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DISPERSIVITY IN HETEROGENEOUS PERMEABLE MEDIA

Dwayne A. Chesnut
Lawrence Livermore National Laboratory
P. Box 808, L.-202
Livermore, CA 94550
(510)423-5053

ABSTRACT

When one fluid displaces another through a one-
dimensional porous medium, the composition changes
from pure displacing fluid at the inlet to pure displaced
fluid some distance downstream. The distance over which
an arbitrary percentage (typically 80%) of this change
" occurs is defined as the mixing zone length, which
increases with increasing average distance traveled by the
displacement front. Alternatively, for continuous injection,
the mixing zone size can be determined from a
breakthrough curve as tie time required for the effluent
displacing fluid concentration to change from, say, 10% to
90%. In classical dispersion theory, the mixing zone
grows in proportion to the square root of the mean
distance traveled, or, equivalently, to the square root of the
mean breakthrough time.

In a multi-dimensional heterogencous medium,
especially at field scales, the size of the mixing zone
grows almost linearly with mean distance or travel time. If
an observed breakthrough curve is forced to fit the

classical theory, the resulting effective dispersivity, instead -

of being constant, also increases almost linearly with the
spatial or temporal scale of the problem. This occurs
because the heterogeneity in flow properties creates a
corresponding velocity distribution along the different
flow pathways from the irlet to the outlet of the system.
Mixing occurs mostly at the outlet, or wherever the fluid is
sampled, rather than within the medium, '

In this paper, we consider the effects of this behavior
on radionuclide or other contaminant migration. In a
limiting case, the breakthrough curve is given by a log-
normal cumulative probability function of time, with
parameters fj, (a characteristic breakthrough time) and o
(the standard deviation in the natural logarithm of the

breakthrough time). The apparent mixing zone width
increases in exact proportion to the distance traveled, with

the proportionality “constant” given by a function of ©.

For small o, the breakthrough curve resulting from
releasing a narrow pulse at time zero has a sharp peak

near { = {;,. As o increases (corresponding to increasing
heterogeneity), the location of the peak shifts
monotonically to smaller values of f, and the peak
concentration at first decreases, then increases rapidly as
the location of the peak moves toward zero time,
indicating that there may be a limit to the dilution effect
expected with increasing “dispersion.” Concurrently, an
increasing fraction of the total contaminant mass is
produced at early time. Both the increased peak

- concentrations and the increased early total mass

production are consistent with the intuitive concept of
“fast paths™ for radionuclide transport.

I. INTRODUCTION

At the laboratory scale, the shape of the composition
profile between pure displaced fluid and pure displacing
fluid is closely approximated by an appropriate solution to
a form of the diffusion equation (the convection-dispersion
cquation, or CDE), with a longitudinal dispersion
coefficient in place of the diffusion constant.

Experimental data for laboratory-scale displacements
are well represented by assuming that the dispersion
coefficient is equal to the product of the fluid velocity and
a constant, characteristic of the porous medium, known as
the dispersivity.! The width of the mixing zone grows in
proportion to the square root of the average distance

traveled by the displacement front.2

At field scales, an increasing number of examples
indicate that the width of the mixing zone grows in
proportion to the p‘h power of the distance traveled, where
p is greater than 1/2, and may approach unity. If field
breakthrough curves are forced to fit the convection-
dispersion solution, it is found that the effective
dispersivity, rather than approaching a constant value

Chesnut 1/20



characteristic of the medium, increascs almost linearly
with the scale of the problem.3:4

Apparently, the mixing zone width is controlled by
the variation in fluid velocity from point to point within
the medium, which in turn is governed by the
heterogeneity in permeability and porosity, and its spatial
correlation structure. Hewett® calls this behavior velocity
dispersion, in contrast to the classical process of gradient
dispersion controlled by concentration gradients. In the
latter case, the fluids actually mix within the medium,
whereas in the former, mixing occurs primarily as a result
of sampling at an outflow boundary, such as a well.

In this paper, we consider the effects of velocity
dispersion on radionuclide or other contaminant
migration. In a limiting case, velocity dispersion can be
represented by a log-normal distribution of fluid flux
crossing a surface perpendicular to the principal direction
of flow. Under this approximation, both the normalized
concentration profile and the breakthrough curve of a
contaminant (introduced as a unit step function at time 0
at the inflow boundary of the system) will be given by log-
normal cumulative probability -functions. Each function
requires only two parameters: the average breakthrough
time, , (for concentration vs. time) or (x) (for
concentration vs. distance), and the standard deviation in

the natural logarithm of the breakthrough time, ¢. The
apparent mixing zone width increases in exact proportion
to the distance traveled, with the proportionality

“constant” given by a function of G.
. MATHEMATICAL DEVELOPMENT

Chesnut, Cox, and Lasaki® presented a model for

waterflooding petroleum reservoirs in porous sedimentary -

rock, based on earlier unpublished work by Chesnut,” in
which the flow paths from injection to production wells
are treated as a collection of independent linear elements.
Effects of heterogeneity were incorporated by assigning a
log-normal permeability distribution to these elements and
integrating the displacement behavior over this
distribution. Recently, Chesnut applied similar concepts to
define more precisely the concept of groundwater travel
time arising in US regulations on nuclear waste repository
sites,® and to develop a model for the rate of extraction of
volatile organic compounds from the vadose zone.?

Neretnieks!? and his colleagues have for a number of
years been developing similar conceptual and
mathematical models of “stratified” or “channel” flow and
transport in fractured crystalline rock, principally in
connection with the safety assessment of the Swedish

nuclear waste repository concept. The thought experiment
underlying this approach is described by Neretnieks:
“...fissures act as independent channels with no mixing
occurring between them. At the inlet end of the channels a
tracer can be introduced. This is done simultaneously in
all fissures. At some distance downstream the fluid from
all channels is collected and mixed. The ([resulting]
concentration is measured over time ...” A plot of this
concentration versus time from the start of tracer injection
represents the breakthrough curve.

Butters and co-workers!!12 conducted an elaborate
experiment in which a bromide ion tracer pulse was
applied to a uniformly irrigated 80 m by 80 m square plot
of “uniform” soil. After application of the pulse, the
infiltrating water was sampled periodically, while
continuing to irrigate regularly, at depths of 30, 60, 90,
120, 180, 300, and 450 cm, using 16 clusters of sampling
tubes centered on a 4x4 array of 20 m by 20 m squares. In
their analyses, they applied both the classical convection-
dispersion model and a “log-normal transfer function”
model previously proposed by Jury and Sposito.!3

All of these attempts to represent velocity dispersion
rest upon the concept of piston-like displacement in a
collection of independent linear systems as a starting point

-for analyzing more complex behavior. Consequently, in

the following section we review some basic ideas on ideal
linear displacement.

A. Displacement in a Homogeneous System

Consider first an ideal, one-dimensional, “piston-like”
‘miscible displacement of one fluid by another in a
completely homogeneous system, representing one of the
independent elements, or flow paths, connecting the inlet
with the outlet of the heterogeneous system. The two
fluids could be clean water displaced by contaminated
water, water free of tracer displaced by traced water, or
any pair of distinguishable fluids. We assume, for the i*#
element, that the water flow rate is

q,= k‘-SA‘('},—LL-—) A 6

In Eq. (1), k; and 84; are the permeability and cross-
sectional area of element i, respectively, taken to be
constant along the flow path; AP is the pressure drop
across the system, which has length L, and u is the
viscosity. We also define the Darcy flux, u;, and the water
velocity, v;, by
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The velocity of a non-sorbing, non-reactive species is
given by Eq. (3), and hence the location of the water
displacement front at a time ¢ after the start of injection is
just xp; = vg. For a reversibly sorbed species (but
otherwise non-reactive species) with volumetric sorption

.. coefficient X, the frontal velocity is given by

v, = H @)

leee(5)

Also, the sorbing species displacement front at time ¢
is at a position xp; given by

ut
Xpa = Val === G,

o, R;

where the usual definition of the retardation coefficient R;
has been used in Eq. (5) to replace the term involving the
volumetric sorption coefficient in the denominator of

Eq. 4).
B. Displacement in Heterogeneous Systems

We consider the limit of an infinite number of
infinitesimal elements, and set .

8A, = Af(k)dk, ©)
where A is the total area perpendicular to the direction of
flow and f(k) is the probability density function for the
permeability.

Sums over the index i become integrals over the

permeability distribution. In particular, the total flow
through the system is given by

- AAP AAP
= | ——kf(k)dk = (k)—— s
fo‘;u, Uyt = (k)= ©

where (k) is the average of k over its distribution f(k). Note
that Eq. (7) can be solved for the factor (AP)/(uL), and the
result rearranged to obtain

R x

Equation (8) merely states that the ratio of Darcy flux in
an element to the average Darcy flux is the ratio of the
permeability of the element to the average permeability.

However, the average water: velocity does not
necessarily reduce so nicely. By using Eq. (8) in Eq. (3)
and then integrating over the permeability distribution, it
can be shown that

()= [(‘O)J £ fna= g> ©).

Note that in general ¢ will be a function of &, and that the
average of k/¢ will not be exactly equal to the average of &
divided by the average of ¢. Therefore, the average water
particle velocity will not be exactly equal to the average
Darcy velocity divided by the average porosity. This point
will be re-visited later,

A similar, and perhaps worse, difficulty arises in
calculating the average frontal displacement velocity (or
position) for a sorbing species. By using similar
manipulations on Eq. (4), one can show

k
( )= (k)< [1+K(1—¢)/¢]>
<u>< >
(k)
~ Note that the ratio k/(¢R) may be a complex function
of k, as well as of many other variables, such as water

chemistry and perhaps, as suggested by Neretieks e¢ al.,
even the residence time. Furthermore, in general

e B o

so that the average frontal velocity of-a sorbing species
cannot be represented exactly as the average water velocity
divided by an average retardation coefficient.

(10)
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Now consider a distance x at time ¢ after the start of
continuous injection of water at concentration ¢, of some
detectable species, initially at zero concentration within
the medium. For a sorbing species, Eq. (5), with the aid of
Eq. (8), can be written for the position of the displacement
front in an infinitesimal element with permeability k:

)

At a fixed x and ¢, all elements for which x,; 2 x
contain injected water at concentration ¢, while all others
contain water at zero concentration. Equivalently, for all &
such that

Lty

the concentration is equal to ¢, By introducing the unit
step function

H(z)=0, <0
(2) z (14)
H(z) =1, 220
we can write the concentration as a function of time in
terms of the following integrals:

¢, (x.f)= j H{ k)¢R }f(k)dk : 15)

e (x0=[ ¢y (k)x-x{ 5 ]f(k)dk (16).

These correspond to two different ways of calculating
the average concentration as a function of distance and
time. The first integral, Eq. (15), represents a volumetric
average of the concentration in situ, which we could in
principal determine by suddenly isolating a slice
perpendicular to the flow direction and measuring its
average concentration. In practice, this might be observed
by an electrical conductivity log when saline water is
injected into a fresh water aquifer, or vice versa. In the
experiment of Butters et al.;12 this average was referred to
as the resident concentration, and was measured at one
value of time by coring the irrigation plot after the
experiment was concluded, and then analyzing the core
material for bromide content as a function of depth.

The second integral is generally more useful, since it
is an average weighted by the flow rates of the channels,
and gives the concentration which would be measured in

Neretnieks' gedanken summarized above. Butters et al.12
called this the flux concentration. In practice, it is the
function which should be compared to observed
breakthrough curves for experiments in which 100% of
the injected tracer would eventually be produced at the
outflow if the experiment were continued indefinitely.
Note that the distinction between volumetric weighting
and flow-rate weighting to calculate average concentration
arises only in situations in which there is velocity
dispersion. In classical dispersion theory, the fluid velocity
is uniform.

If the second term in the step function argument were
independent of k, then the lower limit of the integrals
could be set to a function of time and distance only,
instead of zero, and the integrals could then be evaluated
with an assumed probability distribution function for £.
Unfortunately, as discussed above, this is generally not
true. Even for the case of a non-sorbing species, when R is
identically unity, the porosity would at least be correlated
with k, if not functionally dependent. For now, we shall
ignore this complication, and replace the product of
porosity and retardation coefficient by its average in order
to proceed with the analysis. Some consideration has been
given to the correlation between sorption coefficients and
permeability by Tompson and Dougherty.14

C. Log-Normal Distribution

In addition to neglecting the variation of ¢R with k,
we now specialize to the case of a log-normal distribution
for k, with the density function completely specified by
assigning values to its parameters, {Ink) and G:

1 ~(ink—(Ink))’
() = —=ex [ = ] an.

The parameters {Ink) and ¢ are, respectively, the mean
and standard deviation of the natural logarithm of k.

The integrals given above can now be evaluated,
setting £ = c/cy and using the lower limit

‘. =1_¢{1n(k,. /<’2)+62/2} . 1)
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(20),

E, =1_¢{ln(kL /(k)-c? /2}

(¢

where ®(z) is the normal probability integral of z.

Now consider Eq. (20) for some fixed value of x,
which may be taken as the outflow of the system, a
compliance boundary, or any other surface of interest for
calculating the mass transport of contaminant as a
function of time. The argument of the natural logarithm in
Eq. (20) can be written as

x(0R) / {u)

ke () == (1).

The numerator of the expression on the right hand
side of Eq. (21) has the dimension of time, and will be a
constant for a fixed x in a given flow system. We then
define the characteristic breakthrough time, 1,

t, = x(0R) / (u) (22).

For the special case of constant porosity and

retardation factor, ¢, is equal to x divided by the average
frontal velocity, and represents a kind of average
breakthrough time. In a completely homogeneous system,
the normalized breakthrough concentration would be zero
for ¢ < t,, and unity for greater values of time.

D. Breakthrough Curves for Continuous Injection

Upon subétitution of Egs. (22) and (21) into Eq. (20),
the following result is obtained:

L 1n(t,/t)—o’/2
§,(0=1 ¢{——————c }

=¢{ln(l/1,)+c’/2}

(9

(23).

Finally, note that #/1, can be replaced by a dimensionless
time, 7, to obtain:
(24).

_[in(r)+c? /2
¢ 0= of 2 e /2]

Figure 1 contains a plot of normalized concentration
versus dimensionless time for values of ¢ ranging from
0.0 to 2.5. For o = 0, the breakthrough curve is a step

function at T = 1. As ¢ increases, the concentration at
early time, for cxample, at a compliance boundary,
increases very rapidly, reaching almost 10% of the
injected concentration when the time is only 1/1000 of the
“mean” breakthrough time, for ¢ = 2.5.

HEESSSTIRsMM»M»NMISS 1.00
+ 00 0.80
* 05
X 2o L 0.60
wr X 2ot =0
‘AA 00 " o1 0.40
o
‘G‘ Oo .. & 20
A 0.20
. X a5
W .l'. *
JOOANanenetlygs a0 Tt ‘ + 0.00
0001 001 01 1 10 100 1000

Figure 1. Normalized breakthrough curves - for
continuous injection. The legend gives

values of G.

By similar manipulations, the volumetric average
dimensionless concentration can be obtained as a function
of dimensionless time:

§V(1>=¢>{-l-'i")—”9—2—’——2-} - o)

G

Equation (25) differs from the flow-rate weighted
average of Eq. (24) in the sign of 6%/2. A larger value of
dimensionless time is required to reach a particular value
of dimensionless concentration for the volume average
(i.e., resident concentration) than for the flow average
(i.e., flux concentration). In fact, on a logarithmic plot, the
curve defined by Eq. (25) can be obtained by shifting the
values from Eq. (24) to the right by o2 Such a
concentration profile might be observed experimentally by
repeated logging or by tomographic imaging

E. Concentration vs. Distance Profiles

Instead of considering a fixed distance x and
calculating the concentration as a function of time, we
now consider a fixed time and obtain concentration
profiles as functions of distance instead of breakthrough
curves as functions of time. We then rearrange Eq. (21) to
define the average value of x instead of the average
breakthrough time:
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Upon inserting this expression into Eq. (19) and
rearranging the result, we obtain for the volume-weighted
average concentration profile:

27,

. =1_¢{1n(n)+c’/2}

G

where the dimensionless distance 1) is just x/(x). Similarly,
the flow-weighted average concentration profile is

M} (28).

¢ -1-of10:

It is not clear that the function defined by Eq. (28) can
be measured experimentally, although it can be as easily
computed in simulation studies as the volume-weighted
profile. It may possibly be approximated in the study of
Butters et al.!! by the profiles of concentration vs. depth
in each sample tube cluster at each of the different times
samples were taken, since sampling required drawing a
finite quantity of fluid from each sample tube. This would
tend to give a flux concentration rather than a resident
concentration.

III. DISPERSIVITY

We note that nowhere in the preceding analysis has
the concept of dispersivity been needed. In fact, it arises
from the assumption that local random mixing within a
porous medium behaves, statistically, the same as
molecular Brownian motion. The latter leads to-molecular
diffusion, in which the diffusive flux is proportional to the
concentration gradient of the diffusing species. If the pore-
scale mixing behavior in porous solids exhibits the same
statistical behavior, then it seems entirely reasonable to

assume that the same form of differential equation should -

apply to describe mixing in terms of a local concentration
gradient. One merely replaces the diffusion coefficient by
the dispersion coefficient, which in turn is replaced by the
product of the dispersivity, o, and the fluid velocity. The
resulting differential equation is generally called the
convection-dispersion equation (CDE). In order to
compare the behavior of the purely advective, perfectly
stratified model based on the log-normal distribution with
the classical approach, we now review some solutions of
the CDE.

A. Solutions of the
Equation

Convection-Dispersion

Arya et al.? presented the following solution to the
one-dimensional CDE for a system of fixed length L:

(29)

1 X, +t
+—exp(x, Pe) erfc| —2—L2—
2 XPxore) [2 tD/Pe]

The dimensionless quantities in Eq. (29) are defined by

X, = % t, = — Pe E?E' 30),

where the dispersivity, o, is assumed to be a constant
characteristic of the porous medium in the derivation of
Eq. (29), and Pe is the Peclet number, a measure of the
relative importance of advection and dispersion. A large
value of Pe implies a relatively sharp displacement front,
and a small value corresponds to a broad mixing zone.

B. CDE Breakthrough Curves

In order to obtain a breakthrough curve, we merely
substitute unity for the dimensionless distance in Eq. (29)
and note that L/v is a measure of average travel time for a
contaminant moving with the fluid. A retardation
coefficient can be easily introduced to obtain a definition .
of dimensionless time similar to the one used for the log-
normal model. If, in addition, we replace the
complementary error functions, by using the identity

-;-erfc(u) = &(—~/2u) @),

we obtain, after some manipulation

)
(32).
+exp(Pe)<D{ fzﬁ('r v +T"”)}

The use of the normal probability integral instead of the
complementary error function provides a slight
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computational advantage when using some software
packages.

C. CDE Concentration Profiles

Similarly, we can obtain the concentration profile
equation from Eq. (29), but we consider u fixed time ¢,
define x,, by x,, = vt, and assume that x,, << L. After
some manipulation, we obtain

E,a,(x/x,,,)=<b{ -’ize-l(l-x/xm)}
(33)

conf Zre ol o)

The explicit form x/x,, is retained in Eq. (33) instead of
introducing a dimensionless distance in order to
distinguish the argument of the equation from the one
used in the log-normal model. Note also that the Peclet
number is now defined using x,, for the characteristic
length instead of L.

D. Displacement Scaling

Hewett and Behrens* modeled displacements in two-
dimensional vertical systems with a fairly large number of
grid blocks to illustrate the effect of heterogeneity in the
permeability distribution on dispersive behavior. For
miscible displacement in a homogeneous system, the
concentration profile as a function of distance from the
inlet scales according to classical dispersion theory, with a
mixing zone width proportional to the square root of the
median distance traveled by the displacement front, and a
constant dispersion coefficient which can be calculated
from the grid block and time step sizes.

The normalized concentration as a function of
distance traveled is given approximately by

E;w(x/x_)=-%erfc[%[ 3‘&"—{;":-1}]] | ‘(34).

Equation (34) will be recognized as being mathematically -

identical to the first term of Eq. (29). The neglect of the
second term is valid for Pe greater than about 10.

The mixing zone width is defined* as the difference
between x, 1, where &qp is 0.1, and xq g, where &qp is 0.9.

Solving Eq.(34) for these two values of x yields,
approximately,
W = 3.624775x,, o (35).
This may be compared with the in-situ concentration

profile calculated from the log-normal model. For this
purpose, we write Eq. (27) for the desired values of &:

p=1__({){1n(x/(x))~f-o‘2 /2}

(36),
c

and solve for xyg and xg ;, corresponding to p = 0.9 and
0.1, respectively. Then the width of the mixing zone for
the log-normal model is

W =2(x) exp(—‘92—2)sinh(1.2815520) (7).

By setting the two expressions [Eqs. (35) and (37)] for
mixing zone width equal to each other, we can determine
a value for effective dispersivity for fitting the classical
dispersion equation to the log-normal model. However,
there is one ambiguity, viz., the correspondence between
the mean, (x), and x,,. Since the latter is often described
as the mean distance traveled, it is tempting to set them
equal. However, this leads to a definition of dispersivity
which is not a monotonic function of ¢.  This merely
reflects the fact that, as ¢ increases, the convection-
dispersion solution cannot be made to rescmble the log-
normal function at all well, at least in the spatial domain.

In fact, there are many different methods given in the
literature for calculating a Peclet number, or, equivalently,
an effective dispersivity, from different computed
characteristics of measured breakthrough curves in tracer
experiments or from detailed model calculations. None of
them is entirely satisfactory, as will become apparent in
the following discussion.

Neretnieks, Eriksen, and T#htinen!5 considered this
problem for analyzing their measured breakthrough curves
for tracers flowing through a single fracture, and used an
expression mathematically equivalent to Eq. (32) to
calculate an effective Peclet number. Since they were
working with concentration vs. time rather than
concentration vs. distance, they defined a normalized
mixing zone size as

O = los — 1o, - (38)
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and used a graph of Pe vs. wqp to calculate an effective
Pe from measured values of the times in Eq. (38). Hence,
they used the median value in their analysis, but one
should keep in mind that they worked with breakthrough
curves (concentration vs. time) instead of concentration
vs. distance profiles.

The distance domain should, in principle, be entirely
equivalent to the time domain, and, using Pe = x,/a in
Eq. (35), we find:

2
3.6247175
Pe=|——= 39

¢ (Ww/x,.) 9)

A plot of this function (not shown here) agrees closely
with the diagram given by Neretnicks et al.!’ for the
Peclet number as a function of the normalized mixing
zone duration, at least for Peclet numbers greater than
about 5. For the time being, we will use the median for
calculating an effective dispersivity.

Noting that the coefficient of the hyperbolic sine term
in Eq. (37) is just twice the median of x, setting the two
expressions for mixing zone width equal to each other,
and solving for a results in

o = 0304437[5inh(1.281550)]" x, 5 (40)

Equation (40) shows that the assumption of log-
normality leads to an effective dispersivity which increases
linearly with the median distance traveled. Another way of
stating this behavior is to note that it is equivalent to a

Peclet number which does not change with distance.

Furthermore, the coefficient of distance, i.e., the inverse
Peclet number, increases exponentially with o. Figure 2 is
a plot of dispersivity [calculated from Eq. (40)] versus
~ distance, for a range of values of 6.

Also shown in Fig. 2 are experimental values,
transferred from a plot given by Arya et al,2 at a very
broad range of scales. The “Lab” points were originally
compiled by Arya,!6 those labeled “P-G” are from
Pickens and Grisak,!? and those labeled “L-B” are from a
compilation by Lallemand-Barres and Peaudecerf.18

The comparison between the log-normal model and
the experimental data is interesting for several reasons.
First, by choosing an appiopriate range of values of 6, the
entire region of experimental points can be swept. Second,
it seems likely that the data were extracted from systems
with very different permeability distributions, and that
analyzing of the experiments in terms of the log-normal

model instead of the convection-dispersion model might
possibly remove much of the apparent scatter.

1000

100

-
o

Disperslvity, Meters

0.1 10 1000

Distance, Meters
Figure2, Plot of effective dispersivity, o, versus
median distance traveled. The lines are
calculated from the log-normal model for
~o ranging from 0.05 for the lowest line to
2.0 for the upper. Points are experimental
values from sources given in the text.

Also, there is quite a bit of ambiguity in determining
the Peclet number from observed breakthrough or profile
curves, especially when the effective dispersivity is large.
As shown below, the use of different characteristics of the
curves to calculate Peclet numbers can give very different
answers when the mixing zone is large.

Finally, the plot suggests that a value of less than
about 2 for 0 may be a good guess in the absence of field
data at the scale of interest. However, this may be biased
toward low values because many of the field observations
were made in porous media rather than in fractured rock,
and it is generally believed that fractured media have more
heterogeneous permeability distributions than do porous
media.

E. Model
Systems

Displacements in  Heterogeneous

To study the effect of permeability heterogeneity,
Hewett and Behrens* also modeled displacements in
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which the permeability in a 200 (horizontal) by 20
(vertical) grid was assigned by a random fractal process,
so that permeabilities are spatially correlated at all length
scales. They then calculated effective mixing lengths and
dispersion coefficients by using the 0.1 and 0.9 fractiles on
the concentration vs. distance profiles, as outlined above
in discussing the log-normal model.® A log-log plot of
their results as functions of distance has slopes of 0.991
and 0982 for the mixing length and dispersion
coefficient, respectively. This is obviously in much closer
agreement with the log-normal model than with the
classical theory.

IV. BREAKTHROUGH AND PROFILE CURVES
FOR THE TWO MODELS

It should be noted that, while it is possible to fit log-
normal breakthrough curves quite well with a convection-
dispersion solution for almost any value of o, the shapes of
the two functions are quite different when profile curves
are compared for even moderately large values of ¢. This
is illustrated in Figures 3 and 4.

1 ;
l w",_.s—zaL-"'f"
Ecp(Pe, D)
........ 0.5 ]
g]_N(c’T)
0 | |
0 2 4 6
T ‘
Figure3. Comparison of log-normal and convection-

dispersion breakthrough curves with ¢ =
1.9 and Pe = 0.2, respectively.

2 We note that the profiles are easy to work with in
simulation studies, since a number of profiles can be
obtained at a series of time values from a single simulation
run. However, experimentally, it is much easier to work
with breakthrough curves.

1r
- 0.5 —
Efo.m)
0 ..
0 5 10
n
Figure4. Comparison of log-normal and convection-

dispersion concentration versus distance
profiles, with o = 1.0 and Pe = 0.2,
respectively.

A. Matching Breakthrough Curves

In constructing Fig. 3, the Peclet number was
assigned, and Eq. (32) was used to find the 0.1, 0.5, and
0.9 fractiles of the breakthrough curve, by assigning p =
0.1, 0.5, and 0.9, respectively, in

p= 0{ %e-('t”’ —’t”"’)}
0 @1).
+exp(Pe)<D{ 1?2-‘5-(1"2 +1'm)}

Equation (41) is mathematically equivalent to the solution
to the CDE given by Neremieks ef al.!S Then the
following equation was solved for o: '

19‘;1.1

25inb(12815525) = > 42)

)

As shown in Fig. 3, the log-normal and CDE
breakthrough curves are almost indistinguishable,
although the individual fractiles do not match exactly.

Since the two expressions produce very nearly the
same breakthrough curves for appropriate choices of the
parameters, they will fit experimental breakthrough data
equally well. In fact, as noted by Moreno et al.,!? it is not
possible to discriminate between dispersion models and
channeling models at a fixed migration distance, even by
using a number of different tracers with differing
retardation coefficients.
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B. Matching Profile Curves

In contrast, the profile curves shown in Fig. 4 do not
agree at all. The curve shown for the log-normal model
corresponds to the flow-weighted average, since the
resident concentration curve does not even cross the CDE
solution, except near the origin, for Pe less than 1.

In constructing Fig. 4, Egs. (33), (27), and (28) were
solved for the 0.1, 0.5, and 0.9 fractiles for the CDE,
volume-weighted log-normal, and flow-weighted log-
normal profiles, respectively. For values of ¢ < 0.2
(approximately), a value of Pe can be chosen by matching
the dimensionless widths to obtain reasonably close
agreement among the profile curves.

However, for larger values of G, not even an
approximate match could be obtained by this method.
Accordingly, we matched the actual width by solving

(_x_) _(J_.] =25inh(12815520)exp(c® /2) (43),
1 9

xl LIV

where the LHS is obtained from the CD equation and ths

RHS by solving the flow-averaged concentration, given by

Eq. (28), for the appropriate fractiles.

Although Eq. (43) has a solution for Pe = 0.2, Fig. 4
shows that the CD and LN profile curves not only have
different shapes, the resulting value of ¢ for a “match” is
about 1.0, compared to 1.9 from fitting the breakthrough
curves for the same Peclet number.

C. Distance Re-scaling

This problem arises because, for the small values of
Pe required to give a broad mixing zone, the mean travel
distance of the tracer or contan.inant is not equal to x,,, as
assumed in the derivation of the solution to the one-
dimensional CD equaticn given by Eq. (33). The actual
dimensionless mean distance traveled can be obtained
from the integral

8 ey =[eaturan (@),

where x = x/x,,, and the integrand is given by Eq. (33).

Note that y is a function of Pe. Numerical evaluation
of Eq. (44) results in the plot shown in Fig. 5, which
shows that vy approaches unity for large values of Pe, and
does not depart significantly from unity until Pe is less

than about 10. Unfortunately, it is precisely this range of
Pe values that is required to match field-scale transport

experiments with the CD model.
100 1 I T T
L (] -
\\\\
1 1 | I
0.0010.01 0.1 1 10 100
Pei
Figure 5. Dimensionless mean distance traveled for

the one-dimensional convection-dispersion
equation solution as a function of Peclet
number.

Clearly, this shift in the mean distance traveled must
be taken into account in attempting to match the CD
solution to the log-normal model. The followmg procedure
is used:

1. For a given value of Pe, calculate y by numerical
integration of Eq. (44).

2. Calculate 1, = (x/x,,), for p = 0.1, 0.5, and 0.9,
by numencal solution of Eq. (33).

3. Calculate (7 - n9)/1s. This normalized width
remains constant when all distances are re-
normalized, using (x) instead of x,,.

4. - Set the resulting ratio equal to 2sinh(1.2815520)
and solve for o.

5. For plotting, change the argument of the CD
solution to ym, where 1 is the argument of the LN
model.

The net result of this sequence of operations is to
match the mean distance traveled as well as.the
normalized width of the two models. An example
application is shown in Fig. 6, with Pe = 0.2, y = 3,065,
and o = 0.689, using the volume-average normalized
concertration for the log-normal model. The agreement
between the two curves is now quite good.-
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Normalized concentration profiles from
the one-dimensional convection-dispersion
equation and the log-normal model, with
Pe = 0.2 and ¢ = 0.689, respectively. The
distance for the CD solution is re-scaled by
the factor y = 3.065.

Figure 6.

Although the two curves now match rather closely,
note that, with a given small Peclet number, the ¢ value
fron: the breakthrough curve (1.9) is very different from
the value obtained by matching the flow profile.
Conversely, if we consider the log-normal curves to
represent at least approximately the behavior of field-scale
transport processes, then we would calculate very different
values of the Peclet number for the same value of o.
Hence, there is little predictive utility in the convection-
dispersion approach to analyzing field-scale transport,
since the results have to be re-scaled for each time or
distance of interest.

Al of this tinkering is made necessary by attempting
to replace a heterogeneous system by an “equivalent”
homogeneous medium, characterized by an average
permeability, in which the apparent mixing scale can be
represented by an appropriate choice of the dispersivity.
The concept of an equivalent homogeneous medium is tied
closely to the concept of a representative elemental
volume, which may not exist, or, if it does, almost
certainly is not the same for flow as for transport.

Matheron and de Marsily3 showed that an equivalent
homogeneous medium can exist only if the transport
system is large enough to reach an asymptotic limit of
Fickian (i.e., dispersive) behavior. Physically, this requires
a mechanism for transverse advective mixing. In media
which are even partially stratified (or, equivalently, in
which either independent or at most weakly interacting
“channels” exist), the time and distance scales required for
this limit to be reached may be so large that gross

alterations in the geologic framework, such as faults or
facies changes, are encountered first.

V. PECLET NUMBERS AND CURVE
CHARACTERISTICS

In attempting to force field data to fit the convection-
dispersion theory, many investigators have derived
relationships between the Peclet number and various
characteristics of breakthrough curves and’ concentration
profiles, based on analytical or numerical properties of Eq.
(29), or of approximations to this equation. For example,
we previously used an approximation, Eq. (34,, to derive
Eq. (35) for the mixing zone width. From this equation
one can derive

2
oo (3.624775;:,, ) . s).
X, —Xg

There is another relationship in the form of a graph of
Pe versus the normalized breakthrough duration, wep,
given by Neretnieks, et al.!15 As mentioned earlier, the
graph anc a plot of Eq. (45) agree closely when the Peclet
number is greater than about 10, '

In fact, most of the expressions for the Peclet number
give similar results, when applied to the log-normal
distribution, for Pe > 10, and are not too dissimilar when
Pe is between 1 and 10, provided that one considers only
the spatial domain (profiles) or the temporal domain
(breakthrough curves), As shown above, difficulties arise
when comparing both types of curves, in that different
corresponding values of Pe and o are obtained.

A. Peclet Number and Moments

A number of relationships have been reported in the
literature between the Peclet number and various moments
of the breakthrough curve. One of the simplest was given
by Neretnieks,? who credited Levenspiel 20 We define the
moments of the breakthrough curve by:

=B o,

Then, according to Levenspiel, the Peclet number can
be calculated from

2m} 2
Pe = = - 47),
m,—m  (CV)!
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where CV is the coefficient of variation, i.e., the ratio of
the standard deviation to the mean of the breakthrough
curve. This result shows clearly that the Peclet number
must decrease rapidly as ihe breakthrough curve becomes
more diffuse.

Moreno and Tsang?! quoted the following
relationships attributed to Robinson:22
1
Pe = e (48)
mm_, —1
\/3 -2m? -4
pe=Y"2 T "7 (49)
\/ 3m, —2m! —m,
PBm,—2m?, —4
pe=—Y3Ma=2m, —4m, (50)
V3m,—2m? —m,

All of these relationships between Pe and the
moments of the breakthrough curve arc based on the
solution to the one-dimensional convection-dispersion
equation, which is intimately related to the normal
distribution. It is therefore not surprising that different
results will be obtained in" applying them to other
distributions, such as the log-normal.

B. Moments of the Log-Normal Model

The various moments required in Egs. (47) through
(50) are easily evaluated anmalytically for a log-normal
breakthrough curve. The following equation is valid for all
real values of p:

(my)=ertter™s D).

Then, upon using Eq. (51) for the different moments
required and substituting the results into Egs. (47)
through (50), we obtain the following expressions for Pe
as a function of ¢:

2
Pe=—; 52
e’ ~1 G2
Pe=— 53)
e_ecln_l (
o' _n _ .
Pe= 3¢ -2-4 (54)

e —2-1

V3 -2-4

Pe = — - (55).

\/3e°'-—2—1

Equations (52) and (53) give similar results for small
values of G, in that Pe approaches 2/62 as 6—0. Also, for
large values of o, Pe tends to zero for both expressions.
The Peclet number calculated from Eq. (54) approaches
-2/62 as 60, and +1 as G—o, while the value calculated
from Eq. (55) approaches +2/02 as 6—0 and -1 as G—3oo,
Hence, the latter two equations give physically
meaningless results for some values of o, and neither of
them seems to work for values of Pe much less than one.
Once again, this reflects the difficulty of fitting log-normal
behavior — and presumably real transport data in
heterogeneous systems — by using the CDE solution with
small constant values of the Peclet number,

VL. PULSE RELEASE

~ Of more ‘interest than the solution for continuous
release of a tracer or contaminant is the case of a finitc
pulse, from which one can easily develop the breakthrough
curve for an arbitrary but given time-dependent release
function by convolution. Consider a release starting at
time 0, with concentration remaining constant until the
release stops at time Atr. We can immediately write, from

) 'Eq' (24)'

E=0 {ln(t)+c’ /2}_ o {m(T -5():“ il 2} (56),

a

where 8 = Ar/t, is the dimensionless pulse duration. When

-t is less than §, only the first term of Eq. (56) is used.

Figure 7 is a plot of the pulse breakthrough curves for a
range of values of ¢, with  held constant at 0.001.

The effect of increasing o is somewhat surprising. For
small values of o, the breakthrough peak is nearly
symmetric and occurs near t© = 1. The shape is essentially
Gaussian, so there would be little if any observable
difference between a log-normal breakthrough curve and a
convection-dispersion breakthrough curve for a tracer
pulse test.

As G increases, the breakthrough curve broadens and
the peak concentration at first decreases, which could be
interpreted as greater dilution. However, the location of
the maximum shifts toward earlier time, so that more
contaminant is produced early. Also, a long right tail
develops, as shown for 6 = 0.5 in Fig. 7. The shape of the
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central part of the curve is still nearly Gaussian, and a fit
with a convection-dispersion solution would be a
reasonable approximation, especially if matrix diffusion is
included.!S

0.01 T T T

0.008 ‘ ;\ =

Pulse breakthrough curves for § = 0.001
and o values of 0.05, 0.10, 0.50, 1.00, 1.50,
and 2.00, reading from the sharp peak on
the right to the sharp peak on the left,
respectively, The “U” shaped curve is the
locus of the maxima in the breakthrough
curves.

However, with further increases in o, the shift of the
peak toward earlier time continues, and its magnitude
begins to increase rapidly. Now the departure from a
Gaussian shape is pronounced, and no amount of
tinkering with the convection-dispersion approach will
provide an adequate representation of the breakthrough
curve. This is exactly the sort of behavior intuitively
associated with the existence of “fast pathways” in a flow
and transport system, in which only limited dilution
OCCurs.

The behavior of the peak concentration as a function
of ¢ can be derived analytically from Eq. (56) for small
values of 3. First, this equation is differentiated with
respect to 7. The result is then expanded as a Taylor's
series through second order in §, and equated to zero (o
find the location of the maximum, <,,. The result, after
considerable manipulation, can be reduced to

3, ) ]
= = 14— .
T o exp( 20 )l: + 5h g oY)

The size of the peak is then obtained by substituting
the RHS of Eq. (57) into Eq. (56) and again expanding in
a second-order Taylor's series in 8. The result is

éw P

2
T exp(a?) (58).
Egs. (57) and (58) were wused to calculate
corresponding values of the peak height and the times at
which they occur for plotting the locus of the peak in Fig.
7. The peak height tends toward infinity as 1/c for small 6
and exponentially as o2 for large o.

It is of particular interest that the peak height
predicted by Eq. (58) is proportional to the pulse duration.
By differentiating this expression with respect to o,
equating the result to zero, and solving for ¢, we can find
the value for which the peak height is a minimum:

O = iz_z— = 0.707 (59).

The minimum peak height is then
)., =—8—-exp(-l—) ~0930-5 6o
mJn \2 ‘
and it occurs at dimensionless time
3
Ton = exp(-—z) = 0472 (61).

Equation (60) shows that the peak breakthrough
concentration can never be less than about one times the
dimensionless pulse duration. In other words, there is a
limit to the reduction of . effluent contaminant
concentration by dilution.

It should be noted that this analysis is valid only for
values of ¢ such that the peak occurs later than 1 = 3.
Otherwise, the maximum is determined by using only the
first term of Eq. (56), evaluated at © = 8. By setting tre
LHS of Eq. (57) equal to 3 and solving for o, we find that

- ’__2_ S - »
O = BIH(Z) ‘ (6‘)'
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which gives a value of 2.25 for the maximum value of ¢
when & = 0.001. In the limit of an infinitesimal pulse, the
analysis remains valid as ¢ increases without limit.

A. Cumulative Contaminant Production

As a result of the shift of the peak toward early time
and its increasing magnitude with larger o, more of the
total contaminant mass released in the pulse is produced
early. The normalized cumulative contaminant mass
production, £(t,8,0), is easily obtained by integrating Eq.
(56) over the dimensionless time:

2 2

o c
Int + — Int ——
§-5(1,8,0) =10 - 2
o c
2 2 (63)
In(t —8)—3— In(t __5)+S_7___
+O _._.___.____.2_ ..(1 _8)(1) .______.__2__
c c

In Eq. (63), the terms including (1-8) are set identically to
zero for all T < 8. Figure 8 shows a plot of the normalized
cumulative contaminant produced as a function of
dimensionless time, for & = 0.001. As < tends toward
infinity, the normalized production approaches unity in all
cases.

Figure 8 shows that the fraction of the contaminant
pulse produced at early time increases very rapidly as ¢
increases, again coinciding with intuitive notions of
transport along fast paths. From Eq. (63), it can be shown
that, in the limit 3 = 0, the cumulative fraction of uuected
contaminant mass produced is given by:

I;gg{s('r.&c)}=¢{l‘£i§i’—2} (64).

Eq. (64) shows that a plot of the cumulative fraction of
injected mass produced, on a normal probability scale, vs.
time, on a logarithmic scale, will produce a straight line,
when the pulse width is very small compared to the mean
breakthrough time. It is also obvious that the
dimensionless time required to produce 50% of the
injected mass is given by:

Tos =exp(-0*/2) (65)

Figure 8. Normalized cumulative contaminant
production versus dimensionless time for
the same range of ¢ values as in Fig, 7. For
all 6 curves, § = 0.001

VIL.DISCUSSION

In deriving the form of the log-normal model
presented here, we started with the idea of completely
independent strata in a linear flow system, assumed that
the permeabilities of these layers formed a log-normal
distribution, then passed to the limit of a ‘continuum to
obtain the closed forms in terms of the normal probability
function. In principle, the ¢ parameter is to be obtained
from permeability measurements on cores.

A. Waterflooding Applications

In the author's experience, this determination of ¢
from core data works quite well when there are many
permeability measurements, the system is moderately
heterogeneous, and there is essentially no fracture
permeability,® which of course is not sampled on a
meaningful scale by coring. However, it was also found
that adjusting o, in the case of waterflooding oil
reservoirs, for pattern effects (i.e., non-linear and variable-
length flow paths), mobility ratios, variable porosity and
oil saturation, efc., improves the match of predicted

-waterflood response to actual results, compared to simply

using the value of o from core permeability
measurements. These adjustments were derived from
various literature sources, by fitting the log-normal model
to breakthrough curves.
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If the flow response — either from field projects or
from detailed, highly resolved simulations — is used to
determine o, the match between observed and calculated
response is, of course, improved. What is interesting is
that the log-normal functional form is closely followed by
real displacement experiments and detailed simulations,
and that often only minor adjustments in parameter values
are required to match field data or simulator output with
simple analytic expressions.

For example, this approach completely ignores
capillary imbibition in waterflooding, ‘which can
contribute significantly to the overall recovery efficiency.
The displacement front in the more permeable strata will
tend to move ahead of the front in less permeable
intervals. This will create regions of relatively high water
saturation adjacent to regions of relatively high oil
saturation. Water will then imbibe into the low-
permeability region, displacing oil into the adjacent high-
permeability interval where it can be swept to the
producing well. In an unpublished study, it was found, by
simulating displacement in a symmetry element from a
five-spot pattern containing 10 log-normally distributed
layers, that including the effects of capillarity reduced the
effective value of ¢ by a few percent from the value used
to generate the layer permeabilities.

This experience and others over the past twenty or so
years have led the author to suspect that displacement
processes in heterogeneous materials are fundamentally
log-normal, or very nearly so. The speculation is that the
functional forms, given by Egs. (23), (24), (27), and (28),
are capable of realistically modeling breakthrough and
concentration profile curves even when the underlying
distribution is not particularly close to log-normal, the
system is not really stratified, and the elements strongly
interact with each other.

B. Transport in the Soil Vadose Zone

This notion is reinforced by the experiment of Butters

an co-workers.!1\12 Even though the flow direction was

essentially perpendicular to the stratification of the soil,
the movement of the tracer pulse was much better
represented by a log-normal model than by the solution to

the CDE. They found that fitting the CDE solution at a .

given depth did not result in a good prediction even for the
next depth, only 30 cm below. For most of the depths
sampled, the value of ¢ derived from the CV was between
0.4 and 0.5, which is smaller than the waterflood example
(about 0.7) reported by Chesnut® and very much smaller
than the value of about 1.7 obtained by fitting the data® for

the groundwater flow distribution measured by others in
the Stripa experiment.

By calculating the moments of individual
breakthrough curves, Butters et al.!2 computed averages
and variances for each individual square in their pattern,
and reported the averages of these values as “local scale”
averages. Assuming log-normality, the average value of ¢
calculated from these data is about 0.38. In addition, they
averaged the concentrations at each depth at each time to
produce a field average breakthrough curve at each depth.
Again assuming log-normality, the reported means and
variances were used to calculate ¢ for each depth; the
average of these values is about 0.49.

Finally, they also reported results!! of measuring the
saturated hydraulic conductivities of 56 randomly selected
surface samples of soil in the plot. The CV of these
measurements was reported to be 0.44, which corresponds
to a value of ¢ equal to 0.42. The agreement with
transport-derived values may be fortuitous, but it fits with
the author's success in using core analysis data to obtain a
close estimate of ¢ for the Benton waterflood.

C. Strongly Heterogeneous Systems

The behavior of the breakthrough curve for pulse
injection shown in Fig. 7 is remarkably similar to behavior
reported by Moreno and Tsang?! in their study of strongly
heterogeneous systems. They simulated steady-state flow
and transport (by particle tracking) in a number of
realizations of a 20x20x20 cube (some runs were made for
a 40x40x40 gridblock model), with permeability values
assigned according to a log-normal distribution and an
exponential correlation function. The correlation length
was generally 0.1L, where L is the side of the cube, but
some runs were made with 0.05L and 0.20L. The mean of
the distribution was adjusted to maintain constant total
flow through the cube, and calculations were made for o
equal to 0.10, 0.20, 0.50, 2.00, 4.00, and 6.00.

The breakthrough curves, as ¢ varies, show exactly
the same qualitative behavior depicted in Fig. 7, with a
sharp, symmetric peak at T = 1 for 6 = 0.10. The peak is
progressively broader, but remains relatively symmetrical
and located near t= 1, for ¢ = 0.20 and 0.50. For ¢ =
2.00, the breakthrough curve becomes very diffuse, with a
broad, low peak of indeterminate location. Its location is
definitely at a value of T much less than 1, probably
between 0.2 and 0.6. Finally, for ¢ = 4:00, a high, sharp
peak develops near T=0.1. It becomes even sharper and
moves further to the left when ¢ = 6.00. This development
of a short travel time for the peak concentration to reach
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the outflow boundary was termed the “fast channeling
effect.” In both of the latter two cases, the breakthrough
curve also develops a long right tail.

Moreno and Tsang also showed traces of the flow
paths through the cube from the inlet face to the outflow
face on the opposite side, for channels that provided most
of the flow. For ¢ =1.00, there are many channels, fairly
uniformly distributed across the inflow face and running
reasonably straight to the outflow face. They do not appear
to interact significantly, although interaction is not
excluded by the code used or by the properties inserted
into the model.

The behavior is very different for o = 4.00. Based on
the one realization shown in their paper, and the authors'
description of others, the channels coalesce into a few (two
or three) coherent bundles, each spanning a few grid
blocks in the direction transverse to the principal flow
direction. They are more convoluted in the longitudinal
direction than the channels for smaller o, but still
reasonably straight. This flow geometry is consistent with
our intuitive ideas of flow paths within fractured rock, and
yet it develops in a stochastic porous medium model,
without any explicit representation of fractures.

As shown in Fig. 7, the simple analytic expressions
obtained from the log-normal model reproduce the
breakthrough behavior observed by Moreno and Tsang.
The only difference is that their breakthrough curves are
much less sensitive to ¢ than the analytical expressions
are. This reduced sensitivity is due to the fact that, as ¢
increases, flow is confined to a smaller and smaller
number of channels. By constructing histograms of the
permeability distribution along the channels responsible
for 90% of the flow, Moreno and Tsang found that the
peak of the flow distribution is shifted to a higher
permeability, and its logarithmic variance reduced,
relative to the input or “global” distribution used to
construct the realization. If we denote the natural log
standard deviation of the input distribution by oy, then
the “effective” o for transport, o, is less than oy,

It is of considerable interest tn explore the
relationship between these parameters. Moreno and Tsang
reported values for the Peclet number calculated from the
moments of the breakthrough curves, using Eqs. (48)
through (50). We then used the relationships berween ¢
and Pe given by Eqs. (53) through (55) to estimate values
for o, Table I summarizes the results obtained from
Eq. (53). Essentially the same values were obtained from
the other two equations for oy, < 2.00. For the remaining
cases, there were significant differences among the

different estimates of Pe, and, consequently, the
corresponding estimates of o, However, as the authors
stated, dispersion cannot be described by the advection-
dispersion equation for strongly channeled flow, and this
is reflected in the variation of Pe calculated from different
features of breakthrough curves.

Table L Values of the effective transport heterogeneity
parameter, G,, estimated from Eq. (53) and Peclet
numbers reported by Moreno and Tsang.2!

Oink Pe Gy o/ Olnk
0.10 2076 0.031 0.310
0.20 522 0.062 0.309
0.50 84 0.154 0.308
1.00 21 0.305 0.305
2.00 58 0.564 0.282
4.00 1.9 0.920 0.230
6.00 0.9 1.222 0.204

As shown in Table I, the ratio /o), is almost
constant for oy, < 2.00, and then begins to decrease. It is
not clear whether this decrease is real or a numerical
artifact arising from the small number of flow channels
that develop in the simulations with the two higher values
of o, It scems likely that the sample size may be too
small to accurately define the behavior when the
channeling is extreme.

In Fig. 7, the ratio of peak height at ¢ = 0.05 to the
minimum peak height is roughly 8, as is the ratio for ¢ =
2.00. It is perhaps significant that about the same ratios
are shown by Moreno and Tsang with oy, = 0.10 and
6.00, respectively. If we assume that o, can be estimated as
0.310},;,, we should compare the numerical model
breakthrough curves to the analytical curves with ¢ = 0.03
and o = 1.86, instead of 0.10 and 6.00, which gives

- essentially quantitative agreement.

" Some additional insight into the relationship between
the permeability distribution and the flow distribution can
be gained from the work of Tompson and Gelhar.23 These
numerical experiments were performed on a 51x51x51-
node cube, with a log-normal permeability distribution
and an exponential variogram with a correlation length
equal to 0.04 times the side of the cube. They reported the
average longitudinal velocity and its standard deviation
for steady-state flow experiments in which oy, = 1.0, 1.7,
and 2.3. From these data and the relationship between ¢
and the coefficient of variation for a log-normal
distribution, we calculated values of oy, the log-normal
standard deviation for flow, of 0.577, 0.954, and 1.226,
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respectively. The corresponding ratios, 60y, are 0.58,
0.56, and 0.53.

Once again, the ratio of an effective ¢ to the ¢ value
used to generate the permeability distribution appears to
be nearly constant, although its value in Tompson and
Gelhar's study is almost twice that of Moreno and Tsang.
There is no obvious reason why the results should be so
different, although it should be noted that valnes derived
from Tompson and Gelhar are based on velocity moments,
while the others are based on moments of a tracer
breakthrough curve generated by particle tracking. Also,
the Tompson and Gelhar simulations are more highly
resolved than most of the other calculations. It is possible
that Moreno and Tsang's results were subject to greater
numerical dispersion, which would tend to reduce the
effective stratification.

Tompson and Gelhar also reported tracer
breakthrough curves, although not in sufficient detail to
allow calculation of ¢ or Pe. However, their breakthrough
curves do show a tendency for the peaks to sharpen and
move to earlier time as oy, increases.

Finally, we should mention that the analytical model
is expected to show the greatest sensitivity to @, since it
assumes complete stratification. We would expect the
effective o for transport to approach o, as the correlation
length approaches the size of the model domain.

This entire subject warrants additional study, but
there does seem to be some hope of developing, at least
empirically, relatively simple relationships between
effective values of ¢ for flow and transport and o for the
permeability distribution.

D. Variable ¢ and R

In deriving the equations for the log-normal model,
we set several variables equal to their average values in
order to perform the integrations. It can be shown that, if
the following relationships are assumed

¢ = Ak"
R=Bk™

(66),

where A, B, n, and m are constants, then the substitution
can be justified, but the integrations have to be performed
over a transformed log-normal variable, with parameters
simply related to the constants in Eq. (66) and the
parameters of the original log-normal distribution of
permeability. Once again, log-normality of the transport
process is preserved, but the parameters have to be

adjusted. In this case, however, the adjustment can be
made rigorously within the assumptions of Eq. (66).

E. Fractal Processes

Hewett has, for about 10 years, been systematically
investigating the use of fractal processes (in particular,
fractional Brownian motion) to represent heterogeneity in
petroleum reservoir simulations.’ Permeability fields
generated in this fashion have a very different correlation
structure than is given by the usual assumption of an
exponential variogram, In the latter case, correlations are
essentially negligible after some multiple of the length
scale, and displaccments asymptotically become Fickian
(although, as Matheron noted, the length and time scale
may be such as to preclude this limit from ever being
reached in field-scale displacements).

One characteristic of fractal behavior is that
correlations appear at all scales of measurement. This
implies that displacements may not become Fickian at any
scale. Arya? gave the following expression for what he
termed the megascopic dispersion coefficient:

1 do?
oy =—— 67),
e =5 ©7)
along with the following equation for the variance of
fractional Brownian motion:

o2 =z (68).
In Eq. (68), C is a constant and Df is the fractal
dimension. From these equations, we obtain

Gy = CHEM (69),
where H =2 - Dfis the Hurst coefficient.

When H = 1/2, the megascopic dispersivity is constant,
corresponding to classical Brownian motion, and the
Peclet number is proportional to the mean distance
traveled. For H—1, the dispersivity becomes proportional
to the mean distance traveled, and the Peclet number
becomes constant. In this sense, the log-normal model
represents a limiting case of fractional Brownian motion
for generating the spatial distribution of Ink.

HewettS reported a value of H = 0.87 based on well-log
analysis for a more than 300 m thick section of a
Pleistocene submarine fan. For this value of H, the
dispersivity should be proportional to the 0.74 power of
distance, according to Eq. (69). i,

However, when he subsequently? simulated miscible
displacement through a two-dimensional permeability
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ficld generated by fractional Brownian motion with H =
0.87 and plotted the mixing zone width and effective
dispersion coefficients versus mean distance traveled on a
log-log plot, he found that these quantities varied as the
0.991 and 0.982 powers of mean distance traveled,
respectively, as noted previously in Section III. Hence, it
appears that displacements behave more like the log-
normal model than is predicted by Eq. (67) in that the
distance exponent of effective dispersivities calculated
from the simulations is much closer to unity than to 0.74.

F. Distance Scaling

As shown in Fig. 2, the general linear trend of
dispersivity with the spatial scale of transport problems is
well-represented by the purely advective log-normal
model. However, in subsequent discussion, we showed that
there is no unique relationship between dispersivity and
the ¢ parameter, because the shapes of the breakthrough
and profile curves of the log-normal model are so different
from those of the CD model.

In fact, it is this author's belief that the concept of
dispersivity has outlived its usefulness, and that field data
might well make more sense if they were used to
determine an effective o rather than to calculate
dispersivity. The former parameter seems more likely to be
a property of the medium, or at least of the medium and
the fluids it contains, than is the dispersivity.

VIOIL. SUMMARY AND CONCLUSION

In this paper, the use of the conceptual model of flow.
through independent, log-normally distributed linear
elements is only a device for the spatial allocation of flow.
The permeability serves mostly as a dummy .random
variable with an assumed distribution, allowing sums over
the flow elements to be replaced by integrals. From this
viewpoint, the parameter ¢, which is introduced as the
standa~d deviation of the natural logarithm of permeability
(i.e., Oy,), becomes a parameter of the total flow and
transport problem, including the nature of displacing and
displaced fluids, injection/production well patterns, and so
on. We have given some comparisons, based on the work
of others, of the effective ¢ values for flow and transport to
the input value used to generate the permeability field.

The work of Neretnieks, Moreno, and co-workers has
generally been of a more fundamental nature, starting with
the idea of flow channels within single fractures, which
arise from a log-normal distribution of apertures. They are
attempting to understand the mechanisms of flow and
transport, including matrix diffusion, adsorption, etc., in

which the underlying physical model has identifiable
channels. However, their more recent investigations,
including several in collaboration with Tsang and others
at Lawrence Berkeley Laboratory on strongly
heterogeneous media, indicate that we are converging on
the same idea of using systems with a log-normal
distribution to model everything from relatively
homogeneous porous media to fractured rock.

It is this author’s belief that this approach, as well as
being simple and requiring little computing time, will
provide more realistic results for modeling long-distance
radionuclide transport than the current stochastic
modeling approach of calculating an average flow field
and then modeling transport with the average flow field
and some sort of effective dispersivity. It offers, perhaps,
the best hope of connecting detailed mechanistic process
models with high level performance assessment models, in
such a way that important parameters of the high-level
models can be measured or otherwise extracted from site
characterization data.

Detailed simulations, used as numerical experiments
to investigate the relationship of flow and transport
heterogeneity to the heterogeneity and spatial correlation
structure of the rock properties, will continue to be very
useful research tools, but would not directly be used in
assessing the performance of Yucca Mountain as a
potential site for a nuclear waste repository.

Since large values of ¢ appear capable of representing
the phenomena associated with channeling, fast flow
paths, etc., there is a good chance that we will not have to
resort to models with explicit representations of fractures
in order to realistically assess the long-distance transport
of radionuclides away from a repository.

Finally, it seems appropriate to close- with a
modification of the title of Matheron and de Marsily's
1980 paper (Is Transport in Porous Media Always
Diffusive?): Is it ever?

ACKNOWLEDGMENTS

This work was performed at Lawrence Livermore
National Laboratory under the auspices of the US
Department of Energy contract number W-7405-ENG-48,
and was sponsored by the Yucca Mountain Site
Characterization Project Office of the Office of Civilian
Radioactive Waste Management (OCRWM). This
financial support is gratefully acknowledged. I also
appreciate receiving many stimulating reports and papers
on highly resolved transport simulations and related topics

Chesnut 18/20



(some in draft form) from Dr. A.F.B, Tompson of LLNL.
Thanks are also due to Dr. Kenneth J. Jackson for his
timely review of a draft of this paper and his helpful
comments.

Some of the recent developments in this approach to
analyzing the effects of heterogeneity on radionuclide and
tracer transport were inspired by the author's participation
in the OCRWM International Programs as a member of
several scientific advisory groups and as an investigator in
the joint US/Swedish program at the Aspd Hard Rock
Laboratory.

1 would particularly like to thank Dr. Robert A.
Levich for supporting these activities. Also, I am
especially grateful to Professors Ivars Neretnieks and Luis
Moreno of the Royal Institute of Technology in Stockholm
for stimulating discussions of related work in December
1993. In particular, I would like to thank Professor
Moreno for supplying a preprint of his and Dr. Chen-Fu
Tsang's paper on strongly heterogeneous systems which
will be published in 1994, and Professor Neretnieks for
assembling a set of reprints of his work for me.

NOMENCLATURE

Unless otherwise noted in the text, all variables are
given in MKS units. The following list is approximately in
the order in which the symbols were first used.

time

mean breakthrough time
dimensionless time
log-normal standard deviation
areal number

distance of contaminant travel
the mean of x

denotes the mean of any variable enclosed by
the brackets

median distance traveled
dimensionless distance
volumetric flow rate
pressure

Area

length

permeability

viscosity

Darcy flux (volumetric flow rate per unit area)
fluid velocity

fractional porosity

cgHSaas -

S < &% ?VP*}"TJ-Q:EN

K volumetric sorption coefficient

R retardation factor

f(k) probability density function for k

Co concentration at the injection boundary

c(x,0) concentration at distance x from the inlet and
time ¢ after beginning injection

& normalized concentration

O@2) normal probability integral of z

a dispersivity

Pe Peclet number

erfc(u)  complementary error function of u

w width of an apparent mixing zone

© dimensionless width of an apparent mixing
zone

sinh(¥)  hyperbolic sine of u

v dimensionless mean distance traveled for
small values of Pe, from CDE solution

m the p moment of the breakthrough time
distribution

cv coefficient of variation
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