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ABSTRACT

A smooth artificialjoint in TopopahSpringMember tuff was sheared at constantnormalstress
at velocities from 0 to 100 #m/s to determinethe velocity-dependence of shear strength. Two
different initial conditions were used: (l) unprimed--the joint had been shear stress-free since
last applicationof normal stress, andbeforerenewedshear loading; and (2) primeA--thejoint had
undergonea slip historyafter applicationof normalstress, but before the currentshear loading.
Observedsteady-staterateeffectswerefoundtobe about3 timeslargerthan forsome other silicate
rocks. Thesedifferentinitialconditions affectedthe characterof the stress-slipcurve immediately
afterthe onset of slip. Priming the joint causes a peak in the stress-slip response followed by
a transient decay to the steady-state stress, i.e., slip weakening. Slide-hold-slide tests exhibit

• time-dependent strengthening. When the joint was subjectedto constant shear stress, no slip was
observed; that is, joint creep did not occur. One set of rate data was collected from a surface

' submerged in tap water; the friction was higher for this surface, but the rate sensitivity was the
same as that for surfaces tested in the air-dry condition.



This report was prepared under the Yucca Mountain Project WBS number 1.2.3.2.7.1.4. The data
in this report was developed subject to QA controls in QAGR S1232714; the data is not qualified
and is not to be used for licensing.
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1 Introduction

The Topopah Spring Member of the Paintbrush Tuff within Yucca Mountain, Nevada, has been
, selected as a potential repository of high-level nuclear wastes. The Yucca Mountain Site Charac-

terization Project (YMP) of the Office of Civilian Radioactive Waste Managememnt (OCRWM)

Program has been assigned the task of determining the suitability of the Yucca Mountain site.
Among the concerns being investigated, the characterization of the mechanical properties of the
host rock has direct relevance to repository design, and to pre- and post-closure performance
assessment.

Licensing of a nuclear-waste repository by the Nuclear Regulatory Commission (NRC) requires,
among other things, demonstration of the long-term usability of the underground portion of the
repository. Such a demonstration involves analysis of the mechanical response of the rock mass to
the presence of underground openings and heat-producing waste over long periods of time. This
report presents data on the time-dependent properties of a fracture as measured in rate-stepping
andcreep experiments in support of design and preformance stability issues. The test material was
taken from a block of welded, devitrified Topopah Spring tuff (Price et al., 1987).

Mechanical discontinuities such as faults, bedding planes, or joints are important mechanical
constituents of most rock masses; they increase the compliance and decrease the strength of the
rock mass. Stress changes and slip-induced dilation can affect the contributions of mechanical
discontinuities to fluid permeability of the rock mass (Olsson, 1992; Olsson and Brown, 1993).
Furthermore, the constitutive response of joints in silicate rocks is of a type that can lead to
dynamic instabilities under a range of conditions. These instabilities are referred to as "stick-
slip" and manifest themselves in experiments as jerky sliding accompanied by stress drops. This
behavior on a larger scale is thought to be analogous to earthquakes (Brace and Byerlee, 1966). It
has been shown (Wong, 1992) that most mine seismicity, e.g., rock bursts and bumps, is due to slip
on geologic discontinuities. Further,it has been established that slip on joints in Grouse Canyon
welded tuff is accompanied by acoustic emissions (Holcomb andTeufel, 1982) and therefore it is
important to explain this aspect of time-dependent joint behavior of tuff.

For simplicity, the term "joint" is used throughout this report, but the results apply to any
interface in rock with vanishingly small tensile strength.

The shear resistance of a joint depends on the normal stress history across it, the sliding velocity
• history, the temperature, the roughness, and thepresence of water and gouge. It is generally accepted

that normal stress is the dominant factor controlling the shear strength of a given joint and that all
, other effects have second order influence. This report focuses on time- or rate-dependence. It is

important to understand that these effects, though lesser in magnitude of associated stress changes,
can have important consequences. For example, it has been established that the details of the
rate-dependence part of the constitutive description can either enhance or suppress instabilities in
slip (Gu, et al., 1984; Rice and Ruina, 1983; Ruina, 1983). As such, these rate effects have a direct
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Figure 1: Definitionsketchforconstitutiveparametersa, b,andL. Theimposedload-pointvelocity
is such thatV. < V.

bearingonmineseismicity.

Constitutiveequationdevelopmentforthetime-dependentslipofinterfacesatinvariablenormal
stressislimitedatthistimetoencompassingtheeffectsofvelocity,thehistoryofvelocityandthe
stateofthesurface.Thetheoryispurelyphenomenologicalinthatnounderlyingphysicalprocess
has been identified thatpredicts theresponse.

1.1 Review of the Constitutive Equations

The resistance to slip r is coupled to the normalstress¢ to dominantorderthroughthe coefficient
of friction # accordingto the slip condition

_"-/=_< O. (I)

When the net shearstress r -ft¢ is less thanzero thereis no slip. Whenabsoluteequalityholds, the
rateeffects enterthe problem.Whethercreepwill occurfor r - per< 0 is notyet well-documented.
Thisreportpresentsresultsof severalshort-termcreep tests, andthisissue isnow being investigated
in long-term (about 3 months)creep tests. Whenthe net shearstress on ajoint is less than zero,
the rock mass responsein shearis approximatelythe sameas that of the intactrock.

There are twoclasses of frictionalconstitutivelaws: slip-dependence(oftenreferredto as slip-
weakening)and rate- and state-dependence. Slip-dependencelaws embody monotonic surface
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evolution that may be relatedto damage accumulation. These laws have the defect that there is
no explicit rate-dependenceand observedrepeatedinstabilitiesare not predicted. The rate- and
state-dependencelawcan predictrepeatedbehavior,butmay notbe appropriateforthe initial stages
of slip when strongsurfaceevolutionto a steady-statetakesplace. Fracturebehaviorspansboth

• types of description. In general terms, frictionalslip has elements of bothdiscrete memory(sfip-
dependence)and fadingmemory(rate-andstate-dependence)of paststress and velocity (Olsson,
1987b).

The rate effects described hereinate best discussed within the context of the rate- and state-
dependencemodel. Experimentalworkof Dieterich(1972, 1978, 1979)followed byRuina(1980,
1983)andDieterich(1981) led to the developmentof the currentlyacceptedformulationforeffects
of sliding velocity history and time onjoint hehavior(Ruina, 1983;Rice andRuina, 1983). Rice
and his coworkers(Gu et al., 1984; Rice and Gu, 1983) implementedthe constitutive equations
into predictivestability analyses. Tullis and Weeks(1986) gave an accountof results fromrotary
shearexperimentson granitewithintheframeworkof this theory.

The constitutive model is based on observed changes in friction during and immediately
following abruptchanges in velocity. The state of the surface is included throughtime-evolving
state variables.The basic equationsdescribingthis rate-and state-dependentbehaviorat constant
normalstressand whenthe slip conditionis satisfied(1) are:

= + b,'e,+  lnCV/V.), (2)
,ldt = -(V/L,)[W,+ (3)

In these equations, V is the sliding velocity, _i are state variablesthat evolve with time, p. is
the friction at an arbitraryreference velocity V,. The parametersa and bi are constants to be
determined, and the Li are the distances overwhich the _Fdevolve. A simpleexperiment,such as
shown in Figure 1, providesall the parameters.

Differentiationof the constitutiveequations,simplified to one state variable (i = I), leads to
the following definitionsof the variablesa, b, andL (Fig. 1):

= a (4)
Oln V ,v

dp°°
= a-b (5)

dln V

' --0 1 = (6)
Oz Iv L

Thus, a is the instantaneousresponsefollowing a jump in the velocity, and a - b measuresthe
difference between the currentandformer steady-statevaluesof friction.The steady-statefTiction,
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Figure 2: Springand block analogue to sliding of laboratory-sizedjoint. Vo is the load-point
velocity imposed by the loadframe,r is the resistingsheartraction,and V is the velocity of the
block.

W =0, is
= + - b) a(v/v.). (7)

If/_°° < #., then the response is said to be velocity weakening and a - b < 0. If #" >/_,, then
the response is said to be velocity strengthening and a - b > 0. The type of response observed for
silicate rocks depends on the normal stress--low normal stress promotes stick-slip behavior, and
high normal stress promotes velocity strengthening. Blanpiedet al. (1987) have found that for l_
greater than about 100/_m/s, a - bbecomes positive, implying stability. Elevated temperatures
also can promote stable response (Blanpied etal., 1991). It is not clear whether the state changes,
d_F# 0, when the surfacesare in stationarycontactto begin with, that is, when the previous steady
state is actuallythe zerovelocity history(V = 0, for allprevioustime). Theevolutionof _Pis clear
when the firstand second steady-statesare at finite velocities, butif V. = Ofor a long time, does
the state change?

Joints are interfaces embedded in a deformable medium and as such do not necessarily slide
over their whole extent simultaneously. Therefore, inhomogeneous slip may be important in the
field and in the laboratory (Olsson, 1984). Rice (1983) has shown that the inhomogeneous slip
regime associated with the advancing slip zone boundary is of the order of 1 metre. For the
rotary shear configuration in particular, it has been shown that slippage is essentially uniform
(Olsson, 1987b). Evidently, for normal laboratory sampledimensions, it is permissible to interpret
laboratory friction data in terms of a rigid block being slid over a smooth surface by a force pulling
on a spring connected to the block (Fig. 2).

The force, displacement, and velocity _ at the distal end of the spring arecalled the load-point
values. In the load frameusedin this investigation,the torqueand angulardisplacementareapplied
at one end of the loadingcolumnwhile the jointis at the other.Thus,constantdisplacementrates



are applied through the elastic loading column, and because of the finite stiffness of the column
there may be a difference in the velocity of sliding and the applied velocity, Vo- V. This compliant
load application is similar to a joint being loaded by the surrounding compliant rock and, in this
sense, the laboratory experiment simulates nature. The difference in load-point velocity compared

, to joint-wall relative velocity emphasizes the importance of separating constitutive response of the
joint from the loading-system response.

The spring-block system is described by

dr

d_ = k(Vo- V) (8)

where k is the spring constant, Vo is the velocity at the load point, and V is the velocity of the
block. If the system unloading stiffness k is such that

b-a

k < ---_, (9)

then the system will be prone to instablility in the form of jerky slipping and sudden stress
drops (Dieterich, 1978). This shows how the value of the constitutive parameters b and a when
combined with the properties of the loading system are important to stability. Natural joints will
have different properties depending on geometric factors, mainly the roughness and degree of
interlocking of adjacent joint waUs. A different problem not considered here is the effect of gouge
on the behavior of joints. Because the response of a joint depends on some convolution of the
basic smooth-surface friction with its topographic properties, it is most illuminating to measure the
magnitude of the effects of the variables on the smooth rock surfaces first, and then introduce the
very complicated problem of surface roughness. The focus here is on the effects of sliding velocity,
the history of the velocity, and the initial state of the sliding surface on strength of smooth surfaces.

2 Experimental Technique and Sample Preparation

The results reported here were obtained in rotary shear experiments (Christensen et al., 1974;
Kutter, 1974; Olsson, 1987ab, 1988ab, 1990, 1992; Xu and Frietas, 1988; Tullis and Weeks, 1986;

Weeks and Tullis, 1985; Yoshioka and Scholz, 1989). In this type of experiment, the sample is
composed of two, short, hollow tubes of rock that are pressed together under controlled load, and
then torque is applied to cause sliding on the interface (Fig. 3). Further details may be obtained
from (Olsson, 1987a).

The sample used in this study was sawed, then ground fiat and perpendicular to the cylinder
axis. Outside and inside diameters were 88.9 mm and 50.8 mm, respectively. The short (approx.
50 ram) cylinders were cemented to metal disks with epoxy, and then reground to ensure that the
joint was parallel to the surfaces of the metal disks. The joint surfaces were then sandblasted to



Figure3: Sampleconfigurationforrotaryshearexperimentson joints.

a dull finish. Before the experiments,the joint was slid backand forthunder low normalstress
of around1 MPa to "run-in" the surface. This procedurestabilizes the stress-slipresponse loops
and makes them reproducibleundernominally identical test conditions. The experimentswere
performedon clean surfaces that hadbeenrun-in. In thisreport,the terms "mean slip" and "slip"
areused interchangeablyfor angle of rotationin radianstimes (Do + Di)/4, where Do and Di are
the outerandinner diameters,respectively.Theload-pointslipwas correctedto slip by subtracting
r/(unloading slope) from the measured displacements. This differencein the stress-slip reponse
when using these two measurescan be seen by comparingthe initial loading portionof the curves
in Figures4 and 5.

3 Results and Discussion

3.1 Theeffect of VelocityChangesat ConstantNormalStress

It had been foundin earlierstudiesontuff (Olsson, 1987a,1988b)that thereexist two recognizable
initial conditionsforsmooth, topographicallyuncorrelatedsurfacesunderthe same test conditions:
unprimed andprimed. To create the unprimedinitial condition,the initially separatedjoint walls
arebroughttogether andnormal stressis applied;then the sheartest is performed. In the primed
condition, the joint has undergonesome slip at non-zero normalstress, but now the contact is
stationary;the sheartest is performedon thisjoint. Theresponsefor thesetwo states to increasing
shearstress (Fig. 4) is significantlydifferent.For the unprimedjoint, the shearstressrises steadily
to the initial slip stress (analogous to the initial yield stress in solids), then rolls overto the steady-
sliding value, which remainsessentiallyconstantthenceforth. On the other hand, for the primed
surface,the shearstress rises steadilyto the initialslip stress, then breaksoverdiscontinuouslyto
the steadysliding value. Often, a peak in stress is observed,followed by a rapiddecline to the
steady sliding value. The differencein responsehas been postulatedto be due to inhomogenous,
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Figure 4: A stress-slip curve showing the different response for the same interface in the primed
and unprimed states. Loops labelled A through D have been isolated to illustrate the concept of
priming.

locked-in stress on the interface (Olsson, 1987b). In the Introduction, it was pointed out that peaks
in the stress-slip curve due to velocity weakening can lead to instabilities in slip. The type of peak
shown in Figure 4 is slip weakening and thus can also lead to instabilities.

The importance of primed versus unprimed joints lies in their different responses. By way of
illustration, compare the sliding behavior of an in situ joint that has undergone some amount of
shear during its history to that of the same joint cut out from its surroundings for either in situ or
laboratory testing. The shear stiffness (defined as the slope of the stress-slip curve after the onset
of slip) and strength of the tested joint will bc less than its undisturbed counterpart, and the onset
of slip will bc more gradual and less prone to sudden slippage. Further, stability related response
that may characterize the in situ, primed, joint will not be evident in data from the test specimcm.

In geophysical applications, the concern centers around continual episodes of sliding separated
by periods of stationary contact. Because the normal stress, in the experimental program, was
approximately constant, the constitutive equations (2)-(10) sccm to capture most of the important
phenomena. Although zero velocity is a particular history of velocity, it is not clear whether these
equations apply to loading of unprimed surfaces. It is important to explore this point because joints,
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Figure 5: The stress-slipcurvesat differentsliding velocities for unprimedsurfaces. All experi-
ments started atthe same initial placementandat 5 MPanormalstress.

unlike faults, have not undergonelargedisplacements.

3.1.1 Unprimed surfaces

To measuretheeffects of slidingvelocity on the responseof unprimedsurfaces,thejoint _¢asslid
at a constantvelocity to a preselectedtotal slip, then the shearstress and the normal stresswere
reduced to zero, and then the joint returnedto zero slip. Next the normal stress was reapplied,
and the joint reloadedin shearand subsequentlyunloadedas before. Thiswas repeatedat each
desired velocity, always startingfrom the same relative position. Between each experiment, the
samplewas cleaned of gouge with a blastof compressedair. In thisway theeffect of sliding atfour
differentvelocities for an unprimedsurfacewas measured. The velocities werevariedbydecades
from 0.1 _m/s to 100 #m/s. The resultsareshown in Figure 5.

The curvesfrom experimentsatlowervelocities have a "fuzzy" aspectcaused by digitalnoise,
and this is insignificant. Irrespectiveof velocity,each curvehas the same shape. They all become
nonlinear in the neighborhoodof p = 0.5 andthen rolloverto the steadyfrictionwithin 0.05mmof
slip. The steady frictionis functionof the velocitywthe higher the velocity,the lower the friction.
These dataare summarizedbelow as "constantrate,unprimed"in Figure 7.

Becausethejoint remainsin stationarycontactwhile beingloaded to slipatdifferentvelocities,
the initial (vertical)parts of the curves also representdisplacementholdtests with differing hold
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Figure 6: The effect of sliding velocities (indicated in #m/see) on a primed surface. Note the
differences between the way slip develops in these experiments with those of an unprimed surface

shown in Figure 1.

times on unprimed joints. It has been observed that friction increases during nominally stationary
contact of granite (Dieterich, 1972) and welded tuff (Teufel, 1981). Those tests were done in
the primed condition and, therfore, it is interesting to examine the possibility of time-dependent
strengthening for the unprimed surfaces as tested here. The hold times corresponding to load-point
velocities of 0.1, 1, 10, and 100 #m/s were, respectively, 7.75, 31.3, 172, 1203 seconds. These
hold times spanned the same range as those applied to a primed surface, as discussed in sections
3.2 and 4.2. The lack of any apparent effect of different hold times, especially the appearance of

a peak, is to be contrasted with the results presented below for slide-hold-slide experiments on a
primed joint.

3.1.2 Primed surfaces

Figure 6 illustrates the effects of different sliding velocities on a primed joint. At the beginning
(when the surface is unprimed) the stress increases and rolls over smoothly. At 0.1 mm of slip,
the shcar strcss was reduced to zero and again increased at the same rate (1 pro/s). This time, the

• stress rises to a peak and then rapidly descends to the steady value. Each successive cycle on the

now primed surface shows a similar peak and distinct, lower, sliding stress that depends on the
applied velocity. Each vertical segment represents unloading at the load-point velocity of 1 #m/s,
and loading at the new load-point velocity. Note that each loading phase is a hold-time test for
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Figure 7: Rate sensitivities of the steady-statefrictioncoefficientfor variousinitial conditions.

each of the differentvelocities for a primed surface. The responsenow is typical for loading of
primed surfacer--there exists a peak in the stress-slipcurve,which decays rapidly with slip to a
steady-statevalue. The steady portionis ratedependent andthese dataare includedin Figure7 as
"constantrate,primed".

Datafrompreviousrate-stepping(assketched in Figure1)experiments(Olsson, 1987a, 1988a)
on dry surfaces,and new data from a surfacesubmergedin room-temperaturetap water are also
plottedin Figure7. The rate-steppingexperimentsareby their very naturecarriedout on primed
surfaces. The greaterfriction for the wet surfacecomparedto the dry surfacewas also found in
an earlierstudy on a differenttuff (Teufel, 1982). It appears that the steady-state friction of an
unprimed surface is greater than that for a primedsurface. An importantaspect of Figure7 is
the parallelism of the variouslines. These data give a - b m,0.014 for smooth, bare surfacesof
TopopahSpringMembertuff; this is about3 times that valueobservedfor granites.

Another aspect of time-dependentjoint slip is shown in Figure 8. Here the remote velocity
Vo is held at zero for differentlengths of time after some sliding (Fig. 9). Between each test
16 = 5/_m/s. The strengtheningduringdisplacementholds was suggested (Dieterich, 1972) to be
relatedto growth of asperityareaduringstationarycontact. Ruina(1983), however,assertsthat the
strengthening is a result of small amountsof slip thattakeplace while the load point is stationary,
ratherthan thetime duringwhich the joint walls arein stationarycontact. Withregard to equation
(3), for 16 = 0, no evolution of state (strengthening)is predicted to occur. Dieterich (1981) used
a different formulationfor q' that does predict static strengthening. However, the data presented
here suggest that in the absenceof nonzeroload-point shear stress (unprimed),no stress peaks

10
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Figure 8: Variation of friction in a slide-hold-slide test. Note the stress-relaxation at each displace-
ment hold, and the transient strengthening.

reflecting time-dependent strengthening develop. If Ruina's assertion is correct, then there must bc
some very small amount of slip occurring in the primed, stationary phases. Evidently, the amount
of slip must bc smaller than the slip resolution of the equipment used here (Fig. 8).

Both the static portions of the rate tests on an unprimed surface (Fig. 5) and on the primed
surface (Fig. 6) are accompanied by an increasing shear stress. Thus, one might expect some
microscopic slippage, which by Ruina's argument should lead to peaked curves resulting from
strengthening. The lack of stress peak development in the unprimed surface condition, indicates
that there is something more to it. The main difference is that the rate tests on the primed surface
are preceded by a steady-state sliding phase that is not terminated by a momentary removal of the
normal stress. Thus, it appears that when the normal stress is allowed to go to zero, the memory of
that past slip history, which is reflected in _F= O,is erased.

4 Creep

Creep is defined just as it is for solid materials: deformation (in this instance slip) at constant stress.
Creep tests were done on the surface in both initial states, unprimed and primed.

• 4.1 Unprimed Surface

A number of short-term (minutes to hours) creep tests at various stress levels were done on the
unprimed surface. The load-point displacement was increased until the correspondingshear stress

ll
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Figure9: The effect of displacementholds of variouslengthson the strength.

increasedto a preselectedlevel where thecontrol mode was switched to load; i.e., the load point
was maintainedatconstantload. No slip was recordedin anyof thesetests.

4.2 Primed Surface

Severalcreep tests conducted on a primedsurfaceareshownin Figure 10. The small plot at the
topof the figure shows the entiretest record.Startingin theunprimedconditionat _r= 5 MPa, the
joint was slid at a constantvelocity to about0.14 mm,wherethedisplacementwas put in holdand
the controlmode switchedto load. Whenthe displacementwas stopped,the stress relaxed,nearly
instantaneously,to a littleless than 0.6_r.Thus, thisrepresentsaconstantstress test atabout95% of
the slidingstress. No slip was observedin 2.5 hours,atwhichtime the stress was raisedto 0.617¢
(about99%of the slip stress). After somethingless than an hour, no creepwas observed, so the
stress was raised to 0.623_, or greaterthanthe stressrequiredforsliding underdynamicconditions
immediatelyprecedingthe creepexperiments.Again,nocreep was observed. Finally,the control
modewas switchedbacktodisplacementand was increasedat the formerratecausing the stress to
jump to 0.670_ beforeslip reinitiatedandthe stress rapidlyresumedits formervalue. Evidently,
microscopicslippagethat occurs in associationwith thestress relaxation,leads to a strengthening,
a > 0, thatactuallypreventsclassical creep. In fact, at/_ = .623, one whouldexpect, based on
experiencewith creep of solids, acceleratingcreep.

12
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5 Conclusions

Rotary shear experiments at constant normal stress have been run on a smooth, artificial joint
in Topopah Spring Member tuff. In general, this rock behaves much like other silicate rocks
in its sensitivity to velocity changes and displacement history, but this program has highlighted
some new and relatively unexplored behavior. Two initial states, unprimed and primed exhibit
qualitatively and quantitatively different responses. The resultthat there are two limiting initial
conditions, primed and unprimed, indicates that inferring rock mass response from in situ or
laboratory properties could lead to errors without substantially improved understanding of the
initial conditions of real joints. It is important to differentiate between the continued deformation
of a joint that has been relieved of in situ stress from one that has not been.

In the steady-state friction regime, the slip behavior of this rock is well-described by the rate-
and state-dependent constitutive law. Fractures in a steady-state exhibit velocity weakening at
the low normal stresses used here, and b - a _ 0.014. This type of constitutive reponse, in
combination with the relatively low modulus of the rock mass compared with intact rock, and
the well-known stress concentrations that occur in the vicinity of underground openings, suggests
that dynamic instabilities may manifest themselves in the form of acoustic emissions or, possibly,
higher amplitude events. These results indicate that acoustic monitoring of the repository may be
useful from a safety standpoint.

Short-term creep tests in both the primed and unprimed states show no time-dependent slip.
In the primed state, the shear stress to reinitiate slip after a nominal constant slip period, exceeds
the immediately preceding steady-state value. Thus, some mechanism, either time-dependent
strengthening of static friction, or friction increases due to microscopic slip as suggested by the
rate- and state-dependent frcition law, is preventing slip at constant stress.

The effect of submerging the joint in water shows that the friction is higher for wet joints than
dry ones, but that there is little difference in the trend or magnitude of the rate effect. Presumably,
this results from the fact that the largest changes due to moisture occur in the first fractions of
a percent of water content, and thus experiments run in the so-called laboratory air-dry (but still
in ambient humidity) condition already have the necessary water content to behave similarly to
saturated samples. Thus, conclusions based on air-dry samples will still pertain to joints in situ.
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APPENDIX

Informationfrom the ReferenceInformationBase Used in this Report

Thisreportcontainsno informationfrom the ReferenceInformationBase.

CandidateInformation
for the

ReferenceInformationBase

This report contains no candidate information for the Reference Information Base.

Candidate Information
for the

Geographic Nodal Information Study
and Evaluation System

This report contains no candidate information for the Geographic Nodal Information Study and
EvaluationSystem.
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