bottom electrode of the device 
is a continuous film of aluminum with 99% reflectivity at 1550 
nm, the system will efficiently measure the change in path 
length due to fluctuations induced by propagating Lamb waves. 
Since the change in refractive index in the AlN membrane is 
negligible, the optical phase change will be dominated by the
movement of the bottom metal. Thus, the system is highly 
sensitive to out-of-plane displacements of the bottom metal
induced by Lamb waves propagating through the membrane.

A network analyzer simultaneously drives the device 
transducer while coherently demodulating the signal from the 
interferometer, which allows phase-coherent detection of the 
Lamb waves propagating through the membrane. By scanning 
the LTF over the surface of the device at a fixed height (and
with 10 nm in-plane resolution), we can fully reconstruct the 
amplitude and phase of the Lamb waves in the device with a 
signal-to-noise ratio often in excess of 60 dB with sufficiently 
low RF drive power to avoid thermal effects. Fig 17. shows a 
displacement amplitude image collected from the device shown 
in Fig. 14 when driven with 0 dBm at ~2 GHz corresponding to 

an acoustical wavelength of � = 5.1 �m. The mode produced 
by the transducer shows the focusing of an acoustical beam to 
a minimum waist and subsequent diffraction, thus capturing the 
essential features and functionality previously described. There 
is however, the notable presence of prominent interference 
fringe pattern in the data. 

The origin of the fringe pattern in Fig. 17 can be understood 
by examining the energy distribution in the Fourier domain (k-
space) shown in Fig. 18. The energy is confined to concentric 
rings consisting of an inner and an unexpected outer ring. The 
inner ring with a radius of 1.1 µm-1 corresponds to the k-vector 
amplitude of the desired excited mode, the symmetric mode. 
The outer ring, which is responsible for the fringe corresponds 
to an additional mode of a larger k-vector at the same frequency. 

Figure 16.  Schematic diagram of scanning confocal balanced homodyne 
interferometer used to optically characterize Lamb wave devices. MZI: Mach-
Zehnder interferometer, BPD: balanced photodetector, PC: polarization 
controller. ISO: optical isolator, FS: fiber stretcher, VC: variable coupler, CIR: 
circulator, LTF: lens taper fiber, NA: network analyzer.

Figure 17.  Amplitude of optically measured beam. Intensity corresponds to 
out-of-plane displacement at the bottom of the membrane. Prominent fringes 
are visible and due to excitation of anti-symmetric mode.

Figure 15.  S11 measurement of the single port focusing transducer depicted 
in Fig. 14 which agrees with the simulated transduction efficiency.

Simulated Transduction
Efficiency



We can identify this mode by considering the dispersion 
relations for the AlN membrane. Fig. 19 and Fig. 20 show the 
dispersion relation and mode profiles, respectively, as 
determined from finite element modeling. As indicated, for the
given frequency of 2GHz, a symmetric, anti-symmetric, and 
shear mode exists. The radius of the inner ring corresponds to 
the symmetric mode k-value of 1.25 µm-1 while the outer ring 
corresponds to the anti-symmetric mode with a k-value of 3.15 
µm-1. The shear mode is not present as indicated by the absence 
of a ring at 2 µm-1. Thus, the presence of an outer ring indicates 
the excitation of the lowest order anti-symmetric mode by the 
designed transducer.

Analysis in k-space, in general, provides a prescription to 
deconstruct the transduction process by identifying the classes 
of modes involved. Care needs to be employed, however, when 
attempting to extract relative excitation efficiencies of each 
mode by integration along the corresponding contours in k-
space. For the case in Figure 18, the energy of inner ring 
contains approximately 1.7 times that of the outer ring. The 2D 
analysis, however exaggerates the relative amplitudes for the 
three-dimensional modes since the majority of the displacement 
occurs in-plane at the center of the membrane in the radial 
direction, while the imaging setup detects only out out-of-plane 
displacement at the bottom of the membrane. 

The ratio of total out-of-plane displacement at the bottom-
plane to total radial displacement at the mid-plane for a focused
acoustical beam formed with the lowest antisymmetric mode is 
much larger than then for the lowest symmetric mode. The 
mode profiles for the symmetric, antisymmetric and shear
modes at 2GHz are shown in Fig. 20. The modal excitation 

efficiency can then be estimated by integrating energy in a 
contour and scaling appropriately to get the forward going 
power. These factors were determined from FEM simulations.
The fraction of energy in the vertical component for each mode 
is .3%, 73%, and 0% respectively. The measured situation here 
thus corresponds to 85% of the three-dimensional mode power 
occurring in the desired symmetric mode. Thus, the above 
results indicate that we have successfully focused the acoustical 
energy down to 5µm with 85% of the transduced RF energy 
delivered to the targeted lowest-order symmetric-mode.

Since the symmetric and anti-symmetric modes appear as 
rings of different radius in the k-space, the modes can be filtered 
spatially to allow fair comparison to theory. Figure 21(a) shows 
the amplitude of the field isolated inner ring compared to the 
FEM model. We note that although the bottom-plane vertical 
displacement for the FEM shows structured profile before and 
after the focus with additional ripples through the focused 
region, the mid-plane radial displacement which contains the
majority of the energy faithfully conforms to that of a focused 
Lamb beam. The vertical displacement field at the bottom-plane 
must be mapped to the field at the mid-plane in order to 
accurately characterize the generated beam.

Although there is qualitative agreement, the experimental 
data appears less focused. This is confirmed by looking at the 

Figure 18.  Fourier transform of measured out-of-plane displacement at the 
bottom-plane of the AlN membrane. Inner dashed ring corresponds to a k-
vector radius of 1.25 µm-1 (symmetric mode) and outer dashed ring 
corresponds to 3.15 µm-1(anti-symmetric mode).

Figure 19.  Dispersion relations for symmetric (blue) Lamb wave, anti-
symmetric (red) Lamb waves and shear horizontal (green) waves for a 750nm 
AlN membrane. The bar indicates the modes at the excitation frequency.

Figure 20.  Mode profiles from the dispersion relations for the a) symmetric, 
b) shear horizontal and c) antisymmetric, at 2GHz.
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angular dependence of the frequency amplitude along the inner 
ring in k-space which is shown in Fig. 23. As plotted in the 
figure, the curve for the experimental data is more localized 
than that predicted from the FEM model of transducer which 
were designed with an angular aperture of θD = 1.5 rad. 
Additionally we have plotted the corresponding curve for an 
FEM simulation of a transducer with an angular aperture of θD 

= .9 rad. As indicated by the agreement in the figure, the 
experimental data is better represented by a transducer with a 
narrower aperture. Additionally, the sectional plots in Fig. 22
show that the focused waist and Rayleigh range are better 
modeled with transducers having the narrower aperture.

This deviation of the measured displacement field profile 
from the predicted profile is worth addressing. Since the 
measured field distribution is better matched with a narrower 
aperture, the field amplitude beneath the transducers wings is 
less than that predicted by the local transducer width in equation 
15. Local heating is one potential explanation for the observed 
reduction in transduction efficiency at these regions and 
observed narrowing of predicted spread in angle in k-space. As 
the transducers narrow toward the edge of the aperture range, 

Figure 21.  a) Field profile of vertical displacement at the bottom-plane of the 
AlN membrane from FEM simulation. b) Field profile corresponding to inner 
ring in k-space of the experimental data. c) Field profile corresponding to the 
outer ring.

Figure 22. a) Intensity cross section of vertical displacement at the bottom-
plane of AlN membrane along center of the propagation direction. Blue curve 
corresponds to FEM simulation with narrow transducer aperture (θD = .9 rad). 
Red curve corresponds to simulated the wider aperture (θD = 1.5). Black curve 
corresponds to experimental data. b) Corresponding intensity profile of 
displacement for cross section at focus position illustrating the beam waists.

Measured Displacement from Outer ring: k = 3.5 µm-1

Simulated Displacement 

Measured Displacement from Inner ring: k = 1.1 µm-1



the electrical resistance increases and correspondingly local 
resistive heating increases resulting in an impedance mismatch
due to a temperature gradient and reduced excitation efficiency.

Additionally, we observe that coupling to the first order anti-
asymmetric mode is larger than the theoretical prediction. FEM 
simulations indicate less than .3% coupling into this mode but 
these simulations don’t account for all sources of asymmetry. 
Asymmetry due to local heating on the top plane, or mass 
loading are possible sources of asymmetry that result in 
enhanced coupling to the first asymmetric mode.

VII. DUAL-PORT DEVICES

As a final test of the Lamb beam transducers in this work, we 
experimentally evaluate their ability to focus energy in a device 
architecture by studying the inclusion of a hard-stop aperture in 
a send and receive configuration. The dual port devices 
considered here are comprised of identical send and receive 
focusing transducers, having the design studied in the previous 
sections, connected by a subwavelength acoustical waveguide 
serving as the aperture. The acoustical waveguide has a length 
set to match the acoustical wavelength, λ, and widths that vary 
from λ/2 to 10λ. Fig. 24 shows the fabricated devices for the 
cases of the narrowest and widest pinhole waveguides. Since 
λ=5µm for the devices here these correspond to widths of 
2.5µm and 50 µm for the narrowest and widest waveguides 
respectively.

The transmission loss of a hard aperture can be determined 
by integrating the mode profile over the aperture window. Thus, 
for focused lamb modes in the Gaussian limit, equation (5) can 
be integrated to yield:

�� /�� = erf [�/(√2�(�)]; (22)

Where erf() is the error function, D is the aperture width, z is 
the distance from the focusing point, and �(�), is the beam 

waist. In the devices considered here, the aperture is positioned 
at the focus, therefore, by setting �(�) = �� = 2�/� and 
evaluating the above equations for the devices in Fig. 24, we 
expect 3 dB of acoustic loss due to the hard aperture for the 
narrow aperture device (0.5λ-wide) and negligible acoustic loss 
for the wide aperture device (10λ-wide). The electrical 
characterization of these devices are shown in Fig. 25. The 
narrow-aperture device only incurs 0.5 dB of additional loss in 
reflection and ~3dB additional loss in transmission relative to 
the wide-aperture device, thus confirming that the acoustical 
power is indeed focused through a narrow hard aperture.

Additionally, we performed confocal imaging and k-space 
analysis on the narrow-aperture devices. The corresponding 
displacement field image measured with our confocal imaging 
setup is shown in Fig. 26 and illustrates the focusing and 
coupling action of the designed transducers. The k-space 
composition of the mode, is shown and forms concentric rings. 
As with the single port devices, both the symmetric and anti-
symmetric modes are excited. The inner most ring and outer 
most ring corresponds corresponding to symmetric and anti-
symmetric modes respectively have k-vector radii of 1.25 µm-

1. and 3.15 µm-1. For the two-port case, however, there is strong 

a)

Figure 23.  Fabricated dual-port devices, one with a 0.5λ waveguide (2.5µm   
wide) (a) and the other with a 10λ waveguide (b), which is essentially a wide-
open aperture.

Figure 24.  Angular dependence of Fourier amplitude along inner (black 
curve) of the experimental data. Angular dependence of Fourier amplitude 
from FEM simulation with transducer aperture, θD, set to 1.5 rad (blue curve) 
and .9 rad (red curve), illustrating the experimental data more closely matches 
fields generated with smaller apertures transducer.

b)

a)



amplitude at both positive and negative k on a ring, indicating 
the presence of both forward and backward going waves of 
nearly equal amplitude. This is expected given that the structure
essentially forms a linear confocal cavity, given the end 
reflectors at the send and receive ports, with a central aperture.

The middle ring in the k-space diagram in Fig. 26, however, 
identifies an additional mode involved in the interaction; a 
mode not involved in the single port devices. Its value of k-
vector radii of 2 µm-1 indicates that the mode is a shear
horizontal mode (SH) as determined from the dispersion 
diagram in Figure 19 19. Although the transducers themselves 
are not able to excite shear horizontal modes, the interaction 
with the waveguide causes coupling between the symmetric, 
antisymmetric, and shear horizontal modes which results in a 
weak mode mixing such that the resulting quasi-shear mode has 
a small but detectable out of plane component.

As was done in the previous section, the concentric rings can 
each be filtered out individually to visualize the beam profile 
associated with the mode class and the results are reported in 
Fig. 27.  Fig. 27(a) shows that the symmetric mode contribution 
to the image is smooth and continuous through the waveguide 
confirming that on resonance the symmetric mode is focused 

unobstructed through the hard aperture. The prominent fringing 
pattern is due to the backward going wave, and indicates that a 
single wavelength contained in the waveguide. Fig. 27(b) 
shows the antisymmetric mode contribution. The length of the 
waveguide while resonant for the symmetric mode is not 
resonant for the anti-symmetric mode, and therefore power is 
not continuous through the waveguide. A small portion of the 
incident wave scatters at the waveguide input into the 
asymmetric mode which is contained in the side cavity formed 
between the send back-reflector waveguide input. The effect 
similarly happens with the backward going wave at the 
waveguide output resulting in a small amount of energy leaking 
into an antisymmetric mode being contained in the side cavity 
formed by the waveguide output and the receiver back-
reflector. Finally, Fig. 27(c) shows the beam contribution from 
the SH modes. As with the antisymmetric mode, the waveguide 
length is not resonant with the SH k-vector resulting in low field 
amplitude at the center of the waveguide and quasi-SH modes 

Figure 26.  Electrical characterization of a 0.5λ (red) and 10λ (blue) wide 
waveguide two-port devices, showing a negligible increase in insertion loss 
for the 0.5λ device.

Figure 25. a) Measured optical image displacement field (real part) of dual 
port device with a 0.5λ waveguide (2.5µm wide). b) Fourier transform (k-
space) of (a). Inner dashing ring corresponds to 1.25μm-1, the middle ring 
corresponds to 2 μm-1, and the outer ring corresponds to 3.15 μm-1

corresponding to beams formed with symmetric, shear horizontal respectively 
and anti-symmetric respectively.
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developing in the side cavities. Interestingly the excited SH 
mode is not the lowest order cavity mode but rather a higher 
order exhibiting a cross pattern. This cavity mode corresponds 
to aperture-limited Bessel beams in optics[21].

As was mentioned for the single port device, the measured 
confocal images represent vertical displacement at the bottom 
plane only, although the majority of the displacement is radial 
at the mid plane. Thus, we would need to normalize the relative 
energy along the contours of the symmetric, antisymmetric and 
shear horizontal modes to calculate the forward going power of 
the mode in order to quantify the modal efficiency of the 
transducer. Hybridization of the modes for the resonant device 
considered complicates this procedure. However, the effective 
coupling constant of the receive transducer effectively serves as 
a notch filter for the targeted symmetric mode. Therefor the 

electrical measurements indicate that the majority of 
displacement energy is in the symmetric mode. And the
analysis on the confocal imaging data illustrates the utility of 
the k-space representation to understand the interaction of
modes of differing k-vector for the given operating frequency.

VIII. DISCUSSION AND CONCLUSIONS

In this work, we provided a comprehensive study of the 
design, modeling, fabrication, and experimental verification of 
transducers that produce focused Lamb wave beams in thin-
film aluminum nitride membranes. In particular, we developed 
a theoretical description of focused Lamb beams in thin films 
and presented a Fourier domain design methodology that we 
employed to design and fabricated both single and dual-port 
devices in a 750nm AlN membrane. The single-port devices 
enabled demonstration of diffraction limited focusing, which 
we confirmed through confocal imaging. We showed that the 
transducers in this work achieve a diffraction limited focused
spot size of 5μm at 2GHz where the wavelength of the 
symmetric mode is 5.3 μm. Modal analysis in k-space shows 
that we achieve more than 85% efficiency into the desired 
focused beam formed with the symmetric mode. Additionally, 
we demonstrated a functional two-port device utilizing focusing 
transducers. Focusing enabled coupling energy through a 
wavelength scale aperture with minimal relative insertion loss.
Analysis of the confocal image in the Fourier domain allows us 
to understand the roles of the symmetric, antisymmetric and 
shear horizontal beams. Although the overall insertion loss of 
our two-port devices was of order 10 dB, much of this loss is 
completely avoidable with moderate changes in busing and 
fabrication, and we are already taking steps to design devices 
with much lower total insertion loss.

The theory, analysis, and results presented here with one and 
two port devices, together, demonstrate the ability to efficiently 
produce focused Lamb beams directly from carefully designed 
curved ITDS and to excite wavelength-scale structures. We 
believe this result holds great promise for the technological 
utilization of microwave electromechanical devices that 
incorporate wavelength scale structures, such as phononic 
crystal waveguides and cavities. We are confident that focused 
IDTs will find boarder use as the field of wavelength scale 
phononic devices matures.
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Figure 27. Filtered profiles of the inner (a), outer (b) and middle ring (c) from 
k-space in Fig. 24 corresponding to beams formed with symmetric, anti-
symmetric and shear horizontal respectively.

Measured Displacement from Inner ring: k = 1.1 µm-1

Measured Displacement from Outer ring: k = 3.5 µm-1

Measured Displacement from Middle ring: k = 2.0 µm-1



Stanfield.

[1] L. Wang, S. M. Chen, X. Ning, Z. Chen, J. T. Liu, and J. Y. Zhang, 
“Embedded nanotransducer for ultrahigh-frequency SAW utilizing 
AlN/diamond layered structure,” in 2017 Joint IEEE International 
Symposium on the Applications of Ferroelectric (ISAF)/International 
Workshop on Acoustic Transduction Materials and Devices 
(IWATMD)/Piezoresponse Force Microscopy (PFM), 2017, pp. 106–
109.

[2] J. J. Chen, F. Zeng, D. M. Li, J. B. Niu, and F. Pan, “Deposition of 
high-quality zinc oxide thin films on diamond substrates for high-
frequency surface acoustic wave filter applications,” Thin Solid Films, 
vol. 485, no. 1, pp. 257–261, Aug. 2005.

[3] K. M. Lakin, G. R. Kline, and K. T. McCarron, “High-Q microwave 
acoustic resonators and filters,” IEEE Trans. Microw. Theory Tech., 
vol. 41, no. 12, pp. 2139–2146, Dec. 1993.

[4] S. Mohammadi, A. A. Eftekhar, W. D. Hunt, and A. Adibi, “High-Q 
micromechanical resonators in a two-dimensional phononic crystal 
slab,” Appl. Phys. Lett., vol. 94, no. 5, p. 051906, Feb. 2009.

[5] P. H. Otsuka et al., “Broadband evolution of phononic-crystal-
waveguide eigenstates in real- and k-spaces,” Sci. Rep., vol. 3, Nov. 
2013.

[6] D. Hatanaka, I. Mahboob, K. Onomitsu, and H. Yamaguchi, “Phonon 
waveguides for electromechanical circuits,” Nat. Nanotechnol., vol. 9, 
no. 7, pp. 520–524, Jul. 2014.

[7] S. Mohammadi and A. Adibi, “Waveguide-Based Phononic Crystal 
Micro/Nanomechanical High- Resonators,” J. 
Microelectromechanical Syst., vol. 21, no. 2, pp. 379–384, Apr. 2012.

[8] M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, 
“Optomechanical crystals,” Nature, vol. 462, no. 7269, pp. 78–82, 
Nov. 2009.

[9] J. Chan et al., “Laser cooling of a nanomechanical oscillator into its 
quantum ground state,” Nature, vol. 478, no. 7367, pp. 89–92, Oct. 
2011.

[10] H. Shin et al., “Tailorable stimulated Brillouin scattering in nanoscale 
silicon waveguides,” Nat. Commun., vol. 4, Jun. 2013.

[11] H. Shin, J. A. Cox, R. Jarecki, A. Starbuck, Z. Wang, and P. T. 
Rakich, “Control of coherent information via on-chip photonic–
phononic emitter–receivers,” Nat. Commun., vol. 6, p. 6427, Mar. 
2015.

[12] P. J. Shull, Nondestructive Evaluation: Theory, Techniques, and 
Applications. CRC Press, 2016.

[13] D. Royer and E. Dieulesaint, Elastic Waves in Solids II: Generation, 
Acousto-optic Interaction, Applications. Springer Science & Business 
Media, 2000.

[14] R. H. Olsson et al., “Ultra high frequency (UHF) phononic crystal 
devices operating in mobile communication bands,” in Ultrasonics 
Symposium (IUS), 2009 IEEE International, 2009, pp. 1150–1153.

[15] M.-H. Lu, L. Feng, and Y.-F. Chen, “Phononic crystals and acoustic 
metamaterials,” Mater. Today, vol. 12, no. 12, pp. 34–42, Dec. 2009.

[16] Kuypers, “Green’s function analysis of Lamb wave resonators.”
[17] J. H. Kuypers, D. A. Eisele, and L. M. Reindl, “The k-model - green’s 

function based analysis of surface acoustic wave devices,” in IEEE 
Ultrasonics Symposium, 2005., 2005, vol. 3, pp. 1550–1555.

[18] S. G. Joshi and Y. Jin, “Propagation of ultrasonic Lamb waves in 
piezoelectric plates,” J. Appl. Phys., vol. 70, no. 8, pp. 4113–4120, 
Oct. 1991.

[19] V. Yantchev and I. Katardjiev, “Quasistatic transduction of the 
fundamental symmetric Lamb mode in longitudinal wave 
transducers,” Appl. Phys. Lett., vol. 88, no. 21, p. 214101, May 2006.

[20] P. Wilcox, R. Monkhouse, M. Lowe, and P. Cawley, “The Use of 
Huygens’ Principle to Model the Acoustic Field from Interdigital 
Lamb Wave Transducers,” in Review of Progress in Quantitative 
Nondestructive Evaluation, D. O. Thompson and D. E. Chimenti, Eds. 
Springer US, 1998, pp. 915–922.

[21] H. A. Haus, Waves and Fields in Optoelectronics. Englewood Cliffs, 
NJ: Prentice-Hall, 1984.

[22] D. G. Duffy, Green’s Functions with Applications. CRC Press, 2001.
[23] Y. A. Kravtsov and P. Berczynski, “Description of the 2D Gaussian 

beam diffraction in a free space in frame of eikonal-based complex 
geometric optics,” Wave Motion, vol. 40, no. 1, pp. 23–27, Jun. 2004.

[24] B. A. Auld, Acoustic Fields and Waves in Solids. Krieger Publishing 
Company, 1990.

[25] G. Santoni, “Fundamental Studies in the lamb-wave interaction 
between piezoelectric waffer active sensor and host structure during 
structural health monitoring,” Thesis, 1999.

[26] “A treatise on the theory of Bessel functions.” [Online]. Available: 
https://archive.org/stream/treatiseontheory00watsuoft#page/390/mode
/2up. [Accessed: 11-Jul-2014].

[27] F. W. J. Olver, NIST Handbook of Mathematical Functions Hardback 
and CD-ROM. Cambridge University Press, 2010.

[28] S. G. Joshi and Y. Jin, “Excitation of ultrasonic Lamb waves in 
piezoelectric plates,” J. Appl. Phys., vol. 69, no. 12, pp. 8018–8024, 
Jun. 1991.

[29] A. D. Poularikas, Handbook of Formulas and Tables for Signal 
Processing. CRC Press, 1998.

[30] A. V. Oppenheim, Signals and Systems. Prentice Hall, 1997.
[31] G. Piazza, V. Felmetsger, P. Muralt, R. H. Olsson III, and R. Ruby, 

“Piezoelectric aluminum nitride thin films for microelectromechanical 
systems,” MRS Bull., vol. 37, no. 11, pp. 1051–1061, Nov. 2012.

[32] G. G. Fattinger and P. T. Tikka, “Modified Mach–Zender laser 
interferometer for probing bulk acoustic waves,” Appl. Phys. Lett., 
vol. 79, no. 3, pp. 290–292, Jul. 2001.

[33] J. V. Knuuttila, P. T. Tikka, and M. M. Salomaa, “Scanning 
Michelson interferometer for imaging surface acoustic wave fields,” 
Opt. Lett., vol. 25, no. 9, pp. 613–615, May 2000.


