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ABSTRACT

A smooth artificial joint in Topopah Spring Member tuff was sheared at constant normal stress
at velocities from 0 to 100 um/s to determine the velocity-dependence of shear strength. Two
different initial conditions were used: (1) unprimed—the joint had been shear stress free since
last application of normal stress, and before renewed shear loading; and (2) primed—the joint had
undergone a slip history after application of normal stress, but before the current shear loading.
Observed steady-state rate effects were found to be about 3 times larger than for some other silicate
rocks. These different initial conditions affected the character of the stress-slip curve immediately
after the onset of slip. Priming the joint causes a peak in the stress-slip response followed by
a transient decay to the steady-state stress, ie., slip weakening. Slide-hold-slide tests exhibit
time-dependent strengthening. When the joint was subjected to constant shear stress, no slip was
observed; that is, joint creep did not occur. One set of rate data was collected from a surface
submerged in tap water; the friction was higher for this surface, but the rate sensitivity was the
same as that for surfaces tested in the air-dry condition.



This report was prepared under the Yucca Mountain Project WBS number 1.2.3.2.7.1.4. The data
in this report was developed subject to QA controls in QAGR S$1232714; the data is not qualified
and is not to be used for licensing.
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1 Introduction

The Topopah Spring Member of the Paintbrush Tuff within Yucca Mountain, Nevada, has been
selected as a potential repository of high-level nuclear wastes. The Yucca Mountain Site Charac-
terization Project (YMP) of the Office of Civilian Radioactive Waste Managememnt (OCRWM)
Program has been assigned the task of determining the suitability of the Yucca Mountain site.
Among the concerns being investigated, the characterization of the mechanical properties of the
host rock has direct relevance to repository design, and to pre- and post-closure performance
assessment.

Licensing of a nuclear-waste repository by the Nuclear Regulatory Commission (NRC) requires,
among other things, demonstration of the long-term usability of the underground portion of the
repository. Such a demonstration involves analysis of the mechanical response of the rock mass to
the presence of underground openings and heat-producing waste over long periods of time. This
report presents data on the time-dependent properties of a fracture as measured in rate-stepping
and creep experiments in support of design and preformance stability issues. The test material was
taken from a block of welded, devitrified Topopah Spring tuff (Price et al., 1987).

Mechanical discontinuities such as faults, bedding planes, or joints are important mechanical
constituents of most rock masses; they increase the compliance and decrease the strength of the
rock mass. Stress changes and slip-induced dilation can affect the contributions of mechanical
discontinuities to fluid permeability of the rock mass (Olsson, 1992; Olsson and Brown, 1993).
Furthermore, the constitutive response of joints in silicate rocks is of a type that can lead to
dynamic instabilities under a range of conditions. These instabilities are referred to as “stick-
slip” and manifest themselves in experiments as jerky sliding accompanied by stress drops. This
behavior on a larger scale is thought to be analogous to earthquakes (Brace and Byerlee, 1966). It
has been shown (Wong, 1992) that most mine seismicity, e.g., rock bursts and bumps, is due to slip
on geologic discontinuities. Further, it has been established that slip on joints in Grouse Canyon
welded tuff is accompanied by acoustic emissions (Holcomb and Teufel, 1982) and therefore it is
important to explain this aspect of time-dependent joint behavior of tuff.

For simplicity, the term “joint” is used throughout this report, but the results apply to any
interface in rock with vanishingly small tensile strength.

The shear resistance of a joint depends on the normal stress history across it, the sliding velocity
history, the temperature, the roughness, and the presence of water and gouge. Itis generally accepted
that normal stress is the dominant factor controlling the shear strength of a given joint and that all
other effects have second order influence. This report focuses on time- or rate-dependence. It is
important to understand that these effects, though lesser in magnitude of associated stress changes,
can have important consequences. For example, it has been established that the details of the
rate-dependence part of the constitutive description can either enhance or suppress instabilities in
slip (Gu, et al., 1984; Rice and Ruina, 1983; Ruina, 1983). As such, these rate effects have a direct
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Figure 1: Definition sketch for constitutive parameters a, b, and L. The imposed'load-point velocity
issuchthat V., < V.

bearing on mine seismicity.

Constitutive equation development for the time-dependent slip of interfaces at invariable normal
stress is limited at this time to encompassing the effects of velocity, the history of velocity and the
state of the surface. The theory is purely phenomenological in that no underlying physical process
has been identified that predicts the response.

1.1 Review of the Constitutive Equations

The resistance to slip 7 is coupled to the normal stress o to dominant order through the coefficient
of friction x4 according to the slip condition

T—po <0. (1)

When the net shear stress 7 — uo is less than zero there is no slip. When absolute equality holds, the
rate effects enter the problem. Whether creep will occur for 7 — uo < 0 is not yet well-documented.
This report presents results of several short-term creep tests, and this issue is now being investigated
in long-term (about 3 months) creep tests. When the net shear stress on a joint is less than zero,
the rock mass response in shear is approximately the same as that of the intact rock.

There are two classes of frictional constitutive laws: slip-dependence (often referred to as slip-
weakening) and rate- and state-dependence. Slip-dependence laws embody monotenic surface
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evolution that may be related to damage accumulation. These laws have the defect that there is
no explicit rate-dependence and observed repeated instabilities are not predicted. The rate- and
state-dependence law can predict repeated behavior, but may not be appropriate for the initial stages
of slip wher strong surface evolution to a steady-state takes place. Fracture behavior spans both
types of description. In general terms, frictional slip has elements of both discrete memory (slip-
dependence) and fading memory (rate- and state-dependence) of past stress and velocity (Olsson,
1987b). :

The rate effects described herein are best discussed within the context of the rate- and state-
dependence model. Experimental work of Dieterich (1972, 1978, 1979) followed by Ruina (1980,
1983) and Dieterich (1981) led to the development of the currently accepted formulation for effects
of sliding velocity history and time on joint hehavior (Ruina, 1983; Rice and Ruina, 1983). Rice
and his coworkers (Gu et al., 1984; Rice and Gu, 1983) implemented the constitutive equations
into predictive stability analyses. Tullis and Weeks (1986) gave an account of results from rotary
shear experiments on granite within the framework of this theory.

The constitutive model is based on observed changes in friction during and immediately
following abrupt changes in velocity. The state of the surface is included through time-evolving
state variables. The basic equations describing this rate- and state-dependent behavior at constant
normal stress and when the slip condition is satisfied (1) are:

b= pe + b¥i+ aln(V/V,), (2)

d¥i/dt = —(V/L:)[¥; + In(V/V.)]. @)

In these equations, V is the sliding velocity, W; are state variables that evolve with time, g, is
the friction at an arbitrary reference velocity V.. The parameters a and b; are constants to be

determined, and the L; are the distances over which the ¥; evolve. A simple experiment, such as
shown in Figure 1, provides all the parameters.

Differentiation of the constitutive equations, simplified to one state variable (: = 1), leads to
the following definitions of the variables a, b, and L (Fig. 1):

ou _
dmvl), ~ ° @
d”ll _
v - ¢ b )
Opl _ p—p"
dz|, L ©

Thus, a is the instantaneous response following a jump in the velocity, and a — b measures the
difference between the current and former steady-state values of friction. The steady-state friction,

3



Ve
AVAVAVAN
T
k
Vo
v=0
T

Figure 2: Spring and block analogue to sliding of laboratory-sized joint. V4 is the load-point
velocity imposed by the loadframe, 7 is the resisting shear traction, and V is the velocity of the
block.

Y =0,is
B = p + (a = b)In(V/V2). 7

If 4** < p., then the response is said to be velocity weakening and a — b < 0. If u** > pu., then
the response is said to be velocity strengthening and @ — & > 0. The type of response observed for
silicate rocks depends on the normal stress—low normal stress promotes stick-slip behavior, and
high normal stress promotes velocity strengthening. Blanpied et al. (1987) have found that for Vo
greater than about 100 um/s, a — b becomes positive, implying stability. Elevated temperatures
also can promote stable response (Blanpied et al., 1991). It is not clear whether the state changes,
d¥ # 0, when the surfaces are in stationary contact to begin with, that is, when the previous steady
state is actually the zero velocity history (V = 0, for all previous time). The evolution of ¥ is clear
when the first and second steady-states are at finite velocities, but if V. = 0 for a long time, does
the state change?

Joints are interfaces embedded in a deformable medium and as such do not necessarily slide
over their whole extent simultaneously. Therefore, inhomogeneous slip may be important in the
field and in the laboratory (Olsson, 1984). Rice (1983) has shown that the inhomogeneous slip
regime associated with the advancing slip zone boundary is of the order of 1 metre. For the
rotary shear configuration in particular, it has been shown that slippage is essentially uniform
(Olsson, 1987b). Evidently, for normal laboratory sample dimensions, it is permissible to interpret
laboratory friction data in terms of a rigid block being slid over a smooth surface by a force pulling
on a spring connected to the block (Fig. 2).

The force, displacement, and velocity V; at the distal end of the spring are called the load-point
values. In the load frame used in this investigation, the torque and angular displacement are applied
at one end of the loading column while the joint is at the other. Thus, constant displacement rates
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are applied through the elastic loading column, and because of the finite stiffness of the column
there may be a difference in the velocity of sliding and the applied velocity, V5 — V. This compliant
load application is similar to a joint being loaded by the surrounding compliant rock and, in this
sense, the laboratory experiment simulates nature. The difference in load-point velocity compared
to joint-wall relative velocity emphasizes the importance of separating constitutive response of the
joint from the loading-system response.

The spring-block system is described by

dr
- = kW% -V) (8)
where k is the spring constant, V; is the velocity at the load point, and V is the velocity of the

block. If the system unloading stiffness k is such that

b—a

F< 22 ©)
then the system will be prone to instablility in the form of jerky slipping and sudden stress
drops (Dieterich, 1978). This shows how the value of the constitutive parameters b and a when
combined with the properties of the loading system are important to stability. Natural joints will
have different properties depending on geometric factors, mainly the roughness and degree of
interlocking of adjacent joint walls. A different problem not considered here is the effect of gouge
on the behavior of joints. Because the response of a joint depends on some convolution of the
basic smooth-surface friction with its topographic properties, it is most illuminating to measure the
magnitude of the effects of the variables on the smooth rock surfaces first, and then introduce the
very complicated problem of surface roughness. The focus here is on the effects of sliding velocity,
the history of the velocity, and the initial state of the sliding surface on strength of smooth surfaces.

2 Experimental Technique and Sample Preparation

The results reported here were obtained in rotary shear experiments (Christensen et al., 1974,
Kutter, 1974; Olsson, 1987ab, 1988ab, 1990, 1992; Xu and Frietas, 1988; Tullis and Weeks, 1986;
Weeks and Tullis, 1985; Yoshioka and Scholz, 1989). In this type of experiment, the sample is
composed of two, short, hollow tubes of rock that are pressed together under controlled load, and
then torque is applied to cause sliding on the interface (Fig. 3). Further details may be obtained
from (Olsson, 1987a).

The sample used in this study was sawed, then ground flat and perpendicular to the cylinder
axis. Outside and inside diameters were 88.9 mm and 50.8 mm, respectively. The short (approx.
50 mm) cylinders were cemented to metal disks with epoxy, and then reground to ensure that the
joint was parallel to the surfaces of the metal disks. The joint surfaces were then sandblasted to
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Figure 3: Sample configuration for rotary shear experiments on joints.

a dull finish. Before the experiments, the joint was slid back and forth under low normal stress
of around 1 MPa to “run-in” the surface. This procedure stabilizes the stress-slip response loops
and makes them reproducible under nominally identical test conditions. The experiments were
performed on clean surfaces that had been run-in. In this report, the terms “mean slip” and “slip”
are used interchangeably for angle of rotation in radians times (D, + D;)/4, where D, and D; are
the outer and inner diameters, respectively. The load-point slip was corrected to slip by subtracting
7/(unloading slope) from the measured displacements. This difference in the stress-slip reponse
when using these two measures can be seen by comparing the initial loading portion of the curves
in Figures 4 and 5.

3 Results and Discussion

3.1 The effect of Velocity Changes at Constant Normal Stress

It had been found in earlier studies on tuff (Olsson, 1987a, 1988b) that there exist two recognizable
initial conditions for smooth, topographically uncorrelated surfaces under the same test conditions:
unprimed and primed. To create the unprimed initial condition, the initially separated joint walls
are brought together and normal stress is applied; then the shear test is performed. In the primed
condition, the joint has undergone some slip at non-zero normal stress, but now the contact is
stationary; the shear test is performed on this joint. The response for these two states to increasing
shear stress (Fig. 4) is significantly different. For the unprimed joint, the shear stress rises steadily
to the initial slip stress (analogous to the initial yield stress in solids), then rolls over to the steady-
sliding value, which remains essentially constant thenceforth. On the other hand, for the primed
surface, the shear stress rises steadily to the initial slip stress, then breaks over discontinuously to
the steady sliding value. Often, a peak in stress is observed, followed by a rapid decline to the
steady sliding value. The difference in response has been postulated to be due to inhomogenous,

6



08 08
PRIMED

0.6 06
5 n g0l 1—
o Al c|l o e A
004 Bo4
2 2
< <
Fo.2 a 0.21

0 . .
() 2 4 8 % 0.5 1 15 2
LOAD POINT SLIP (mm) LOAD POINT SLIP (mm)
0.8 0.8
UNPRIMED PRIMED vs UNPRIMED
< 0.6 < 08
o o
o4 ci/D Vo4 A D
=2 =2
< <
Fo.2 Fo2
% 05 1 15 2 % 0.5 1 15 2
LOAD POINT SLIP (mm) LOAD POINT SLIP (mm)

Figure 4: A stress-slip curve showing the different response for the same interface in the primed
and unprimed states. Loops labelled A through D have been isolated to illustrate the concept of
priming.

locked-in stress on the interface (Olsson, 1987b). In the Introduction, it was pointed out that peaks
in the stress-slip curve due to velocity weakening can lead to instabilities in slip. The type of peak
shown in Figure 4 is slip weakening and thus can also lead to instabilities.

The importance of primed versus unprimed joints lies in their different responses. By way of
illustration, compare the sliding behavior of an in situ joint that has undergone some amount of
shear during its history to that of the same joint cut out from its surroundings for either in situ or
laboratory testing. The shear stiffness (defined as the slope of the stress-slip curve after the onset
of slip) and strength of the tested joint will be less than its undisturbed counterpart, and the onset
of slip will be more gradual and less prone to sudden slippage. Further, stability related response
that may characterize the in situ, primed, joint will not be evident in data from the test specimem.

In geophysical applications, the concern centers around continual episodes of sliding separated
by periods of stationary contact. Because the normal stress, in the experimental program, was
approximately constant, the constitutive equations (2)—(10) seem to capture most of the important
phenomena. Although zero velocity is a particular history of velocity, it is not clear whether these
equations apply to loading of unprimed surfaces. It is important to explore this point because joints,
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Figure 5: The stress-slip curves at different sliding velocities for unprimed surfaces. All experi-
ments started at the same initial placement and at S MPa normal stress.

unlike faults, have not undergone large displacements.

3.1.1 Unprimed surfaces

To measure the effects of sliding velocity on the response of unprimed surfaces, the joint was slid
at a constant velocity to a preselected total slip, then the shear stress and the normal stress were
reduced to zero, and then the joint returned to zero slip. Next the normal stress was reapplied,
and the joint reloaded in shear and subsequently unloaded as before. This was repeated at each
desired velocity, always starting from the same relative position. Between each experiment, the
sample was cleaned of gouge with a blast of compressed air. In this way the effect of sliding at four
different velocities for an unprimed surface was measured. The velocities were varied by decades
from 0.1 pm/s to 100 um/s. The results are shown in Figure S.

The curves from experiments at lower velocities have a “fuzzy” aspect caused by digital noise,
and this is insignificant. Irrespective of velocity, each curve has the same shape. They all become
nonlinear in the neighborhood of x = 0.5 and then roll over to the steady friction within 0.0Smm of
slip. The steady friction is function of the velocity—the higher the velocity, the lower the friction.
These data are summarized below as “constant rate, unprimed” in Figure 7.

Because the joint remains in stationary contact while being loaded to slip at different velocities,
the initial (vertical) parts of the curves also represent displacement hold tests with differing hold
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Figure 6: The effect of sliding velocities (indicated in pm/sec) on a primed surface. Note the
differences between the way slip develops in these experiments with those of an unprimed surface
shown in Figure 1.

times on unprimed joints. It has been observed that friction increases during nominally stationary
contact of granite (Dieterich, 1972) and welded tuff (Teufel, 1981). Those tests were done in
the primed condition and, therfore, it is interesting to examine the possibility of time-dependent
strengthening for the unprimed surfaces as tested here. The hold times corresponding to load-point
velocities of 0.1, 1, 10, and 100 pm/s were, respectively, 7.75, 31.3, 172, 1203 seconds. These
hold times spanned the same range as those applied to a primed surface, as discussed in sections
3.2 and 4.2. The lack of any apparent effect of different hold times, especially the appearance of
a peak, is to be contrasted with the results presented below for slide-hold-slide experiments on a
primed joint.

3.1.2 Primed surfaces

Figure 6 illustrates the effects of different sliding velocities on a primed joint. At the beginning
(when the surface is unprimed) the stress increases and rolls over smoothly. At 0.1 mm of slip,
the shear stress was reduced to zero and again increased at the same rate (1 pm/s). This time, the
stress rises to a peak and then rapidly descends to the steady value. Each successive cycle on the
now primed surface shows a similar peak and distinct, lower, sliding stress that depends on the
applied velocity. Each vertical scgment represents unloading at the load-point velocity of 1 pm/s,
and loading at the new load-point velocity. Note that each loading phase is a hold-time test for
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Figure 7: Rate sensitivities of the steady-state friction coefficient for various initial conditions.

each of the different velocities for a primed surface. The response now is typical for loading of
primed surfaces—there exists a peak in the stress-slip curve, which decays rapidly with slip to a
steady-state value. The steady portion is rate dependent and these data are included in Figure 7 as
“constant rate, primed”.

Data from previous rate-stepping (as sketched in Figure 1) experiments (Olsson, 1987a, 1988a)
on dry surfaces, and new data from a surface submerged in room-temperature tap water are also
plotted in Figure 7. The rate-stepping experiments are by their very nature carried out on primed
surfaces. The greater friction for the wet surface compared to the dry surface was also found in
an earlier study on a different tuff (Teufel, 1982). It appears that the steady-state friction of an
unprimed surface is greater than that for a primed surface. An important aspect of Figure 7 is
the parallelism of the various lines. These data give a — b &~ 0.014 for smooth, bare surfaces of
Topopah Spring Member tuff; this is about 3 times that value observed for granites.

Another aspect of time-dependent joint slip is shown in Figure 8. Here the remote velocity
Vo is held at zero for different lengths of time after some sliding (Fig. 9). Between each test
Vo = 5um/s. The strengthening during displacement holds was suggested (Dieterich, 1972) to be
related to growth of asperity area during stationary contact. Ruina (1983), however, asserts that the
strengthening is a result of small amounts of slip that take place while the load point is stationary,
rather than the time during which the joint walls are in stationary contact. With regard to equation
(3), for Vo = 0, no evolution of state (strengthening) is predicted to occur. Dieterich (1981) used
a different formulation for W that does predict static strengthening. However, the data presented
here suggest that in the absence of nonzero load-point shear stress (unprimed), no siress peaks
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Figure 8: Variation of friction in a slide-hold-slide test. Note the stress-relaxation at each displace-
ment hold, and the transient strengthening.

reflecting time-dependent strengthening develop. If Ruina’s assertion is correct, then there must be
some very small amount of slip occurring in the primed, stationary phases. Evidently, the amount
of slip must be smaller than the slip resolution of the equipment used here (Fig. 8).

Both the static portions of the rate tests on an unprimed surface (Fig. 5) and on the primed
surface (Fig. 6) are accompanied by an increasing shear stress. Thus, one might expect some
microscopic slippage, which by Ruina’s argument should lead to peaked curves resulting from
strengthening. The lack of stress peak development in the unprimed surface condition, indicates
that there is something more to it. The main difference is that the rate tests on the primed surface
are preceded by a steady-state sliding phase that is not terminated by a momentary removal of the
normal stress. Thus, it appears that when the normal stress is allowed to go to zero, the memory of
that past slip history, which is reflected in ¥ = 0, is erased.

4 Creep

Creep is defined just as it is for solid materials: deformation (in this instance slip) at constant stress.
Creep tests were done on the surface in both initial states, unprimed and primed.

4.1 Unprimed Surface

A number of short-term (minutes to hours) creep tests at various stress levels were done on the
unprimed surface. The load-point displacement was increased until the corresponding shear stress
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Figure 9: The effect of displacement holds of various lengths on the strength.

increased to a preselected level where the control mode was switched to load; i.e., the load point
was maintained at constant load. No slip was recorded in any of these tests.

4.2 Primed Surface

Several creep tests conducted on a primed surface are shown in Figure 10. The small plot at the
top of the figure shows the entire test record. Starting in the unprimed condition at o = 5 MPa, the
joint was slid at a constant velocity to about 0.14 mm, where the displacement was put in hold and
the control mode switched to load. When the displacement was stopped, the stress relaxed, nearly
instantaneously, to a little less than 0.60. Thus, this represents a constant stress test at about 95% of
the sliding stress. No slip was observed in 2.5 hours, at which time the stress was raised to 0.6170
(about 99% of the slip stress). After something less than an hour, no creep was observed, so the
stress was raised to 0.623¢, or greater than the stress required for sliding under dynamic conditions
immediately preceding the creep experiments. Again, no creep was observed. Finally, the control
mode was switched back to displacement and was increased at the former rate causing the stress to
jump to 0.670c before slip reinitiated and the stress rapidly resumed its former value. Evidently,
microscopic slippage that occurs in association with the stress relaxation, leads to a strengthening,
a > 0, that actually prevents classical creep. In fact, at 4 = .623, one whould expect, based on
experience with creep of solids, accelerating creep.
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5 Conclusions

Rotary shear experiments at constant normal stress have been run on a smooth, artificial joint
in Topopah Spring Member tuff. In general, this rock behaves much like other silicate rocks
in its sensitivity to velocity changes and displacement history, but this program has highlighted
some new and relatively unexplored behavior. Two initial states, unprimed and primed exhibit
qualitatively and quantitatively different responses. The result that there are two limiting initial
conditions, primed and unprimed, indicates that inferring rock mass response from in situ or
laboratory properties could lead to errors without substantially improved understanding of the
initial conditions of real joints. It is important to differentiate between the continued deformation
of a joint that has been relieved of in situ stress from one that has not been.

In the steady-state friction regime, the slip behavior of this rock is well-described by the rate-
and state-dependent constitutive law. Fractures in a steady-state exhibit velocity weakening at
the low normal stresses used here, and b — a ~ 0.014. This type of constitutive reponse, in
combination with the relatively low modulus of the rock mass compared with intact rock, and
the well-known stress concentrations that occur in the vicinity of underground openings, suggests
that dynamic instabilities may manifest themselves in the form of acoustic emissions or, possibly,
higher amplitude events. These results indicate that acoustic monitoring of the repository may be
useful from a safety standpoint.

Short-term creep tests in both the primed and unprimed states show no time-dependent slip.
In the primed state, the shear stress to reinitiate slip after a nominal constant slip period, exceeds
the immediately preceding steady-state value. Thus, some mechanism, either time-dependent
strengthening of static friction, or friction increases due to microscopic slip as suggested by the
rate- and state-dependent frcition law, is preventing slip at constant stress.

The effect of submerging the joint in water shows that the friction is higher for wet joints than
dry ones, but that there is little difference in the trend or magnitude of the rate effect. Presumably,
this results from the fact that the largest changes due to moisture occur in the first fractions of
a percent of water content, and thus experiments run in the so-called laboratory air-dry (but still
in ambient humidity) condition already have the necessary water content to behave similarly to
saturated samples. Thus, conclusions based on air-dry samples will still pertain to joints in siru.
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APPENDIX

Information from the Reference Information Base Used in this Report
This report contains no information from the Reference Information Base.

Candidate Information
for the
Reference Information Base

This report contains no candidate information for the Reference Information Base.

Candidate Information
for the
Geographic Nodal Information Study
and Evaluation System

This report contains no candidate information for the Geographic Nodal Information Study and
Evaluation System.
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