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DISPERSIVITY IN HETEROGENEOUS PERMEABLE MEDIA

Dwayne A. Chesnut
Lawrence Livermore National Laboratory

P. Box 808, L-202
Livermore, CA 94550

(510)423-5053

ABSTRACT For small _, the breakthrough curve resulting from
releasing a narrow pulse at time zero has a sharp peak

When one fluid displaces another through a one- near t = tb. As _ increases (corresponding to increasing
dimensional porous medium, the composition changes heterogeneity), the location of the peak shifts
from pure displacing fluid at the inlet to pure displaced monotonically to smaller values of t, and the peak
fluid some distance downstream. The distance over which concentration at first decreases, then increases rapidly as
an arbitrary percentage (typically 80%) of this change the location of the peak moves toward zero time,
occurs is defined as the mixing zone length, which indicating that there may be a limit to the dilution effect
increases with increasing average distance traveled by the expected with increasing "dispersion." Concurrently, an
displacement front. Alternatively, for continuous injection, increasing fraction of the total contaminant mass is
the mixing zone size can be determined from a produced at early time. Both the increased peak
breakthrough curve as tI;e time required for the effluent concentrations and the increased early total mass
displacing fluid concentration to change from, say, 10% to production are consistent with the intuitive concept of
90%. In classical dispersion theory, the mixing zone "fast paths" for radionuclide transport.
grows in proportion to the square root of the mean

distance traveled, or, equivalently, to the square root of the I. INTRODUCTION
mean breakthrough time.

At the laboratory scale, the shape of the composition
In a multi-dimensional heterogeneous medium, profile between pure displaced fluid and pure displacing

especially at field scales, the size of the mixing zone fluid is closely approximatedby an appropriatesolution to
grows almost linearly with mean distance or travel time. If

a form of thediffusion equation (the convection-dispersion
an observed breakthrough curve is forced to fit the equation, or CDE), with a longitudinal dispersion
classical theory, the resulting effective dispersivity, instead coefficient in place of the diffusion constant.
of being constant, also increases almost linearly with the

spatial or temporal scale of the problem. This occurs Experimental data for laboratory-scale displacements
because the heterogeneity in flow properties creates a are well represented by assuming that the dispersion
corresponding velocity distribution along the different coefficient is equal to the product of the fluid velocity and
flow pathways from the inlet to the outlet of the system, a constant, characteristic of the porous medium, known as
Mixing occurs mostly at the outlet, or wherever the fluid is the dispersivity. 1 The width of the mixing zone grows in
sampled, rather than within the medium. proportion to the square root of the average distance

traveled by the displacement front.2
' In this paper, we consider the effects of this behavior

on radionuclide or other contaminant migration. In a At field scales, an increasing number of examples
limiting case, the breakthrough curve is given by a log- indicate that the width of the mixing zone grows in

• normal cumulative probability function of time, with proportion to the pth power of the distance traveled, where
parameters tb (a characteristic breakthrough time) and c p is greater than 1/2, and may approach unity. If field
(the standard deviation in the natural logarithm of the breakthrough curves are forced to fit the convection-

breakthrough time). The apparent mixing zone width dispersion solution, it is found that the effective
increases in exact proportion to the distance traveled, with dispersivity, rather than approaching a constant value

the proportionality "constant" given by a function of c.
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characteristic of the medium, increases almost linearly nuclear waste repository concept. The thought experiment
with the scale of theproblem. 3.4 underlying this approach is described by Neretnieks:

"...fissures act as independent channels with no mixing
Apparently, the mixing zone width is controlled by occurring between them. At the inlet end of the channels a

the variation in fluid velocity from point to point within tracer can be introduced. This is done simultaneously inb

the medium, which in turn is governed by the all fissures. At some distance downstream the fluid from
heterogeneity in permeability and porosity, and its spatial all channels is collected and mixed. The [resulting]
correlation structure. Hewett5 calls this behavior velocity concentration is measured over time ..." A plot of this
dispersion, in contrast to the classical process of gradient concentration versus time from the start of tracer injection

• dispersion controlled by concentration gradients. In the represents the breakthrough curve.
latter case, the fluids actually mix within the medium,
whereas in the former, mixing occurs primarily as a result Butters and co-workers11.12conducted an elaborate
of sampling at an outflow boundary, such as a well. experiment in which a bromide ion tracer pulse was

applied to a uniformly irrigated 80 m by 80 m square plot
In this paper, we consider the effects of velocity of "uniform" soil. After application of the pulse, the

dispersion on radionuclide or other contaminant infiltrating water was sampled periodically, while
migration. In a limiting case, velocity dispersion can be continuing to irrigate regularly, at depths of 30, 60, 90,
represented by a log-normal distribution of fluid flux 120, 180, 300, and 450 cm, using 16 clusters of sampling
crossing a surface perpendicular to the principal direction tubes centered on a 4x4 array of 20 m by 20 m squares. In
of flow. Under this approximation, both the normalized their analyses, they applied both the classical convection-
concentration profile and the breakthrough curve of a dispersion model and a "log-normal transfer function"
contaminant (introduced as a unit step function at time 0 model previously proposed by Jury and Sposito. 13
at the inflow boundary of the system) will be given by log-
normal cumulative probability .functions. Each function All of these attempts to represent velocity dispersion
requires only two parameters: the average breakthrough rest upon the concept of piston-like displacement in a
time, tt, (for concentration vs. time) or (x) (for collection ofindependentlinearsystemsasastartingpoint
concentration vs. distance), and the standard deviation in for analyzing more complex behavior. Consequently, in

the natural logarithm of the breakthrough time, or. The the following section we review some basic ideas on ideal
apparent mixing zone width increases in exact proportion linear displacement.
to the distance traveled, with the proportionality

A. Displacement in a Homogeneous System
"constant" given by a function of o.

II. MATHEMATICAL DEVELOPMENT Consider first an ideal, one-dimensional, "piston-like"
"miscible displacement of one fluid by another in a

Chesnut, Cox, and Lasaki 6"presented a model for completely homogeneous system, representing one of the
independent elements, or flow paths, connecting the inlet

waterflooding petroleum reservoirs in porous sedimentary
rock, based on earlier unpublished work by Chesnut,7 in with the out!et of the heterogeneous system. The two
which the flow paths from injection to production wells fluids could be clean water displaced by contaminated
are treated as a collection of independent linear elements, water, water free of tracer displaced by traced water, or

any pair 'of distinguishable fluids. We assume, for the ith
Effects of heterogeneity were incorporated by assigning a element, that the water flow rate is
log-normal permeability distribution to these elements and
integrating the displacement behavior over this

distribution. Recently, Chesnut applied similar concepts to ( _
define more precisely the concept of groundwater travel qi = k 8,4 _ (1).'. 'kl.tt.)
time arising in US regulations on nuclear waste repository

sites,8 and to develop a model for the rate of extraction of In Eq. (1), ki and (5.4i are the permeability and cross-
. volatile organic compounds from the vadosezone. 9 sectional area of element i, respectively, taken to be

Neretnieks1° and his colleagues have for a number of constant along the flow path; ziP is the pressure drop
years been developing similar conceptual and across the system, which has length _L, and _t is the
mathematical models of "stratified" or "channel" flow and viscosity. We also define the Darcy flux, ui, and the water

transport in fractured crystalline rock, principally in velocity, vi, bY
connection with the safety assessment of the Swedish
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where (k) is the average of k over its distribution f(k). Note

,,/(_] that Eq. (7)can be solved for the factor (z:tP)/(/.tL),and the
u+= q; (2) result rearranged to obtain

• (U__i) u, q--2-=(qr_Iki_ (u)k,
v, = (3) =-+SA,. t, A )L(k)) = (k) (8).

Equation (8) merely states that the ratio of Darcy flux in
The velocity of a non-sorbing, non-reactive species is an element to the average Darcy flux is the ratio of the

given by Eq. (3), and hence the location of the water permeability of the element to the average permeability.
displacement front at a time t after the start of injection is

just XDi = v,4. For a reversibly sorbed species (but However, the average water velocity does not
otherwise non-reactive species) with volumetric sorption necessarily reduce so nicely. By using Eq. (8) in Eq. (3)

, coefficient Ki, the frontal velocity is given by and then integrating over the permeability distribution, it
can be shown that

l /,,>

C(k)) J° _ , (k)\cb/ (9).bli
v,i = F /', _ "_7 (4)

_,|1+ K_|'_|| Note that in general _ will be a function of k, and that the
L k _Pi )J average of k/_ will not be exactly equal to the average of k

divided by the/werage of 0. Therefore, the average water
Also, the sorbing species displacement front at time t particle velocity will not be exactly equal to the average

is at a position xo, igiven by Darcy velocity divided by the average porosity. This point
will be re-visited later.

uitxo,_=v,_t=-- (5),
+iRi A similar, and perhaps worse, difficulty arises in

calculating the average frontal displacement velocity (or

where the usual definition of the retardation coefficient R i position) for a sorbing species. By using similar
has been used in Eq. (5) to replace the term involving the manipulations on Eq. (4), one can show
volumetric motion coefficient in the denominator of
_. (4).

B. Displacement in Heterogeneous Systems (v.)=(u>i(k>\[ C )]+ )
We consider the limit of an infinite number of __.4) 1+K.1-4)./4). (10)

infinitesimal elements, and set = (u)/..k.k \

8(4i = A f(k)dk, (6) (k) \4_R/

where A is the total area perpendicular to the direction of
flow and f(k) is the probability density function for the Note that the ratio k/(4_R)may be a complex function
permeability, of k, as well as of many other variables, such as water

chemistry and perhaps, as suggested by Neretnieks et al.,

Sums over the index i become integrals over the even the residence time.Furthermore, in general
permeability distribution. In particular, the total flow

through the system is given by mAP (u) i k'_'k{k)\ 41R[ ¢ -_{u)[k\_i\R[_[1\= (v)(1)¢ (R"-ff{v) (11),
qr = r" _'--_kf(k) dk = (k)-- (7),

Jo IJL )_L so that the average frontal velocity of-a sorbing species
cannot be represented exactly as the average water velocity
divided by an average retardation coefficient.
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Now consider a distance x at time t after the start of Neretnieks' gedanken summarized above. Butters et al. 12

continuous injection of water at concentration co of some called this the flux concentration. In practice, it is the
detectable species, initially at zero concentration within function which should be compared to observed
the medium. For a sorbing species, Eq. (5), with the aid of breakthrough curves for experiments in which 100% of
Eq. (8), can be written for the position of the displacement the injected tracer would eventually be produced at the
front in an infinitesimal element with permeability k: outflow if the experiment were continued indefinitely.

Note that the distinction between volumetric weighting

(_k_)(_R) and flow-rate weighting to calculate average concentration
xo, = k (12). arises only ia situations in which there is velocity

dispersion. In classical dispersion theory, the fluid velocity
is uniform.

At a f'Lxedx and t, all elements for which Xos > x

contain injected water at concentration co, while all others If the second term in the step function argument were
contain water at zero concentration. Equivalently, for all k independent of k, then the lower limit of the integrals
such that could be set to a function of time and distance only,

instead of zero, and the integrals could then be evaluated

k > (k)_R (x'_ (13), with an assumed probability distribution function for k.
- (u) l,.t) Unfortunately, as discussed above, this is generally not

true. Even for the case of a non-sorbing species, when R is

the concentration is equal to co. By introducing the unit identically unity, the porosity would at least be correlated
step function with k, if not functionally dependent. For now, we shall

ignore this complication, and replace the product of
H(z) -=0, z < 0; porosity and retardation coefficient by its average in order

H(z) - 1, z >0 (14) to proceed with the analysis. Some consideration has been
given to the correlation between sorption coefficients and

we can write the concentration as a function of time in permeability by Tompson and Dougherty. 14

terms of the following integrals:
C. Log-Normal Distribution

c.(x,t)=Fc,___._ -_--,,f(k)dkw./j (15) In addition to neglecting the variation of _ with k,we now specialize to the case of a log-normal distribution
for k, with the density function completely specified by

c,(x,t)=_CO_k)_k-k(J_u)(t)]f(k)dk (16). assigning values to its parameters, <Ink, and o':

1 _'-(lnk- (lnk))' 1These correspond to two different ways of calculating f(k)=/xr 2_-exp L 2_:_ (17).the average concentration as a function of distance and
time. The In-st integral, Eq. (15), represents a volumetric
average of the concentration in situ, which we could in The parameters (Ink) and (_ are, respectively, the mean
principal determine by suddenly isolating a slice and standard deviation of the natural logarithm of k.
perpendicular to the flow direction and measuring its
average concentration. In practice, this might be observed The integrals given above can now be evaluated,
by an electrical conductivity log when saline water is setting _ = c/co and using the lower limit
injected into a fresh water aquifer, or vice versa. In the

experiment of Butters et al., 12this average was referred to k, = (k)(_R) (x _ (18);
as the resident concentration, and was measured at one (u) kt)

• . value of time by coring the irrigation plot after the
experiment was concluded, and then analyzing the core

material for bromide content as a function of depth. {ln(kL/{k))+_a/2}_The second integral is generally more useful, since it _, = 1 • (_ (19)
is an average weighted by the flow rates of the channels,
and gives the concentration which would be measured in
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function at '_ = 1. As cr increases, the concentration at

] early time, for example, at a compliance boundary,
_f=l-O ln(kL/(k))-cr2/2. (20), increases very rapidly, reaching almost 10% of the

_ injected concentration when the time is only 1/1000 of the
"mean" breakthrough time, for cr= 2.5.

where @(z) is the normal probability integral of z.

Now consider Eq. (20)for some fixed value of x, _-_>->_>_>>>>>>>>>>_1.00
which may be taken as the outflow of the system, a /
compliance boundary, or any other surface of interest for _o_ +o.o ,J ,J0"80

calculating the mass transport of contaminant as a xg'J'k- "l""x "°; J J' 'function of time. The argument of the natural logarithm in • 0.5 0.60

/:0 °" "'oll
Eq. (20) can be written as _ xJ,_ o ,, o lz OA0•° II= .j//: . •t 0.20..

The numerator of the expression on the right hand _+'_.._-_ ,; , I J
_I.iII._+_,V??;t i I ! .... I 0.00

side of Eq. (21) has the dimension of time, and will be a 0.001 0.01 0.1 10 100 1000
constant for a fixed x in a given flow system. We then
define the characteristic breakthrough time, tb: "c

t. =-x(¢R) / (u) (22). Figure 1. Normalized breakthrough curves " for
continuous injection. The legend gives

For the special case of constant porosity and values of 6.
retardation factor, tt, is equal to x divided by the average

frontal velocity, and represents a kind of average By similar manipulations, the volumetric average
breakthrough time. In a completely homogeneous system, dimensionless concentration can be obtained as a function
the normalized breakthrough concentration would be zero of dimensionless time:
for t < tb, and unity for greater values of time.

D. BreakthroughCurvesforContinuousInjection _,(, ) =@t'ln(" )?' /"2t""
(25)

UponsubstitutionofEqs.(22) and (21) into F_.q.(20),
the following result is obtained: Equation (25) differs from the flow-rate weighted

average of Eq. (24) in the sign of _2/2. A larger value of
dimensionless time is required to reach a particular value
of dimensionless concentration for the volume average

_t(t)=l_oln(t, lt)-aa/2] [ (i.e., resident concentration) than for the flow average
(i.e., flux concentration). In fact, on a logarithmic plot, the

i_" (23). curve defined by Eq. (25) can be obtained by shifting the

o_ln(t/t,)+_ 212] values from Eq. (24) to the fight by a 2. Such a
= _or'' -" [ concentration profile might be observed experimentally by

repeated logging or by tomographic imaging

Finally, note that titb can be replaced by a dimensionless E, Concentration vs. Distance Profiles
time, "c,to obtain:

Instead of considering a fixed distance x and

{ t_/(x)=d) ln(x)+cr2 t2 (24). calculating the concentration as a function of time, wenow consider a fixed time and obtain concentration

profiles as functions of distance instead of breakthrough

Figure 1 contains a plot of normalized concentration curves as functions of time. Wethen reai'range Eq. (21) to
versus dimensionless time for values of fr ranging from define the average value of x instead of the average
0.0 to 2.5. For t_ = 0, the breakthrough curve is a step breakthrough time:
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A. Solutions of tile Convection-Dispersion

t(u) (26). Equation
<x)-(,R)

Arya et al.2 presented the following solution to the

Upon inserting this expression into Eq. (19) and one-dimensional CDI_.for a systemof fixed length L:
rearranging the result, we obtain for the volume-weighted
average concentration profile:

I_F  o-to 1
_, 1: - *{ ln(_) + ff2or/2} (27), _(to'x°)=--erlc'2 L.....24to / Pe JI (29)

2 --"_[x°+t°]t.u"[Pewhere the dimensionless distance rl is just x/(x). Similarly, + exp(xoPe)r"_I24t--_.
the flow-weighted average concentration profile is

The dimensionless quantities in Eq. (29) are def'medby

_/= 1_ _{.ln(rl)-_ 2/2} (28). x vt L
xo =_m to -_ Pe - _ (30),

L L a

It is not clear that the function defined by Eq. (28) can
be measured experimentally, although it can be as easily where the dispersivity, a, is assumed to be a constant
computed in simulation studies as the volume-weighted characteristic of the porous medium in the derivation of
prof'de. It may possibly be approximated in the study of Eq. (29), and Pe is the Peclet number, a measure of the
Butters et al. 11by the profiles of concentration vs. depth relative importance of advection and dispersion. A large
in each sample tube cluster at each of the different times value of Pe implies a relatively sharp displacement front,
samples were taken, since sampling required drawing a and a small value corresponds to a broad mixing zone.
finite quantity of fluid from each sample tube. This would
tend to give a flux concentration rather than a resident B. CDE Breakthrough Curves
concentration.

In order to obtain a breakthrough curve, we merely
HI. DISPERSIVITY substitute unity for the dimensionless distance in Eq. (29)

and note that L/v is a measure of average travel time for a

We note that nowhere in the prezeding analysis has contaminant moving with the fluid. A retardation
the concept of dispersivity been needed. In fact, it arises coefficient can be easily introduced to obtain a def'mition
from the assumption that local random mixing within a of dimensionless time similar to the one used for the log-
porous medium behaves, statistically, the same as normal model. If, in addition, we replace the
molecular Brownian motion. The latter leads tomolecular complementary error functions, by using the identity
diffusion, in which the diffusive flux is proportional to the

concentration gradient of the diffusing species. If the pore- 1 erfc(u) =_(--._'u) (31),2
scale mixing behavior in porous solids exhibits the same
statistical behavior, then it seems entirely reasonable to

we obtain, after some manipulation
assume that the same form of differential equation should
apply to describe mixing in terms of a local concentration
gradient. One merely replaces the diffusion coefficient by

the dispersion coefficient, which in turn is replaced by the I,]P__.ee( -tr_)_
product of the dispersivity, a, and the fluid velocity. The _ (x)= • 1._/2 x tr_-x J
resulting differential equation is generally called the (32).

• . convection-dispersion equation (CDE). In order to _[mee u2 -In)
compare the behavior of the purely advective, perfectly +exp(Pe)_[_/ 2 (x +x J
stratified model based on the log-normal distribution with

the classical approach, we now review some solutions of The use of the normal probability integral instead of the
the CDE. complementary error function provides a slight
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computational advantage when using some software Solving Eq,(34) for these two values of x yields,
packages, approximately,

C. CDE Concentration Profiles We° = 3"624775x'o/_-"Or_ (35).
This may be compared with the in-situ concentration

Similarly, we can obtain the concentration profile profile calculated from the log-normal model. For this
equation from Eq. (29), but we consider a fixed time t, purpose, we write Eq. (27) for the desired values of 4:
define xm by x,n = vt, and assume that xm << L. After

' some manipulation, we obtain {In(x/(x))+_2/2}
p = 1-q_ (36),

O

I,[pe( _ and solve for Xo.9 and go.1, corresponding to p = 0.9 and_co(X / x,,) = • 1- x / x,) 0.1, respectively. Then the width of the mixing zone forLvz J
(33) the log-normal model is

.) Lv z W_ = 2(x)exp sinh(1.281552_) (37).

The explicit form x/x m is retained in Eq. (33) instead of
introducing a dimensionless distance in order to By setting the two expressions [Eqs. (35) and (37)] for
distinguish the argument of the equation from the one mixing zone width equal to each other, we can determine
used in the log-normal model. Note also that the Peclet a value for effective dispersivity for fitting the classical
number is now defined using xm for the characteristic dispersion equation to the log-normal model. However,
length instead of L. there is one ambiguity, viz., the correspondence between

the mean, (x), and xm. Since the latter is often described
D. Displacement Scaling as the mean distance traveled, it is tempting to set them

equal. However, this leads to a definition of dispersivity
Hewett and Behrens4 modeled displacements in two- which is not a monotonic function of o. This merely

dimensional vertical systems with a fairly large number of reflects the fact that, as o increases, the convection-
grid blocks to illustrate the effectof heterogeneity in the dispersion solution cannot be made to resemble the log-
permeability distribution on dispersive behavior. For normal function at all well, at least in the spatial domain.
miscible displacement in a homogeneous system, the
concentration profile as a function of distance from the In fact, there are many dii'ferent'methods given in the
inlet scales according to classical dispersion theory, with a literature forcalculatinga Peclet number, or, equivalently,
mixing zone width proportional to the square root of the an effective dispersivity, from different computed
median distance traveled by the displacement front, and a characteristics of measured breakthrough curves in tracer
constant dispersion coefficient which can be caloulated experiments or from detailed model calculations. None of
from the grid block and time step sizes, them is entirely satisfactory, as will bec._me apparent in

the following discussion.
The normalized concentration as a function of

distance traveled is given approximately by Neretnieks, Eriksen, and Tlthtinen 15 considered this
problem for analyzing their measured breakthrough curves

[.I x.[ l" x/'_"_ }1] for tracers flowing through a single fracture, and used an
lerfc 1 x

--''z_cD(xlx")=-2 __. _--_--.---1 (34). expression mathematically equivalent to Eq. (32) tocalculate an effective Peclet number. Since they were
working with concentration vs. time rather than

Equation (34) will be recognized as being mathematically concentration vs. distance, they defined a normalized
• " identical to the f_t term of Eq. (29). The neglect of the mixing zone size as

second term is valid for Pe greater than about 10.
to.9- t0.1

_co =_ (38)
The mixing zone width is def'med4 as the difference to._

between x0.1, where £ocois 0.1, and Xo.9, where _CDis 0.9.
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and used a graph of Pe vs. 09CD to calculate an effective model instead of the convection-dispersion model might
Pe from measured values of the times in Eq. (38). Hence, possibly remove much of the apparent scatter.
they used the median value in their analysis, but one
should keep in mind that they worked with breakthrough
curves (concentration vs. time) instead of concentration

vs. distance profiles. 1000 " .' '

/" ./,-1+
The distance domain should, in principle, be entirely _ • / 7....... • ]

equivalent to the time domain, and, using Pe = Xm/a in 100 / .z"__ AEq. (35), we find: _ / .7_ _,"O

¢ )' / o3.624775 "" • • t

Pe = _ "_, 7-'_, ; (39)

-_ ///'-iw-//... _ • L-a

A plot of this function (not shown here) agrees closely ta. 0.1 /-// _o_t/l .//"/"with the diagram given by Neretnieks et el. 15 for the _ _nl
Peclet number as a function of the normalized mixing 0.01 / =/" ................

zone duration, at least for Peclet numbers greater than _w_/
about 5. For the time being, we will use the median for 0.001 _'_""./ ' 'to2.0
calculating an effective dispersivity. 0.1 10 1t.Joo

Noting that the coefficient of the hyperbolic sine term
in Eq. (37) is just twice the median of x, setting the two Distance, Meters
expressions for mixing zone width equal to each other,
and solving for a results in Figure 2. Plot of effective dispersivity, o_, versus

median distance traveled. The lines are
ct = 0304437[sinh(1.28155_)]2xo., (40) calculated from the log-normal model for

t_ ranging from 0.05 for the lowest line to
Equation (40) shows that the assumption of log- 2.0 for the upper. Points are experimental

normality leads to an effective dispersivity which increases values from sources given in the text.
linearly with the median distance traveled. Another way of

stating this behavior is to note that it is equivalent to a Also, there is quite a bit of ambiguity in determining
Peclet number which does not change with distance. + the Peclet numberfrom observedbreakthrough or profile
Furthermore, the coefficient of distance, i.e., the inverse curves, especially when the effective dispersivity is large.
Peclet number, increases exponentially with t_. Figure 2 is As shown below, the use of different characteristics of the
a plot of dispersivity [calculated from Eq. (40)] versus curves to calculate Peclet numberscan give very different
distance, for a range of values of t_. answers when the mixing zone is large.

Also shown in Fig. 2 are experimental values, Finally, the plot suggests that a value of less than
transferred from a plot given by Arya et al,2 at a very about 2 for ¢ may be a good guess in the absence of field
broad range of scales. The "Lab" points were originally data at the scale of interest. However, this may be biased
compiled by Arya, 16 those labeled "P-G" are from toward low values because many of the field observations
Pickens and Grisak,17 and those labeled "L-B" are from a were made in porous media rather than in fractured rock,
compilation by Lallemand-Barr_s and Peaudecerf.18 and it is generally believed that fractured media have more

heterogeneous permeability distributions than do porous
The comparison between the log-normal model and media.

.. the experimental data is interesting for several reasons.

First, by choosing an appropriate range of values of t_, the E. Model Displacements in Heterogeneous
entire region of experimental points can be swept. Second, Systems
it seems likely that the data were extracted from systems
with very different permeability distributions, and that To study the effect of permeability heterogeneity,
analyzing of the experiments in terms of the log-normal Hewett and Behrensa also modeled displacements in
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which the permeability in a 200 (horizontal) by 20
(vertical) grid was assigned by a random fractal process, 1 I
so that permeabilities are spatially correlated at all length
scales. They then calculated effective mixing lengths and
dispersion coefficients by using the 0.1 and 0.9 fractiles on
the concentration vs. distance profiles, as outlined above _CD(Pe,'q)

in discussing the log-normal model, a A log-log plot of m 0.5
their results as functions of distance has slopes of 0.991 _f(c, rl) ' _,,

" and 0.982 for the mixing length and dispersion -- '-

coefficient, respectively. This is obviously in much closer

agreement with the log-normal model than with the "" ""_"--._.. -.-._
classical theory. 0 I

0 5 10

IV. BREAKTHROUGH AND PROFILE CURVES rl
FOR THE TWO MODELS Figure 4. Comparison of log-normal and convection-

dispersion concentration versus distance
It should be noted that, while it is possible to fit log- profiles, with cr = 1.0 and Pe = 0.2,

normal breakthrough curves quite well with a convection- respectively.
dispersion solution for almost any value of c, the shapes of

the two functions are quite different when profile curves A. Matching Breakthrough Curves
are compared for even moderately large values of c. This

is illustrated in Figures 3 and 4. In constructing Fig. 3, the Peclet number was
assigned, and Eq. (32) was used to find the 0.1, 0.5, and
0.9 fractiles of the breakthrough curve, by assigning p =

! ._ ..._..,_._,-._- • " 0.1, 0.5, and 0.9, respectively, in

....... o.s - p=*
_LN (if'x) (41).

o I I
0 2 4 6 Equation (41) is mathematically equivalent to the solution

x to the CDE given by Neretnieks et al. 15 Then the

Figure 3. Comparison of log-normal and convection- ' following equation was solved for 6:.
dispersion breakthrough curves with ff =

1.9 and Pe = 0.2, respectively. 2sinh(L281552_) = x..9"x.1 (42)

As shown in Fig. 3, the log-normal and CDE
breakthrough curves are almost indistinguishable,
although the individual fractiles do not match exactly.

a We note that the profiles are easy to work with in Since the two expressions produce very nearly the
-. simulation studies, since a number of profiles can be same breakthrough curves for appropriate choices of the

obtained at a series of time values from a single simulation parameters, they will fit experimental breakthrough data

run. However, experimentally, it is much easier to work equally well. In fact, as noted by Moreno et al., 19it is notpossible to discriminate between dispersion models and
with breakthrough curves, channeling models at a fixed migration distance, even by

using a number of different tracers with differing
retardation coefficients.

i
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B. Matching Profile Curves than about 10. Unfortunately, it is precisely this range of
Pe values that is required to match field-scale transport

In contrast, the profile curves shown in Fig. 4 do not experiments with the CD model.
agree at all. The curve shown for the log-normal model
corresponds to the flow-weighted average, since the

" resident concentration curve does not even cross the CDE 100[...... I I I I
solution, except near the origin, for Pe less than 1. l

• In constructing Fig. 4, Ezls. (33), (27), and (28) were
, solved for the 0.1, 0.5, and 0.9 fractiles for the CDE,

volume-weighted log-normal, and flow-weighted log- __Yi 10
normal prof'des, respectively. For values of cr < 0.2
(approximately), a value of Pe can be chosen by matching
the dimensionless widths to obtain reasonably close "'-.
agreement among the p_ofile curves. 1 I I I "_-L _

0.001 0.01 0.1 1 10 100

However, for larger values of _, not even an Pc.
approximate match could be obtained by this method, l
Accordingly, we matched the actual width by solving Figure 5. Dimensionless mean distance traveled for

the one-dimensional convection-dispersion
equation solution as a function of Peclet

.1 .9

Clearly, this shift in the mean distance traveled must
where the LttS is obtained from the CD equation and th_ be taken into _._unt in attempting to match th_ CD
RttS by solving the flow-averaged concentration, given by solution m the log-normal.model. The following pmeedtwe
F._t. (28), for the appropriate fractiles, is used:

Although Eq. (43) has a solution for Pe = 0.2, Fig. 4 1. For a given value of Pc, calculate _/bynumerical
shows that the CD and LN profile curves not only have integration of Eq. (44).
different shapes, the resulting value of ff for a "match" is
about 1.0, comPared to 1.9 from fitting the breakthrough 2. Calculate 7/ = (xlxm) for p = 0 I, 0.5, and 0.9;p p •
curves for the mine Peelet number, by numerical solution of Eq. (33).

C. Distance Re-sealing 3. Calculate (r/.! - _.9)117._.Tiffs normalized width
remains constant when all distances are re-

This problem arises became, for the small values of normalized, using _)instead of xm.
Pe reqfftreA to give a broad mixing zone, the mean travel
distance of the tracer or e.ontan,_nantis not equal to Xm, aS 4. Set the resulting ratio equal to 2sinh(1.281552a)
assumed in the derivation of the solution to the one- and solve for c.
dimensional Cl) equation given by Exl. (33). The actual
dimensionless mean distance traveled can be obtained 5. For plotting, change the argument of the CD
from the integral solution to"_1,where rl is the argument of the LN

model.

x, The net result of this sequence of operations is to
match the mean distance traveled as well as. the

• . where Z -- x/xm, and the integrand is given by Eq. (33). normalized width of the two models. An example
application is shown in Fig. 6, with Pe = 0.2, "/- 3.065,

Note that _/is a function of Pe. Numerical evaluation and a = 0.689, using the volume-average normalized
of Eq. (44) results in the plot shown in Fig. 5, which concer:tration for the log-normal model. The agreement
shows that _ approaches unity for large values of Pe, and between the two curves is now quite good.
does not depart significantly from unity until are is less
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alterations in the geologic framework, such as faults or
1 _, I facies changes, are encountered first.

_ V. PECLET NUMBERS AND CURVEcD(Pe'7"11) CHARACTERISTICS
• -- 0,5 - _,

_v((_2,rl) '_ In attempting to force field data to fit the convection-

-- ', dispersion theory, many investigators have derived
• relationships between the Peclet number and various

._.. _ 1 characteristics of breakthrough curves and' concentration0
0 5 10 profiles, based on analytical or numerical properties of Eq.

(29), or of approximations to this equation. For example,
11 we previously used an approximation, Eq. (34), to derive

Figure6. Normalized concentration profiles from
the one-dimensional convection-dispersion Eq. (35) for the mixing zone width• From this equationone can derive
equation and the log-normal model, with
Pe = 0.2 and 6 = 0.689, respectively. The

distance for the COsolution is re-scaled by Pe /----[3"6"-24--773x"]2=, " (45).
the factor 'It=3.065. _. x.t - xs )

Although the two curves now match rather closely, There is another relationshipin the form of a graphof
note that, with a given small Peclet number, the 6 value Pe versus the normalized breakthrough duration, ¢OCD,
from the breakthroughcurve (1.9) is very different from given by Neretnieks, et al.15 As mentioned earlier, the
the value obtained by matching the flow profile, graph and a plot of Eq. (45) agree closely when the Peclet
Conversely, if we consider the log-normal curves to number is greater than about 10.
represent at least approximately the behavior of field-scale

transport processes, then we would calculate verydifferent In fact, most of the expressions for the Peclet number
values of the Peclet number for the same value of (_. give similar results, when applied to the log-normal
Hence, there is little predictive utility in the convection- distribution, for Pe > 10, and are not too dissimilar when
dispersion approach to analyzing field-scale transport, Pe is between 1 and 10, provided that one considers only
since the results have to be re-scaled for each time or the spatial domain (profiles) or the temporal domain
distance of interest. (breakthrough curves). As shown above, difficulties arise

when comparing both types of curves, in that different
AI[ of this tinkering is made necessary by attempting corresponding values of Pe and (_are obtained.

to replace a hetexogeneous system by an "equivalent"

homogeneous medium, characterized by an average A. Peclet Number and Moments
permeability, in which the apparent mixing scale can be

represented by an appropriate choice of the dispersivity. A number of relationships have been reported in the
The concept of an equivalent homogeneousmediumis tied literature between the Peclet numberand various moments

closely to the concept of a representative elemental of the breakthrough carve. One of the simplest was given
volume, which may not exist, or, if it does, almost by Neretnieks,l° who credited Levenspiel._ We define the
certainly is not the same for flow as for transport, moments of the breakthrough curve by:

Matheron and de MarsHy3 showed that an equivalent = f. :_--_'_d.c
homogeneous medium can exist only if the transport mp jo xp (46).

J---
systemis large enough to reach an asymptotic limit of
Fickian (i.e., dispersive) behavior. Physically, this requires
a mechanism for transverse adveetive mixing. In media Then, according to Levenspiel, the Peclet number canbe calculated from

' ° which are even partially stratified (or, equivalently, in

which either independent or at most weakly interacting 2m_ 2
"channels" exist), the time and distance scales required for Pe = _ ,=_ - (47),
this limit to be reached may be so large that gross ms-m_ 2 (CV)2
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where CV is the coefficient of variation, i.e., the ratio of

the standard deviation to the mean of the breakthrough _3e"'-2-4
curve. This result shows clearly that the Peclet number Pe =-- (55).
must decrease rapidly as the breakthrough curve becomes 43e °" -"2-1
more diffuse.

Equations (52) and (53) give similar results for small
Moreno and Tsang21 quoted the following values of _, in that Pe approaches 2/_2 as _--->0.Also, for

relationships attributed to Robinson:22 large values of or,Pe tends to zero for both expressions.
' The Peclet number calculated from Eq. (54) approaches

1 -2/a 2 as _---g),and + 1 as _...+o,,while the value calculatedBe= (48)
- 1 from Eq. (55) approaches +2/a 2 as c---_0and -1 as c--->**.

Hence, the latter two equations give physically
meaningless results for some values of _, and neither of

Pe = _/3rn2-2ma2 - 4ma (49) them seems to work for values of Pe much less than one.
_/3m2- 2ma2 - m_ Once again, this reflects the difficulty of fitting log-normal

behavior- and presumably real transport data in
heterogeneous systems- by using the CDE solution with

43m_2- 2m_2t- 4m__ small constant values of the Peclet number.

Pe=- _]3m_2,,,2m2_l._m_; (50)
VI. PULSE RELEASE

All of these relationships between Pe and the Of more interest than the solution for continuous
moments of the breakthrough curve are based on the release of a tracer or contaminant is the case of a finite
solution to the one-dimensional convection-dispersion

, equation, which is intimately related to the normal pulse, from which one can easily develop the breakthrough
Curve for an arbitrary but given time-dependent release

distribution. It is therefore not surprising that different function by convolution. Consider a release starting at
results will be obtained in applying them to other time 0, with concentration remaining constant until the
distributions, such as the log-normal, release stops at time At. We can immediately write, from

B. Moments of the Log-Normal Model Eq. (24),

The various moments required in Eqs. (47) through _ =o_.ln(x)+¢r2/2__o_ln(x-5)+a 2 12_ (56),
(50) are easily evaluated analytically for a log-normal [ cr J [ ¢r J
breakthroughcurve.The following equation is valid for all

real values of p: where 5 =At/O,is the dimensionless pulse duration.When

_)tmt', =e_,.,le_e,ta x is less than 8, only the fh-st term of Eq. (56) is used.(51). Figure 7 is a plot of the pulse breakthrough curves for a
range of values of ¢_,with _iheld constant at 0.001.

Then, upon using F_.q.(51) for the different moments
required and substituting the results into E,qs. (47) The effect of increasing c_is somewhat surprising. For
through (50), we obtain the following expressions for Pe small values of _, the breakthrough peak is nearly
as a function of o': symmetric and occurs near x = 1. The shape is essentially

Gaussian, so there would be little if any observable

Pe =--2 (52) difference between a log-normal breakthrough curve and a
e*"-1 convection-dispersion breakthrough curve for a tracer

pulse test.
1

.. Pe = e,, a _--------_ (53) As a increases, the breakthrough curve broadens and
the peak concentration at first decreases, which could be
interpreted as greater dilution. However, the location of

_/3e*'-2-4 (54) the maximum shifts toward earlier time, so that more
Pe=c3e,._2_l-r-"r"-- contaminant is produced early. Also, along right tail

develops, as shown for ¢r= 0.5 in Fig. 7. The shape of the
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central part of the curve is still nearly Gaussian, and a fit

with a convection-dispersion solution would be a ( 3 )_ 8 ]reasonable approximation, especially if matrix diffusion is I; ... = exp - O2 1+ 2e__O.l_+ 8" (57).
included.15

The size of the peak is then obtained by substituting
the RHS of Eq. (57) into Eq. (56) and again expanding in

0.01 i I I
a second-order Taylor's series in 8. The result is

• 0.008- _ = (58).
Eqs. (57) and (58) were used to calculate

0.006 - corresponding values of the peak height and the times at
which they occur for plotting the locus of the peak in Fig.
7. The peak height tends toward infinity as 1/_ for small
and exponentially as cr2 for large _.

0.004

It is of particular interest that the peak height
predicted by Eq. (58) is proportional to the pulse duration.

0.002 By differentiating this expression with respect to c,
equating the result to zero, and solving for _, we can find
the value for which the peak height is a minimum:

0
o 0.5 1 1.5 2 cr._ =--=4_" 0.707 (59).2

Figure 7. Pulse breakthrough curves for 8 = 0.001 The minimum peak height is then
and _ values of 0.05, 0.10, 0.50, 1.00, 1.50,

and 2.00, reading from the sharp peak on 8(1)the right to the sharp peak on the left, (_...).,. =-_--nexp _- =0.930./5 (60),
respectively. The "U" shaped curve is the

locus of the maxima in the breakthrough and it occurs at dimensionless time
curves.

However) with further increases in a, the shift of the x,= expl-3/= 0.472 (61).
peak toward earlier time continues, and its magnitude

% .-v/

begins to increase rapidly. Now the departure from a Equation (60) shows that the peak breakthrough
Gaussian shape is pronounced, and no 'amount of
tinkering with the convection-dispersion approach will concentration can never be less than about onetimes thedimensionless pulse duration. In other words, there is a
provide an adequate representation of the breakthrough limit to the reduction of effluent contaminant
curve. This is exactly the sort of behavior intuitively
associated with the existence of "fast pathways" in a flow concentration by dilution.
and transport system, in which only limited dilution It should be noted that this analysis is valid only for
occurs, values of a such that the peak occurs later than x = 8.

The behavior of the peak concentration as a function Otherwise, the maximum is determined by using only the
of o can be derived analytieaUy from Eq. (56) for small In'st term of Eq. (56), evaluated at x = 8. By setting tl'e

• values of 8. First, this equation is differentiated with LHS of Eq. (57) equal to 8 and solving for o, we find that
respect to x. The result is then expanded as a Taylor's

J 21n_8 _ - (62),
series through second order in 8, and equated to zero to c... = _-_ _-_-)' find the location of the maximum, Xmax. The result, after
considerable manipulation, can be reduced to
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which gives a value of 2.25 for the maximum value of o t 'l I f/'-- I
when/5 = 0.001. In the limit of an infinitesimal pulse, the [/_[

analysis remains valid as c increases without limit. __j. ........ •......-_

o.8 - "" . .........3- "" _

As a result of the shift of the peak toward early time 0.6 / //" '/_ -
and its increasing magnitude with larger o, more of the / / /.//__/_
total contaminant mass released in the pulse is produced -] / / / ]
early. The normalized cumulative contaminant mass 0.4 / / /. / I1 -

production, E(x,/5,o), is easily obtained by integrating Eq. !//'/ /[
(56) over the dimensionless time:

o//_../I J.:l
0 0.5 I 1.5 2

E'I(°Iln'r . ln'_---_--
/5 o cr Figure 8. Normalized cumulative contaminant

production versus dimensionless time for
(63) the same range of o values as in Fig. 7. For

cr VII.DISCUSSION

In deriving the form of the log-normal model
In Eq. (63), the terms including (x-/5)are set identically to presented here, we started with the idea of completely
zero for all "_</5. Figure 8 shows a plot of the normalized independent strata in a linear flow system, assumed that
cumulative contaminant produced as a function of the permeabilities of these layers formed a log-normal
dimensionless time, for 8 = 0.001. As x tends toward distribution, then passed to the limit of a continuum to
infinity, the normalized production approaches unity in all obtain the closed forms in terms of the normal probability
cases, function. In principle, the c parameter is to be obtained

from permeability measurements on cores.
Figure 8 shows that the fraction of the contaminant

pulse produced at early time increases very rapidly as o A. Waterflooding Applications
increases, aga[ri coinciding with intuitive notions of
transportalong fast paths. From Eq. (63), it can be shown In the author's experience, this determination of o
that, in the limit 8 = 0, the cumulative fraction of injected from core data works quite well when there are many
contaminantmassproducedisgivenby: permeability measurements, the system is moderately

heterogeneous, and there is essentially no fracture

(' } permeability'6 which °f course is n°t sampled °n aLim_x,8,o)} =0 lnx +cr2/2 (64). meaningful scale by coring. However, it was also found
that adjusting o, in the case of waterflooding oil

Eq. (64) shows that a plot of the cumulative fraction of reservoirs, for pattern effects (i.e., non-linear and variable-
injected mass produced, on a normal probability scale, vs. length flow paths), mobility ratios, variable porosity and
time, on a logarithmic scale, will produce a straight line, oil saturation, etc., improves the match of predicted

• . when the pulse width is very small compared to the mean waterflood response to actual results, compared to simply
breakthrough time. It is also obvious that the using the value of a from core permeability
dimensionless time required to produce 50% of the measurements. These adjustments were derived from

various literature sources, by fitting the-log-normal model
injected mass is given by: to breakthrough curves.

x o._=exp(-'a2 / 2) (65)
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If the flow response -- either from field projects or the groundwater flow distribution measured by others in
from detailed, highly resolved simulations- is used to the Stripa experiment.
determine o, the match between observed and calculated
response is, of course, improved. What is interesting is By calculating the moments of individual
that the log-normal functional form is closely followed by breakthrough curves, Butters et al.12 computed averages

• real displacement experiments and detailed simulations, and variances for each individual square in their pattern,
and that often only minor adjustments in parameter values and reported the averages of these values as "local scale"
are required to match field data or simulator output with averages. Assuming log-normality, the average value of o
simple analytic expressions, calculated from these data is about 0.38. In addition, they

averaged the concentrations at each depth at each time to
For example, this approach completely ignores produce a field average breakthrough curve at each depth.

capillary imbibition in waterflooding, which can Again assuming log-normality, the reported means and
contribute significantly to the overall recovery efficiency, variances were used to calculate ¢r for each depth; the
The displacement front in the more permeable strata will average of these values is about 0.49.
tend to move ahead of the front in less permeable
intervals. This will create regions of relatively high water Finally, they also reported results I1 of measuring the
saturation adjacent to regions of relatively high oil saturated hydraulic conductivities of 56 randomly selected
saturation. Water will then imbibe into the low- surface samples of soil in the plot. The CV of these
permeability region, displacing oil into the adjacefit high- measurements was reported to be 0.44, which corresponds
permeability interval where it can be swept to the to a value of o" equal to 0.42. The agreement with
producing well. In an unpublished study, it was found, by transport-derived values may be fortuitous, but it fits with
simulating displacement in a symmetry element from a the author's success in using core analysis data to obtain a
five-spot pattern containing 10 log-normally distributed close estimate of o for the Benton waterflood.
layers, that including the effects of capillarity reduced the
effective value of c by a few percent from the value used C. Strongly Heterogeneous Systems
to generate the layer permeabilities.

The behavior of the breakthrough curve for pulse
This experience and others over the past twenty or so injection shown inFig. 7 is remarkably similar to behavior

years have led the author to suspect that displacement reported by Moreno and Tsang2I in their study of strongly
processes in heterogeneous materials are fundamentally heterogeneous systems. They simulated steady-state flow
log-normal, or very nearly so. The speculation is that the and transport ('by particle tracking) in a number of
functional forms, given by Eqs. (23), (24), (27), and (28), realizations of a 20x20x20 cube (some runs were made for
are capable of realistically modeling breakthrough and a 40x40x40 gridbloek model), with permeability values
concentration profile curves even when the underlying assigned _,ording to a log-normal distribution and an
distribution is not particularly close to log-normal, the exponential correlation function. The correlation length
system is not really stratified, and the elements strongly was generally 0.1L, where L is the side of the cube, but
interact with each other, some runs were made with 0.05/.,and 0.20L. The mean of

the distribution was adjusted to maintain constant total
B. Transport in the Soil Vadose Zone flow through the cube, and calculations were made for c

equal to 0.10, 0.20, 0.50, 2.00, 4.00, and 6.00.
This notion is reinforced by the experiment of Butters

an co-workers.11,12Even though the flow direction was The breakthrough curves, as o varies, show exactly
essentially perpendicular to the stratification of the soil, the same qualitative behavior depicted in Fig. 7, with a
the movement of the tracer pulse was much better sharp, symmetric peak at x = 1 for o = 0.10. The peak is
represented by a log-normal model than by the solution to progressively broader, but remains relatively symmetrical
the CDE. They found that fitting the CDE solution at a and located near 'c= 1, for cr = 0.20 and 0.50. For o =
given depth did not result in a good prediction even for the 2.00, the breakthrough curve becomes very diffuse, with a

•. next depth, only 30 cm below. For most of the depths broad, low peak of indeterminate location. Its location is
sampled, the value of o derived from the CV was between definitely at a value of x much less than 1, probably
0.4 and 0.5, which is smaller than the watetflood example between 0.2 and 0.6. Finally, for c = _00, a high, sharp
(about 0.7) reported by Chesnut9 and very much smaller peak develops near 't = 0.1. It becomes even sharper and
than the value of about 1.7 obtained by fitting the data s for moves further to the left when o = 6.00. This development

of a short travel time for the peak concentration to reach
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the outflow boundary was termed the "fast channeling different estimates of Pe, and, consequently, the
effect." In both of the latter two cases, the breakthrough corresponding estimates of _t. However, as the authors
curve also develops a long right tail. stated, dispersion cannot be described by the advection-

dispersion equation for strongly channeled flow, and this
Moreno and Tsang also showed traces of the flow is reflected in the variation of Pe calculated from different

' paths through the cube from the inlet face to the outflow features of breakthrough curves.
face on the opposite side, for channels that provided most
of the flow. For cr=1.00, there are many channels, fairly Table I. Values of the effective transport heterogeneity

' uniformly distributed across the inflow face and running parameter, ert, estimated from Eq. (53) and Peclet
reasonably straight to the outflow face. They do not appear numbers repo 'ted b.,vMoreno and Tsang, 21
to interact significantly, although interaction is not o-l_ Pe °'t 13/O'lnk
excluded by the code used or by the properties inserted 0'10 2076 0.031 0.310
into the model. 0.20 522 0.062 0.309

The behavior is very different for _ > 4.00. Based on 0.50 84 0.154 0.308
the one realization shown in their paper, and the authors' 1.00 21 0.305 0.305
description of others, the channels coalesce into a few (two 2.00 5.8 0.564 0.282
or three) coherent bundles, each spanning a few grid 4.00 1.9 0.920 0.230
blocks in the direction transverse to the principal flow 6.00 0.9 1.222 0.204
direction. They are more convoluted in the longitudinal
direction than the channels for smaller _, but still As shown in Table I, the ratio ot/otnk is almost

reasonably straight. This flow geometry is consistent with constant for _ln_:< 2.00, and then begins to decrease. It is
our intuitive ideas of flow paths within fractured rock, and not clear whether this decrease is real or a numerical
yet it develops in a stochastic porous medium model, artifact arising from the small number of flow channels
without any explicitrepresentation of fractures, that develop in the simulations with the two higher values

of ffln_-It seems likely that the sample size may be too

As shown in Fig. 7, the simple analytic expressions small to accurately define the behavior when the
obtained from the log-normal model reproduce the channeling isextreme.
breakthrough behavior observed by Moreno and Tsang.
The only difference is that their breakthrough curves are In Fig. 7, the ratio of peak height at c = 0.05 to the
much less sensitive to _ than the analytical exp_'essions minimum peak height is roughly 8, as is the ratio for6 =
are. This reduced sensitivity is due to the fact that, as 6 2.00. It is perhaps significant that about the same ratios
increases, flow is confined to a smaller and smaller are shown by Moreno and Tsang with o'lnk = 0.10 and
number of channels. By constructing histograms of the 6.00, respectively. If we assumethat a t can be estimated as
permeability distribution along the channels responsible 0.31¢r_., we should compare the numerical model
for 90% of the flow, Moreno and Tsang found that the breakthrough curves to the analytical curves with c = 0.03
peak of the flow distribution is shifted to a higher and ¢_ = 1.86, instead of 0.10 and 6.00, which gives
permeability, and its logarithmic variance reduced, essentially quantitativeagreement.
relative to the input or "global" distribution used to
construct the realization. If we denote the natural log Some additional insight into the relationship between
standard deviation of the input distribution by o'hak, then the permeability distribution and the flow distribution can

the "effective" a for transport, _t, is less than alnk. be gained from the work of Tompson and Gelhar.23These
numerical experiments were performed on a 51x51x51-

It is of considerable interest to explore the node cube, with a log-normal permeability distribution
relationship between these parameters. Moreno and Tsang and an exponential variogram with a correlation length
reported values for the Peclet number calculated from the equal to 0.04 times the side of the cube. They reported the
moments of the breakthrough curves, using F..qs. (48) average longitudinal velocity and its standard deviation

• through (50). We then used the relationships between o" for steady-state flow experiments in which a_ = 1.0, 1.7,
and Pe given by Eqs. (53) through (55) to estimate values and 2.3. From these data and the relationship between c

for _t. Table I summarizes the results obtained from and the coefficient of variation for a log-normal
Eq. (53). Essentially the same values were obtained from distribution, we calculated values of af, the log-normal
the other two equations for crhak _<2.00. For the remaining standard deviation for flow, of 0.577, 0.954, and 1.226,
cases, there were significant differences among the
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respectively. The COtTespondingratios, ol/o'tnk, are 0.58, adjusted. In this case, however, the adjustment can be
0.56, and 0.53. made rigorously within the assumptions of Eq. (66).

Once again, the ratio of an effective c to the c value E. Fractal Processes
used to generate the permeability distribution appears to

• be nearly constant, although its value in Tompson and Hewer has, for about 10 years, been systematically
Gelhar's study is almost twice that of Moreno and Tsang. investigating the use of fractal processes (in particular,
There is no obvious reason why the results should be so fractional Brownian motion) to represent heterogeneity in

• different, although it should be noted that values derived petroleum reservoir simulations. 5 Permeability fields
• from Tompson and Gelhar are based on velocity moments, generated in this fashion have a very different correlation

while the others are based on moments of a tracer structure than is given by the usual assumption of an
breakthrough curve generated by particle tracking. Also, exponential variogram. In the latter case, correlations are
the Tompson and Gelhar simulations are more highly essentially negligible after some multiple of the length
resolved than most of the other calculations. It is possible scale, and displacements asymptotically become Fickian
that Moreno and Tsang's results were subject to greater (although, as Matheron noted, the length and time scale
numerical dispersion, which would tend to reduce the may be such as to preclude this limit from ever being
effective stratification, reached in field-scale displacements).

Tompson and Gelhar also reported tracer One characteristic of fractal behavior is that
breakthrough curves, although not in sufficient detail to correlations appear at all scales of measurement. This
allow calculation of o or Pe. However, their breakthrough implies that displacements may not become Fickian at any
curves do show a tendency for the peaks to sharpen and scale. Arya2 gave the following expression for what he
move to earlier time as Crhat_increases, termed the megascopic dispersion coefficient:

ldo 2
Finally, we should mention that the analytical model ctue = _.......z_ (67),

is expected to show the greatest sensitivity to (r, since it 2 d2
assumes complete stratification. We would expect the
effective(r for transport to approach (_hakas the correlation along with the following equation for the variance of
length approaches the size of the model domain, fractional Brownian motion:

2 C2(*-2o,) (68).(_ x -'-

This entire subject warrants additional study, but In F_,q_(68), C is a constant and D! is the fractal
there does seem to be some hope of developing, at least dimension. From these equations, we obtain
empirically, relatively simple relationships beaween
effective values of o for flow and transport and o for the °tu_ = CH2an-t (69),

permeability distribution, where H = 2 - Dfis the Hurst coefficient

D. Variable ¢ and R When H = 1/2, the megascopic dispersivity is constant,
corresponding to classical Brownian motion, and the

In deriving the equations for the log-normal model, Peclet number is proportional to the mean distance
we set several variables equal to their average values in traveled. For H---)I, the dispersivity becomes proportional
order to perform the integrations. It can be shown that, if to the mean distance traveled, and the Peclet number
the following relationships are assumed becomes constant. In this sense, the log-normal model

represents a limiting case of fractional Brownian motion

= Ak" (66), for generating the spatial distribution of Ink.

R = Bk" Hewett5 reported a value of H = 0.87 based on well-log

where A, B, n, and m are constants, then the substitution analysis for a more than 300 m thick section of a
"" can be justified, but the integrations have to be performed Pleistocene submarine fan. For this value of H, the

over a transformed log-normal variable, with parameters dispersivity should be proportional to the 0.74 power of
simply related to the constants in Eq. (66) and the distance, according to Fxl.(69). _

' parameters of the original log-normal distribution of
permeability. Once again, log-normality of the transport However, when he subsequently4 simulated miscible
process is preserved, but the parameters have to be displacement through a two-dimensional permeability
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field generated by fractional Brownian motion with H = which the underlying physical model has identifiable
0.87 and plotted the mixing Zone width and effective channels. However, their more recent investigations,
dispersion coefficients versus mean distance traveled on a including several in collaboration with Tsang and others
log-log plot, he found that these quantities varied as the at Lawrence Berkeley Laboratory on strongly
0.991 and 0.982 powers of mean distance traveled, heterogeneous media, indicate that we are converging on

' respectively, as noted previously in Section III. Hence, it the same idea of using systems with a log-normal
appears that displacements behave more like tile log- distribution to model everything from relatively
normal model than is predicted by Eq. (67) in that the homogeneous porous media to fractured rock.

• distance exponent of effective dispersivities calculated
. from the simulations is much closer to unity than to 0.74. It is this author's .beliefthat this approach, as well as

being simple and requiring little computing time, will
F. Distance Scaling provide more realistic results for modeling long-distance

radionuclide transport than the current stochastic
As shown in Fig. 2, the general linear trend of modeling approach of calculating an average flow field

dispersivity with the spatial scale of transport problems is and then modeling transport with the average flow field
well-represented by the purely advective log-normal and some sort of effective dispersivity. It offers, perhaps,
model. However, in subsequent discussion, we showed that the best hope of connecting detailed mechanistic process
there is no unique relationship between dispersivity and models with high level performance assessment models, in
the o parameter, because the shapes of the breakthrough such a way that important parameters of the high-level
and profile curves of the log-normal model are so different models can be measured or otherwise extracted from site
from those of the CD model, characterization data.

Iu fact, it is this authofs belief that the concept of Detailed simulations, used as numerical experiments
dispersivity has outlived its usefulness, and that field data to investigate the relationship of flow and transport
might well make more sense ff they were used to heterogeneity to the heterogeneity and spatial correlation
determine an effective a rather than to calculate structure of the rock properties, will continue to be very
dispersivity. The former parameter seems more likely to be useful research tools, but would not directly be used in
a property of the medium, or at least of the medium and assessing the performance of Yucca Mountain as a
the fluids it contains, than is the dispersivity, potential site for a nuclear waste repository.

VIIL SUMMARY AND CONCLUSION Since large values of a appear capable of representing
the phenomena associated with channeling, fast flow

In this paper, the use of the conceptual model of flow. paths, etc., there is a good chance that we will not have to
through independent, log-normally distributed linear resort to models with explicit representations of fracttn_
elements is only a device for the spatial allocation of flow. in order to realistically assess the long-distance transport
The permeability serves mostly as a dummy random of radionuclides away from a repository.
variable with an assumed distribution, allowing sums over
the flow elements to be replaced by integrals. From this Finally, it seems appropriate to close with a
viewpoint, the parameter o, which is introduced as the modification of the title of Matheron and de Marsily's
stan_rd deviation of the natural logarithm of permeability 1980 paper (Is Transport in Porous Media Always

(i.e., fin,), becomes a parameter of the total flow and Diffusive?): Is it ever?
transport problem, including the nature of displacing and
displaced fluids, injection/production well patterns, and so ACKNOWLEDGMENTS
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