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1. Maultiple Regression

Regression is a method for modeling a set of response variables ¥; (1 < i < g) as
functions of a set of predictor variables X; (1 € j < p) based on matched observations
(training data).

Yiks Y2k, - Ygkyr Tiky T2k, " Tpk (0)

Often there is only a single response variable (g = 1). Usually the goal is to estimate

the conditional expectation of each Y; given a set of values for the predictor variables

(zlyz%" 'zp)

A

},i(zlsZZ)"'rzp)=E[}’i|Xl=z1sX2=z2a"')XP=zP] (IS‘SQ)) (1)

as the predictor variable values range over some region of interest in R?. These conditional
expectation estimates are then used as best guesses for the true underlying response values

assuming that the observed responses were generated from a noisy process
Yi = gi(X1, X3, Xp) + 60 (1S4<9) (2)

where the g; are single valued functions of p variables and ¢, is a random variable with zero
expectation. The conditional expectations f/.'(x,,zg, --+,zp) can be regarded as estimates
for the gi(zlaz%' : 'sz) (1 <1< q)

The classical linear model expresses the Y; as linear functions of the predictor variables
N P
=1

where the values of the a;; are chosen to be those for which the expected distance between
Y; and f’. is minimized. Several different distance measures are in common use, but the

most common is the Euclidean
Lo(aio - - aip) = Ey x|Yi - Yi]>. (3)

The resulting estimates are termed least-squares estimates.
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Recently Friedman and Stuetzle (1981) suggested an extension to the basic linear

model (termed PPR for Projection Pursuit Regression). It has the form

M;
Vi(zi - 2p) = D fim(alnz) (4)
m=1
with
~ (4
ainz=) o))z (5)
j=t '

and the f;,, single valued (ridge) functions of a single variable. Instead of modeling each
response as a linear combination of the predictor variables (as in linear regression), PPR

models each one as a sum of functions of linear combinations of the predictor variables.

The parameters of the linear combinations a,’-;n as well as the functions f;,, are chosen to
simultaneously minimize the expected distance between Y; and ¥;. Friedman and Steutzle

(1981) proposed an algorithm for approximately minimizing
Ly(of --- el fu -~ fin)) = ElYs = V%,

with ¥; given by (4). They also proposéd a forward stagewise procedure for choosing M;.
PPR can be expected to perform better than linear regression in those situations where
there are substantial nonlinearities in the dependence of the responses on the predictor
variables, especially if the nonlinearities are approximated reasonably well by a few ridge
functions (functions that vary in only one direction in R?). PPR approximations are dense
in the sense that any function of p variables can be arbitrarily closely approximated by
ridge function expansions (4) for large enough M; (Diaconis and Shashahani, 1984).

PPR was originally intended for (and presented in the context of) a single response
variable (¢ = 1). For the case of several responses (g > 1) PPR models (4) can be
cumbersome due to the large number of functions and linear combinations involved. Also,
the variance associated with estimating this many functions and parameters can be high
for all but very large samples, due to overfitting.

This paper presents a generalization of the PPR model suitable for multiple response

regression. This generalization (termed SMART for Smooth Multiple Additive Regression
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Technique) takes the form

M
Vi(zi - 2p) =YVi+ ) Bimfm(enX) (1<i<q). (6)
m=1

with Y; = EY;, Efm = 0, Ef2 = 1 and af,a,, = 1. Here each response variable
is modeled as a linear combination of predictor functions fp, (1 £ m < M). Each of
these predictor functions is a (smooth but otherwise unrestricted) ridge function in the
predictor variables, i.e. a function of a linear combination of the predictors. An algorithm

is presented for minimizing

q
Lz(ﬁf---ﬁ{,,f;-~~fu,af---a§4)=ZW.-Em—ff.~12 (7

=1
with respect to the response linear combinations BT = (Bim ‘- Bem), the predictor linear
combinations al = (@im ‘- @pm), and the functions f, (1 < m < M) with Y; given by
(6). The (non-negative) response weights W; (1 < 1 < g), specified by the user, bermit
some flexibility in the specification of a loss metric (see below). (It is possible to specify a
more general quadratic form for the response loss metric than (7); this would be represented
by a general positive definite symmetric matrix.)

SMART models (6) contain PPR models (4) as a special case. They often can be much
more parsimonious however, by capturing the dependence of the response variables with
many fewer functions. This is especially true when there is a high degree of association
among the responses. For the case of a single response (¢ = 1) both models have the same
form. They differ, however in that SMART chooses estimates that minimize (7) whereas
PPR chooses the of, (1 < m < M) in a forward stagewise manner. This can result in
considerably different models, especially when there are strong associations among the
predictor variables.

Expected values are computed from the data as
N N
E[Z]= Zwkzk/z:wk (8)
k=1 k=1
where Z is considered to be a random variable and zx (1 < k < N) are its realized values

comprising the data. The observation weights wy, specified by the user, can be employed to
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assign differing mass to different observations. They can also be used to impiement iterative
reweighting schemes for robustification or approximate maximum likelihood fitting.

As with any distance measure, the squared error loss criterion (7) is sensitive to the
relative scales of the response variables Y;. The influence of each response is in proportion
to its variance var(Y;). If the goal is to give each response equal importance in the loss
function (7), then one can set Wy = 1/ var (Y;) or rescale the response variables to have
equal variance.

2. Classification.

Classification is closely related to regression. Here a single response variable Y assumes
several categorical (unorderable) values (cy,¢3,- -+, ¢q). The loss criterion is usually taken

to be the misclassification risk
q

R=E[min Y L;p(i| X, X, Xp)] (9)

1<5<q 4

s=1

where l;; is the (user specified) loss for predicting Y = ¢; when its true value is ¢; (Ii;; = 0).
The conditional probability p(1 | Ty z,) is the probability that Y = ¢; given a particular
set of values for the predictor variables z; ---z,. The sum in (9) is simply the loss for
predicting Y = ¢, given a set of predictor values. The minimization operation provides a
decision rule that minimizes this loss at each set of predictor values. The risk is then the
expected‘ or average loss using this optimal decision rule. The art of classification is to find
estimates of the conditional probabilities that minimize the misclassification risk.

Defining category (class) indicator variables for each observation k as

how = lifye=¢; 1<k<N
* = lOotherwise 1<i<g

one has

. ﬂ'.'S
p(zlzl---zp)=—s_—E'[H,-Izl---zp] (10)

N
with ; the unconditional (prior) probability that Y = ¢; (H; = 1), 8 = Z wrb(yk, ¢i),
) k=

and

q
S = Z 8;. Here § is the Kronecker delta function

=1

lifa=5
5(a,b) =
(a,4) { 0 otherwise.
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Substituting (10) into (9) one has

q
. milis A
R= E[xxsnfgqs.ex 8¢ BUH: | Xy X]] ()

From this one sees that the optimal decision rule for a given set of predictor values z, - -- z,
is to assign Y = c;- where J* is the integer value (1 £ J* < g) that minimizes the sum in
(11).

When the prior probabilities 7; (1 < 1 < g) are unknown, they can be estimated from
the data as #; = ;/S. Often the losses I;; are taken to be simply l;; = 1 — §(¢,7). When
both of these situaticns occur the misclassification risk reduces to simply the misclassifi-
cation probability.

SMART models the condition expectations {10, 11) in the form given by (6). Ideally
the parameter and function estimates should be chosen using the misclassification risk R
(11) as a distance measure.. However, as discussed in Breiman, Friedman, Olshen and
Stone (1983) (see also Efron, 1978), this can lead to difficulties due to the non-convexity
of R (11). A good surrogate is the Euclidean distance L, (7) with

W; = lij. (12)

1

Sm;
8 “—

J

3. Optimization of least squares criterion for SMART models

This section discusses the minimization of Ly (6, 7) simultaneously with respect to
aim (1 €7 £ p),Bim (1 £1<q) and the functions fm (1 < m < M) for a given number
of terms M. (A method for choosing M is discussed in the next section.) An alternating
optimization strategy is used. The parameters are grouped such that the solution for
those in each group is straightforward given fixed values for those outside the group. A
solution is obtained for the variables in a group and these solution values replace their
current values. Attention is then focused on the next group and this process repeated for
its parameters. After solutions have been obtained for all groups of parameters, another
pass is made over the groups obtaining new solution values, given the new values for the
parameters outside each group that were obtained in the previous pass. These passes are

repeated until the loss criterion L, (7) fails to decrease on two consecutive passes. Usually
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a threshoid ¢ is set at a small value and if improvement on two consecutive passes is less
than ¢, iterations are stopped and the parameter values at that point taken as the solution.
Since at each step in this process L, is made smaller through a partial minimization, and
L; > 0, the alternating optimization must converge (provided e is large compared to the
numerical accuracy of the computer’s arithmetic). However, there is no guarantee that the
solution is the global minimum of L. It may be a local minimum. Strategy for dealing
with this problem in the context of SMART modeling is discussed in the-next section.

The narameter gronping used in the SMART
parameter grouping used in the SMAKRI

»

- a s i

g lgorithm is hierarchical. The first level

grouping is by term. The parameters o, (1 < j

IA

p); Bim (1 <1 < gq) and the function
fm (for fixed m) form each group. There are obviously M such groups. At the second
level the parameters of each term are divided into three groups: the a,,, (1 < j < p) form
the first (sub) grouping, the B;m (1 < 1 < g) form the second and the function f,, forms
the third.

Consider a particular term, k (1 < k < M). The loss criterion (6, 7) can be reexpressed

as
q
Ly = LY = " Wi ElRik) — Pirfu(of X)P? (13)
=1
with
Ry =Y =Yi= ) Bimfm(cbX) (14)
m#£k

Equation 13 isolates the ktk term’s contribution to the criterion. Following the alter-
nating optimization strategy we minimize L, (Lgk)) with respect to the parameters of the
kth term. These parameter values are then used to help define R;(x),k’ # k, to obtain
new solutions for the parameters of other terms. Repeated passes are made over all the
terms until convergence (L, stops decreasing—see above).

We now focus on obtaining solutions for the parameters of the kth term given Ry,

(14). The solutions for the Bix (given fx and o) are straightforward

E[Riwx) fi(of X)]
E[fi(a X))

Bix = (1<i<yq) (15)

(Remember that E[R;x)] = E[fx(af X)] = 0).
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The solution for the function fi (given BF and of ) is almost as easily obtained.
Reexpressing L(zk) (13) as

q

L = E,rx E[D_ Wi(Rik) — B fi)? | ok X], (16)

=1

we see that it is minimized if fx is chosen to minimize the conditional expectation in 16

for each value of af z. This is accomplished by

- q q
filafz) = E[_ Wi Riw) | af=]/ D Wibl | (17)
=1 =1
Since we require E fr = 0 and EfZ = 1, we standardize f;, rendering the denominator in
(17) irrelevant.

It remains to find a solution that minimizes Lgk) (13) with respect to af = (a1,
azk, - - apk) given values for B (1 <i<g)anda (fixed) function fx. Unlike the other
parameters (7 and fk), aF does not enter in a purely quadratic way into the distance
criterion. Therefore, solutions may not be unique, and they cannot be obtained in a_single
step. An iterative numerical optimization must be performed.

The loss criterion Ly (6, 7, 13) can be expressed in the generic form

Ly (ax) = EW E[gi(a)] (18)

with
gi(ak) = (Rik) — Pir fi(ak X)) (19)

The classical numerical optimization technique for criteria of the form (18) is the Gauss-
Newton method (see Gill, Murray and Wright, 1981, Section 4.7). Let a(O)T

(a k1 ,aﬁ)) be a trial set of values at some point during the optimization. The Gauss-
Newton estimate for the solution af (the next set of trial values in the iterative process) is

of = a\97T + AT where the vector A7 is the solution to the set of simultaneous equations

q ‘ ) g .
S WE[GEY (35 )]a = - Y W) e (20)

6ak aak



The function g; and the vector of partial derivatives are evaluated at a}co). From (19) one

has

dg;
S (af?) = ~Bufu(afT )X (21)

where f'(z) = df /dz. After solving (20) for A, ajx replaces afco) and the process can be
repeated until convergence (L3 stops decreasing).

It is possible that a Gauss-Newton step fails to decrease L, (Zg(aio) +4) > Zg(af))).
In this case the step is cut in half (ax = a}‘o) + A/2). If this new step still results in an
increase in L, the step is cut again (ax = afco) + A/4). This repeated cutting of the step
is continued until Ly decreases. Since the matrix on the left-hand-side of (20) is positive
definite, A = A/ | A | is a valid descent direction and at some point the step cutting must
give rise to a decrease in L (unless a;:o) represents a minimum of L).

The nonparametric estimates for the the functions fi(af z) are stored as an ordinate
and abscissa value for each observation. The derivative estimates fi({af z) are similarily
stored (see below). These values are obtained when fi(af z) is evaluated (17). When
a£°)T is changed to af (via Gauss-Newton update), an interpolation scheme must be
employed to obtain values for fi(of z) from fk(a;‘o)Tz). This interpolation is almost as
expensive as obtaining the optimal function for the new argument of z. We, therefore, do
not iterate the Gauss-Newton stepping until convergence for a given function, but rather
take only a single step. A new (optimal) function f; [(aﬁo)r + AT)z] (17) is evaluated, and
the next Gauss-Newton step (19-21) is made based on this new function. Step cutting, as
described above, is employed for bad steps. In this way both the function and the predictor
linear combination for the k — th term are simultaneously optimized by the Gauss-Newton
iteration procedure. ' '

The expected values E[| are easily evaluated via (8). The conditional expectation
estimates (17) for evaluation of the optimal functions are more difficult. The method used
here is described in detail in Friedman (1984a). The derivative estimates (21) are made

by taking first differences of the function estimates

[fi(af zi41) = felof zi_y)]
af(zlﬂ - z_)

filakz) = (2<ISN-1) (22)
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where the z; are labeled in increasing order of afz. Endpoinis (I = 1 and { = N)
are handled by simply copying the values of their nearest neighbors. Such estimates can
become unstable if the denominator becomes too small. This can be avoided by pooling

observations for which
lag(zi—zv) | <el (1<4LI'<N) (23)

into a single observation for the purpose of derivative calculation. Here I is the semi-
interquartile range of af z and ¢ is a small number (e = 0.05). This pooling can be done
rapidly by using a method similar to the pooled-adjacent-violators algorithm for isotone

regression (Kruskal, 1964).

4. Modeling Strategy

The principal task of the user is to choose M (6) the number of predictive terms com-
prising the model. Increasing the number of terms decreases the bias (model specification
error) at the expense of increasing the variance of the (model and parameter) estimates.
Since the expected squared error, ESE, is the sum of these two effects - ESE = (bias)? +
variance, there is an optimal value for M. Sample reuse techniques can be used to estimate
these effects - ESE through cross-validation (Stone, 1977) and (Geisser, 1975), and vari-
ance through bootstrapping (Efron, 1983). It is possible to implement these procedures in
conjunction with SMART with the aim of estimating an optimal value for M as well as
confidence intervals for estimates.

Since the variance tends to increase more or less linearly with increasing M while
the (bias)? tends to drop rapidly for small (increasing) M, leveling off to a slow decrease
for larger M, a good estimate for the optimal M value can usually be made by simply
inspecting La vs. M for various values of M. That point at which a unit decrease in M
leads to a relatively large increase in Lz (compared to that for close-by larger M values) is
often a good choice. Since the ESE tends to vary slowly as a function of M in the region
near the optimal M value (especially on the side of increasing M), the choice is not critical
provided it is not too small.

For a given value of M, solutions (minimizing L;) may not be unique. Sometimes
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there are local minima that can trap the SMART algorithm thereby masking a better
global minimum. Such local minima represent solutions that are relevant to larger (higher
M) models. Solutions are not necessarily found in optimal order as M is increased. This
suggests a backwards stepwise model selection procedure.

The strategy is to start with a relatively large value of M (say M = M_) and find
all models of size My and less. That is, solutions that minimize L; are found for M =
My, My —1, My —2,---, 1 in order of decreasing M. The starting parameter values
for the numerical search in each M-term model are the solution values for the M most

important (out of M + 1) terms of the previous model. Term importance is measured as

In=3 Wi |Bim| (1S m< M) (24

i=1
normalized so that the most important term has unit importance.
(Note that the variance of all fm, is one.) The starting point for the minimization of the
largest model, M = M, is given by an M|, term stagewise model (Friedman and Stuetzle,
1081).
The sequence of solutions generated in this manner is then examined by tie user and

a final model is chosen according to the guidelines above.

5. Relative Importance of Predictor Variables

It is often useful to have an idea of the relative importance of each predictor variable to
the final model. For (single response) linear models an often used measure is the absolute
value of the corresponding regression coefficient a; times a scale measure of the predictor
variable 0;, I; = ;| a; |, (1 £ j < p). A corresponding relative importance measure for

(multiple response) nonlinear models would be
=0, Wi E oY, <j<
j-":"z_:l ; Ia_)f,"- (1<5<p)
with ¥; = E[Y; | z; - - - z,]. For SMART models (6) this becomes

q M
I; = O’,‘ZW; E| Z ﬁ.-majmf'(aﬂx) | (1<5<p) (25)

=1 m=1
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where f,.(z) = dfm/dz (22). In the case of only one term, M = 1, (25} is equivalent
to I; = o; | a; |. It is important to keep in mind that the same care is required in
interpreting (25) as in the corresponding interpretation of regression coefficients in linear
models, especially in the presence of high collinearity among the predictor variables.

5. Examples

In this section we show and discuss the results of applying the procedure described in
the previous sections to several data sets. The purpose here is to illustrate the functioning
of the procedure and to provide a little insight into the interpretation of results. They are
not intended as definitive or complete analyses of these data.

The first example illustrates the use of the algorithm in an approximation rather
than an estimation mode. The purpose is to approximate a single function (g = 1) of three
variables by a ridge function expansion (4). Thus, there is no noise in the system, £ = 0 (2).
The data consist of 200 randomly generated triangl& in the plane. The response function
was taken to be the ratio of the area of the triangle to the area of the circumscribed circle.
The predictor variables are the lengths of the three sid_u of the triangle, ordered so that
the first variable correspond to the smallest side, the second to the middle, and the third

predictor to the largest side. The true functional form is

) =9(21,1'2,1‘3)
=4[(1:1 + 23+ 23)(22 + 23 — Ty )(21 + T3 — z2)(Z) + T2 — z3)]
"’(31-'52-"33)2

3
2

(26)

which is of course symmetric in the three variables. This complicated expression does
not have an exact ridge function expansion. The purpose of the exercise is to see if the
SMART algorithm can find a parsimonious ridge function expansion that provides a good
approximation.

2 ag a function of the number

Table 1 shows the fraction of unexplained variance e
of terms in the model M. Using the guidelines of Section 4 the M = 4 term model was
chosen. Table 2 shows the solution linear combinations for the four terms as well as the
corresponding importance of each term (24). Table 3 presents the relative importance of
each predictor variable (side length) (25) to the model. Figures la — 1d show the four

predictor functions fmn (af,z) (1 < m < 4) corresponding to each term. The functions
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are displayed as scatterplots of linear combination value {abscissa) versus function value
(ordinate) for the 200 observations.

Even though the true function (26) is quite complicated, the algorithm was able to
find a four term ridge function expansion that accounts for 99.88% of its variance. The
two most important terms involve linear combinations that are close to those appearing
in the numerator in (26). The third linear combination involves X; and X; while the last
involves X5 and X3. The solution function corresponding to the first term is monotone
and nearly linear; the next two are highly non monotone and the fourth is nearly monotone
but highly nonlinear. All three variables are relatively important to the model with X,
and X3 being most important. Although the solution ridge function expansion is very
accurate, it is unlikely that one would be able to guess the correct functional form (26)
from the four linear combinations (Table 2) and the four predictor functions (Figs. 1a-1d).

The second example, although involving actual data, is still somewhat contrived to
illustrate the functioning of the algorithm. It consists of various physico-chemical proper-
ties of the 52 chemical elements ranging from Lithium (Li) to Xenon (Xe) in the periodic
table of elements. Four of these properties form the responses (¢ = 4); Y; = first ionization
energy, Y2 = electronegativity, Y3 = covalent radius, and Yy = density (Lewi, 1982). The
two predictor variables (p = 2) are locators of the element in the periodic table; X; =
atomic number, and X; = atomic group number. The goal is to see how accurately one
can model these physico-chemical properties by periodic table location, what form this
model might take, and whether atomic number or group is more important in determining
the dependencies.

To aid in interpretation both the four response and two predictor variables were
standardized to have zero means and unit variances as calculated over the 52 observations
(elements). The response weights W; (1 < 1 < 4) (7) were all set to unity. The accuracy

of the fitted model is expressed in terms of fraction of variance unexplained, defined as

e? = Lz/iW; E'[Y, - _}7.']2 . (27)
=1

with ¢ = 4, L, given by (7), and Y:=EY,.
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Table 4 gives the fraction of unexplained variance €2 (27) as a function of the number
of terms in the model. Again, the guidelines of section 4 suggest a four term (M = 4)
model. Table 5 shows the response linear combinations fim (1 < 1 < 4), the predictor
linear combinations a;m (1 £ j < 2) as well as term importance I, (24) for this four term
model (1 < m < 4). Table 6 shows the fraction of unexplained variance for each response
separately for this model. The relative importance of each predictor variable I; (25) was
atomic number I; = 1.00, group I; = 0.38. The four predictor functions corresponding to
the four terms (Table 5) are shown in Figures 2a — 24.

Since the ca.rdilnality of this data set is rather small (N = 52) and the resulting model
réther complex, one might suspect the presence of considerable overfitting. Table 6 shows
that this is indeed the case. The last column of this table shows a cross-validated estimate
of the fraction of unexplained variance for each response separately. This cross-validated
estimate is obtained by removing one observation at a time, estimating a four term model
on the remaining (N = 51) data, and computing the squared residual for the left-out
observation using this model. The last column of Table 6 was obtained by averaging these
squared residuals over all (N = 52) observations left out one at a time. Although these
cross-validated results still show considerable explanatory power in the model, we see that
the simple resubstitution estimate of the squared-error loss is about 3% times too optimistic
on the average in this case.

The first two predictive linear combinations (Table 5) are dominated by X, atomic
number. The corresponding functions (Figs. 2a, 2b)‘ are highly nonlinear; the first has a
periodic saw-toothed appearance with steeply rising slope and the second is highly oscil-
latory. The third function involves more of X3, group number, and is also very nonlinear.
The fourth function is dominated by X, and has a gentle monotonic depende;lce.

On the basis of this analysis one would conclude that these physico-chemical properties
do depend on position in the periodic table, but in a highly nonlinear (periodic) manner.
Of course, this is already well known. The purpose of including this example was to show
that the SMART algorithm is capable of modeling such severe nonlinear response surfaces

even with relatively small sample size.

The final example is a classification problem involving medical data. The observations
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54 patients with chronic hepatitis (Efron and Gong, 1983). The purpose of this

(d

consist of
exercise is to model the severity of the disease as a function of seven clinical measurements.
These measurements include the age and sex of the patient as well as the blood concen-
trations of five quantities (Table 7). The response is binary valued indicating whether the
patient did or did not survive the illness. In the training sample 122 patients survived
(class = 1), while 32 did not (class = 2). Although the sample size (N = 154) might be

regarded as moderate, the small class 2 sample size dominates the statistical aspects of

SMART classification was applied to these data with the purpose of constructing
a decision rule for classifying the outcome of the illness based on the predictor variable
values. The prior probabilities x; (1 < ¢ < 2) (10, 11, 12) were estimated to be the sample
proportions, m; = 122/154, w3 = 32/154. Since a conservative diagnosis is usually desired,
the loss for misclassifying a class 2 observation as class 1 (I2;) was set to four times that for
misclassifying a class 1 as a class 2 (I}3); specifically l;; = 4.0 and l;2 = 1.0 (9, 11,12). The
seven predictor variables were all standardized to have zero expectation and unit variance.

Table 8 shows the fraction of unexplained variance €?, as well as two additional quan-
tities, as a function of the numbers of terms in the model. These additional quantities
are two different estimates of the misclassification risk associated with using this M-term
model for the conditional expectations in a minimum risk decision rule (11). The first
estimate R; (direct resubstitution risk estimate) is obtained by classifying each training

observation k (1 < k < N) using the minimum loss rule (11)

q
— STl e
Ji = lg‘;&q {'z_:l Py E[H;| zik - z5,]} ‘ (28)

and then computing the risk by averaging the loss associated with the resulting misclassi-

fications

Z wkSZ —I iszd yk,c,)/z Wk. (29)

i=1
The second estimate R, (conditional probability risk estimate) is the value of R (11)
computed by substituting the conditional expectation estimates of this (M-term) model

directly into (11). To the extent that the conditional expectation (probability) estimates
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are accurate these two risk éstimates should have similar values. However, it is often
possible to do accurate classification in the presence of very poor probability estimates.
Comparing the values of R, and R, gives some indication of how well the model conditional
expéctation estimates are approximating the true underlying probabilities. If R; is much
smaller than R (which is often the case) then the probability estimates are not too close.

Using the guidelines of Section 4 a three term (M = 3) model was chosen. Table
9 gives the solution linear combinations of, and the importance I, (24) for each term
1 < m < 3. Table 10 shows the relative importance of each predictor variable (25).
Figures 3a — 3c show the three predictor functions fp,(aZ z) corresponding to each model
termm (1<m<38).

The resulting model misclassifies 247122 o~ 20% of the survivors (class 1) and
2/32 ~ 6% of the nonsurvivors (class 2). The goal of a conservative classification rule has
been achieved. Since the sample size is only moderate one may again suspect these results,
based on the training sample, to be optimistic estimates. The corresponding cross-validated
misclassification results are 33/122 ~ 26% and 3/32 ~ 9%. Although indicating some
measure of overfitting, these cross-validated results indicate that a substantial dependence
of survivability on the predictor covariates has been captured by the model.

The predictor functions (Figs. 3a-3c) are substantially nonlinear. The first and most
important term is mainly a function of variables 1 (sex) and 7 (bilirubin). For values of
this linear combination less than 0.1 the probability of survival is very high. For values
greater than 0.1 this probability decreases linearly and very rapidly with increasing value

of this predictor linear combination.

6. Discussion

The examples of the preceding section suggest that the modeling procedure presented
here can successfully detect and model highly nonlinear relationships between response
and predictor variables. Such highly non-linear dependencies are not characteristic of all
situations. In these cases the procedure can be used to verify their non-presence. This is
signified by the need for only a single ridge function (M = 1) with nearly linear shape.

SMART models are not the only nonlinear generalizations of linear regression and
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classification. Other generalizations include classification and regression trees (Breiman,
Friedman, Olshen and Stone, 1983), ACE (Breiman and Friedman, 1984) and other gener-
alized additive models (Hastie and Tibshirani, 1984), logisitic regression (Cox, 1970) and
' nonlinear link functions associated with generalized linear models (McCullagh and Nelder,
1983). SMART modeling (6) can be viewed as generalizations of some of these (logistic
regression, generalized linear models) in the sense that these models reduce (or nearly
reduce) to special cases of (6). However, several other of the above listed methods rep-
resent different generalizations in the same sense. Only classification and regression trees
(CART) share wiéh SMARTrthe property of being completely nonparametric in that any
response function can be arbitrarily well approximated given a large enough expansion.
The particular form chosen for SMART models was motivated by the desire to produce
parsimonious models in simple situations (nearly linear response dependence or high as-
sociation among the response variables ) along with the ability to produce more complex
models for those situations that require them.

A FORTRAN program (Friedman, 1984b) implementing SMART regression and clas-

sification is available from the author.
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Fraction of unexplained variance e

Table 1

2 a3

a func-

tion of number of ridge function terms M for tri-

angle example. The * indicates the chosen model.

Table 2

62

0.9 x 10~3
1.0 x 103
1.2x 1073
3.9 x 1073
9.6 x 10~3
3.8 x10~2

Predictor linear combination al, and relative

term importance of four term model for triangle

example.

Term Importance a;

1

2
3
4

1.00
0.21
0.16
0.13

0.542
-0.506
0.385
0.003

.20

ag az
0.502 -0.674
-0.689 0.520
0.065 -0.925
-0.674 0.739



Table 3

Relative predictor variable importance for tri-

angle example.

Variable 1 2 3
Importance 0.93 0.68 1.00

Table 4

Fraction of unexplained variance €2 (27) as a
function of number of ridge function terms M for
the atomic element example. The * indicates the

chosen model.

M e?

6 .036
5 047
4* .058
3 .180
2 .188
1 413
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Table 5

Linear combinations T, al, and term importance I, of the

four term model for atomic element exampie

Term I,
C(m)
1 1.00
2 0.53
3 0.51
4 0.49

ﬁlm ﬁ2m ﬁ3m

-0.43 -0.40 0.39
-0.02 0.03 -0.33
0.08 0.07 0.39
0.17 0.24 -0.11

Table 6

ﬂ4m

0.29
0.43
-0.24
0.21

Qim

a2m

-0.18
-0.36
-0.54
0.02

Fraction of unexplained variance for each response variable

e? (1 < ¢ < 4) for the four term model. Cross-validated results

¢Z(cv) are also shown.

i

Response variable

1 first ionization energy

2
3
4

electonegativity
covalent radius

density

22

€

.094
.054
.046
.038

(ev)

.20
.16
27
.18



Table 7

Predictor variables X; (1 < j < 7) used in hepatitis example.

Variable Variable

number name

1

2
3
4
5
6
7

sex
albumin
proteim
aga
SGOT
alkphos
bilirubin

Table 8

Fraction of unexplained variance e2, direct resubstitution risk
3

estimate R,, and conditional probability risk estimate R; as a func-

tion of number of ridge function terms M for hepatitis classification

example. The * indicates the chosen model.

e2 R R;
47 .16 31
49 .21 33
.57 .28 .37
.60 .24 30
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Table 9
Predictor linear combinations af, and relative term imper-

tance I,, of three term model for hepatitis example.

Term I, aim Qam Q3m Q4m Qsm Qeém QTm

(m) ,,
1 100 -67 -31 .03 .28 -16 .19 .55
2 65 -09 -68 -36 -11 .03 .27 -.55
3 48 -05 -15 .83 -17 -10 -48 .13

Table 10

Relative predictor variable importance for hepatitis example.

Variable 1 2 3 4 5 6 7
Importance .74 1.0 .68 .45 .21 .44 .97
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Figure 1a

Figure 1b.

Figure lc.

Figure 1d.

Figure 2a.

Figure 2b.

Figure 2¢.

Figure 2d:

Figure 3a.

Figure 3b.

Figure 3c.

Figure Captions

Triangle data: Term 1 predictor function

Triangle data: Term 2 predictor function

Triangle data: Term 3 predictor function

Triangle data: Term 4 predictor function

Periodic table data: Term 1 predictor function
Periodic table data: Term 2 predictor function
Periodic table data: Term 4 predictor function
Periodic table data: Term 4 predictor function
Chronic hepatitis data: Term 1 predictor function
Chronic hepatitis data: Term 2 predictor function

Chronic hepatitis data: Term 3 predictor function
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Figure 2a.

Figure 2b.
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Figure 2c.
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Figure 3a.

Figure 3b.
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Figure 3c.
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