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Abstract Approximation theory for Lyapunov and Sacker-Sell spectra based upon
QR techniques is used to analyze the stability of a one-step method solving a time-
dependent (nonautonomous) linear ordinary differential equation (ODE) initial value
problem in terms of the local error. Integral separation is used to characterize the con-
ditioning of stability spectra calculations. The stability of the numerical solution by
a one-step method of a nonautonomous linear ODE using real-valued, scalar, nonau-
tonomous linear test equations is justified. This analysis is used to approximate ex-
ponential growth/decay rates on finite and infinite time intervals and establish global
error bounds for one-step methods approximating uniformly, exponentially stable tra-
jectories of nonautonomous and nonlinear ODEs. A time-dependent stiffness indica-
tor and a one-step method that switches between explicit and implicit Runge-Kutta
methods based upon time-dependent stiffness are developed based upon the theoreti-
cal results.
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1 Introduction

Stability plays a central role in determining the time asymptotic behavior of dynam-
ical systems. In the seminal works of Lyapunov [33] and Dahlquist [15, 16, 17], sta-
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bility theories for ordinary differential equation (ODE) initial value problems (IVPs)
and methods for their numerical solution were respectively established. The stabil-
ity of time-dependent (nonautonomous) solutions to ODEs can be determined using
a variety of techniques, but does not in general reduce to a time-dependent eigen-
value problem (see the third example on page 24 of [30] or the example at the bottom
of page 3 of [14]). Understanding the stability of numerical methods approximating
time-dependent solutions to ODE IVPs is important for preventing spurious compu-
tational modes, detecting and quantifying stiffness, and controlling the global error.
The complementary dynamical systems viewpoint is that the dynamics of numeri-
cal solutions should mimic the dynamics of differential equations. In this paper we
embrace both of these points of view and use Lyapunov and Sacker-Sell spectral the-
ory to develop a time-dependent stability theory for one-step methods approximating
solutions of ODE IVPs.

Our contribution is to establish a Lyapunov stability theory for variable step-size
one-step methods approximating time-dependent solutions of ODE IVPs that can fail
to satisfy the hypotheses of AN- and B-stability theories (see Equation 1.1 below for
an example of such an ODE). Henceforth in this paper, whenever we use the word
stability we are referring to Lyapunov stability in either continuous or discrete time.
Our main results, Theorems 3.3 and 3.4, characterize the Lyapunov and Sacker-Sell
spectra of one-step methods approximating the solution of nonautonomous linear
ODEs. We use integral separation, the time-dependent analog of gaps between eigen-
values, to characterize the conditioning of the Lyapunov and Sacker-Sell spectra and
related quantities. A time-dependent and orthogonal change of variables is employed
to transform to a linear ODE with an upper triangular coefficient matrix, from which
spectral endpoints and integral separation properties can be determined from the diag-
onal. Theorem 3.3 concludes that if the coefficient matrix of a linear ODE is bounded
and sufficiently smooth, then the Sacker-Sell spectrum of the numerical solution ap-
proximates that of the ODE. Theorem 3.4 concludes that if the ODE has an integral
separation structure, then the Lyapunov and Sacker-Sell spectrum of its numerical
solution accurately approximate the spectra of the ODE in terms of the local trun-
cation error. Additionally, the endpoints of the spectra of the numerical solution can
be estimated from the diagonal entries of the transformed upper triangular coefficient
matrix of the linear difference equation it defines.

Theorems 3.3 and 3.4 together with Lemma 3.1 justify characterizing the stability
of a one-step method solving a nonautonomous linear ODE of dimension d with d
scalar, real-valued, nonautonomous linear test equations. In Theorem 3.5 we demon-
strate the necessity of using a step-size restriction to control the time-dependent sta-
bility of Runge-Kutta methods (even those that are implicit and A- or AN-stable)
solving real- or complex-valued scalar, nonautonomous linear test equations. After
this we prove Theorem 3.6 showing that the stability of a Runge-Kutta method solv-
ing a real- or complex-valued scalar, nonautonomous linear test equation can be char-
acterized by when the time-averages of the coefficient function of the test equation
lie in the linear stability region of the method.

The linear stability results are applied to prove two theorems (Theorems 4.1 and
4.2) on the numerical solution by a one-step method of a uniformly exponentially
stable solution of a nonlinear and nonautonomous ODE. Theorem 4.1 shows that as
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time limits to infinity the error of the numerical solution by a one-step method of
a uniformly exponentially stable trajectory of a nonlinear IVP remains accurate in
terms of the order of the truncation error of the method. Theorem 4.2 shows that the
numerical approximation by a one-step method of a uniformly exponentially stable
trajectory of a nonlinear ODE is uniformly exponentially attracted to the exact solu-
tion with decay rates estimated by the Sacker-Sell spectrum of the linear variational
equation. The nonlinear results, which draw on the spirit of the one-step approxima-
tion theory developed in [5], [27], and [29], show that the Lyapunov stability of the
numerical solution of a nonlinear ODE IVP by a one-step method can be character-
ized and quantified in terms of the spectral stability of the numerical solution of the
associated linear variational equation.

The linear and nonlinear theoretical results are applied in Section 5. In Section
5.2 we develop an efficient time-dependent stiffness indicator and in Section 5.3 we
develop a one-step method, referred to as a QR-IMEX-RK method, that switches
between using implicit and explicit Runge-Kutta methods. Our stiffness indicator is
computed using Steklov averages approximated from the discrete QR method for
computing Lyapunov exponents [22]. This indicator is in general more efficient to
compute than methods such as that proposed in Definition 4.1 of [11] that require ap-
proximating logarithmic norms or time-dependent eigenvalues and additionally our
indicator is able to detect stiffness in IVPs with non-normal Jacobians where loga-
rithmic norms and time-dependent eigenvalues can fail to indicate stiffness. Being
able to detect stiffness efficiently and robustly is necessary in the context of our QR-
IMEX-RK methods where we switch between using an implicit or explicit Runge-
Kutta method based on where approximate Steklov averages are at each time-step in
relation to the linear stability regions of the explicit and implicit methods.

The stability of numerical solutions of ODE IVPs is a classic topic in numeri-
cal analysis dating back at least to the PhD thesis of Dahlquist (published as [16])
and also [15, 17] where concepts such as A-stability were first introduced. Other
stability theories for the numerical solution of nonautonomous and nonlinear ODE
IVPs, such as B-stability [9] or algebraic stability and AN-stability [8] provide an
analysis for various classes of ODEs that are monotonically contracting. The equiva-
lences amongst these nonlinear and nonautonomous stability theories are investigated
in [10]. In the case of Runge-Kutta methods the analysis in AN-, B-, and algebraic
stability requires that the methods be implicit and at least A-stable while our analysis
holds so long as the method is convergent.

The theory developed in this work is based on the time-dependent spectral sta-
bility theories of the Lyapunov and Sacker-Sell spectra. We refer to the monographs
[1] by Adrianova and [14] by Coppel as general references on time-dependent stabil-
ity and related topics such as integral separation and exponential dichotomies. The
theory of Lyapunov exponents and the associated Lyapunov spectrum arose from the
thesis of Lyapunov [33]. The Sacker-Sell spectrum first appears in the literature in
the the fundamental 1978 paper [39] of Sacker and Sell. The Lyapunov spectrum
characterizes the exponential stability while the Sacker-Sell spectrum characterizes
the uniform exponential stability of a nonautonomous linear ODE or difference equa-
tion.
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In this paper we apply the QR approximation theory for Lyapunov and Sacker-
Sell spectra (see e.g. [18, 19, 21, 23, 25], [26], [42], and [4]). QR approximation
theory constructs the orthogonal factor in a QR factorization of a fundamental ma-
trix solution (in continuous or discrete time) to transform a linear system to one with
an upper triangular coefficient matrix. Then, assuming either that the system has an
integral separation structure or a bounded and continuous coefficient matrix, the end-
points of the Lyapunov or Sacker-Sell spectrum respectively can be approximated
from the diagonal entries of the transformed upper triangular matrix.

The development of our theory is motivated by the following nonautonomous
linear ODE whose coefficient matrix has time-dependent normality:

x=A(t)x, A(t)=L{)Ct)L®)", t>0 (1.1)

A B(t) cos(w(t)) —sin(w(1))
C@t)= [01 s ], L(t) = Lin(w(;)) cos(a)azt)) ’

where 4; > 0> A, with A; + 2, < 0, B(¢) = Bo+ Bi (1 +cos(ait) /(1+ Bat?)), o(t) =
ast, 6 := (A +A2)* — 4(ai (a1 + Bo) + A1 A2) > 0 and both %(M + 2, ++/0) <0 for
constants aj,az, Bi, B2 > 0and By € R. The ODE (1.1) does not satisfy the hypotheses
of B-stability theory since there exists v,w € R? so that (v—w)TA(0)” (v—w) > 0 nor
AN-stability since A; > 0 is one of the time-dependent eigenvalues of A(z). However,
by using the change of variables x = L(¢)y and Theorem 4.3.2 of [1], it follows that
zero is an asymptotically stable equilibrium of (1.1).

If we solve (1.1) using the implicit Euler method with step-size A > 0 and ini-
tial condition (0,0)7 # xo € R, then the numerical solution {x,}:_, satisfies the
following linear difference equation:

Xup1 = ([ —hoA(tns1)] 'xn, n>0. (1.2)

If ay = ay = 27, hp = 1, and A; € (0, 1), then the solution of (1.2) with xo # (0,0)”
is such that ||x,|| — oo as n — oo at a rate of (1 —A;)" where || - || is any norm on R?
despite the fact that the implicit Euler method is AN-stable. In Section 3.1 we prove
that there is an A* > 0 so that if iy € (0,4*), then all solutions of (1.2) decay to zero.

The rest of this paper is organized as follows. In Section 2 we introduce some
definitions, notation, and necessary background material. In Section 3.1 we state The-
orems 3.3 and 3.4 which are subsequently proved in Section 3.3. We prove Theorems
3.5 and 3.6 in Section 3.2 which is dedicated to the thorough analysis of a scalar,
nonautonomous linear test equation. The nonlinear stability results, Theorems 4.1
and 4.2, are stated and proved in Section 4. In Section 5 we develop and test a time-
dependent stiffness indicator and an algorithm for switching between implicit and ex-
plicit Runge-Kutta methods based on time-dependent stiffness. Concluding remarks
are given in Section 6.
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2 Preliminaries
2.1 Stability of initial value problems

Consider the following nonautonomous and nonlinear ODE:
x=f(x,1) 2.1

where f : RY x (79,00) — RY for some positive integer d and 79 > —co. We assume
that f(x,-) is bounded for each fixed x € R? and f € C! is sufficiently regular so that

each IVP
B=7 1) 2.2)
X (lo) = X0
has a unique and globally defined solution x(; X, %) for all initial conditions xo € R¢
and initial times 79 > 7.

Fix an arbitrary norm || - || on R? and use the same symbol | - || to denote the
induced matrix norm on R?*“_ For each positive integer r let I, denote the r x r
identity matrix. Assume that x(¢;xp,%) is a bounded solution of (2.2) and consider
the linear variational equation:

x=A(t)x, t>ty, A(t)=Df(x(t;x0,00),t), D:=203/dx. (2.3)
Since x(t;x0, o) is bounded and f € C! it follows that A(+) is bounded and continuous.

A fundamental matrix solution of (2.3) is a matrix solution X : (fy,c0) — R?*4 such
that X (¢) is invertible for all 7 € (#,0).

Definition 2.1 We say that (2.3) is exponentially stable if for any fundamental matrix
solution X of (2.3) there exists ¥ > 0 and K > 0 so that

IX(0)]| < Ke X (o), 1> to.

(2.3) is said to be uniformly exponentially stable if for any fundamental matrix solu-
tion X of (2.3) there exists ¥ > 0 and K > 0 so that

X < Ke " INX ), 125> 10,

We characterize exponential and uniform exponential stability using Lyapunov and
Sacker-Sell spectra which we define below (see [21] for a review of the definitions
and properties of these spectra). The Lyapunov spectrum is defined in terms of char-
acteristic exponents of fundamental matrix solutions of (2.3).

Definition 2.2 Let {ej,...,es} denote the standard basis of R4, For a given funda-
mental matrix solution X (¢) of (2.3) the upper characteristic exponents %,..., %

are defined as 1
U =limsup—In|| X ()e;||, i=1,...,d.
th<t—oe

The upper Lyapunov exponents (U, ..., iy of (2.3) are the upper characteristic expo-
nents whose sum is minimized over all fundamental matrix solutions of (2.3). The
lower Lyapunov exponents 1y,...,7Ny of (2.3) are the upper Lyapunov exponents
of the opposite adjoint equation x = —A(¢)7 x. The Lyapunov spectrum of (2.3) is
Zp = UL, [mi, i)
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The Sacker-Sell spectrum is defined in terms of exponential dichotomies.

Definition 2.3 A linear system of the form (2.3) is said to have exponential di-
chotomy if there exists a fundamental matrix solution X, a projection P, and constants
K,L>1and o, > 0 so that

X ()PX (5)7!|| < Ke=®(=9), t>s5> 1, )4
X (1) (1 — P)X ()1 < LePU—9), g <1 <. S
The Sacker-Sell spectrum Xgp is the set of all A € R such that the shifted variational
equation % = [A(r) — Al]x does not have exponential dichotomy. The Sacker-Sell
spectrum Xgp can be expressed as a union of at most d disjoint closed intervals
Zep = UL, [0, BA] (see Theorem 2 of [39]).

If the Lyapunov spectrum of (2.3) is contained in (—oo,0), then (2.3) is exponen-
tially stable. A sufficient condition for uniform exponential stability of zero is that
the Sacker-Sell spectrum of (2.3) is contained in (—e,0). The linear concepts of ex-
ponential stability have the following analogous definitions in the nonlinear setting.

Definition 2.4 A trajectory x(t;x9,%p) of (2.1) is exponentially stable if there ex-
ist constants 7,K,8 > 0 so that if ||up —xo|| < 0 and ¢t > 1, then ||x(¢;u0,t0) —
x(t;x0,10) || < Ke Yt=10)||ug — xo||. We say that x(¢;xq,10) is uniformly exponentially
stable if there exist constants ¥, K, § > 0 so that if ||us; —x(s;x0,%)|| < 6 andz > 5 > 19,
then ||x(t;us,s) — x(t;x0,20) || < Ke Y=9)||uy — x(s3x0,%0)]-

If the linear variational equation (2.3) of x(#;x¢,%p) is uniformly exponentially stable
and f € C?, then x(t;x0,%) is a uniformly exponentially stable trajectory of (2.1).
However, if the linear variational equation of x(#;xg,%p) is exponentially stable, but
not uniformly exponentially stable, then we cannot even guarantee that x(¢;xo,%) is
stable (see [36] or Equation 14 in [32] for an example) unless additional hypotheses
are placed on (2.3).

2.2 One-step methods

A one-step method is an approximation to solutions of ODE IVPs (2.2) of the fol-
lowing form:

Xn+1 = (P(xmtn;f,h) (25)

where x,, &~ x(t,;X0,%0), f = f(x,t) is the right-hand side function of (2.1), & is a se-
quence of step-sizes h = {h,, };_, which we always assume is such that 0 < inf,,>oh, <
sup,,~ohn < o0, and t,,11 = t, + hy, for all n > 0. Note that for such sequences there ex-
ists &, > 1 so that (sup,~ohn)/(inf,>0/,) < 8. The quantity &, provides a bound on
the variability of the step-size and is used to quantify the nonlinear stability estimates
in Section 4. We let || - || denote the ™ norm for sequences with ||A|| = sup,,~o/n-
We say that the one-step method (2.5) has local truncation error of order p € N if
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there exists 4* > 0 so that if f € CP*! and ||4||. € (0,4*), then the Taylor expansion
of any solution x : (fg,o0) — R? of (2.1) takes the following form:

X(I,H_]) - (P(X(tn),[n;f()((tn),ln),h) = Knh5+17 n 2 0.

where K, = K(t,) defines some sequence depending on x(¢) and its derivatives. Of
special interest is the form of one-step methods approximating the solution of a linear
ODE of the form (2.3). We henceforth only consider one-step methods for which,
when applied to approximate the numerical solution of a linear ODE of the form
(2.3), there exists an A* > 0 so that if h = {h,,};._ is such that ||||.. € (0,4"), then the
one-step map (2.5) takes the form x,,; = ®*(n;h)x, where each ®*(n;h) € R?*4
is independent of x,,. While this is true for Runge-Kutta methods and many other
well-known one-step methods, one can modify any one-step method to not satisfy
this assumption by, for example, adding at each time-step a term of the form Ch} i
to the one-step map where 0 # C € R,

2.3 Spectral theory for continuous time systems

Consider the following d dimensional nonautonomous linear ODE:
X=A(t)x, t>1 (2.6)

where A : (ty,o0) — R9*¢ is bounded and continuous. The continuous QR method
for transforming (2.6) to upper triangular form is as follows. Consider the following
ODE (Equations 3.7-8 of [25]):

) (Q"AQ)i;, >
(1) = Q(1)S(Q(1),A(r)), S(Q,A)ij= 0, i=j. 2.7)
—(QTAQ) i, i<

Each orthogonal matrix solution Q(t) € R?4*4 of (2.7) defines a linear system
y=B(t)y, B(1)=0"(NAMN)Q(1)—Q"(1)Q(t), 1>1 (2.8)

where B(t) is upper triangular since the definitions of S(Q,A) and B(¢) imply that
B, j(t) =0 when i > j. We refer to (2.8) as a corresponding upper triangular system
(or ODE) to (2.6). Since x = Q(¢)y is a Lyapunov transformation the Lyapunov and
Sacker-Sell spectral intervals of (2.6) coincide with those of any corresponding upper
triangular system.

Theorem 2.1 (Theorems 2.8, 5.5, and 6.1 of [21]) Let B : (ty, ) — R4*“ be bounded,
continuous, and upper triangular and let Xgp = UL [0y, Bi] denote the Sacker-Sell
spectrum of the ODE y = B(t)y. Fori=1,...,d we have:

1 t+H 1 t+H
o; = liminf (inf —/ B,;,-(r)dr) ,  Bi =limsup <sup—/ B,;,-(r)d*c) )
0 H J; ’ H J; '

<H—o0 \I>1p 0<H—s00 \1>1
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For a bounded and continuous A(-), the Sacker-Sell spectrum of (2.6) is continuous
with respect to L (fg, o) perturbations of A(z) (for a proof see Theorem 6 of [39]
or Chapter 4 of [14]). For the Lyapunov spectrum to be continuous an additional
hypothesis must be placed on (2.6).

Definition 2.2 Suppose that B : (tg,) — R4 is bounded, continuous, and upper
triangular and that for any i < j one of the two following conditions hold:

1. B;; and B; ; are integrally separated: there exists a; j > 0 and b;_; € R so that if
t > s>ty then

'
/ B,-y,-(‘L')—Bjyj(‘c)dfZaiyj(t—s)—}—b,-’j. (2.9)
s
2. For every € > 0 there exists M; j(€) > 0 so that if t > s > 1y, then

/tBiTi(T)*BjTj(T)dT SM,‘J—I’S(Z‘—S). (2.10)

Then we say that y = B(t)y and B(t) have an integral separation structure. If the first
condition is satisfied for all i < j, then we say that B(t) and y = B(t)y are integrally
separated. If the system (2.6) has a corresponding upper triangular system that has
an integral separation structure, then we say that (2.6) and A(t) have an integral
separation structure and if the corresponding upper triangular system is integrally
separated, then we say that (2.6) and A(t) are integrally separated.

Integral separation is a generic property (see page 21 of [35]) for linear equations
of the form (2.6) with respect to the sup-norm topology. This, together with the fol-
lowing theorem, show why it is natural to assume that a linear equation (2.6) has an
integral separation structure when approximating Lyapunov spectral intervals.

Theorem 2.3 (Theorem 5.1 in [21]) Assume that B : (ty, o) — R?*4 has an integral
separation structure and let Xj = U?:I [N:, W;] denote the Lyapunov spectrum of the
ODE y = B(t)y. Then the Lyapunov spectrum of y = B(t)y is continuous with respect
to L™ (fy, o) perturbations of B(t) and fori=1,...,d we have:
1 [tot+t 1 rlo+t
ni= liminf — B,",'(T)dl', Hi = limsup - Bi’,‘(T)dT.

O<t—ee I Jpg 0<t—e /1

a

If the system (2.6) does not have an integral separation structure, then the Lyapunov
spectrum may be discontinuous with respect to L! (#y, o) perturbations of the coeffi-
cient matrix (see Example 5.4.2 of [1]). Theorems 2.1 and 2.3 are the basis for the
assumptions that we place on system (2.6) in Section 3.

Remark 2.1 In this work we never assume that the linear system (2.6) is regular, that
is, that its Lyapunov spectrum X is a point spectrum: X = {ly,..., s }. Regular
systems may have Lyapunov spectra that are not continuous with respect to L™ (fy, o)
perturbations of the coefficient matrix (see e.g. Example 2.17 of [20] or Example
4.4.1 of [1]) and hence are computationally ill-conditioned.
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2.4 Spectral theory for discrete time systems

Consider a family of nonautonomous linear difference equations of the following
form:
Xop1 = P (msh)x,, n>0 (2.11)

where x, € RY, h = {h,}>_, is a sequence of step-sizes, and {®*(n;h)}>>_, C R4

is bounded and each matrix @*(n;h) is invertible. We remark that invertibility of
(PA(n;h) is only needed to guarantee uniqueness, but not existence, of a discrete QR
iteration defined as follows. Let Qg € R?*? be an orthogonal matrix and fix some
step-size sequence . Since ®* (n;h) is invertible for all n > 0 we can form unique
QR factorizations @ (n;h)Q, = Q,+1RA (n;h) where 0, € R¥*¢ is orthogonal and
RA(n;h) € R4 is upper triangular with positive diagonal entries. This process is
referred to as a discrete QR iteration. The system u, . | = R*(n;h)u, where R* (n; h) =
Qn 11 @4 (n;h)Q, is referred to as a corresponding upper triangular system and its
Lyapunov and Sacker-Sell spectra coincide with those of (2.11).

We shall always use the following product notation: [[{_, Cy :==C,,-Cy—1 -...-Cp,
for sequences {C;}7_, C R with the convention that [T}, Cx = I, when n < m.

Theorem 2.4 (Section 5.1 of [7] or Corollary 3.25 of [37]) Assume that the se-
quence {R*(n;h)}_, is bounded and that each R* (n;h) is invertible and upper trian-
gular. Let £, = UL [, BA] denote the Sacker-Sell spectrum of u,+1 = R* (n; h)uy.
Then fori=1,...,d we have

n n
a = liminf <1nf 1 In| H Rff,(k;h)\). B = limsup (sup L In| H Rf,(k;h)|>.

0<m—oo \ 020 Intm —In 3540, O<m—oo \n>0 Intm —In 2,0,

a

Theorem 4.1 of [38] implies that the Sacker-Sell spectrum of (2.11) is continuous
with respect to [*°(N) perturbations of the coefficient matrix. Discrete integral sepa-
ration characterizes when the Lyapunov spectrum of (2.11) is continuous.

Definition 2.5 Consider u, 1 = (n h)u, where each R*(n;h) € R4 is invertible
and upper triangular, the sequence {R*(n; h) }:_ is bounded, and inf,~ (R (n;h) > 0
fori=1,...,d. Let p > 1 and suppose there exists an h* > 0 so that zf||h|\o<, (0,h*)
andi < j, then one of the two following conditions hold:

1. RY.(n;h) and RA j(n3h) are discretely integrally separated: there exists b;; € R
and a; j>0so that if n > m, then

H R (ks h)(R] (ki) ™" > exp (@i j(tn —tm) + bij) - (2.12)
k=n—1

2. RY.(n;h) and RA ;(n3h) satisfy that there exists K; j > 0 such that for each € >0
there exists M,,] > 0 so that if n > m, then

<M i+ (e+Kij||hl2)(t —tm). (2.13)

Rﬁf(k;h)(R?,j(k;h)W)

1
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Then we say that y,.1 = R*(n;h)y, and R*(n;h) have p-approximate discrete inte-
gral separation structures. If the first condition is satisfied for all i < j, then we say
that R (n;h) and y,\ = R*(n;h)y, are discretely integrally separated. If (2.11) has
a corresponding upper triangular system with a p-approximate discrete integral sep-
aration structure, then we say that (2.11) and ®*(n;h) have p-approximate discrete
integral separation structures.

The next theorem follows from Theorem 4.1 in [42] and Proposition 8.1 and Theorem
8.3 in [4]; see also Theorem 3.13 of [21] and Theorems 5.1-2 of [22].

Theorem 2.6 Suppose u,1 = R*(n;h)uy, is a system with a p-approximate discrete
integral separation structure with Lyapunov spectrum Zf = U?:l [TT,A , “zA]~ Then there
exists h* > 0 so that if ||h|| € (0,h*), then fori=1,...,d we have:
nd =liminfs? (n) + E;j(n;h), pd =limsups? (n) + Fi(n; h)
n—oo n—so0

n - n(RA.(k:h
where || Ei(n;h)||, || Fi(n;h)|| = O(||h||2) and s (n) = Wfor P=1,ss05d

and if u, 1 = RA(n;h)u, is integrally separated, then ||E;(n;h)||, ||Fi(n;h)|| = 0O for
i=1,....d. O
Consider the perturbed system z,,+ | = (@4 (n;h) + F,)z, and assume that ®* (n; h)

and ®* (n;h) + F, are bounded and invertible for all n > 0. Fix an initial orthogonal
Q=0 € R?*4 and inductively construct unique QR factorizations @4 (m;h) 0, =
Q1R (n; 1) and (@4 (n;h) + F,) 0, = Q,HEA(n;h) where Q, and Q,, are orthogo-
nal and R4 (n;h) and R (n;h) are upper triangular with positive diagonal entries.
Theorem 2.7 (Theorem 7.7 in [4] and Theorem 4.1 in [42])

Suppose r (n;h) has a p-approximate discrete integral separation structure and

=T _ = ;
let E, := —Q, 1 FxQ, and G := sup,~||Gu|| = sup,>omax{||E,||, | F|}. There exist

constants h*,8,K > 0 so that if ||h|| € (0,h*) and ||G|| < & such that
On 1R (n:h) = [R' (n:h) + Eo) O, |0n—1| <KG, n>0. O

3 Main Results
3.1 Statement of the main results for linear ODEs

For the remainder of this section fix a one-step method .# with local truncation error
of order p > 1 and consider a linear system (2.6) with Sacker-Sell spectrum Xgp =
U4, [o4, B;] and Lyapunov spectrum X, = UL, [n;, ;). We make use of the following
assumptions to characterize the approximation properties of these two spectra.

Assumption 3.1 The coefficient matrix A(t) of (2.6) is bounded and at least CP*'.

Assumption 3.2 The ODE (2.6) satisfies Assumption 3.1 and in addition there is a
corresponding upper triangular ODE

(1) =B(0)y(t), B(1)=Q(n)TA@t)Q(r) — Q1) O(1) @B.D

that has an integral separation structure defined by the estimates in Definition 2.2.
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Let x, 1 = ®*(n;h)x, denote the numerical solution by .# of (2.6) with initial
condition x(fg) = xo using the sequence of step-sizes h = {h,};_, and let y, | =
@5 (n;h)y, denote the numerical solution of (3.1) using .# with the same sequence
of step-sizes and initial condition yo := Q(y)” xo. We shall always assume that ||/||o
is so small that @ (n;h) and ®®(n;h) are both bounded in n and invertible for all
n > 0. The matrices &% (n;h) are upper triangular since B(t) is upper triangular and
for j =1,...,d each diagonal entry @f ;(n;h) is the numerical approximation by .Z
at time #,,1 of the scalar equation y;(t) = B; ;(t)y;(t) with y;(t,) = 1 using the step-
size h,,. Since @A(n,h) is invertible for all n > 0 we can inductively construct unique
QR factorizations of @4 (n;h)Q, as @ (n;h)Q, = Qu+1R* (n;h) for all n > 0 where
each Q, is orthogonal, Qy = Q(t), and R*(n;h) is upper triangular with positive
diagonal entries.

For the remainder of Section 3 we denote the Lyapunov and Sacker-Sell spectra
of Xpi1 = DA (n;h)x, by it = U4, [nf, uf] and i, = UL [, B] respectively and
those of y,1 = ®B(n;h)y, by £ = UL [nB, uf] and £8,, = UL, [, BE] respec-
tively. We do not explicitly express the dependence of the spectra of these discrete
systems on /. The following two theorems are proved in Section 3.3.

Theorem 3.3 Suppose (2.6) satisfies Assumption 3.1. Given € > 0, there exists h* >0
so that if ||| € (0,h*), then for i =1,...,d the following holds:

lof —ail <&, B -Bil<e, of =0+ O(h|L), B =Bi+O(n]L). O

Theorem 3.4 Suppose (2.6) satisfies Assumption 3.2. There exists h* > 0 so that if
|72]| € (0,h*), then the following three conclusions hold:

1. The systems y,+1 = ®B(n;h)y, and u,+1 = R*(n;h)u, have p-approximate dis-
crete integral separation structures and ||R* (n;h) — @B (n; 1) || = O(||n||E).

2. Fori=1,...,d we have a* = & + O(||h||2) = o + O(||h||2) and B = BE +
o(|1hl%) = Bi+ O(|[R]1L).

3 Fori=1,...,difs}(n):= Lo In(Rl; () and s%(n) :

th—1o i

_ Y7o In(®8 (k:h))

= , then

nft —liminfs? (n)| = (|A]Z), |p* ~limsups} (n)] = &(]|A]|2),
n—o n—o0

Inf —liminfsf (n)| = O(|A]L), |pf ~limsups7(n)] = &(||a]%),
n—reo n—oo

I =nllInit =il = O(InlIL), |w - pf)Iuf —wl=o(InIZ). O

The following corollary is immediate from the conclusions of Theorems 3.3 and 3.4.

Corollary 3.1 If (2.6) satisfies Assumption 3.1 and max, gigdBiA < 0, then there ex-
ists h* > 0 so that if |h||« € (0,h"), then max|<i<af* < 0 and zero is a uniformly
exponentially stable equilibrium of x, 11 = @ (n;h)x,. If (2.6) satisfies Assumption
3.2 and max<j<qli < 0, then there exists h* > 0 so that if ||h|| € (0,h*), then
maxlgigdu;“ < 0 and zero is an exponentially stable equilibrium of x,,+1 = A (n;h)xp.

O
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Example 3.1 Consider the ODE (1.1). If we let x = L()v, then v = D(t)v = [D; +
A Bo+ar
—aj lz

with real parts 1 (41 +242) £ 11/(A41 +242)2 —4(Mi A2+ a1 (Bo+a1)) <0and D(t) =

Bicos(a;t)
1+ng2 . Since D; has real and distinct eigenvalues the system i = Dju is

D;(t)]v where the matrix D| = [ ] has two real and distinct eigenvalues

0
integrally separated. Since D, (¢) is integrable and & = Dju is integrally separated, it
follows that v = [D + D,(t)]v is integrally separated. Then the fact that x = L(r)z is
a Lyapunov transformation implies that (1.1) is integrally separated.

Once again consider the solution of (1.1) by the first order implicit Euler method
with constant step-size iy > 0. Since A(t) € C? is bounded and integrally separated,
Theorem 3.4 implies that there exists #* > 0 so that if ig € (0,A*), then the endpoints
of the Lyapunov and Sacker-Sell spectrum of the discrete system (1.2) agree with
those of the continuous system (1.1) to &'(hgy) accuracy. Corollary 3.1 implies that
there exists A** € (0,h*) so that if iy € (0,h**), then the Lyapunov and Sacker-Sell
spectrum of (1.2) are less than zero and the numerical solution is uniformly exponen-
tially decaying for all sufficiently small 4o > 0. ad

We now discuss the approximate average exponential growth/decay rates of (2.6) on
a finite length interval (z,7 + At).

Lemma 3.1 Assume that the ODE (2.6) satisfies Assumption 3.2. Let X be a funda-
mental matrix solution of (2.6) and let X (t) = Q(t)R(¢) be a QR factorization where
Q(t) € R™ js orthogonal and R(t) € R¥*? is upper triangular with positive diag-
onal entries. The approximate average exponential growth/decay rates of X(t) on
the interval (t,t + At) where t > to and At > 0 are given by the following Steklov
averages:

1 t+At )
si(t, Ar) = A—t/ Bi(t)dr, i—=1,....d. (3.2)
t

Proof Lett >ty and At > 0. Since X (t) = Q(t)R(t) and Q() is orthogonal the expo-
nential growth/decay of X (¢) on (¢,z + At) is given by the exponential growth/decay
of R(t) on (t,t + At). We express R(t + At) = R(t + At,t)R(t) where R(7,t) is the
unique and upper triangular solution of the matrix ODE IVP (recall that I; is the
d % d identity matrix):

®=B(1)®, T>t, P(t,t)=1I,.

Since (2.6) satisfies Assumption 3.2, Theorem 5.2 of [21] implies that for each € > 0
there exists K > 0 so that if > 79 and At > 0, then

R(t,1) = diag (eA'<8+S| e} ., 7eA'<8+Sd<'~A’>>) (I +N(t+At,1))
where N is upper triangular with ||I; +N(¢ + Atz,1)|| < K. Hence the approximate av-

erage exponential growth/decay rates of X (¢) on (¢, + At) are given by the quantities
si(t,Ar) fori=1,....d. O
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We can prove a result analogous to Lemma 3.1 for discrete systems (2.11) with a p-
approximate integral separation structure where exponentials of Steklov averages are
replaced by the products of diagonal entries of the upper triangular factor R4 (n; ) in
a discrete QR iteration. Theorem 3.4 implies that R (n; h) = e"%iln/n) - & (||h||P+1)
and hence the approximate average exponential growth/decay rate of fundamental
matrix solutions of (2.11) are approximately (up to a term of the form &'(||A||E+!))
given by the Steklov averages (3.2). It follows that for sufficiently small step-sizes
the approximate average exponential growth/decay of a numerical solution of (2.6)
from #, to t,,4 for kK > 1 is given by the average exponential growth/decay rate on the
interval [t,,1,,] of the following d real-valued test equations:

¥i ZB,'J'(I‘)y,', i=1,....d.

This local-in-time stability argument is important for applications since for a nonlin-
ear ODE we can not form A(z) = Df(x(¢; x0,%),t) exactly without knowing the exact
solution. However, regardless of the global error of x, from x(,;x0,%) we can still
approximately quantify the average exponential growth/decay rates of the numerical
solution on the next time interval (t,,#,) assuming that /, is sufficiently small.

3.2 Stability of the test problem

In this section we consider the numerical stability of a linear scalar test equation
=AMz, t>n (3.3)

where A : (fp,) — C is CP*! and bounded with sup,~, [A(#)] < M* for some M* >
0. For full generality we consider the complex-valued case rather than the real-valued
case justified in Section 3.1. The numerical solution of (3.3) by .# using a sequence
of step-sizes h = {h,}*"_, takes the form z,. = ®*(n;h)z, where &*(n;h) € C.
The next theorem shows that no Runge-Kutta method can preserve the asymptotic
decay of every ODE of the form (3.3) with Sacker-Sell spectrum contained in (—oo,0)
without restricting the maximal step-size.

A
Theorem 3.5 Let .# be an s-stage Runge-Kutta method with Butcher tableau i BT

with local truncation error of order p > 1. Given any hg > 0 and any —o. < 0 we
can find A : R — R so that the equation x = A(t)x with t > ty has Sacker-Sell spec-
trum with right endpoint given by —a and the numerical solution of X(t) = A(t)x(t)
using .# with fixed step-size hy > 0 and initial condition x(ty) = xo # 0 grows at an
exponential rate.

Proof Let hy > 0 and —a < 0 be given and express ¢ = (ci,...,c5)T. Let £(-) be the
stability function of .. Since ./ has local truncation error of order p > 1 there exists
0 > 0sothatifr € (0,8), then |§(1+7)| > 1. Let D > || be such that D— a € (0, ).
There exists a function g : R — R as smooth as desired so that g((n+c;)ho) = 1 for
n>0and j=1,...,s and | [t g(7)d1| is bounded by some constant for all € R
and H > 0 (such a function g(¢) can be constructed using, for example, piecewise
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trigonometric interpolation). Let A(¢) = Dg(r) — o and note that the right endpoint
of the Sacker-Sell spectrum of X = A(¢)x is —a. Since by construction A is equal
to the constant D — « at every Runge-Kutta stage time t = ho(n+c¢;) for n > 0 and
j=1,...,s it follows that the numerical solution of (3.3) with the method .# using
the fixed step-size hg is x,41 = &(ho(D — @))x, and |& (ho(D — a))| > 1. It follows
that |x,,| — 0 as n — oo at a rate of |& (ho(D — o))" O

The geometric intuition for Theorem 3.5 is that time-dependent oscillations of A (¢)
into and out of the linear stability domain of a method can trigger instabilities in the
numerical solution. The following proof of Theorems 3.3 and 3.4 for scalar ODEs of
the form (3.3) shows how we can control the accuracy of the Lyapunov and Sacker-
Sell spectrum of the numerical solution using bounds on the local truncation error to
guarantee exponential decay.

Proof (Proof of Theorems 3.3 and 3.4 in one dimension) Suppose A(t) € R for ¢ > 1.
Because the method ./ has local truncation error of order p > 1 and A € CP*! is
bounded there exists i} > 0 so that if 2 = {h, }_ is any sequence of step-sizes with
|| € (0,hF) and n > 0, then

Tn

@ (n3h) = exp < ' l(r)dr) +EMsh) = 1 (msh) + E* (n:h)

In

where E*(n;h) = K* (n;h)hl ™" and sup,=o|K* (n;h)| < K* for some K* > 0.1f n >
m >0 and ||h||. € (0,h7), then

k=n—1

Im] D (k;h) = < Im] (1+E’L(k;h)(1/1(k;h))l)> exp (/ltnl(r)d’c). (3.4)

Let hy € (0,h7] be so small that if & = {h,};_, is any sequence of step-sizes with
h|w € (0,43), then sup, <o||E* (nsh) (I* (m:h)) 1| < K*||h||2H eM = < 1/2. 1f
2 Pr>0
h|l € (0,h%), and n > m > 0, then (3.4) implies that the following two inequali-
2 P g q
ties hold:

exp ([ A(T)dT =213, |[E* (kah) (14 (ks ) ) < TR,y 9% (ksh)l,

3.5
T s 19 ()| < exp (7 A(D)dr + E12) EM ) (A () ). O

For any sequence of step-sizes & with ||A[|.. € (0,43) we have
n—1 n—1 1 P P
| Y E* ) (1 (k)7 < Y kAR MM < RAMINT| B2 (1, — 1), (3.6)
k=m

k=m

If | 2]| € (0,h3), then the conclusions of Theorem 3.4 follow from inequalities (3.5)
and (3.6). The conclusion of Theorem 3.3 follows by letting € > 0 be given and then

setting /* to be so small that if ||h]|.. € (0,4*), then K*MIHI% || p||2, < €/2. |
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Certain subsets of A-stable Runge-Kutta methods, such as AN-stable methods, have
superior stability properties compared to other classes of implicit and explicit meth-
ods Runge-Kutta methods. For an s-stage AN-stable Runge-Kutta method .#’ =

A
E\bT where ¢ = (cy,...,c5)7, if there exists T) > 71 > fo such that Re(2(¢)) < 0 for

t € [11, T2, then |®@* (n;h)| < 1 whenever h, and 1, are such that (t, +c;h,) € [T1, 2]
for j=1,...,s. We extend this type of analysis to Runge-Kutta methods that are not
AN-stable. Fix a step-size sequence h = {h};_, and a Runge-Kutta method .#" and
for each n > 0 consider the following associated mean autonomous ODE:

1 [intha

w=E&w, & :=&Ah,)=

hn Jity

A(t)dr. 3.7

Suppose that the approximate solution of (3.3) by .#’ at time t, is given by z,. Then
the exact solutions of (3.3) and (3.7) with the initial condition z(#,) = z, are the same:

I"+h”
o) =20+ ) =exp [ A(oar ) 5.
tn

The solutions of (3.3) and (3.7) by .#" using the step-size h,, are then given by
W(ta + n) = Wnpt = (&)W, 2t +hn) & 2ag1 = O (n:h)z.
Since the exact solutions are equal, there exists #* > 0 so that if || 4|| € (0,A*), then
®* (n;h) =¥ (he&y) + O, n>0. (3.8)
Equation (3.8) implies the following theorem.

Theorem 3.6 Let S be the linear stability region of the Runge-Kutta method .4' and
let hy > 0. For each € € (0,1) define §'(€) = {z € S: |¥(2)| < 1 —e}. If [ " A(7)dT €
S'(€) for some € € (0,1) and |®* (n;h) — ¥ (h,&,)| < €, then | D (n;h)| < 1. O

We close this section by remarking that we cannot extend equation (3.8) in a straight-
forward way to higher-dimensional problems since for d > 2 the matrix exponential
function exp( f; A(7)d ) is not in general a solution of (2.6). It is necessary to employ
a time-dependent change of variables to reduce the analysis of (2.6) to a scalar test
problem of the form of (3.3).

3.3 Proof of the main results for linear ODEs

Let X be a fundamental matrix solution of (2.6) and let X () = Q(¢)R(¢) be a QR fac-
torization where Q(t) is orthogonal and R(¢) is upper triangular with positive diagonal
entries. Without loss of generality we assume that Q(¢) is the orthogonal matrix of the
corresponding upper triangular ODE (3.1). For each n > 0 let the transition matrix
X (t,,) be the unique d x d matrix solution of the following matrix ODE IVP (recall
that I is the d x d identity matrix):

{5%2):/415:)!1'(:)  t>1, W) e R (3.9)
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For n > 0 we factor X (¢,,) as X (t,) = X (ty,tu—1) - - - .- X (t1,20) X (f0). Similarly for each
n>0weletR(z,t,) € R?*? be the unique solution of the following matrix ODE IVP:

(8072090 s, apyexe

For n > 0 we then factor R(z,) as R(t,) = R(tn,tys—1) - ... R(t1,t0)R(tp). Notice that
we have X (t,1,) = Q(t)R(t,1,)Q(t,)T for n > 0. The local error equations

DA (k) = X (tyy1.10) + EX(msh),  PB(nih) = R(tyy1,1,) + EB(nsh)
and the definition F(h;n) := —EB(n;h) + Q(t,41)T EA(n;h)Q(t,) imply that
D4 (n3h) = Q(t41)[D° (n;h) + F (n; )] Q (1) (3.10)

where ||F(n;h)|| < L(|[EA(n;h)|| + ||EB(n;h)||) for some L > 0 since Q, and Q(t,)
are orthogonal. Since we assume that ||4||. is always such that &* (n;h) is invertible
for all n > 0 so we can let Qp := Q(#) and inductively form QR factorizations

D (n:h)Qn = Qn 1R (n:h), n>0 (3.11)

where Q, is orthogonal and R (n; k) is upper triangular with positive diagonal entries
for all n > 0. Combining (3.10) and (3.11) results in the equation

R (m:h) = Q1 Qt41)[@F (n: 1) + F (n: )] Q1) " Q.

The Lyapunov and Sacker-Sell spectra of v, | = [®8(n;h) + F(n;h)]v, and x| =
CDA(n;h)x,, coincide since x, = Q(#,)v, and x,, = Q,wj, are discrete Lyapunov trans-
formations.

Proof (Proof of Theorem 3.3) By the estimates (3.5) and (3.6) in the proof of The-
orems 3.3 and 3.4 in one dimension, there exists 4] > 0 so small that if & is any
sequence of step-sizes with ||A||« € (0,4}), then

BE = Bi+ O(|h||2) and &f = a;+ O(hh,,y ).

Let € > 0 be given. By continuity of the Sacker-Sell spectrum there exists & > 0
so that if ||F(n;h)|| < &, then the endpoints of the Sacker-Sell spectrum of v, =
[®B(n;h) + F (n;h)]v, (and hence of x,1 = @ (n;h)x,) satisfy

o —oy| <eand |BA —Bi| <&, i=1,....d.

We can always bound ||F (r; 1) || < & as follows. Since . has local truncation error of
order p > 1, we can choose /2 € (0, 4]] be so small that if ||| < i3, then ||F (n;h)|| =
(R = @(||h||2+1). Then we can choose i* € (0, 43] so small that ||F (n;/)]|| < .

O

We assume for the remainder of this section that (2.6) satisfies Assumption 3.2. The
proof of Theorem 3.4 is accomplished using several technical lemmas.
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Lemma 3.2 There exists h* > 0 so that if h = {h, }_ is any sequence of step-sizes
with ||h||e € (0,h*), then the system y,.| = @B (n;h)y, has a p-approximate discrete
integral separation structure.

Proof Forl = 1,...,d the diagonal entries ®F, (n; h) are such thaty! | = ®PF (n; h)y},
are approximations to the scalar ODE y; = By ;(t)y; with y;(t9) = yf) using the method

M . Because .7 has local truncation of order p and B(¢) is bounded and CP*!, there
exists A} > 0 so that if 4 is such that ||kl < h{,n>0,and [ =1,...,d, then

Tnt1

(ﬁf,(n;h) =exp ( Bl7l(1)dr> +EB(n;h) = I (n; h) + EB (n; h).

n
where Ef (n;h) = KlB(n;h)hZ+1 and sup,»oKP (n;h) <KP <eofori=1,...,d. There
exists h5 > 0 with i € (0,h7] so that if & is such that ||kl € (0,43), then we have
inf,,z()@fl(n;h) >0forl=1,...,d and therefore if n > m > 0 and i > j, then

m B (1. m B(1. B(1,. -1
1] 2tk :ef,;,n,g,«_,«f)g,.,‘,-@)dfl {] LEEEn@EER) ]

ey BF (ki) L+ EB (ki) (1B (ki) !

Note that since inf,>o®p (n;h) >0 for [ = 1,...,d and ||h|| € (0,h3) it follows that
{(Df,(n;h)*l};"zo is uniformly bounded for [ = 1,...,d. Since B(t) is bounded, for
[=1,...,d there exists M? > 0 so that sup;sq, [Bri(t)| < M8, Therefore, there exists
h; € (0,h3] so that if ||k« € (0,4}) and n > 0, then

j=n—1

sup,so | ER (s )IE (s 1) ™Y < KE||R|2H e WI=M < 172, 1=1,....d. (3.13)

Assumption 3.2 implies that if 7 > j, then B;; and B; ; satisfy either (2.9) or (2.10).
Let IS be the set of all pairs of integers (i, j) with 1 <i,j <d and i > j so that B;;
and B; ; satisfy (2.9).If (i, j) € IS, then (2.9), (3.12), (3.13), and || 4| € (0,4}) imply
that if n > m > 0, then

n—1

m  pB kih
[1 # > exp | @ j(tn —tm) +bij— Y, (2K Pl +Kfe”hHwM?)h£+l
k=n—1 (Dja.f(k;h)

k=m

> exp ( (@i, — (2KPM=ME 1 kPN |2) (6 — 1) + b )
Let h* € (0,h3] be such that if ||A||.. € (0,/*), then
ai j — (2KPelMI-MP 1 KBIM=M ) > 0 (3.14)

for all (i, j) € IS. It then follows that if (i, j) € IS and ||A|« € (0,4*), then @B (n;h)
and (I)f,(n,h) satisfy satisfy an inequality of the form (2.12).

If (i, /) ¢ IS so that B;; and B; ; satisfy (2.10), then (3.12), (3.13), and ||A||. €
(0,h3) imply that given € > 0, there exists M; ;(€) so that if n > m > 0, then

m n—1
[T ®F(k:h)(@F;(k:)) ! <exp (Mf,j +E(ta—tm)+ Y, (Kf+2Kf)hf+l>
k=n—1 k=m

< exp (M, + (€ + (K7 +2K7)||Bl|Z) (1 — 1)) -
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Similarly, if |||« € (0,4*), then

H O (k;h) (PF (k)™ > exp (=M j — (e + (2K +K7) 1|12 (ta — tm))
k=n—1

and it then follows that (2.13) is satisfied whenever ||4||» € (0,4*). Therefore, if
[|2]|o < h*, then inf,>®Df(n;h) > 0 forn>0andi=1,...,d and conditions (2.12)
and (2.13) are satisfied. It follows that y, | = ®5(n;h)y, has a p-approximate dis-
crete integral separation structure. O

The size that #* > 0 must be taken in Lemma 3.2 depends on the integral separation
through the inequality (3.14). Weaker integral separation between diagonal elements
of B(t) (i.e. smaller values of a; ;) require the smaller step-sizes to ensure the discrete
system inherits these properties.

Lemma 3.3 There exists h* > 0 so that if ||| € (0,h*), then J(n;h) := ||RA (n;h) —
PP (m;h)|| = O(|]|2).

Proof Using Lemma 3.2 we can find 4} > 0 such that if ||h|. < hj, then ®Z(n;h)
has a p-approximate discrete integral separation structure and so that F(n;h) :=
—Q(tns1)F (n;h)Q(t,) with F(n;h) = O (h™). Theorem 2.7 implies that there ex-
ists an h* € (0,47], K > 0, and a sequence {0, o With each 0, € R¥*4 orthogonal
so that if |||. < &%, then

On1 R (n;h) = (B (nsh) + E(n;h)) 0, |0 —1I|| < KG

where E(n;h) = QT | F(n;h)Q, and G = sup,o{[|F (m:h)|, | E(msh) ||} = 6 (W ™).
It follows that if |||« < h*, then J(n;h) = RA(n;h) — ®B(n;h) = O(||n||2F). O

Lemma 3.4 Suppose that the ODE (2.6) satisfies Assumption 3.2. Then, there exists
h* > 0 so that if || h||. € (0,h*), then u, | = R*(n;h)u, has a p-approximate integral
separation structure.

Proof Combine Lemma 3.3 and the method used to prove Lemma 3.2. a

We now complete the proof of Theorem 3.4. Let A* > 0 be so small that if ||/l €
(0,h*), then the conclusions of Lemmas 3.2, 3.3, and 3.4 and Theorem 2.6 hold. The
conclusions of Theorem 3.4 are proved by combining the conclusions of Lemmas
3.2, 3.3, 3.4 and the conclusions of Theorems 2.4 and 2.6. O

4 Nonlinear stability

In this section we consider the stability of numerical solutions of nonlinear ODE
IVPs by one-step methods. The results of this section justify using the linear stabil-
ity theory developed in Section 3 to characterize nonlinear stability and develop the
applications in Section 5. The results of this section require restrictions on the ratio
|I72]|oo/Frmin > 1 in addition to restrictions on the the maximal step-size ||/]|«. A small
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enough bound &, > 0 such that ||A]|c /Amin < 8 prevents oscillations in the step-size
from destabilizing an approximation to an exponentially stable solution.

Consider the ODE (2.1) and assume that f € C' for some integer [ > 2. Recall that
x(t;u,s) denotes the unique solution of (2.1) with initial condition u € R? at initial
time s > Ty. For the remainder of this section we assume that x(#;xp,7) is a bounded
solution of (2.1) with initial condition x(#y) = x¢ and initial time 7y > Ty and also that
the right end-point of the Sacker-Sell spectrum of i = Df(x(¢;x0,t0),¢)u = A(t)u is
—a < 0 so that x(#; xp, 7o) is uniformly exponentially stable.

Fix a one-step method .# with local truncation error of order p > 1. We assume
that there exist constants i}, 8;,K T > 0 so that the local truncation error of a single
step of .# applied to solve (2.1) with any initial condition u € R? at any initial time
s > to with |lu—x(s;x0,%)|| < 01 and step-size h; < hj takes the form T(u,s)hf+l
with ||T (u,s)|| < K. In addition we assume there is a constant L7 > 0 so that if v is
also such that ||v —x(s;x0,%)|| < 81, then ||T (u,s) — T (v,s)|| < LT [lu—v].

Fix any v € (0, o) for the remainder of this section. Theorem 3.3 implies that there
exist constants 15, K4, EA > 0 so that if ||A|e < A3, then X (1) X (t,) ! = @4 (n;h) +
E2nl ™ where sup,,-o||[EA|| < E* and so thatif n > m > 0, then || [Ty, _, @4 (n;h)[| <
KAe=1tn=tn) Tet KM > 0 be such that ||X (£,41)X(7)~"|| < KM for all T € (t,,t,11)
and n > 0 whenever ||h||. < k5.

Fix any ug € R? and t > 5 > 19, define u(t) := x(t;ug,s) and x(t) := x(t;x0,10),
and let /() = {u(t) + (1 — 0)x(t) : 6 € [0,1]} be the line segment from u(t) to x(z).
Taylor expanding f(u,t) = f(x+ (1 —x),t) at x(t) implies that

i = f(x,1) +A(t)(u— x) + R(u,x,£) = A(t)u+ b(t) + R(u,x,1)

where R(u,x,t) satisfies the estimate

1R (u, x,0)]| < %Ilu(f) —x(0)?-sup{|ID*F(&.0)] : & € 1(1)}

where D? f(v,t) denotes the Hessian of f(v,¢) with respect to v. the variation of pa-
rameters formula then implies that:

u(t) :X(z)x—l(s)u0+/tX(r)X(r)—1(b(r) +R(up,s,7))dx. (4.1)

Boundedness and uniform exponential stability of x(t;xo, %) and the fact that f € C?
imply that there exist constants 7 € (0,a) and K, K" 8, > 0 so that if 1 > s > 1y,
[0 — x(s3x0,20)|| < 82, and ||vo — x(s3x0,%0)|| < Oz, then

sup;, sup{[|D*f(£,1)]| : § € 1(r)} < 2K",
|lx(2; 10, 5) — x(£5x0,10) || < Re70—3) |luo — x(s3%0,20)||-

4.2)
Note that if ||ug — x(s;x0,%)|| < 62, then the following inequality holds:
IR (uo,1,5)|| < K™ [[x(2u0,5) — (150, 0) |* < K¥ K227 [ug — x(s5x0, 1) |

We make use of the following discrete Gronwall inequalities.
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Lemma 4.1 [Gronwall inequalities] Let {a,};_o {bn}r and {ci};_, be non-
negative sequences, ¢ € (0,1) and C > 0.

1. Ifa, < C+Y') bia;, then a, < Cexp (Li_obi).
2. Ifagp <cpanda, <c, —0—2;7;01 oa; for n > 1, then a, < c,exp(on) forn > 0.

Proof The first conclusion follows from induction. The proof of the second conclusion
can be found in [43].

Letk:=min{p+1,/} > 2 and define three positive constants K| := (1+K")(E4 +
KMKHER?), Ky == (1+K*)KT, and C) := (EA +KMKHK? + L) (14 K4). The fol-
lowing theorem provides a global error bound on the approximation to x(z;xg,%) by
# by restricting the maximal step-size ||/ and the ratio ||/2|e/Aimin-

Theorem 4.1 Let k > 2 and if k = 2 assume that K'L},KZ < 1. Consider the numerical
solution {u,};_, generated by approximating x(t;xo,t0) with the method .# using
the initial condition xq at initial time ty and let x,, := x(t,;x0,t0) for n > 0. Then there
exists D,h* > 0 and &; > 1 so that if &, € [1,8;) and h is any sequence of step-sizes
with ||h|je € (0,h*) and ||h|e < Sphmin . then sup,=o|lun — x| < D||R|S.

Proof 1f k = 2, then define /* := min{3/4, h}, 3, }y 81,8} and take & = 7 and if

k > 2, then define /* := min{1, A}, A}, %/,51,527 ﬁ} and take & = “(Klj_—sz)h*.
In either case (k =2 and k > 2) we have that §; > 1 is well-defined. Let 9, € (0, 6;)
and let / be any sequence of step-sizes with ||| < Opfimin and |4l < A*. The fact
that [Jug —xo|| = 0 < ||k < min{dy,&,h]} together with (4.1) and k > 2 implies
that there exists N > 0 such that ||u, —x,|| < |||« and the equation

Upt+1 —Xn+1 = X(thrl)X(tnr1 (tn — Xn)

Tnt1
[ X )X () Rt DT+ Tt 43)
T)l

holds for all n < N. Let Ny be the maximum of the set of all N such that |lu, —
Xn|| < ||A]| holds for all n < N. We show by way of contradiction that Ny = eo. Let
Yn 1=ty — X, and suppose that Ny < eo. Then { y,,}nNi0 satisfies a difference equation of
the form y,,+| = a,y, + b, where a, = @A(n; h) and by, is defined as the remainder of
the right-hand side of (4.3). The discrete variation of parameters formula and yg =0
imply that

bi, n=1,....Ng+1 (4.4)

n—1 i+1
m=Z[Hw

i=0 [j=n—-1

The fact that ||y, || < ||k]| < & for n=0,..., Ny means the inequalities of (4.2) hold
with t = 1,41 and s = t, for n = 0,...,Ny which together with ||A[|. < min{h},h}}
implies that

~ Tnt1 =
Il < BByl + KM KPR 3l [ 2001~z + KT

KMKHR?

lyall?(1 —e 2"y 4+ KTHE n=0,...,Np.
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From this and the facts that k > 2, ||ly,|| < ||k]l~ < 1, and 1 —e~2" < 27h, for
n=0,...,Ny it then follows that

I5all < (EA B2+ KMEPR?) [yl +KT A, n=0,....N0.  (45)

The choice that 1* < h5 implies that
i+1

I TT aill < (1 +KA)e Tonic) - p—1 > i41. (4.6)

j=n—1

The choice that 7* < %, implies that

S Yhmin(No—i) S YhiinJ ! 4
e~ VMmin\No—1) — e~ minJ < < “4.7)
;) ;) 11— exp('yhmin) 3YVhmin

Equations (4.4), (4.5), (4.6), k > 2, and ||h]| < 1 imply that forn=1,...,No+ 1:
n—1 n—1
Iyall < Kallafl% Y e V=it 4 Ky )12 Y e —tie) |y
j=0 i=0

Combining this with Equation (4.7) and max,—o,...n,||ys|| < ||h[|- then implies that
the following holds forn =1,...,Ny+ 1:

4K, ||h||51, = P
e L W @8)
=
4K2||hH]:°715h 4K1||h||z°3h 46, k-2
< — (Ki||h K> ||kl ) ||7]|o
<R = < (KA + Kl 1]

If k£ > 2 the assumption that §;, € [1, ZIT*(T?%(T))

If k =2, then (K; +K>)/y < 1 and §, < z3= imply that |[yn,+1]| < [|/2]|. Either case
contradicts the maximality of Ny and we therefore conclude that Ny = oo. Therefore
the inequality (4.8) holds for all n > 0 and the first conclusion of the discrete Gronwall
lemma (Lemma 4.1) implies that the following holds for n > 0:

4K, || b5 LS, nol - 4K, || R[S oK1 17/ (37)
|l < &exp Ky ||k Ze Yn—tin) | < 2||A]] h .
3Y i=0 3y

then implies that ||yyy+1]| < [/]c-

Therefore ||y, || < D||k||% '8, for all n > 0 where D = 4K,¢X1/7/(3y) if k = 2 and
D = 4K,eK1/(K11K2) [ (3y) if k > 2. O

The following theorem shows that when the maximal step-size and the ratio ||4||e / Amin
are properly restricted all numerical solutions with initial conditions sufficiently close
to xo are uniformly exponentially attracted to x(;xo,%).
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Theorem 4.2 Assume that k > 2 and x,, := x(ty;x0,10) for n > 0. Given y € (0,7%)
there exists D,h* > 0 and 8; > 1 so that if 8, € [1,6,°) and h is any sequence of step-
sizes with ||kl < h* and ||h||e < Oplimin, then there exists & > 0 so that if ||up — xo|| <
0, then the numerical approximation {u,};_ of x(t;uo,t0) by the method .4 with
the sequence of step-sizes h = {h,};_, satisﬁes the following uniform exponential
stability estimate ||u, — x,|| < De™Yn—1"")||u,, — x,, || for all n > m > 0.

Proof Let7 € (0,7). Let A* = min{1,8y,8,/2,h}, i, 1= 7‘7 ,1/K4,1/C} and fix & =
C h*. Note that §; > 1 is well-defined since h* < (y— )/) /C1. Take any sequence of
step-sizes h with ||| < h*, 8, € [1,8;), and ||A]|e < Op/imin and let & > 0 be such

& < min{||||/KA,||h]|«} . The fact that ||ug — xo|| < 8 < ||| implies that there
exists N > 0 so that ||u, —x,|| < |||~ and therefore

Up+1 — Xn+1 :X([n+1)X< l n— Xn +/ tn+1)X ) R(Mn,tn77)df
+ (T (U 1) — T (V1) )RETL. (4.9)

holds for n =0,...,N. Let Ny be the maximal N such that ||u, — v,|| < ||h]|- and
suppose for contradiction that Ny < oo. Then as in the proof of Theorem 4.1 we let
Yn := Uy — vy s0 that {y, }ilvio satisfies a difference equation of the form y, 1 = a,y, +
b, where a,, = @4 (n;h) and by, is defined as the remainder of the right-hand side of
(4.9). The variation of parameters formula implies that if 0 < m <n < Ny + 1, then

- [ ﬁ 4 (n;h) ym—i-i IlI ‘i’A(j;h)] b

Jj=n—1 i=m | j=n—1

As in the proof of Theorem 4.1, since ||y,|| < ||A]| < min{1,h},h},8;,06,} and
k > 2 we obtain the following bound for n =0,...,Np:

1Ball < EX|AlI& Nyl + 21121 2K KPR |yl + LT ([ va
< (B 426K+ LT) A1 all = CollAIIZ [yl
Since k > 2 it then follows that for n =m, ..., Ny + 1 we have
n—1
ynll < KAe™ Yt =m) ||y || 4 Y (14 K*)e 1150 1y
i=m

n—1
< K Ty Gy o0

i=m

Since #* <min{1,1/Cy,1/K*}, the second conclusion of the discrete Gronwall lemma
(Lemma 4.1) implies that for n =m,...,Ng+ 1 we have

]| < KAe™ 1=y, 1eCHIMBG=m) < geA ||y, 1 (<7+Cilll=d)n1—tn) (4. 10)

In the case that m = 0, |lyo|| < 8 < ||A||l/K? and Cj||h||«8, < y—7 imply that
[lyng+1]] < ||| Which contradicts the maximality of Np. It therefore follows that
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Ny = o and therefore (4.10) holds for all n > m > 0. It follows thaE if h is any
sequence of step-sizes with ||A|l. < h*, & > 1 is such that §, < %, and § <

min{||A]|e/K?, ||2]|s} » then |[y,|| < DeTn-1=m) |y, || where D = KA. 0

Uniform exponential stability is a strong assumption to place on an IVP that ex-
cludes many interesting and important types of problems. We close this section with
a discussion how to extend the ideas discussed herein to IVPs that are not uniformly
exponentially stable. Suppose Ty = —eo and x(#;x9,%) is bounded for all # € R so
that A(¢) is defined and bounded for all 7 € R. We now consider the case of full-line
exponential dichotomies where the estimates of (2.4) hold for all 5,7 € R rather than
all 5,1 € (19,°0). Suppose that x(¢;x0,1) is a trajectory with a spectral gap at zero; the
Sacker-Sell spectrum Xgp (defined by the full-line dichotomy estimates) of iz = A(f)u
is contained in (—eo, —) U (¢, o0) where o > 0. Additionally, suppose that there are
p spectral intervals contained in (o, o). Let v = B(t)v be a corresponding upper tri-
angular system to i = A(¢)u with u = Q(¢)v where Q(r) is orthogonal. Then the under
the change of variables x = Q(¢)y the equation (2.1) is transformed to the following:

{5’1} _ [31,1(1) Bl,z(l)] {M} + {Rl(ylv)’bt)] B(t) = [31,1 31,2]
| Baa(t) | [ y2 Ro(y1,y2,1) |’ B By,

where R = (Ry,R,) is assumed to be Lipschitz in (yi,y2), Bi,1 € RP*P, By»(t) €
RE@=P)x(d=P) and By »(r) € RP*(@=P), Typically (see e.g. Section 2 of [24]), the di-
agonal entries of B(r) will be ordered so that vi = By ;(t)v; has Sacker-Sell spec-
trum contained in (¢f,o) and v, = By 2(f)v2 has Sacker-Sell spectrum contained in
(—oo, ). If ¢ > 0 is large enough with respect to the Lipschitz constant of R, then by
Theorem 2.1 of [3] there is a unique decoupling transformation ¢ so that y, satisfies
the following differential equation that is independent of y;:

y2 =B (t)y2 + Ro(@(y2,1),y2,1) (4.11)

Solutions of (4.11) are uniformly exponentially stable and satisfy the hypotheses of
Theorems 4.1 and 4.2. Therefore, if ||A||« and 6, — 1 > 0 are sufficiently small, then
the numerical error on the stable manifold defined by ¢ remains small and decays
uniformly and exponentially as t — oo.

5 Applications

In this section we apply the theoretical results from Sections 3 and 4 to develop
a time-dependent stiffness indicator and a one-step method that switches between
implicit and explicit Runge-Kutta methods based on time-dependent stiffness. We
remark that by stiffness we mean parabolic stiffness related to a strongly attractive
mode rather than hyperbolic stiffness arising in highly oscillatory problems. We de-
note Runge-Kutta methods by RK(v-p-p) where RK is an identifying string, Vv is the
number of stages, p is the order of the method, and p is the order of the embedded
method. The following methods are used: the third order Bogacki-Shampine method
BS(4-3-2) (Equation 2.6 of [6]), ESDIRK(4-3-2) (second table on page 175 of [13]),
SDIRK(3-3-2) (Equation 5.4 of [34]), and SDIRK(4-3-2) (Equation 16 in [12]).
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All the experiments in this section were conducted using a solver odegr imple-
mented in MATLAB. This solver forms an approximate solution using a Runge-Kutta
method with the capability of switching between different methods at each step. In
odegqr the step-size is either constant or adaptive where an initial step-size guess is
reduced by increments of 25% until a tolerance is satisfied. For an implicit method
odeqr solves the nonlinear stage equations using Newton’s method with an option
for using exact and inexact Jacobians using the previous solution step as initial guess
and an error tolerance of 10712,

5.1 Test ODEs

In this section we discuss the three ODEs used in our experiments in Sections 5.2 and
5.3. The first ODE we consider is Equation (1.1) with A, = 0.1, 1, = —0.2, B; = 103,
ﬂz = 10_4, ﬁo = (}t()’l + ),2)2 — llﬂ,z)/al —a) — 10_4, ay; = ap = 2w, and initial
condition x(0) = (1,—1)T.

The second equation we consider is the forced Van der Pol equation [41] ex-
pressed as a first order ODE in two dimensional phase space:
{x’l :u(l—x%)xz—i—xl—Asin(a)t) .1)

X2 = X1

We use the initial condition (x;(0),x2(0))7 = (0,2)7, & = 100, and @ = A = 1. For
our third example we first consider (see [2, 28, 31]) the one-dimensional Fitzhugh-
Nagumo partial differential equation (PDE):

— d%u
{u’_f((u)_;;—aﬁ, u=u(xt),v=v(x,1) €R, r>0,xe(0,1) (5.2
v, =€(u—6v

with Neumann-type boundary conditions u,(0,¢) =0 = u,(1,7) and v,(0,7) = v,(1,1)
and with ¢ given by ¢(r) = —2/° +6r and §,a,& > 0. We construct a system of
ODEs by taking a uniform spatial discretization of (5.2) with x; = j/J = jAx for
Jj=0,...,J and the following finite difference approximation to Au(x;,t) which takes
into account the boundary conditions:

(1 —uo)/(Ax)?, j=0
Au(xj,t) = D(uj) = (uy—1 —uy)/(Ax)?, ji=J
(ujr1 —uj—1 —2u;)/(Ax)?, otherwise

where u;(t) ~ u(x;,t) for j =0,...,J and Ax = 1/J. This leads to our third ODE
which is the following (2J + 2)-dimensional Fitzhugh-Nagumo system:

uj= ¢ (u;) —vi+oD(u;) .
{vjze(uj—Svj) =0 (5.3)

For parameter values we take € =0.1, &« = 0.3, 6 = 0.01, and J = 14 and for the initial
condition we use u;(0) = sin(0.57jAx) and v;(0) = cos(0.57 jAx) for j=0,...,J.
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5.2 Nonautonomous stiffness detection

In this section we develop a method for stiffness detection based on approximating
Steklov averages as defined in Equation (3.2). Assume that (2.6) satisfies Assumption
3.2. The conclusion of Lemma 3.1 implies that the Steklov averages (3.2) of a cor-
responding upper triangular ODE measure average exponential growth/decay rates
of solutions of (2.6) on the interval (¢,# + At). For a randomly chosen orthogonal
Q(to) = Qo € R¥*? the Steklov averages of the corresponding upper triangular ODE
y = B(t)y where B = QTAQ — Q7 Q tend to order themselves so that s (¢, At) corre-
sponds to the right-most spectral interval and s4(¢,At?) corresponds to the left-most
spectral interval (see e.g. Section 2 of [24]). This motivates using the following as a
stiffness indicator:
S(t,At) = s1(t,At) — s4(t, At).

If S(z,At) is large in absolute value, then we expect that the problem is stiff and if
S(z,At) is near zero, then we expect that the problem is nonstiff. We remark that in
general s;(t,Ar) > s4(¢,At) holds on average, but does not hold point-wise, since for
sufficiently large Az the quantities s;(f,At) and s,4(f,At) become approximations to
respectively the right and left end-points of the Lyapunov and Sacker-Sell spectra.

We now discuss how to approximate S(z,Ar). Consider the numerical solution
Xptl = A (n;h)x, of (2.6) using a one-step method .# with local truncation error of
order p > 1. We first approximate s (t,,4,) as follows. Given an initial gy € R? with
llgolla =1 (|| |2 is the Euclidean 2-norm) we inductively form v, := ®4(n;h)q,
and R*l"l(n;h) := ||vu||2 followed by normalization: g, := v, /||vn||2. We approx-
imate s1(ty,h,) by &i(n) :=In(R{|(n;h))/h, which is justified since Theorem 3.4
implies that sy (t,,h,) = &1 (n) + O(||h||2) for sufficiently small ||4||... We approxi-
mate s4(,,h,) by applying the same method used to approximate s;(f,,h,) to the
opposite adjoint equation x = —A(t)” x to obtain &;(n) ~ s4(t,, h,). This is justified
since the right end-points of the Lyapunov and Sacker-Sell spectra of the opposite
adjoint equation are the left end-points of the Lyapunov and Sacker-Sell spectra of
(2.6).

Our approximation of S(¢,At) along a sequence of time-steps {, };._, using win-
dow length w > 0 and n > 0 is defined as as

1 2w

Sl(naw) = Z (gl (n - W+k) - éd(n - W+k))/hi1—w+k~
ndw+1 —Ih—w k=0

For IVPs of nonlinear ODEs we compute SI(n,w) by approximating the coef-
ficient matrix A(¢) := Df(x(;x0,%0),t) which is then used to form an approximate
@4 (n;h). Approximating @*(n;h) to high order may require approximating values
of A(t) for t € (t,,t,+1). We use a piecewise cubic Hermite interpolating polynomial
to obtain an &(||h||%) order approximation to A(t) for ¢ € (t,,t,.1) making use of
the approximate solutions x, and x,+ and their approximate derivatives f(x,,#,) and
f(Xut+1,t011). This is sufficient for us to obtain order p approximations to @4 (n;h)
for p < 3, a constraint satisfied by all the methods used in our examples. In gen-
eral higher-order piecewise Hermite interpolants would be needed for higher order
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approximations of @4 (n;h). If the method is explicit we approximate 4 (n;h) by
applying the method to compute a single step of the numerical solution of x = A(f)x
starting from the identity using the cubic Hermite interpolating polynomial to approx-
imate the necessary values of A(r) for 7 € (t,,1,+1). For an implicit method we avoid
solving a linear system of equations to approximate &% (n;h) by instead forming
5A(n;h) = @4 (n;h) + O(||h||2) where %" (n;h) is formed using an explicit method
with truncation error of the same order.

In addition to our Steklov average based method we implement the stiffness in-
dicator, denoted as o[A(r)], that was introduced in Definition 4.1 of [11] that is for-
mulated in terms of the logarithmic norm of the Hermitian part of A(¢): He[A(r)] :=
(A(t)+A(t)T) /2. To simplify the computation of 6[A(t)] we assume that we are using
the Euclidean 2-norm. As noted in [11] this implies that o[A(¢)] equals the smallest
eigenvalue of He[A(z)] subtracted from the largest eigenvalue of He[A(¢)].

In general we cannot expect any relation between SI(n,w) and G[A(z,))] as exem-
plified in Figure 5.1. However, we can characterize when these two indicators should
be close to equal. Assume w = 0 and note that for any bounded and continuous A(7)

we have X (t,41,1,) = exp (f,;"“ A(‘L‘)dr) + O(||h||%) for all sufficiently small |||«

where X (t;1,) is the solution of (3.9). Hence, if X (#,41:%,) is well-conditioned for
eigenvalue computations (such as when A(z,) is normal and A, is small), then the
logarithms of the real parts of the eigenvalues of ®*(n;h) divided by &, should be
approximately equal to the average of the eigenvalues of He[A(t)] for 1 € (f,,,1,41).
Forming & (n) and &;(n) is equivalent to performing one step of power iteration to
approximate the real parts of the eigenvalues of &4 (n;h) and the associated oppo-
site adjoint coefficient matrix followed by taking logarithms and division by A,,. If
the largest (in terms of absolute value) eigenvalue of He[A(¢)] is significantly larger
than the next, then power iteration converges rapidly implying that a single step of
power iteration applied to He[A(#,)] should be approximately the logarithm of a sin-
gle step of power iteration applied to &*(n;h) divided by &,. The same statement
holds for the adjoint coefficient matrix and the smallest eigenvalue of He[A(7)]. It
follows that SI(n,w) and o[A(z,))] should be close when ||A||e is small, w = 0,
A(ty)A(t,)T —A(t,)T A(t,) 2 0, and the largest eigenvalues of A(t,) and —A(t,,)T dom-
inate over the next largest.

We now highlight the advantages of computing SI(n,w) over G[A(#,)]. We first
note that approximating o[A(#,)] is norm dependent (see Section 4 of [11]) while
SI(n,w) is not. Accurately approximating SI(n,w) depends on integral separation
which is expected to be strong in a stiff IVP and does not require that A(z,) or
He[A(#,)] be normal or well-conditioned for eigenvalue computations. Forming the
quantity SI(n,w) is generally less expensive than G[A(#,)] since forming SI(n,w) es-
sentially requires only a single step of power iteration applied to &*(n;h) and the
associated adjoint coefficient matrix followed by taking logarithms and a linear com-
bination of 2w terms, whereas forming o[A(z,)] requires at least one step of power
iteration or some other method for approximating eigenvalues. This cost advantage
is important in the next section where fast and accurate approximations to &; (n) and
&4(n) are needed at each step.



A Lyapunov and Sacker-Sell spectral stability theory for one-step methods 27

Stiffness Indicators vs time
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Fig. 5.1 Plots of approximate |SI(n,w)| with w =2 and |c[A(z,)]|, first solution component, and step-size
versus time for the numerical solution of the 2D linear ODE (1.1) using the parameters specified in Section
5.1 solved with BS(4-3-2) using a relative and absolute error tolerance of 1076,

We compare the performance of SI(n,w) with 6[A(%,)] with the linear ODE (1.1)
and the forced Van der Pol equation in Figures 5.1 and 5.2. Figure 5.2 shows that
SI(n,w) and o[A(t,)] produce qualitatively similar results when applied to the Van
der Pol equation. However, as evidenced in Figure 5.1, our approximation to SI(n,w)
is more sensitive to changes in the step-size even over intervals where the solution is
nonstiff. The 2D linear ODE (1.1) provides a clear example where the performance
of SI(n,w) is superior to that of 6[A(t,)], with SI(n,w) detecting intervals over which
the solver takes smaller and larger time-steps where A(¢) is respectively more or less
non-normal, while o[A(z,)] is approximately constant at all time-steps. The values
|SI(n,w)| and |G[A(#,)]| are plotted since it is absolute values rather than sign that
indicate stiffness.

5.3 QR implicit-explicit Runge-Kutta methods

Consider an explicit Runge-Kutta method RKex(v-p-p) and an implicit Runge-Kutta
method RKim(V-p-p5). We construct a one-step method with local truncation error of
order p, denoted as RKex(v-p-p)- RKim(V-p-p)), that switches between using the
implicit and explicit Runge-Kutta methods as follows. At time-step #,, we form &; (n)
and &;(n) as described in Section 5.2. If £;(n) is too small and negative or if &;(n) is
too large and positive, then we use the implicit method, otherwise we use the explicit
method. More precisely we use the explicit method if &;(n) > da/Hp and & (n) <
d/Hy where d; and d, are chosen according to the right and left endpoints of the
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Stiffness Indicators vs time log(1+x)-scale
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Fig. 5.2 Plots of approximate |SI(n,w)| with w =10 and |G[A(#,)]|, first solution component, and step-size
versus time for the numerical solution of the Van der Pol ODE (5.1) solved with BS(4-3-2) using a relative
and absolute error tolerance of 107°.

real parts of the linear stability regions of RKex(v-p-p) and RKim(V-p-p) and the
quantity Hy is a parameter specifying the minimum allowable step-size restriction due
to time-dependent stability that will be tolerated. We refer to such implicit-explicit
switching methods as QR-IMEX-RK methods and implement them with odegr.

We approximate the parameter Hy as follows. Pick an interval over which the
approximate solution is non-stiff. Over this interval compute the approximate mean
step-size Amean and set Hy = hmean @ Where @ > 0 is a factor quantifying the tolerance
for the stability step-size restriction relative to the mean non-stiff step-size.

We now discuss the results (Table 5.1) of various QR-IMEX-RK methods ap-
plied to solve an IVP of the discretized Fitzhugh-Nagumo PDE (5.3). The stiffness
increases as the error tolerance decreases leading to proportionally more uses of the
implicit method by the QR-IMEX-RK methods. The results in Table 5.1 show that at
the lowest tolerance TOL = 107 the explicit method Mfhn1 (see the caption of Table
5.1 for descriptions of the methods) and the QR-IMEX-RK methods Mfhn2, Mfhn3,
and Mfhn4 have about the same mean step-size and few implicit steps are taken by the
QR-IMEX-RK methods. When tighter tolerances are used (TOL = 107°,1077,107%)
the problem is stiffer and the QR-IMEX-RK solvers Mthn2, Mfhn3, and Mfhn4 are
able to take larger time-steps on average than the explicit method Mthnl at a cost
of using more right-hand-side calls when TOL = 107,106,107, fewer right-hand-
side calls when TOL = 108, and more Jacobian calls at all tested tolerances than
Mfhnl. Notice that although Mfhn2, Mfhn3, and Mfhn4 are able to take larger step-
sizes on average than Mfhnl the additional implicit time-steps cost more in terms of
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right-hand-side and Jacobian evaluations, linear solves, and the overhead associated
with forming &; (n) and &, (n) at each time-step.

Table 5.1 Table of results for experiments on the spatially discretized Fitzhugh-Nagumo PDE (5.3) solved
on the time interval [0, 100] using J = 14. TOL is the absolute and relative error tolerance (always taken
to be equal), nexp and nimp are the number of explicit and implicit steps taken, Feval is the number
of evaluations by the ODE right-hand-side function f(x,#), Jaceval is the number of evaluations of the
Jacobian A(r), Lsol is the number of linear solves, and NA is short for not applicable. The methods are
the explicit method Mfhnl = BS(4-3-2) and the QR-IMEX-RK methods Mfhn2 = BS(4-3-2)-ESDIRK (4-
3-2), Mthn3 = BS(4-3-2)-SDIRK(4-3-2) , and Mfhn4 = BS(4-3-2)-SDIRK(3-3-2). The QR-IMEX-RK
parameters were d» = —3.5 and d; = 10.0 and Hy was computed by taking the approximate mean step-
size of Mfhn2 (around 1E — 2 for all tolerances) on the interval [5,20] and using & = 1.5. Jacobians were
formed exactly and the initial step-size was Ay = 0.05.

Method | TOL | hAmean nexp nimp | Feval Jaceval | Lsol
Mfhnl 1E-5 | 1.164E-2 | 8595 NA 40845 NA NA
Mfthn2 1E-5 | 1.186E-2 | 8333 129 54283 36860 328
Mfthn3 1E-5 | 1.183E-2 | 8317 124 50330 36796 309
Mthn4 1E-5 | 1.182E-2 | 8595 143 49357 36507 373

Mfhnl 1E-6 | 9.501E-3 | 10525 | NA 47893 NA NA
Mfhn2 1E-6 | 1.045E-2 | 9247 323 61611 45476 738
Mfhn3 1E-6 | 1.043E-2 | 9304 283 62108 44832 669
Mfhn4 1E-6 | 1.037E-2 | 9237 399 61228 44817 846

Mfhn1 1E-7 | 5.804E-3 | 12834 | NA 77929 NA NA

Mfhn2 1E-7 | 7.439E-3 | 12846 | 609 81060 66384 1272
Mfhn3 1E-7 | 7.465E-3 | 12887 | 550 80773 65024 1155
Mfhn4 1E-7 | 7.271E-3 | 17229 | 867 80957 68339 1787

Mfhnl 1E-8 | 2.348E-3 | 42587 | NA 170449 | NA NA

Mfhn2 1E-8 | 3.319E-3 | 28902 | 1228 | 161587 | 145536 | 2513
Mfhn3 1E-8 | 3.296E-3 | 29324 | 1018 | 163283 | 142216 | 2097
Mfhn4 1E-8 | 3.248E-3 | 28898 | 1891 | 163871 | 151845 | 3836

6 Afterword

We have used QR approximation theory for Lyapunov and Sacker-Sell spectra to
develop a time-dependent stability theory for one-step methods approximating time-
dependent solutions to nonlinear and nonautonomous ODE IVPs. This theory was
used to justify characterizing the stability of a one-step method solving an ODE IVP
with real-valued, scalar, nonautonomous linear test equations. In the companion pa-
per [40] we use invariant manifold theory for nonautonomous difference equations
to prove the existence of an underlying one-step method for general linear methods
solving time-dependent ODE IVPs. This is then used to extend our analysis of one-
step methods to general linear methods. It should also be possible to extend the theory
developed in this paper to infinite dimensional IVPs (using the infinite dimensional
QR approximation theory developed in [4]) arising from PDEs where the step-size
restriction will become a time-dependent CFL condition. By using Q(z) is should
also be possible to use our techniques to measure oscillatory or hyperbolic stiffness
in addition to parabolic stiffness.



30 Andrew J. Steyer, Erik S. Van Vleck

Detecting, quantifying, and understanding stiffness has the been a major research
focus of the time discretization community for the past 60 years. The methods we
have developed in this work can be advantageous for problems with e,g. non-normal
Jacobians where standard stiffness detection techniques, such as those using loga-
rithmic norms or time-dependent eigenvalues, can potentially fail. Our techniques
are justifiable in terms of Lyapunov and Sacker-Sell spectral theory and at a low
computational cost produce qualitatively the same information in situations where
existing methods are effective and meaningful information where existing methods
are ineffective. Additionally, the QR and Steklov average based approach can be used
to estimate Lyapunov exponents and Sacker-Sell spectral end-points which are use-
ful in characterizing the dynamics of the differential equation whose IVPs are being
approximated.
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