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Abstract Approximation theory for Lyapunov and Sacker-Sell spectra based upon
QR techniques is used to analyze the stability of a one-step method solving a time-
dependent (nonautonomous) linear ordinary differential equation (ODE) initial value
problem in terms of the local error. Integral separation is used to characterize the con-
ditioning of stability spectra calculations. The stability of the numerical solution by
a one-step method of a nonautonomous linear ODE using real-valued, scalar, nonau-
tonomous linear test equations is justified. This analysis is used to approximate ex-
ponential growth/decay rates on finite and infinite time intervals and establish global
error bounds for one-step methods approximating uniformly, exponentially stable tra-
jectories of nonautonomous and nonlinear ODEs. A time-dependent stiffness indica-
tor and a one-step method that switches between explicit and implicit Runge-Kutta
methods based upon time-dependent stiffness are developed based upon the theoreti-
cal results.
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1 Introduction

Stability plays a central role in determining the time asymptotic behavior of dynam-
ical systems. In the seminal works of Lyapunov [33] and Dahlquist [15, 16, 17], sta-
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bility theories for ordinary differential equation (ODE) initial value problems (IVPs)
and methods for their numerical solution were respectively established. The stabil-
ity of time-dependent (nonautonomous) solutions to ODEs can be determined using
a variety of techniques, but does not in general reduce to a time-dependent eigen-
value problem (see the third example on page 24 of [30] or the example at the bottom
of page 3 of [14]). Understanding the stability of numerical methods approximating
time-dependent solutions to ODE IVPs is important for preventing spurious compu-
tational modes, detecting and quantifying stiffness, and controlling the global error.
The complementary dynamical systems viewpoint is that the dynamics of numeri-
cal solutions should mimic the dynamics of differential equations. In this paper we
embrace both of these points of view and use Lyapunov and Sacker-Sell spectral the-
ory to develop a time-dependent stability theory for one-step methods approximating
solutions of ODE IVPs.

Our contribution is to establish a Lyapunov stability theory for variable step-size
one-step methods approximating time-dependent solutions of ODE IVPs that can fail
to satisfy the hypotheses of AN- and B-stability theories (see Equation 1.1 below for
an example of such an ODE). Henceforth in this paper, whenever we use the word
stability we are referring to Lyapunov stability in either continuous or discrete time.
Our main results, Theorems 3.3 and 3.4, characterize the Lyapunov and Sacker-Sell
spectra of one-step methods approximating the solution of nonautonomous linear
ODEs. We use integral separation, the time-dependent analog of gaps between eigen-
values, to characterize the conditioning of the Lyapunov and Sacker-Sell spectra and
related quantities. A time-dependent and orthogonal change of variables is employed
to transform to a linear ODE with an upper triangular coefficient matrix, from which
spectral endpoints and integral separation properties can be determined from the diag-
onal. Theorem 3.3 concludes that if the coefficient matrix of a linear ODE is bounded
and sufficiently smooth, then the Sacker-Sell spectrum of the numerical solution ap-
proximates that of the ODE. Theorem 3.4 concludes that if the ODE has an integral
separation structure, then the Lyapunov and Sacker-Sell spectrum of its numerical
solution accurately approximate the spectra of the ODE in terms of the local trun-
cation error. Additionally, the endpoints of the spectra of the numerical solution can
be estimated from the diagonal entries of the transformed upper triangular coefficient
matrix of the linear difference equation it defines.

Theorems 3.3 and 3.4 together with Lemma 3.1 justify characterizing the stability
of a one-step method solving a nonautonomous linear ODE of dimension d with d
scalar, real-valued, nonautonomous linear test equations. In Theorem 3.5 we demon-
strate the necessity of using a step-size restriction to control the time-dependent sta-
bility of Runge-Kutta methods (even those that are implicit and A- or AN-stable)
solving real- or complex-valued scalar, nonautonomous linear test equations. After
this we prove Theorem 3.6 showing that the stability of a Runge-Kutta method solv-
ing a real- or complex-valued scalar, nonautonomous linear test equation can be char-
acterized by when the time-averages of the coefficient function of the test equation
lie in the linear stability region of the method.

The linear stability results are applied to prove two theorems (Theorems 4.1 and
4.2) on the numerical solution by a one-step method of a uniformly exponentially
stable solution of a nonlinear and nonautonomous ODE. Theorem 4.1 shows that as
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time limits to infinity the error of the numerical solution by a one-step method of
a uniformly exponentially stable trajectory of a nonlinear IVP remains accurate in
terms of the order of the truncation error of the method. Theorem 4.2 shows that the
numerical approximation by a one-step method of a uniformly exponentially stable
trajectory of a nonlinear ODE is uniformly exponentially attracted to the exact solu-
tion with decay rates estimated by the Sacker-Sell spectrum of the linear variational
equation. The nonlinear results, which draw on the spirit of the one-step approxima-
tion theory developed in [5], [27], and [29], show that the Lyapunov stability of the
numerical solution of a nonlinear ODE IVP by a one-step method can be character-
ized and quantified in terms of the spectral stability of the numerical solution of the
associated linear variational equation.

The linear and nonlinear theoretical results are applied in Section 5. In Section
5.2 we develop an efficient time-dependent stiffness indicator and in Section 5.3 we
develop a one-step method, referred to as a QR-IMEX-RK method, that switches
between using implicit and explicit Runge-Kutta methods. Our stiffness indicator is
computed using Steklov averages approximated from the discrete QR method for
computing Lyapunov exponents [22]. This indicator is in general more efficient to
compute than methods such as that proposed in Definition 4.1 of [11] that require ap-
proximating logarithmic norms or time-dependent eigenvalues and additionally our
indicator is able to detect stiffness in IVPs with non-normal Jacobians where loga-
rithmic norms and time-dependent eigenvalues can fail to indicate stiffness. Being
able to detect stiffness efficiently and robustly is necessary in the context of our QR-
IMEX-RK methods where we switch between using an implicit or explicit Runge-
Kutta method based on where approximate Steklov averages are at each time-step in
relation to the linear stability regions of the explicit and implicit methods.

The stability of numerical solutions of ODE IVPs is a classic topic in numeri-
cal analysis dating back at least to the PhD thesis of Dahlquist (published as [16])
and also [15, 17] where concepts such as A-stability were first introduced. Other
stability theories for the numerical solution of nonautonomous and nonlinear ODE
IVPs, such as B-stability [9] or algebraic stability and AN-stability [8] provide an
analysis for various classes of ODEs that are monotonically contracting. The equiva-
lences amongst these nonlinear and nonautonomous stability theories are investigated
in [10]. In the case of Runge-Kutta methods the analysis in AN-, B-, and algebraic
stability requires that the methods be implicit and at least A-stable while our analysis
holds so long as the method is convergent.

The theory developed in this work is based on the time-dependent spectral sta-
bility theories of the Lyapunov and Sacker-Sell spectra. We refer to the monographs
[1] by Adrianova and [14] by Coppel as general references on time-dependent stabil-
ity and related topics such as integral separation and exponential dichotomies. The
theory of Lyapunov exponents and the associated Lyapunov spectrum arose from the
thesis of Lyapunov [33]. The Sacker-Sell spectrum first appears in the literature in
the the fundamental 1978 paper [39] of Sacker and Sell. The Lyapunov spectrum
characterizes the exponential stability while the Sacker-Sell spectrum characterizes
the uniform exponential stability of a nonautonomous linear ODE or difference equa-
tion.
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In this paper we apply the QR approximation theory for Lyapunov and Sacker-
Sell spectra (see e.g. [18, 19, 21, 23, 25], [26], [42], and [4]). QR approximation
theory constructs the orthogonal factor in a QR factorization of a fundamental ma-
trix solution (in continuous or discrete time) to transform a linear system to one with
an upper triangular coefficient matrix. Then, assuming either that the system has an
integral separation structure or a bounded and continuous coefficient matrix, the end-
points of the Lyapunov or Sacker-Sell spectrum respectively can be approximated
from the diagonal entries of the transformed upper triangular matrix.

The development of our theory is motivated by the following nonautonomous
linear ODE whose coefficient matrix has time-dependent normality:

X = A(t)x, A(t) = L(t)C(t)L(t)T, t > 0 (1.1)

C(t) 
—
[X01 192(.,2t)1, L(t) —[csoins(0)(1) ((tt )))) —cos is n( a )( o )( t( )t )) ) ]

where Xi > 0 > Al with Xi + X2 < 0, /3(t) = ,60-0, (1 +cos(ait)/(1+(32t2)), co(t) =
a2t , a := (Xi + X2)2 — 4(al (c0 + Po) +242,2) > 0 and both z (Ai + A2 ± -06) < 0 for
constants al , a2, pi, f32 > 0 and Po E R. The ODE (1.1) does not satisfy the hypotheses
of B-stability theory since there exists v, w e R2 so that (v — w)T A (0) T (1, — IN) > 0 nor
AN-stability since Xi > 0 is one of the time-dependent eigenvalues of A(t). However,
by using the change of variables x = L(t)y and Theorem 4.3.2 of [1], it follows that
zero is an asymptotically stable equilibrium of (1.1).

If we solve (1.1) using the implicit Euler method with step-size ho > 0 and ini-
tial condition (0, 0)T xo e R2, then the numerical solution pcnlz 0 satisfies the
following linear difference equation:

xn+1 = [I — hoA(tn+i)]-1.xn, n > O. (1.2)

If al = a2 = 27c, h0 = 1, and Xi e (0, 1), then the solution of (1.2) with xo (0, 0)T
is such that 1 kri ll 00 as n —> oo at a rate of (1 — A,1 )n where II' II is any norm on r 2
despite the fact that the implicit Euler method is AN-stable. In Section 3.1 we prove
that there is an h* > 0 so that if ho E (0, h*), then all solutions of (1.2) decay to zero.

The rest of this paper is organized as follows. In Section 2 we introduce some
definitions, notation, and necessary background material. In Section 3.1 we state The-
orems 3.3 and 3.4 which are subsequently proved in Section 3.3. We prove Theorems
3.5 and 3.6 in Section 3.2 which is dedicated to the thorough analysis of a scalar,
nonautonomous linear test equation. The nonlinear stability results, Theorems 4.1
and 4.2, are stated and proved in Section 4. In Section 5 we develop and test a time-
dependent stiffness indicator and an algorithm for switching between implicit and ex-
plicit Runge-Kutta methods based on time-dependent stiffness. Concluding remarks
are given in Section 6.
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2 Preliminaries

2.1 Stability of initial value problems

Consider the following nonautonomous and nonlinear ODE:

= f (x, t) (2.1)

where f :Rd x (ro, co) —> r'd for some positive integer d and To > —00. We assume
that f (x, •) is bounded for each fixed x E Rd and f E C1 is sufficiently regular so that
each IVP

{X = f (x,t)
x(to) =

has a unique and globally defined solution x(t; xo, to) for all initial conditions xo E Rd

and initial times to > "ro•
Fix an arbitrary norm 11 • 11 on Rd and use the same symbol 11 ' 11 to denote the

induced matrix norm on Rdxd. For each positive integer r let I,. denote the r x r
identity matrix. Assume that x(t; xo, to) is a bounded solution of (2.2) and consider
the linear variational equation:

(2.2)

= A(t)x, t > to, A(t) = Df (x(t;x0, to), t), D := d / dx. (2.3)

Since x(t ; xo, to) is bounded and f E C1 it follows that AO is bounded and continuous.
A fundamental matrix solution of (2.3) is a matrix solution X : (to, 00) dxd such
that X (t) is invertible for all t E (to, 0.).

Definition 2.1 We say that (2.3) is to)exponentially_ stable if for any fundamental matrix
solution X of (2.3) there exists y > 0 and K > 0 so that

11X(t)11 Ke—

y

 Ilx (to) II, t> to.

(2.3) is said to be uniformly exponentially stable if for any fundamental matrix solu-
tion X of (2.3) there exists y > 0 and K > 0 so that

11X (011 ice-7(t—s)llx(s)11, t > s > to.

We characterize exponential and uniform exponential stability using Lyapunov and
Sacker-Sell spectra which we define below (see [21] for a review of the definitions
and properties of these spectra). The Lyapunov spectrum is defined in terms of char-
acteristic exponents of fundamental matrix solutions of (2.3).

Definition 2.2 Let {el, , ed} denote the standard basis of R. For a given funda-
mental matrix solution X (t) of (2.3) the upper characteristic exponents
are defined as

~Il=limsuplln11X(t)eiII, i = 1, . . . ,d.
to<t—roo t

The upper Lyapunov exponents pi , , xi of (2.3) are the upper characteristic expo-
nents whose sum is minimized over all fundamental matrix solutions of (2.3). The
lower Lyapunov exponents Tli • • • ,11ct of (2.3) are the upper Lyapunov exponents
of the opposite adjoint equation = —A(t)T x. The Lyapunov spectrum of (2.3) is
:= Lf! 1 [Tii,
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The Sacker-Sell spectrum is defined in terms of exponential dichotomies.

Definition 2.3 A linear system of the form (2.3) is said to have exponential di-
chotomy if there exists a fundamental matrix solution X, a projection P, and constants
K,L > 1 and a, > o so that

llx(t)Px(s)-1 11 < Ke—a(t—s),

IIX(t)(Id < Lel3(t—s),

t > S > to,

to < t < S.
(2.4)

The Sacker-Sell spectrum EED is the set of all A E IR such that the shifted variational
equation X = [A(t) — A.Id].x. does not have exponential dichotomy. The Sacker-Sell
spectrum EED can be expressed as a union of at most d disjoint closed intervals

EED = 41[00, /V] (see Theorem 2 of [39]).

If the Lyapunov spectrum of (2.3) is contained in (-00, 0), then (2.3) is exponen-
tially stable. A sufficient condition for uniform exponential stability of zero is that
the Sacker-Sell spectrum of (2.3) is contained in (-00, 0). The linear concepts of ex-
ponential stability have the following analogous definitions in the nonlinear setting.

Definition 2.4 A trajectory x(t;x0,to) of (2.1) is exponentially stable if there ex-
ist constants 7,K,s5 > 0 so that if ll uo xo 11 < S and t > to, then llx(t; uo, to) —
x(t; xo, to) < Ke_7(t—to)lluo xoll. We say that x(t;x0,to) is uniformly exponentially
stable if there exist constants 7, K, 3 > 0 so that ifslluso7tllx)(s;.xo, to) l < 3 and t > s > to,
then llx(t; s) — x(t;xo,to)ll < 

Ke—y(t—s)llu, 
x(;x0 

If the linear variational equation (2.3) of x(t;x0,t0) is uniformly exponentially stable
and f E C2, then x(t;x0,t0) is a uniformly exponentially stable trajectory of (2.1).
However, if the linear variational equation of x(t;x0,t0) is exponentially stable, but
not uniformly exponentially stable, then we cannot even guarantee that x(t;xo, to) is
stable (see [36] or Equation 14 in [32] for an example) unless additional hypotheses
are placed on (2.3).

2.2 One-step methods

A one-step method is an approximation to solutions of ODE IVPs (2.2) of the fol-
lowing form:

xn+i = cp(xn,tn;f,h) (2.5)

where xn x(tn;xo,to), f = f(x,t) is the right-hand side function of (2.1), h is a se-
quence of step-sizes h= {hn}y7_0 which we always assume is such that 0 < infn>ohn <
supn>ohn < and tn+1 = tn + hn for all n> O. Note that for such sequences there ex-
ists 6h> 1 so that (supn>ohn)/(infn>ohn) < (511. The quantity 3h provides a bound on
the variability of the step-size and is used to quantify the nonlinear stability estimates
in Section 4. We let 11'11— denote the l°° norm for sequences with llhll— = supn>ohn.
We say that the one-step method (2.5) has local truncation error of order p E N if
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there exists h* > 0 so that if f E CM" and (0, h*), then the Taylor expansion
of any solution x : —> Rd of (2.1) takes the following form:

x(tn+i) — (1)(x(tn),t,i; f (x(t.),tn), h) = n > O.

where K„ = K(tn) defines some sequence depending on x(t) and its derivatives. Of
special interest is the form of one-step methods approximating the solution of a linear
ODE of the form (2.3). We henceforth only consider one-step methods for which,
when applied to approximate the numerical solution of a linear ODE of the form
(2.3), there exists an h* > 0 so that if h = {170,7_0 is such that OM— E (0, h*), then the
one-step map (2.5) takes the form xn+1 = (n; h )xn where each IA (n;h) G Rdxd

is independent of xn. While this is true for Runge-Kutta methods and many other
well-known one-step methods, one can modify any one-step method to not satisfy

this assumption by, for example, adding at each time-step a term of the form Chri
to the one-step map where 0 C E Rd.

2.3 Spectral theory for continuous time systems

Consider the following d dimensional nonautonomous linear ODE:

= A(t)x, t > to (2.6)

where A : (to, co) —> Rd x d is bounded and continuous. The continuous QR method
for transforming (2.6) to upper triangular form is as follows. Consider the following
ODE (Equations 3.7-8 of [25]):

/
(QTAQ)i,J, i > j

Q(t)= Q(t)S(Q(t),A(t)), S(Q,A)ij = 0, i = j . (2.7)

—(QT AQ)J,i, i < j

Each orthogonal matrix solution Q(t) E Rdxd of (2.7)defines a linear system

.)i = B(t)y, B(t) = QT (t)A(t)Q(t) — QT (t)Q(t), t > to (2.8)

where B(t) is upper triangular since the definitions of S(Q,A) and B(t) imply that
Bi,j(t) = 0 when i > j. We refer to (2.8) as a corresponding upper triangular system
(or ODE) to (2.6). Since x = Q(t)y is a Lyapunov transformation the Lyapunov and
Sacker-Sell spectral intervals of (2.6) coincide with those of any corresponding upper
triangular system.

Theorem 2.1 (Theorems 2.8, 5.5, and 6.1 of [21]) Let B: (to, co) rd" be bounded,
continuous, and upper triangular and let ZED = Ud 1[04, Pi] denote the Sacker-Sell
spectrum of the ODE .))= B(t)y. For i = 1, . . . ,d we have:

f 
, A 

t+H 1 ft+H
= lim inf inf — B,,,(2)d-c) = lim sup (sup — B,,,(T)d2) .

CI <H—>.0 t>to H O<H—roo t>to t

❑
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For a bounded and continuous A (.), the Sacker-Sell spectrum of (2.6) is continuous
with respect to (4;1,00) perturbations of A(t) (for a proof see Theorem 6 of [39]
or Chapter 4 of [14]). For the Lyapunov spectrum to be continuous an additional
hypothesis must be placed on (2.6).

Definition 2.2 Suppose that B : (t0,00) —> Rd" is bounded, continuous, and upper
triangular and that for any i < j one of the two following conditions hold:

I. and B jj are integrally separated: there exists ai,i > 0 and ki E R so that if
t > s > to, then

ft

Js Bjj(r)dr > ai,j(t — s) + bt, i. (2.9)

2. For every E > 0 there exists Mi,j(e) > 0 so that if t > s > to, then

B jj(r)dr < Mi,j+ E(t — s). (2.10)

Then we say that 9 = B(t)y and B(t) have an integral separation structure. If the first
condition is satisfied for all i < j, then we say that B(t) and y = B(t)y are integrally
separated. If the system (2.6) has a corresponding upper triangular system that has
an integral separation structure, then we say that (2.6) and A(t) have an integral
separation structure and if the corresponding upper triangular system is integrally
separated, then we say that (2.6) and A(t) are integrally separated.

Integral separation is a generic property (see page 21 of [35]) for linear equations
of the form (2.6) with respect to the sup-norm topology. This, together with the fol-
lowing theorem, show why it is natural to assume that a linear equation (2.6) has an
integral separation structure when approximating Lyapunov spectral intervals.

Theorem 2.3 (Theorem 5.1 in [21]) Assume that B : (to,00) —> Rd" has an integral
separation structure and let EL = Pi] denote the Lyapunov spectrum of the
ODE y = B(t)y. Then the Lyapunov spectrum of y = B(t)y is continuous with respect
to I,— (t0,00) perturbations of B(t) and for i = 1,... ,d we have:

1 fto+t

0<t—>-0 t oJli = lim inf Bi,i(z)d• r, = lim sup 
t to 
—1 

ro-Ft
Bi,j(r)d•

f

0<t—ro. 

❑

If the system (2.6) does not have an integral separation structure, then the Lyapunov
spectrum may be discontinuous with respect to L1(to, 00) perturbations of the coeffi-
cient matrix (see Example 5.4.2 of [1]). Theorems 2.1 and 2.3 are the basis for the
assumptions that we place on system (2.6) in Section 3.

Remark 2.1 In this work we never assume that the linear system (2.6) is regular, that
is, that its Lyapunov spectrum EL is a point spectrum: EL = Regular
systems may have Lyapunov spectra that are not continuous with respect to L°° (to , 00)
perturbations of the coefficient matrix (see e.g. Example 2.17 of [20] or Example
4.4.1 of [1]) and hence are computationally ill-conditioned.
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2.4 Spectral theory for discrete time systems

Consider a family of nonautonomous linear difference equations of the following
form:

xn-hi = (n;h)xn, n> 0 (2.11)

where xn E h = flin},7_0 is11:d , a sequence of step-sizes, and le (n;h)1,7_0 c Rd x d

is bounded and each matrix ci3A (n; h) is invertible. We remark that invertibility of
(n; h) is only needed to guarantee uniqueness, but not existence, of a discrete QR

iteration defined as follows. Let Qo E rdxd be an orthogonal matrix and fix some
step-size sequence h. Since OA (n;11) is invertible for all n > 0 we can form unique
QR factorizations OA (n;h)0 = Qn+1RA(n;h) where Qn-ki E Rdxd is orthogonal and
RA (n; h) E Rdxd is upper triangular with positive diagonal entries. This process is
referred to as a discrete QR iteration. The system un±i = RA (n;h)un where RA (n;h) =
Q„71,1e(n;h)Qn is referred to as a corresponding upper triangular system and its
Lyapunov and Sacker-Sell spectra coincide with those of (2.11).

We shall always use the following product notation: nCk := Cn • Cn_1 • . . . • Cm
for sequences {Ck}k— c Rdxd with the convention that frkn_n Ck = Id when n < m.

Theorem 2.4 (Section 5.1 of [7] or Corollary 3.25 of [37]) Assume that the se-
quence {RA (n;h) 0 is bounded and that each RA (n;h) is invertible and upper trian-
gular Let EL = Ua 1[4 , pit] denote the Sacker-Sell spectrum of un+i = RA (n; h)un.
Then for i = 1, . . . ,d we have

tn+m — tn k=n+m 

0<m-1 n 
1 

(   

n

aA = liminf inf ln 1 n 4,(k;h)l) , f3i4 = lim sup (sup , 19 1 H li.,,,(k;h)l) •
0<m— ms izt) mo n>0 tn+m — tn k=n+m

❑

Theorem 4.1 of [38] implies that the Sacker-Sell spectrum of (2.11) is continuous
with respect to 1— (N) perturbations of the coefficient matrix. Discrete integral sepa-
ration characterizes when the Lyapunov spectrum of (2.11) is continuous.

Definition 2.5 Consider un+1 = RA (n;h)un where each RA (n;h) eRdxd is invertible
and upper triangular, the sequence {RA (n;h)},7_0 is bounded, and infn>04i(n;h)> 0
for i = 1, . ,d. Let p > 1 and suppose there exists an h* > 0 so that if Ilhlloo E (0, h*)
and i < j, then one of the two following conditions hold:

1. RA.(12. h) and R4 .(n. h) are discretely integrally separated: there exists bid E Ri/
and aid > 0 so that i f n > m, then

n 4,i(k;h)(k.',,(k;h))-1 exp (aid (tn tm) 121,j) •
k=n-1

(2.12)

2. leili(n;h) and R i(n;h) satisfy that there exists Kid > 0 such that for each E > 0
there exists Mid > 0 so that i f n > m, then

ln ( r1 RA.(1c h)(R4 •(Ic h))-1)14 9 j,j
k=n-1

< + (E + KiAhllf0)(tn — tm). (2.13)
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Then we say that yn+1 = RA (n;h)yn and RA (n;h) have p-approximate discrete inte-
gral separation structures. If the first condition is satisfied for all i < j, then we say
that RA (n;h) and yn+i = RA (n;h)y, are discretely integrally separated. If (2.11) has
a corresponding upper triangular system with a p-approximate discrete integral sep-
aration structure, then we say that (2.11) and OA (n;h) have p-approximate discrete
integral separation structures.

The next theorem follows from Theorem 4.1 in [42] and Proposition 8.1 and Theorem
8.3 in [4]; see also Theorem 3.13 of [21] and Theorems 5.1-2 of [22].

Theorem 2.6 Suppose un+1 = RA (n;h)un is a system with a p-approximate discrete
integral separation structure with Lyapunov spectrum Et = pp]. Then there
exists h* > 0 so that E (0, h*), then for i = 1, . . . ,d we have:

nti = lim inf /it (n) E (n; h), = lim sup 41 (n) Fi(n; h)
n—>«, n—>os

where llEi(n;h)II,I1Fi(n;h)II = 0(111111Z) and 4(n) =  
k=0 tn to,En ln(4‘(k;h)) 

for i = 1, ,d

and if un+1 = RA (n;h)un is integrally separated, then llEi(n;h)11,11Fi(n;h)ll = 0 for
i = 1, ,d. 0

Consider the perturbed system zn+ = (OA (n; h) Fn)zn and assume that OA (n; h)
and OA (n; h) Fn are bounded and invertible for all n > O. Fix an initial orthogonal
Qo = Qo E Ndxd and inductively construct unique QR factorizations OA (n; h)Qn =

Qn+1RA (n;h) and (OA (n;h)+ F,i)Qn = =.2+1RA (n; h) where Qn and Qn are orthogo-

nal and RA (n;h) and RA (n; h) are upper triangular with positive diagonal entries.

Theorem 2.7 (Theorem 7.7 in [4] and Theorem 4.1 in [42])

Suppose RA (n; h) has a p-approximate discrete integral separation structure and

let En := —QnT ±iFnQn and G := supn>olIGnI1 — supn>omaxfilEn11,M111. There exist
constants h* ,S,K > 0 so that if E (0,h*) and 11Gll < 3 such that

On-FiRA (n; h) =[R A (n; h)+En]On, 110n — Ill KG, n

3 Main Results

3.1 Statement of the main results for linear ODEs

For the remainder of this section fix a one-step method .4( with local truncation error
of order p > 1 and consider a linear system (2.6) with Sacker-Sell spectrum EED =
Uej_l[a h A] and Lyapunov spectrum EL = 1[t1i,p]. We make use of the following
assumptions to characterize the approximation properties of these two spectra.

Assumption 3.1 The coefficient matrix A(t) of (2.6) is bounded and at least Cm".

Assumption 3.2 The ODE (2.6) satisfies Assumption 3.1 and in addition there is a
corresponding upper triangular ODE

y(t) = B(t)y(t), B(t) = Q(t)T A(t)Q(t)— Q(t)T 0(t) (3.1)

that has an integral separation structure defined by the estimates in Definition 2.2.
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Let xn+1 = (n; h)xn denote the numerical solution by .1( of (2.6) with initial
condition x(to) = xo using the sequence of step-sizes h = N17_0 and let yn+1 =
OB(n;h)yn denote the numerical solution of (3.1) using .17 with the same sequence
of step-sizes and initial condition yo := Q(to)T xo. We shall always assume that hi
is so small that OA (n;h) and IA (n; h) are both bounded in n and invertible for all
n > O. The matrices OB (n; h) are upper triangular since B(t) is upper triangular and
for j = 1, . . . ,d each diagonal entry 07 i(n;h) is the numerical approximation by
at time tn±i of the scalar equation yj (t) = Bij (t)yi (t) with y j(t,i) = 1 using the step-
size hn. Since e (n;h) is invertible for all n> 0 we can inductively construct unique
QR factorizations of OA (n;h)Qn as e (n; h)Qn = Qn-p1RA (n;h) for all n > 0 where
each Qn is orthogonal, Qo = Q(t0), and RA (n; h) is upper triangular with positive
diagonal entries.

For the remainder of Section 3 we denote the Lyapunov and Sacker-Sell spectra
of xn+i = OA (n;h)xn by Et =i-l_1[7e , 1-0 and EL = Ud 1[aA, pr,] respectively and
those of yn+1 = OB (n;h)yn by ER = Ua ,[nr,pr] and EL, = Ua i[ar , pm respec-
tively. We do not explicitly express the dependence of the spectra of these discrete
systems on h. The following two theorems are proved in Section 3.3.

Theorem 3.3 Suppose (2.6) satisfies Assumption 3.1. Given E > 0, there exists h* > 0
so that if E (0, h*), then for i = 1, ,d the following holds:

IaA-azI < e, <s, ar = e(111/11f.), PP = + 6(11h1r0)• ❑

Theorem 3.4 Suppose (2.6) satisfies Assumption 3.2. There exists h* > 0 so that if
(0, h*), then the following three conclusions hold:

1. The systems yn-Ei = B (n; h)y n and un+i = RA (n;h)un have p-approximate dis-
crete integral separation structures and 11RA (n;h) OB (n;h)ii = (11111113.+1).

2. For i = 1, ,d we have cfre = ar ± (IIW) = 6(1014) and = +
0(11h11z)= + 6(11hIla

rkl=0 Iffn(115f:0 (k;h)),rki=0 (k;h ))3. For i — 1, ,d if sA (n):—    and sP (n) := „ then

lim inf (n)l = ° —limsup (n)l = ealhe.),
n—loo n—>0.

— lim infsf (n)i = (11141,3,0) lim sup sf (n)i = (1112111:0)
n0.

- = lo—oldo—iii1=0(I1hr.). ❑

The following corollary is immediate from the conclusions of Theorems 3.3 and 3.4.

Corollary 3.1 If (2.6) satisfies Assumption 3.1 and maxi<i<d < 0, then there ex-
ists h* > 0 so that if 114., E (0, h*), then maxi<i<dPil < 0 and zero is a uniformly
exponentially stable equilibrium of xn+i = (n; h)xn. If (2.6) satisfies Assumption
3.2 and max1<i<djui < 0, then there exists h* > 0 so that if 114. E (0,h*), then
maxl<i<dlit < 0 and zero is an exponentially stable equilibrium of xn+i= (PA (n;h)xn.

❑
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Example 3.1 Consider the ODE (1.1). If we let x = L(t)v, then -0 = D(t)v [Di +

D2 (t)]1; where the matrix Di =[
—ai 

PO +al has two real and distinct eigenvalues

with real parts (Ai + 2.2) V(24 ± 2.2)2 — 4(2.4 Az ai (Po + a 1)) < 0 and D2 (t) =
[0  cns(ait) 

1+132t2 J. Since Di has real and distinct eigenvalues the system a = D1a is
0 0

integrally separated. Since D2 (t) is integrable and ti = Di u is integrally separated, it
follows that -0 = [Di + D2 (t)]v is integrally separated. Then the fact that x = L(t)z is
a Lyapunov transformation implies that (1.1) is integrally separated.

Once again consider the solution of (1.1) by the first order implicit Euler method
with constant step-size ho > O. Since A (t) E C2 is bounded and integrally separated,
Theorem 3.4 implies that there exists h* > 0 so that if h0 E (0, h*), then the endpoints
of the Lyapunov and Sacker-Sell spectrum of the discrete system (1.2) agree with
those of the continuous system (1.1) to 0(ho) accuracy. Corollary 3.1 implies that
there exists h** E (0, h*) so that if ho E (0, h**), then the Lyapunov and Sacker-Sell
spectrum of (1.2) are less than zero and the numerical solution is uniformly exponen-
tially decaying for all sufficiently small ho > O. 0

We now discuss the approximate average exponential growth/decay rates of (2.6) on
a finite length interval (t, t + At).

Lemma 3.1 Assume that the ODE (2.6) satisfies Assumption 3.2. Let X be a funda-
mental matrix solution of (2.6) and let X(t) = Q(t)R(t) be a QR factorization where
Q(t) ElEkdxd is orthogonal and R(t) E Rdxd is upper triangular with positive diag-
onal entries. The approximate average exponential growth/decay rates of X(t) on
the interval (t ,t + At) where t > to and At > 0 are given by the following Steklov
averages:

1 ft+At
si(t, At) = 

,Tt 
Bi,i(T)dr, i = 1, ,d. (3.2)

Proof Let t > to and At > O. Since X (t) = Q(t)R(t) and Q(t) is orthogonal the expo-
nential growth/decay of X (t) on (t ,t + At) is given by the exponential growth/decay
of R(t) on (t,t + At). We express R(t + At) = R(t + ,t)R(t) where R(-c,t) is the
unique and upper triangular solution of the matrix ODE IVP (recall that Id is the
d x d identity matrix):

ocb = B(r)0, > t, 0(t,t) =

Since (2.6) satisfies Assumption 3.2, Theorem 5.2 of [21] implies that for each e > 0
there exists K > 0 so that if t > to and At > 0, then

R(r, t) = diag (eAt(E±si(t'At)),... ,eAt(E±sd(t'At))) (Id +N(t + ,t))

where N is upper triangular with +N(t +At,t)11< K. Hence the approximate av-
erage exponential growth/decay rates of X (t) on (t ,t + At) are given by the quantities
si(t , At) for i = 1,... ,d. ❑
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We can prove a result analogous to Lemma 3.1 for discrete systems (2.11) with a p-
approximate integral separation structure where exponentials of Steklov averages are
replaced by the products of diagonal entries of the upper triangunlarf,actor RA (n; h) in
a discrete QR iteration. Theorem 3.4 implies that k;ti (n; h = eh

sz(tn hn) 

0(11111113+1)
and hence the approximate average exponential growth/decay rate of fundamental
matrix solutions of (2.11) are approximately (up to a term of the form (11h14+1))
given by the Steklov averages (3.2). It follows that for sufficiently small step-sizes
the approximate average exponential growth/decay of a numerical solution of (2.6)
from tn to tn+k for k> 1 is given by the average exponential growth/decay rate on the
interval [tn, tn+k] of the following d real-valued test equations:

= i =1,...,d.

This local-in-time stability argument is important for applications since for a nonlin-
ear ODE we can not form A (t) = D f (x(t;xo, t0), t) exactly without knowing the exact
solution. However, regardless of the global error of xn from x(tn;x0,to) we can still
approximately quantify the average exnpoi ) nential growth/decay rates of the numerical

rysolution on the next time inteal 
(t,,, t+ 

assuming that hn is sufficiently small.

3.2 Stability of the test problem

In this section we consider the numerical stability of a linear scalar test equation

= A(t)z, t > to (3.3)

where A, : (to, co) C is Cp+1 and bounded with supt>to (01 < MA for some MA >
O. For full generality we consider the complex-valued case rather than the real-valued
case justified in Section 3.1. The numerical solution of (3.3) by .tal using a sequence
of step-sizes h = Ihn1,7_0 takes the form Zn+1 = OA (n;h)zn where OA (n;h) E C.
The next theorem shows that no Runge-Kutta method can preserve the asymptotic
decay of every ODE of the form (3.3) with Sacker-Sell spectrum contained in (—.., 0)
without restricting the maximal step-size.

Theorem 3.5 Let .tal be an s-stage Runge-Kutta method with Butcher tableau c
bT

with local truncation error of order p > 1. Given any ho > 0 and any —a < 0 we
can find A. : R so that the equation X = A.(t)x with t > to has Sacker-Sell spec-
trum with right endpoint given by —a and the numerical solution of X(t) = A,(t)x(t)
using .t& with fixed step-size 120 > 0 and initial condition x(to) = xo 0 grows at an
exponential rate.

Proof Let ho > 0 and — a < 0 be given and express c = (cl,... ,c5)T . Let 4 (.) be the
stability function of ./g. Since .1( has local truncation error of order p > 1 there exists
8 > 0 so that if r E (0, 8), then g (1 r) I> 1. Let D > lal be such that D — a E (OA.
There exists a function g : r R as smooth as desired so that g((n+ ci)ho) = 1 for

n > 0 and j = 1, . . . , s and i fit+H g(r)c/TI is bounded by some constant for all t E R
and H > 0 (such a function g(t) can be constructed using, for example, piecewise

A
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trigonometric interpolation). Let A (t) = Dg(t) — a and note that the right endpoint
of the Sacker-Sell spectrum of X = A (t)x is —a. Since by construction A is equal
to the constant D — a at every Runge-Kutta stage time t = ho(n + c j) for n > 0 and
j = 1, . . . , s it follows that the numerical solution of (3.3) with the method .11 using
the fixed step-size ho is xn+1 = 4 (ho(D — a))xn and 14 (ho(D — a))1 > 1. It follows
that lxn —> 00 as n co at a rate of 14 (ho(D — a))111 0

The geometric intuition for Theorem 3.5 is that time-dependent oscillations of h0A,(t)
into and out of the linear stability domain of a method can trigger instabilities in the
numerical solution. The following proof of Theorems 3.3 and 3.4 for scalar ODEs of
the form (3.3) shows how we can control the accuracy of the Lyapunov and Sacker-
Sell spectrum of the numerical solution using bounds on the local truncation error to
guarantee exponential decay.

Proof (Proof of Theorems 3.3 and 3.4 in one dimension) Suppose A (t) E N for t > to.
Because the method ./g has local truncation error of order p > 1 and A E Cp+1 is
bounded there exists hl > 0 so that if h = Ihn1,7_0 is any sequence of step-sizes with(0, hn and n > 0, then

tn+i

OA (n;h) = exp (f (T)ctr) + EA (n; h) (n; h) + EA (n;h)

where EA (n;h) = KA (n;h)hrl and supn>o (n;h)1 < KA for some KA > O. If n >
m > 0 and llh11— E (0,hp, then

121 (k;h) = (121 (1+ Ea (k;h)(IA- (k;h))-1)) exp (f (-c)d-c) . (3.4)
k=n-1 k=n-1

Let h2 E Alin be so small that if h = {hn}Z_0 is any sequence of step-sizes with

PM= (o,hD, then supn>0 l (n; h) (12- (n;h))-111 < < 1/2. If

C (0/ hP , and n > m > 0, then (3.4) implies that the following two inequali-
ties hold:

exp A (r)dr — 2EL,in (k>h)(IA (k>h))-11) 1117=n-111°A (k;1 )11)

fr=n-1 11°A (k;h) II C exp (fttnn, A (r)ctr Erkill EA (k;h)(IA (k; h))-1) .

For any sequence of step-sizes h with c (o,hI) we have

(3.5)

n-1 n-1

E EA (k;h)(IA (k;h))-1 1 < E ehriemollE < eemor hlIP
11"11c.(tn tm). (3.6)

k=m k=m

E (0,hp, then the conclusions of Theorem 3.4 follow from inequalities (3.5)
and (3.6). The conclusion of Theorem 3.3 follows by letting E > 0 be given and then

setting h* to be so small that if E (0, h*), then eel/114Es < E/2. ❑
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Certain subsets of A-stable Runge-Kutta methods, such as AN-stable methods, have
superior stability properties compared to other classes of implicit and explicit meth-
ods Runge-Kutta methods. For an s-stage AN-stable Runge-Kutta method =
c A
bT where c = (c1, . . . , cs)T, if there exists 22 > 21 > to such that Re(A (t)) < 0 for

t E [21, 22], then 10A' (n;h)1 < 1 whenever hn and tn are such that (tn + c jhn) E [21, 22]
for j = 1, . . . , s. We extend this type of analysis to Runge-Kutta methods that are not
AN-stable. Fix a step-size sequence h = {14,7_0 and a Runge-Kutta method .17' and
for each n > 0 consider the following associated mean autonomous ODE:

1 ftn-khn
er)dr. (3.7)

J
= 4nw, 

n 
:= 4 (X; hn) = it

Suppose that the approximate solution of (3.3) by ./A(' at time tn is given by zn. Then
the exact solutions of (3.3) and (3.7) with the initial condition z(tn) = zn are the same:

tn-khn

w(tn+ hn) = z(tn + hn) = exp (f (r)d'r) zn •
tn

The solutions of (3.3) and (3.7) by ./g/ using the step-size hn are then given by

w(tn hn) N min+1 = W(hn4n)wn, z(tn+ hn) N zn-ki = OA' (n;h)zn.

Since the exact solutions are equal, there exists h* > 0 so that if MN E (0, h*), then

OA' (n;h) = (hn4n)+ (hr), n > O. (3.8)

Equation (3.8) implies the following theorem.

Theorem 3.6 Let S be the linear stability region of the Runge-Kutta method di' and
let hn > O. For each E G (0, 1) define s' (E) = tZ E S: 1 1P(z) < 1 —El. If f::+hn (T)d"r

,V(e) for some E (0, 1) and 11.Ar (n;h) — (hn4n)1 < e, then 1.1)A (n;h)l < 1. El

We close this section by remarking that we cannot extend equation (3.8) in a straight-
forward way to higher-dimensional problems since for d > 2 the matrix exponential
function exp (ft: A (T)ctr) is not in general a solution of (2.6). It is necessary to employ
a time-dependent change of variables to reduce the analysis of (2.6) to a scalar test
problem of the form of (3.3).

3.3 Proof of the main results for linear ODEs

Let X be a fundamental matrix solution of (2.6) and let X(t) = Q(t)R(t) be a QR fac-
torization where Q(t) is orthogonal and R(t) is upper triangular with positive diagonal
entries. Without loss of generality we assume that Q(t) is the orthogonal matrix of the
corresponding upper triangular ODE (3.1). For each n > 0 let the transition matrix
X (t , t n) be the unique d x d matrix solution of the following matrix ODE IVP (recall
that /d is the d x d identity matrix):

f =A(t)W(t) t > tn,(tn) = Id
'11(t) E fildxd. (3.9)
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For n > 0 we factor X (tn) as X (tn) = X (tn,tn_i) • . . . • X (ti , to)X (to). Similarly for each
n > 0 we let R(t , tn) E Ndxd be the unique solution of the following matrix ODE IVP:

f qt.(t) =B(t)0(t)
ck(tn) =id 

t > tn, 0(0 E Rd" .

For n > 0 we then factor R(tn) as R(tn) = R(tn, tn_i) • ... • R(ti,to)R(to). Notice that
we have X (t ,tn) = Q(t)R(t ,tn)Q(tn)T for n > 0. The local error equations

(n;h) = X (tn+i , tn) + EA (n; h), OB (n; h) = R(tn+i,tn) + EB (n;h)

and the definition F (h;n) := —EB (n;h) Q(tn+i)T EA (n;h)Q(tn) imply that

OA (n;h) = Q(tn+i)[OB (n;h) +F (n;h)]Q(tn)T (3.10)

where 11F (n;h)11 < L(MEA (n;h)11 + IIEB (n; h) ) for some L > 0 since Qn and On)
are orthogonal. Since we assume that 11h1l— is always such that OA (n;h) is invertible
for all n > 0 so we can let Qo := Q(to) and inductively form QR factorizations

OA (n;h)Qn = Qn+1RA (n; h), n > 0 (3.11)

where Qn is orthogonal and RA (n;h) is upper triangular with positive diagonal entries
for all n > 0. Combining (3.10) and (3.11) results in the equation

RA (n;h) = QT,±1Q(tn+i)[°B (n;h) +F (n>11)]Q(tn)T Qn.

The Lyapunov and Sacker-Sell spectra of vn±i = [cPB (n;h) + F (n;h)]vn and xn±i =
(n;h)xn coincide since xn = Q(tn)vn and xn = Qnwn are discrete Lyapunov trans-

formations.

Proof (Proof of Theorem 3.3) By the estimates (3.5) and (3.6) in the proof of The-
orems 3.3 and 3.4 in one dimension, there exists 14 > 0 so small that if h is any
sequence of step-sizes with 1011... E (0,121), then

Al3 = A + 0(I1hIlf.) and ar = (hLx) .

Let E > 0 be given. By continuity of the Sacker-Sell spectrum there exists (5 > 0
so that if 11F (n;h)11 < 8 , then the endpoints of the Sacker-Sell spectrum of vn±i =
[OB (n;h) +F (n;h)]vn (and hence of xn±i = OA (n;h)xn) satisfy

< E and — < E, i = 1, ,d.

We can always bound 11F (n;h)11 <45 as follows. Since .11 has local truncation error of
order p > 1, we can choose h2 E (0, III] be so small that if < h2, then 11F (n;h)11 =

e(hr1) = 0( I111111Z+1). Then we can choose h* E (0, q so small that IT (n;h)11 < S.
I=1

We assume for the remainder of this section that (2.6) satisfies Assumption 3.2. The
proof of Theorem 3.4 is accomplished using several technical lemmas
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Lemma 3.2 There exists h* > 0 so that if h = {17„},7_0 is any sequence of step-sizes
with E (0 ,h*), then the system yn+i = OB (n;h)yn has a p-approximate discrete
integral separation structure.

Proof For 1 = 1, . . . ,d the diagonal entries itTi(n;h) are such that 4+1 = OP/ (n;h)ynl

are approximations to the scalar ODE yi = Bi,i (t)yi with yi(t0) = yo using the method
.17. Because .r& has local truncation of order p and B(t) is bounded and Cp+1, there
exists ILI > O so that if h is such that 11h11... < hi, n> O, and 1 = 1, . . . ,d, then

t,z+1
OPi(n;h) = exp (f Bl,l(r)d-c) + Er (n;h) (n;h) Ep (n;h).

where Er i(n;h) = Kr (n;h)111,„)+1 and supn>0Kr (n; h) < Kr < 00 for l = 1, . ,d. There
exists h';, > 0 with 12; E (0, hn so that if h is such that Mg. E (0,14), then we have
infn>00131(n;h) > 0 for 1 = 1, . . . ,d and therefore if n > m > 0 and i > j, then

1)Ii(k;h) a 1+ EP (k;h)(Ir (k;h))-1 . (3.12)
k—n-1 011,j(k;h) 411 1 + q(k; h)(IB(k;h))-1

Note that since infn>colori (n; h) > 0 for l = 1, . . . ,d and I I h I I E (0, it follows that

{0134(n;h)-1}7" is uniformly bounded for l = 1, . . . ,d. Since B(t) is bounded, for

l= 1, . . . ,d there exists Mr > 0 so that supt>to lBi,i < mr . Therefore, there exists
E (0,141 so that if Ilhlloo E (0,17;') and n > 0, then

supn>0 (n;h)IP (n;h) l I< Kr m, < 1/2, l= 1, . . . ,d. (3.13)

Assumption 3.2 implies that if i > j, then and Bjj satisfy either (2.9) or (2.10).
Let IS be the set of all pairs of integers (i, j) with 1 < i, j < d and i > j so that Bo
and Bid satisfy (2.9). If (i, j) E IS, then (2.9), (3.12), (3.13), and 11h11- E (0, h'3") imply
that if n > m > 0, then

in (k;h) n-1

H  > exp aid(tn- 40+ - E (2KiBeiihll—Mr
k=n-1 j,j(IC' n) k=m

A )0111030)(tn — tm) bi,j) •
+ KB dill— '7> exp ((aij — (2Krellh11.04

Let h* E (0,1'6] be such that if 11h1l- E (0 , h*), then

)11/7111:0 > (3.14)ai,j - (21Crdi II-4 +K.ilellhlIcavy

for all (i, j) E IS. It then follows that if (i, j) E IS and 11/111- E (0,h*), then 01'i(n;h)

and ,11,i(n;h) satisfy satisfy an inequality of the form (2.12).
If (i, j) V IS so that Bo and Bjj satisfy (2.10), then (3.12), (3.13), and llh11- E

(0, h*i) imply that given E > 0, there exists Mi,j(E) so that if n > m > 0, then

m n-1

H 0/3i (k;h)(011,j(k;h))-1 < exp +C(tn -4,)+ E (Kr +2Kiphr
k=n-1 k=m

< exp + (E + (Kr + 2K7)011f0)(tn Go) .
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Similarly, if 11/111— E (0, h*), then

Or,i(k; h)(07,1(k;h))-1 > exp (—Mij — (E + (2Kr +g)10111:0)(6,_ tm))
k=n-1

and it then follows that (2.13) is satisfied whenever MO— E (0, h*). Therefore, if
< h*, then infn>0 h) > 0 for n > 0 and i = 1, . . . , d and conditions (2.12)

and (2.13) are satisfied. It follows that yn+1 = (n;h)yn has a p-approximate dis-
crete integral separation structure. ❑

The size that h* > 0 must be taken in Lemma 3.2 depends on the integral separation
through the inequality (3.14). Weaker integral separation between diagonal elements
of B(t) (i.e. smaller values of a i require the smaller step-sizes to ensure the discrete
system inherits these properties.

Lemma 3.3 There exists h* > 0 so that if IIhIIoo E (0, h*), then An;h):= IIRA (n;h)—
'tB(n;h)ll = 0(0E+1).

Proof Using Lemma 3.2 we can find h'.1 > 0 such that if MN.. < hi, then (PB(n; h)
has a p-approximate discrete integral separation structure and so that F (n;h) :=

—Q(tn+i)F (n;h)Q(tn) with F(n;h) = e(hr1). Theorem 2.7 implies that there ex-
ists an h* (0, hn, K > 0, and a sequence {04,7_0 with each On E Rd x d orthogonal
so that if IIh < h., then

On+lRA (11;11) = (1,13(n;h)+ E(n;h))0n, — III KG

where E (n; h) = CIF (n;h)Q,, and G = supn>of F (n; h) II, II E(n;h)II = e(hr1).
It follows that if loll_ < h* , then An;h) = RA (n; h) — (n; h) = 6(10E+1) 

❑

Lemma 3.4 Suppose that the ODE (2.6) satisfies Assumption 3.2. Then, there exists
h* > 0 so that if OM— E (0,h*), then un±i = RA (n;h)un has a p-approximate integral
separation structure.

Proof Combine Lemma 3 3 and the method used to prove Lemma 3 2 0

We now complete the proof of Theorem 3.4. Let h* > 0 be so small that if 114— E
(0, h*), then the conclusions of Lemmas 3 2, 3.3, and 3.4 and Theorem 2.6 hold. The
conclusions of Theorem 3.4 are proved by combining the conclusions of Lemmas
3.2, 3.3, 3.4 and the conclusions of Theorems 2.4 and 2.6. ❑

4 Nonlinear stability

In this section we consider the stability of numerical solutions of nonlinear ODE
IVPs by one-step methods. The results of this section justify using the linear stabil-
ity theory developed in Section 3 to characterize nonlinear stability and develop the
applications in Section 5. The results of this section require restrictions on the ratio

llhll—/hinin > 1 in addition to restrictions on the the maximal step-size ll h II— A small
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enough bound Sh > 0 such that IlhIl—/hinin < 451, prevents oscillations in the step-size
from destabilizing an approximation to an exponentially stable solution.

Consider the ODE (2.1) and assume that f E CI for some integer l > 2. Recall that
x(t;u,$) denotes the unique solution of (2.1) with initial condition u E Rd at initial
time s > To. For the remainder of this section we assume that x(t; xo, to) is a bounded
solution of (2.1) with initial condition x(to) = xo and initial time to > To and also that
the right end-point of the Sacker-Sell spectrum of a = D f (x(t; xo,to), t)u A (t)u is
—a < 0 so that x(t; xo, to) is uniformly exponentially stable.

Fix a one-step method with local truncation error of order p > 1. We assume
that there exist constants hi, 81, KT > 0 so that the local truncation error of a single
step of .4' applied to solve (2.1) with any initial condition u E Rd at any initial time

s > to with Hu — x(s;xo, to) II < tai and step-size hi < hi' takes the form T (u,$)hr1
with II T (u,$)Il < KT . In addition we assume there is a constant LT > 0 so that if v is
also such that Ilv —x(s;x0, to) < LTIlu — v11-11 < 31, then IIT(u,$)— T (v,$)II

Fix any y E (0, a) for the remainder of this section. Theorem 3.3 implies that there
exist constants 12;, KA , EA > 0 so that if 114— <12;, thenX(tn+i)X(0-1 -= (n;h)+

4h1,;+1 where supn>0 I I En I I<_ EA and so that if n > m> 0, then )l
KAe—TN—tm). Let Km > 0 be such that Ilx (tn+i < Km for all 2 E (t t

n+ 

and n > 0 whenever 1011— < 12; .
Fix any uo E Rd and t > s > to, define u(t) := x(t;uo,$) and x(t) := x(t; xo, to),

and let l(t) = {140+ (1— a)x(t) : a E [0, 1]} be the line segment from u(t) to x(t).
Taylor expanding f (u,t) = f (x + (u — x),t) at x(t) implies that

a= f (x,t) + A(t)(u — x) + R(u,x,t) A(t)u + b(t) + R(u,x,t)

where R(u,x,t) satisfies the estimate

IIR(u,x,t)ll illu(t) x(t)112 • supfilD2 f (4 , 4 E l(t)}

where D2 f (v,t) denotes the Hessian of f (v,t) with respect to v. the variation of pa-
rameters formula then implies that:

tu(t) = X (t)X-1 (s)uo + f X (t)X (T)-1 (b(T) + R(uo,s, T))dT. (4.1)

Boundedness and uniform exponential stability of x(t; xo, to) and the fact that f E C2
imply that there exist constants y c (0,a) and k,KH , > 0 so that if t > s > to,
lluo — x(s;xo,to)11 < and Ilvo — x(s;xo,to)ll < 32, then

supt>to sup{ IID2 f (4 , g E l(t)} < 2KH ,

IIx(t;uo,$)—x(t;x0,to)11< ke-7(t—s)lluo — x(s;xo,to)ll.
(4.2)

Note that if I I uo — x(s; xo, to)11 < 32, then the following inequality holds:

< K I lx(t ; Up, s) —x(t;x0, to) 
112 < KHk2e-

11R(uo, t, 5)11 H 2?(t—s) 
lluo — X(S;x0, to) ll

We make use of the following discrete Gronwall inequalities.
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Lemma 4.1 [Gronwall inequalities] Let fanb7-0, {bn} Z_0, and {c}Z_0 be non-
negative sequences, a E (0, 1) and C > O.

I. If an < C rizic! biai, then an < Cexp bi).

2. If ao < co and an < cn+ raj for n > 1, then an < cnexp (an) for n > O.

Proof The first conclusion follows from induction. The proof of the second conclusion
can be found in [43].

Let k := min{p+ 1, /1 > 2 and define three positive constants Ki := (1 +KA)(EA +
KM KH k2), K2 := (1 + KA)KT , and Ci := (EA + 1 KH + LT)(1 + KA). The fol-
lowing theorem provides a global error bound on the approximation to x(t;x0,to) by

by restricting the maximal step-size and the ratio 11h11- 1 hmin.

Theorem 4.1 Let k > 2 and if k = 2 assume that IC1-7F,K2 < 1. Consider the numerical

solution -Cud-Z=0 generated by approximating x(t;xo,to) with the method using
the initial condition xo at initial time to and let xn := x(tn;x0,to) for n > O. Then there
exists D,h* > 0 and 31;` > 1 so that if Sh E [1, IV) and h is any sequence of step-sizes
with K. c (0, h*) and 11h1I- < 3hhmin , then suPn>ollun - xn II

Proof If k = 2, then define h* := min{3/4,W1,11, ,3Ty, 61, 62} and take (V = and if

k > 2, then define h* := 4, 61, 62, 4(4K2) } and take (V = 4(KII)h*.

In either case (k = 2 and k > 2) we have that V > 1 is well-defined. Let 6h E (0, (V)
and let h be any sequence of step-sizes with < Shhmin and 11 < h* . The fact
that 11 uo - xoll = 0 < < min{61, 62,10 together with (4.1) and k > 2 implies
that there exists N > 0 such that Ilan -xn I I< 111211- and the equation

Un+1 Xn+1 = X (tn+1)K (tn) (un xn)
ftn-F1

K (tn+1)X ("0-1 R(lin.tn, T)CPC T (untn)14+1 (4.3)
tn

holds for all n < N. Let No be the maximum of the set of all N such that Ilan -

xtz I I< 111111- holds for all n < N. We show by way of contradiction that No = 00. Let

yn := un-xn and suppose that No < 00. Then {yn}Nn°0 satisfies a difference equation of
the form yn+1 = anyn+ bn where a, = (n; h) and bn is defined as the remainder of
the right-hand side of (4.3). The discrete variation of parameters formula and yo =
imply that

n-1 i+1

ÿn = E H aj bi, n = I, . . . ,No + 1 (4.4)
i=0 j=n-1

The fact that I IYn I I< < 62 for n = 0, ... ,No means the inequalities of (4.2) hold
with t = tn+i and s = tn for n = 0, ... ,N0 which together with 111111_ < min{hl,hZ}
implies that

Ilbnll <EAhnkllynll+KMICHk2 n112 1+1 
e-217(tn-F1-T) + KT hnk

tn
KA' I KI k2

= EA 141lynll +  2? IlYnll2 (1 
e-2.1%)+ KT hkn, n = ,No.
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From this and the facts that k > 2, IIynII <111/11- < 1, and 1 - e-2?hn < 27hn for
n = 0, , No it then follows that

b n11 (EAllhlt2 1 KH Ilynnhe + KT n = 0, , No. (4.5)

The choice that h* < h';, implies that

i+1 ,11<(1+ KA)e-1(tn—ti-F1) n - 1 > i 1. (4.6)
j=n-1

The choice that h* < zY implies that

No No 1 4
Ee—yhinin(No—i) _ E e—Yhmini <   (4.7)
i=0 j=0 1 — exp (Yhmin) 3Yhmin

Equations (4.4), (4.5), (4.6), k > 2, and 1011- < 1 imply that for n = 1, . . . , N0 + 1:

n-1 n-1

YN-ti+1)11Yill.e_7(tn-ti+1) + Kill E e-K2,1111t
j=0 i=0

Combining this with Equation (4.7) and IIynII < NI- then implies that
the following holds for n = 1, . . . , N0 + 1:

IIynII 4K211ht 1 6h 
n-i

< Kahe E, e-7N-4±1)37 i=0

< 4K2111111L-13h 4K1 Oa& < 4.5h VOlhlIff;2+1c211h11—) 11h11—3y 3y - 3y

(4.8)

If k > 2 the assumption that Sh E [1, 4k, (ZY+K2) then implies that IlyN0+111 < 111111...
If k = 2, then (Ki +K2)/y < 1 and 31, < 43 imply that MYN0+111 < 111711-. Either case
contradicts the maximality of AT0 and we therefore conclude that No = 00. Therefore
the inequality (4.8) holds for all n> 0 and the first conclusion of the discrete Gronwall
lemma (Lemma 4 1) implies that the following holds for n > 0:

„ri) K2iihilk.;13healc111h11-311(37)4K21011/cco 
37 löh exP 

< 4 II II 

i=0 37

Therefore I I yn I I< DIlhIlk--13h for all n > 0 where D = 4K2eK1/7/(37) if k = 2 and
D = 4K2eK1/(K1+K2)/(3y) if k > 2. ❑

The following theorem shows that when the maximal step-size and the ratiollhllo. hmin
are properly restricted all numerical solutions with initial conditions sufficiently close
to .x0 are uniformly exponentially attracted to x(t;xo,to)•
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Theorem 4.2 Assume that k > 2 and xn := x(tn;x0,t0) for n > O. Given y E (0,Y)
there exists D,h* > 0 and ,5;: > 1 so that if 451, E [1, IV) and h is any sequence of step-
sizes with llh moo < h* and llh < öhlimm, then there exists 3 > 0 so that if Iluo — xoll <
3, then the numerical approximation funln-=0 of x(t;u0,t0) by the method .//1 with
the sequence of step-sizes h = satisfies the following uniform exponential

stability estimate llun xn11 < De-IN-1-tm) Hum — xm ll for all n > m > O.

Proof Let y c (0, 7). Let h* = min{1, Sl, 32/2, hl h2 W',1 1 KA , 1 1 C } and fix Sh =

cih* '" Note that Si," > 1 is well-defined since h* < (y— y)/C1. Take any sequence of

step-sizes h with 011- < h* , Sh E [1, (5;:), and 11h11., < 5hhninn and let 45 > 0 be such

6 < minfl1b11-/KA•11b11-1 . The fact that 11 uo — xo 11 < 6 < 111/11- implies that there
exists N > 0 so that llun—xn11 < 11h11— and therefore

tn-F1
un+1 xn+1 = X (tn+i)X (tn)-1 (un — xn) + I X(tn+i)X(T)-1R(un,tn, 2)d2

+ (T(un,tn)—T(vn,tn))hr1. (4.9)

holds for n = 0, ,N. Let No be the maximal N such that llun — vnll < 1011- and
suppose for contradiction that No < 00. Then as in the proof of Theorem 4.1 we let

Yn:= tin-1,n so that {yn}Nn° 0 satisfies a difference equation of the form yn+1 = anyn +
bn where an = e (n; h) and bn is defined as the remainder of the right-hand side of
(4.9). The variation of parameters formula implies that if 0 < m < n < No + 1, then

n i
yn =[ n (n;hlym (i; bi

j=n-1 i=m j=n-1

As in the proof of Theorem 4.1, since llynll < 1011- < min{1,17I 81, 62} and
k > 2 we obtain the following bound for n = 0,...,No:

11bnll +211h111KMICHelyn 11 +1711hellyn 11

(EA + 2KAIKHK-12 + LT) llhellyn II =C111h11111yn11.
Since k > 2 it then follows that for n = m,... ,N0+ 1 we have

n-1

llynll < KA e-T(tn-1 -tm) + E (1 + Y(tn-1-"+i)IIbiIIllbi

< KAe-7(41-1-

i=m
n-1

llYm 11 Cie_7(tn-1-ti+1)
i=m

Since h* < min{1, 1 /Ci , 1/KA}, the second conclusion of the discrete Gronwall lemma
(Lemma 4.1) implies that for n = m,... ,No +1 we have

< KA T(re-n_1-llYn 11 tm)11.YmIleC1111h111(n-rn) < KA llyin lle(-7+c111h11.4)(tn-l-tm) . (4.10)

In the case that m = 0, 1 13'011 < 3 < loll.../KA and Cl11b11-ön < y — 7 imply that
11YN0+111 < 11b11- which tr conadicts the maximality of No. It therefore follows that
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No = 00 and therefore (4.10) holds for all n > m > 0. It follows that if h is any

sequence of step-sizes with II /ill— < h*, 5h > 1 is such that 5h < c:fhL, and 8 <

min{114—/KA,1011—} , then l l Yn II De-Y(tn-1-6")Ilym 11 where D = KA. I=1

Uniform exponential stability is a strong assumption to place on an IVP that ex-
cludes many interesting and important types of problems. We close this section with
a discussion how to extend the ideas discussed herein to IVPs that are not uniformly
exponentially stable. Suppose To = —00 and x(t;x0,t0) is bounded for all t E N so
that A(t) is defined and bounded for all t E R. We now consider the case of full-line
exponential dichotomies where the estimates of (2.4) hold for all s, t E R rather than
all s, t E (to, 00). Suppose that x(t;x0, to) is a trajectory with a spectral gap at zero; the
Sacker-Sell spectrum EED (defined by the full-line dichotomy estimates) of it = A (t)u
is contained in (-00, —a) U (a, 00) where a > 0. Additionally, suppose that there are
p spectral intervals contained in (a, 00). Let V = B(t)v be a corresponding upper tri-
angular system to a = A (t)u with u = Q(t)v where Q(t) is orthogonal. Then the under
the change of variables x = Q(t)y the equation (2.1) is transformed to the following:

[5;1]= [B1,1(t) B1,2(t)yil +[Ri(yi,y2,0 
B(t) =

131,1 Bi,2
5?2, B2,2 (t) Y2 i LR2(yi 7 y2, t) ' B2,2

where R = (Ri,R2) is assumed to be Lipschitz in (yl 072), Bi,i E RPxP, B2,2(t) E
R(d - p) x (d — I)), and Bi,2(t) E r p x (a— A . Typically (see e.g. Section 2 of [24]), the di-
agonal entries of B(t) will be ordered so that Vi = Bi,i (t)vi has Sacker-Sell spec-
trum contained in (a,00) and v2 = B2,2 (t)v2 has Sacker-Sell spectrum contained in
(-00, a). If a > 0 is large enough with respect to the Lipschitz constant of R, then by
Theorem 2.1 of [3] there is a unique decoupling transformation co so that yz satisfies
the following differential equation that is independent of yi:

572 = B2,2 (0)72 + R2(4)(372,t),y2,t) (4.11)

Solutions of (4.11) are uniformly exponentially stable and satisfy the hypotheses of
Theorems 4.1 and 4.2. Therefore, if 1114— and Sh —1> 0 are sufficiently small, then
the numerical error on the stable manifold defined by cp remains small and decays
uniformly and exponentially as t —> 0.0.

5 Applications

In this section we apply the theoretical results from Sections 3 and 4 to develop
a time-dependent stiffness indicator and a one-step method that switches between
implicit and explicit Runge-Kutta methods based on time-dependent stiffness. We
remark that by stiffness we mean parabolic stiffness related to a strongly attractive
mode rather than hyperbolic stiffness arising in highly oscillatory problems. We de-
note Runge-Kutta methods by RK(v-p-p) where RK is an identifying string, v is the
number of stages, p is the order of the method, and 13 is the order of the embedded
method. The following methods are used: the third order Bogacki-Shampine method
BS(4-3-2) (Equation 2.6 of [6]), ESDIRK(4-3-2) (second table on page 175 of [13]),
SDIRK(3-3-2) (Equation 5.4 of [34]), and SDIRK(4-3-2) (Equation 16 in [12]).
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All the experiments in this section were conducted using a solver odeqr imple-
mented in MATLAB. This solver forms an approximate solution using a Runge-Kutta
method with the capability of switching between different methods at each step. In
odeqr the step-size is either constant or adaptive where an initial step-size guess is
reduced by increments of 25% until a tolerance is satisfied. For an implicit method
odeqr solves the nonlinear stage equations using Newton's method with an option
for using exact and inexact Jacobians using the previous solution step as initial guess
and an error tolerance of 10-12.

5.1 Test ODEs

In this section we discuss the three ODEs used in our experiments in Sections 5.2 and
5.3. The first ODE we consider is Equation (1.1) with Ai = 0.1, A2 = —0.2, pi = 103,
P2 = 10-4, Po = ( (Ai + A2)2 — A1A2)/ai — ai — 10-4, al = a2 = 27r, and initial
condition x(0) = (1,-1)T.

The second equation we consider is the forced Van der Pol equation [41] ex-
pressed as a first order ODE in two dimensional phase space:

= (1 — xDx2 + — A sin(cot)

.Y2 = xl
(5.1)

We use the initial condition (xi (0),x2(0))T = (0,2)T, tt = 100, and co = A = 1. For
our third example we first consider (see [2, 28, 31]) the one-dimensional Fitzhugh-
Nagumo partial differential equation (PDE):

{ ut = 0(u)— v+ aa41
,vt = E(ti — 3-v)

u = u(x,t),v = v(x,t) E t > 0,x E (0, 1) (5.2)

with Neumann-type boundary conditions ux (0, t) = 0 = ux(1,t) and vx (0, t) = vx(1,t)
and with given by 0(r) = —2r3 + 6r and 3, a, E> O. We construct a system of
ODEs by taking a uniform spatial discretization of (5.2) with xi = j/J Pa for
j = 0, ,J and the following finite difference approximation to a u(x j, t) which takes
into account the boundary conditions:

(ui —uo)/(Ax)2,
{ 

j= 0
Au(xj,t) ,-----' D( ) := (tej_i — uj)/(Ax)2, . i = J

(uj+i — u j_i — 2u j) 1 (Ax)2, otherwise

where u j(t) u(xj,t) for j = 0, ,J and Ax = 1/J. This leads to our third ODE
which is the following (2J + 2)-dimensional Fitzhugh-Nagumo system:

f = cp(ui) — vi + aD(ui)
J = • • •

= E(tlj— 611 j)
(5.3)

For parameter values we take E= 0.1, a =0.3, 3 = 0.01, and J = 14 and for the initial
condition we use ui (0) = sin(0.57t jAix) and vi (0) = cos(0.57rjAx) for j = 0, ,J.
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5.2 Nonautonomous stiffness detection

In this section we develop a method for stiffness detection based on approximating
Steklov averages as defined in Equation (3.2). Assume that (2.6) satisfies Assumption
3.2. The conclusion of Lemma 3 1 implies that the Steklov averages (3.2) of a cor-
responding upper triangular ODE measure average exponential growth/decay rates
of solutions of (2.6) on the interval (t ,t + At). For a randomly chosen orthogonal
Q(to) = Qo ER" the Steklov averages of the corresponding upper triangular ODE
)) = B(t)y where B = QT AQ — QT 0 tend to order themselves so that s1 (t , At) corre-
sponds to the right-most spectral interval and sd (t , At) corresponds to the left-most
spectral interval (see e.g. Section 2 of [24]). This motivates using the following as a
stiffness indicator:

S(t,4t) = si(t,4t)—sd(t,4t).

If S(t , At) is large in absolute value, then we expect that the problem is stiff and if
S(t , At) is near zero, then we expect that the problem is nonstiff. We remark that in
general sl (t , At) > s d (t , At) holds on average, but does not hold point-wise, since for
sufficiently large 4t the quantities s1 (t , At) and s d (t , At) become approximations to
respectively the right and left end-points of the Lyapunov and Sacker-Sell spectra.

We now discuss how to approximate S (t , At). Consider the numerical solution
xn±i = e (n;h)x„ of (2.6) using a one-step method with local truncation error of
order p > 1. We first approximate s1 (tn,hn) as follows. Given an initial qo E Rd with

1 Igo 112 = 1 ( 11 ' 112 is the Euclidean 2-norm) we inductively form vn := oll(n; h )qn
and /?1,1(n; h) := II!iv n112 followed by normalization: qn+i := vn 1 Ilvnll2. We approx-

imate si(tn,hn) by 41 (n) := 1n(R11(n; h)) I It, which is justified since Theorem 3.4
implies that si (tn,hn) = 41 (n) + 6 (NO for sufficiently small 11 hIl — . We approxi-
mate sd(tn,hn) by applying the same method used to approximate sl (tn,hn) to the
opposite adjoint equation .t = —A (t)T x to obtain 4d (n) R.-', sd(tn,h,i). This is justified
since the right end-points of the Lyapunov and Sacker-Sell spectra of the opposite
adjoint equation are the left end-points of the Lyapunov and Sacker-Sell spectra of
(2.6).

Our approximation of S(t , At) along a sequence of time-steps N1,7_0 using win-
dow length w > 0 and n > 0 is defined as as

1 2w

SI (n, w) = 
tn+w+1 —,n—w k=0

# E (41(n — w + k) — gd (n — w + k)) 1 hn_w+k .

For IVPs of nonlinear ODEs we compute SI (n, w) by approximating the coef-
ficient matrix A (t) := D f (x(t; xo , to), t) which is then used to form an approximate
OA (n; h). Approximating 40(n; h) to high order may require approximating values
of A(t) for t E (tn,tn+i). We use a piecewise cubic Hermite interpolating polynomial
to obtain an e,(11111140.0) order approximation to A(t) for t E (tn,tn+i) making use of
the approximate solutions xn and xn+1 and their approximate derivatives f (x„,tn) and

f (xn+i,tn+i). This is sufficient for us to obtain order p approximations to 0A (n;h)
for p < 3, a constraint satisfied by all the methods used in our examples. In gen-
eral higher-order piecewise Hermite interpolants would be needed for higher order



26 Andrew J. Steyer, Erik S. Van Vleck

approximations of VI (n; h). If the method is explicit we approximate e(n;h) by
applying the method to compute a single step of the numerical solution of X = A (t)x
starting from the identity using the cubic Hermite interpolating polynomial to approx-
imate the necessary values of A (t) for t E (tn,tn+1). For an implicit method we avoid
solving a linear system of equations to approximate 0A (n;h) by instead forming

(n;h) = e(n;h) 6(014) where 
vl 

(n;h) is formed using an explicit method
with truncation error of the same order.

In addition to our Steklov average based method we implement the stiffness in-
dicator, denoted as a [A(t)], that was introduced in Definition 4.1 of [11] that is for-
mulated in terms of the logarithmic norm of the Hermitian part of A(t): He[A(t)] :=
(A(t) +A (t)T )12. To simplify the computation of a [A(t)] we assume that we are using
the Euclidean 2-norm. As noted in [11] this implies that a[A(t)] equals the smallest
eigenvalue of He[A(t)] subtracted from the largest eigenvalue of He[A(t)].

In general we cannot expect any relation between SI (n, w) and c[A(tn))] as exem-
plified in Figure 5.1. However, we can characterize when these two indicators should
be close to equal. Assume w = 0 and note that for any bounded and continuous A(t)

we have X (tn+1, tn) = exp (f::+1 A ( r)dr) + e(111/112—) for all sufficiently small 11

where X (t; tn) is the solution of (3.9). Hence, if X (tn+i; tn) is well-conditioned for
eigenvalue computations (such as when A(tn) is normal and hn is small), then the
logarithms of the real parts of the eigenvalues of OA (n;h) divided by hn shoulndbe.
approximately equal to the average of the eigenvalues of He[A(t)] for t 

e (tn,t+i)

Forming 41(n) and (n) is equivalent to performing one step of power iteration to
approximate the real parts of the eigenvalues of cDA (n;h) and the associated oppo-
site adjoint coefficient matrix followed by taking logarithms and division by hn. If
the largest (in terms of absolute value) eigenvalue of He[A(t)] is significantly larger
than the next, then power iteration converges rapidly implying that a single step of
power iteration applied to He[A(tn)] should be approximately the logarithm of a sin-
gle step of power iteration applied to 0A (n;h) divided by hn. The same statement
holds for the adjoint coefficient matrix and the smallest eigenvalue of He[A(t)]. It
follows that SI (n,w) and a[A(tn))] should be close when 111/11— is small, w 0,
A (tn)A (t n)T —A(tn)T A(tn) R-z, 0, and the largest eigenvalues of A(tn) and —A (tn)T dom-
inate over the next largest.

We now highlight the advantages of computing SI(n,w) over a [A(tn)]. We first
note that approximating a [A(t,i)] is norm dependent (see Section 4 of [11]) while
SI (n,w) is not. Accurately approximating SI (n,w) depends on integral separation
which is expected to be strong in a stiff IVP and does not require that A (tn) or
He[A(tn)] be normal or well-conditioned for eigenvalue computations. Forming the
quantity SI(n,w) is generally less expensive than a [A(tn)] since forming SI(n,w) es-
sentially requires only a single step of power iteration applied to e(n;h) and the
associated adjoint coefficient matrix followed by taking logarithms and a linear com-
bination of 2w terms, whereas forming a [A (t,i)] requires at least one step of power
iteration or some other method for approximating eigenvalues. This cost advantage
is important in the next section where fast and accurate approximations to 41 (n) and
(n) are needed at each step.
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Fig. 5.1 Plots of approximate ISI(n,w)1 with w = 2 and a[A(tn)]1, first solution component, and step-size
versus time for the numerical solution of the 2D linear ODE (1.1) using the parameters specified in Section
5.1 solved with BS(4-3-2) using a relative and absolute error tolerance of 10-6.

We compare the performance of SI (n,w) with a [A (tn)] with the linear ODE (1.1)
and the forced Van der Pol equation in Figures 5.1 and 5.2. Figure 5.2 shows that
SI (n,w) and a [A (tn)] produce qualitatively similar results when applied to the Van
der Pol equation. However, as evidenced in Figure 5.1, our approximation to SI (n,w)
is more sensitive to changes in the step-size even over intervals where the solution is
nonstiff. The 2D linear ODE (1.1) provides a clear example where the performance
of SI (n,w) is superior to that of a [A (tn)], with SI (n,w) detecting intervals over which
the solver takes smaller and larger time-steps where A (t) is respectively more or less
non-normal, while a [A (tn)] is approximately constant at all time-steps. The values

(n, w) and la [A(tn)] are plotted since it is absolute values rather than sign that
indicate stiffness.

5.3 QR implicit-explicit Runge-Kutta methods

Consider an explicit Runge-Kutta method RKex(v-p-P) and an implicit Runge-Kutta
method RKim(ii-p-ß). We construct a one-step method with local truncation error of
order p, denoted as RKex(v-p-P)- RKim(1)-p-i3)), that switches between using the
implicit and explicit Runge-Kutta methods as follows. At time-step 4, we form 41 (n)
and 4d (n) as described in Section 5.2. If 4d (n) is too small and negative or if 41 (n) is
too large and positive, then we use the implicit method, otherwise we use the explicit
method. More precisely we use the explicit method if (n) > d2/Ho and 41 (n) <
d1/Ho where d1 and d2 are chosen according to the right and left endpoints of the
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Fig. 5.2 Plots of approximate ISI(n,w)1 with w = 10 and loa [A (0]1, first solution component, and step-size
versus time for the numerical solution of the Van der Pol ODE (5.1) solved with BS(4-3-2) using a relative
and absolute error tolerance of 10-6.

real parts of the linear stability regions of RKex(v-p-P) and RKim(i/' -p-P) and the
quantity 1/0 is a parameter specifying the minimum allowable step-size restriction due
to time-dependent stability that will be tolerated. We refer to such implicit-explicit
switching methods as QR-IMEX-RK methods and implement them with odeqr.

We approximate the parameter 1/0 as follows. Pick an interval over which the
approximate solution is non-stiff. Over this interval compute the approximate mean
step-size hmean and set 1/0 = hmeana where a > 0 is a factor quantifying the tolerance
for the stability step-size restriction relative to the mean non-stiff step-size.

We now discuss the results (Table 5.1) of various QR-IIVIEX-RK methods ap-
plied to solve an IVP of the discretized Fitzhugh-Nagumo PDE (5.3). The stiffness
increases as the error tolerance decreases leading to proportionally more uses of the
implicit method by the QR-IMEX-RK methods. The results in Table 5.1 show that at
the lowest tolerance TOL = 10-5 the explicit method Mfhnl (see the caption of Table
5.1 for descriptions of the methods) and the QR-IMEX-RK methods Mfhn2, Mfhn3,
and Mfhn4 have about the same mean step-size and few implicit steps are taken by the
QR-IMEX-RK methods. When tighter tolerances are used (TOL = 10-6, 10-7 , 10-8)
the problem is stiffer and the QR-IMEX-RK solvers Mfhn2, Mfhn3, and Mihn4 are
able to take larger time-steps on average than the explicit method Mfhnl at a cost
of using more right-hand-side calls when TOL = 10-5, 10-6, 10-7, fewer right-hand-
side calls when TOL = 10-8, and more Jacobian calls at all tested tolerances than
Mfhnl. Notice that although Mfhn2, Mfhn3, and Mfhn4 are able to take larger step-
sizes on average than Mfhnl the additional implicit time-steps cost more in terms of
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right-hand-side and Jacobian evaluations, linear solves, and the overhead associated
with forming gi(n) and at each time-step.

Table 5.1 Table of results for experiments on the spatially discretized Fitzhugh-Nagumo PDE (5.3) solved
on the time interval [0, 100] using J = 14. TOL is the absolute and relative error tolerance (always taken
to be equal), nexp and nimp are the number of explicit and implicit steps taken, Feval is the number
of evaluations by the ODE right-hand-side function f (x,t), Jaceval is the number of evaluations of the
Jacobian A(t), Lsol is the number of linear solves, and NA is short for not applicable. The methods are
the explicit method Mfhnl = BS(4-3-2) and the QR-IMEX-RK methods Mflin2 = BS(4 3 2) ESDIRK(4-
3-2), Mf1m3 = BS(4-3-2)-SDIRK(4-3-2) , and Mthn4 = BS(4-3-2)-SDIRK(3-3-2). The QR-IMEX-RK
parameters were d2 = —3.5 and d] = 10.0 and Ho was computed by taking the approximate mean step-
size of Mthn2 (around lE — 2 for all tolerances) on the interval [5, 20] and using a = 1.5. Jacobians were
formed exactly and the initial step-size was ho = 0.05.

Method TOL hmean nexp nimp Feval Jaceval Lsol
Mflml 1E-5 1.164E-2 8595 NA 40845 NA NA
Mthn2 1E-5 1.186E-2 8333 129 54283 36860 328
Mfhn3 1E-5 1.183E-2 8317 124 50330 36796 309
Mfhn4 1E-5 1.182E-2 8595 143 49357 36507 373

Mthnl 1E-6 9.501E-3 10525 NA 47893 NA NA
Mthn2 1E-6 1.045E-2 9247 323 61611 45476 738
Mthn3 1E-6 1.043E-2 9304 283 62108 44832 669
Mthn4 1E-6 1.037E-2 9237 399 61228 44817 846

Mfhnl 1E-7 5.804E-3 12834 NA 77929 NA NA
Mfhn2 1E-7 7.439E-3 12846 609 81060 66384 1272
Mfhn3 1E-7 7.465E-3 12887 550 80773 65024 1155
Mfhn4 1E-7 7.271E-3 17229 867 80957 68339 1787

Mthnl 1E-8 2.348E-3 42587 NA 170449 NA NA
Mfhn2 1E-8 3.319E-3 28902 1228 161587 145536 2513
Mthn3 1E-8 3.296E-3 29324 1018 163283 142216 2097
Mfhn4 1E-8 3.248E-3 28898 1891 163871 151845 3836

6 Afterword

We have used QR approximation theory for Lyapunov and Sacker-Sell spectra to
develop a time-dependent stability theory for one-step methods approximating time-
dependent solutions to nonlinear and nonautonomous ODE IVPs. This theory was
used to justify characterizing the stability of a one-step method solving an ODE IVP
with real-valued, scalar, nonautonomous linear test equations. In the companion pa-
per [40] we use invariant manifold theory for nonautonomous difference equations
to prove the existence of an underlying one-step method for general linear methods
solving time-dependent ODE IVPs. This is then used to extend our analysis of one-
step methods to general linear methods. It should also be possible to extend the theory
developed in this paper to infinite dimensional IVPs (using the infinite dimensional
QR approximation theory developed in [4]) arising from PDEs where the step-size
restriction will become a time-dependent CFL condition. By using Q(t) is should
also be possible to use our techniques to measure oscillatory or hyperbolic stiffness
in addition to parabolic stiffness.
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Detecting, quantifying, and understanding stiffness has the been a major research
focus of the time discretization community for the past 60 years. The methods we
have developed in this work can be advantageous for problems with e,g. non-normal
Jacobians where standard stiffness detection techniques, such as those using loga-
rithmic norms or time-dependent eigenvalues, can potentially fail. Our techniques
are justifiable in terms of Lyapunov and Sacker-Sell spectral theory and at a low
computational cost produce qualitatively the same information in situations where
existing methods are effective and meaningful information where existing methods
are ineffective. Additionally, the QR and Steklov average based approach can be used
to estimate Lyapunov exponents and Sacker-Sell spectral end-points which are use-
ful in characterizing the dynamics of the differential equation whose IVPs are being
approximated.

References

1. Adrianova, L. Introduction to Linear Systems of Differential Equations, volume
146. AMS, Providence, R.I., 1995.

2. Arimoto, S. and Nagumo, J. and Yoshizawa, S. An active pulse transmission line
simulating nerve axon. Proc. Inst. Radio Eng., 50:2060-2070, 1964.

3. Aulbach, B. and Wanner, T. Invariant foliations for Carathéodory type differen-
tial equations in Banach spaces. In A. Martynyuk, editor, Advances in Stability
Theory at the End of the 20th Century, Stability Control Theory Methods Appl.
13. Taylor and Francis Inc, New York, NY, 1999.

4. Badawy, M. and Van Vleck, E.S. Perturbation theory for the approximation of
stability spectra by QR methods for sequences of linear operators on a Hilbert
space. Linear Algebra Appl., 437 (1):37-59,2012.

5. Beyn, W.-J. On invariant close curves for one-step methods. Numer. Math., 51:
103-122,1987.

6. Bogacki, P. and Shampine, L. A 3(2) pair of Runge-Kutta formulas. Appl. Math.
Lett., 2(4):321-325, 1989.

7. Breda, D. and Van Vleck, E.S. Approximating Lyapunov exponents and Sacker-
Sell spectrum for retarded functional differential equations. Numer. Math., 126
(2):225-257, 2014.

8. Burrage, K. and Butcher, J.C. Stability criteria for implicit Runge-Kutta meth-
ods. SIAM J. Numer. Anal., 16(1):46-57, 1979.

9. Butcher, J.C. A stability property of implicit Runge-Kutta methods. BIT, pages
vol. 27,358-361., 1975.

10. Butcher, J.C. The equivalence of algebraic stability and AN-stability. BIT, 27
(2):510-533, 1987.

11. Calvo, M., Jay, L., and Söderlind, G. Stiffness 1952-2012: Sixty years in search
of a definition. BIT, 55(2):531-558, 2015.

12. Cameron, E, Palmroth, M., and Piché, R. Quasi stage order conditions for
SDIRK methods. Appl. Numer. Math., 42(1-3):61-75, 2002.

13. Carpenter, M.H. and Kennedy, C.A. Additive Runge-Kutta schemes for
convection-diffusion-reaction equations. Appl. Numer. Math., 44:139-181,2003.



A Lyapunov and Sacker-Sell spectral stability theory for one-step methods 31

14. Coppel, W.A. Lecture Notes in Mathematics # 629: Dichotomies in Stability
Theory, volume 629. Springer-Verlag, Berlin, 1978.

15. Dahlquist, G. Convergence and stability in the numerical integration of ordinary
differential equations. Math. Scan., 4:33-53, 1956.

16. Dahlquist, G. Stability and error bounds in the numerical integration of ordinary
differential equations. Trans. Royal Inst. Technol., Stockholm, Sweden, Nr. 130:
87, 1959.

17. Dahlquist, G. A special stability problem for linear multistep methods. BIT, 3:
27-43, 1963.

18. Dieci, L. and Van Vleck, E.S. Unitary integrators and applications to continuous
orthonormalization techniques. SIAM J. Numer. Anal., 310(1): 261-281, 1994.

19. Dieci, L. and Van Vleck, E.S. Lyapunov spectral intervals: Theory and compu-
tation. SIAM J. Numer. Anal., 40(2):516-542, 2003.

20. Dieci, L. and Van Vleck, E.S. Lyapunov and other spectra: A survey. Collected
Lectures on the Preservation of Stability under Discretization, A Volume Pub-
lished by SIAM, pages 197-218, 2002.

21. Dieci, L. and Van Vleck, E.S. Lyapunov and Sacker-Sell spectral intervals. J.
Dynam. Differential Equations, 19(2):265-293, 2007.

22. Dieci, L. and Van Vleck, E.S. On the error in computing Lyapunov exponents
by QR methods. Numer. Math., 101(4):619-642, 2005.

23. Dieci, L. and Van Vleck, E.S. Computation of orthonormal factors for funda-
mental matrix solutions. Numer. Math., 83(4):599-620, 1999.

24. Dieci, L. and Van Vleck, E.S. Computation of a few Lyapunov exponents for
continuous and discrete dynamical systems. Appl. Numer. Math., 17(3):275-291,
1995.

25. Dieci, L., Russell, R., and Van Vleck E.S. On the computation of Lyapunov
exponents for continuous dynamical systems. SIAM J. Numer. Anal., 34(1):402-
423, 1997.

26. Dieci, L., Elia, C., and Van Vleck E.S. Detecting exponential dichotomy on the
real line: SVD and QR algorithms. BIT, 248:555-579, 2011.

27. Eirola, T. Invariant curves of one-step methods. BIT, 28(1):113-122, 1988.
28. Fitzhugh, R. Impulses and physiological states in theoretical models of nerve

membrane. Biophys. J., 1(6):445-466, 1961.
29. Kloeden, P. and Lorenz, J. Stable attracting sets in dynamical systems and in

their one-step discretizations. SIAM J. Numer. Anal., 23(5):986-995, 1986.
30. Kreiss, H.-O. Difference methods for stiff ordinary differential equations. SIAM

J. Numer. Anal., 15(1):21-58, 1978.
31. Krupa, M., Sandstede, B., and Szmolyan, P. Fast and slow waves in the Fitzhugh-

Nagumo equation. J. Differential Equations, 133(1):49-97, 1997.
32. Leonov, G.A. and Kuznetsov, N.V. Time-varying linearization and the Perron

effects. Internat. J. Bifur. Chaos Appl. Sci. Engrg., 37(4):1079-1107, 2007.
33. Lyapunov, A. Problém géneral de la stabilité du mouvement. Internat. J. Control,

53(3):531-773, 1992.
34. Norsett, S.P. and Thomsen, P.G. Embedded SDIRK-methods of basic order three.

BIT, 24(4):634-646, 1984.
35. Palmer, K. The structurally stable systems on the half-line are those with expo-



32 Andrew J. Steyer, Erik S. Van Vleck

nential dichotomy. J. Differential Equations, 33(1):16-25, 1979.
36. Perron, O. Die stabilitätsfrage bei Differentialgleichungen. Math. Z., 32(1):703-

728, 1930.
37. Pötzsche, C. Fine structure of the dichotomy spectrum. Integral Equations and

Operator Theory, 73(1):107-151, 2012.
38. Pötzsche, C. Dichotomy spectra of triangular equations. Discrete Contin. Dyn.

Syst. Ser. A, 36(1):423-450, 2013.
39. Sacker, R. and Sell, G. A spectral theory for linear differential systems. J.

Differential Equations., 27(3):320-358, 1978.
40. Steyer, A. and Van Vleck, E.S. Underlying one-step methods and nonau-

tonomous stability of general linear methods. Discrete Contin. Dyn. Syst. Ser.
B, To appear in print, 2017.

41. Van der Pol, B. A theory of the amplitude of free and forced triode vibration.
Radio Review, 1:701-710, 1920.

42. Van Vleck, E.S. On the error in the product QR decomposition. SIAM J. Matrix
Anal. Appl., 31(4):1775-1791, 2010.

43. Zenisek, A. Nonlinear Elliptic and Evolution Problems and their Finite Element
Approximations. Academic Press, 1990.


