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The search for a Fermi surface in the absence of a conventional Fermi liquid has thus

far yielded very few potential candidates. Among promising materials are spin-frustrated

Mott insulators near the insulator-metal transition, where theory predicts a Fermi sur-

face associated with neutral low energy excitations. Here we reveal another route to ex-

perimentally realise a Fermi surface in the absence of a Fermi liquid by the experimental

study of a Kondo insulator SmB6 positioned close to the insulator-metal transition. We

present experimental signatures down to low temperatures (� 1 K) associated with a

Fermi surface in the bulk, including a sizeable linear specific heat coefficient, and on the

application of a finite magnetic field, bulk magnetic quantum oscillations, finite quantum

oscillatory entropy, and substantial enhancement in thermal conductivity well below the

charge gap energy scale. Thus, the weight of evidence indicates that despite an extreme

instance of Fermi liquid breakdown in Kondo insulating SmB6, a Fermi surface arises

from novel itinerant low energy excitations that couple to magnetic fields, but not weak

DC electric fields.
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The f -electron system SmB6, which has been recently proposed to be a topological insula-

tor characterised by a conducting surface [1, 2, 3, 4, 5, 6, 7], has been long known to exhibit

Kondo insulating behaviour characterised by a collective f -d hybridisation charge gap in the

bulk. The bulk charge gap is evidenced in experiments such as infrared absorption, inelastic

neutron scattering, optical conductivity, electron tunnelling, intermediate-temperature specific

heat capacity, and electrical resistivity [8]. SmB6 is further positioned in the close vicinity

of the Kondo insulator transition to a metallic phase, requiring as little as 40 kbar for met-

allisation [9, 10, 11]. The surprising observation of quantum oscillations in the magnetisation

unaccompanied by oscillations in the electrical resistance of SmB6 was reported in ref. [12, 13].

While ref. [12] interpreted these quantum oscillations in the framework of a two-dimensional

Fermi surface from a conducting surface layer, ref. [13] in contrast associated them with a three-

dimensional Fermi surface from the insulating bulk. Here we test for three-dimensional bulk

Fermi surface character associated with the measured quantum oscillations in SmB6, and probe

for quantitative correspondence with an itinerant band of in-gap low energy excitations using

complementary experimental techniques.

Fig. 1a shows a sample of quantum oscillations in the magnetic torque before any back-

ground subtraction, measured in a floating zone-grown crystal of SmB6, revealing large oscil-

lations dominant against the measured background, with prominent high frequency oscillations

at high magnetic fields as shown by the inset. The correspondence of the measured quantum

oscillations to a three-dimensional ellipsoidal Fermi surface geometry characteristic of metal-

lic hexaborides (Fig. 1c, refs. [13, 14, 15, 16]) is seen from the extended angular dependence

of the measured quantum oscillations for tilt angles spanning both the [011]-[001] and [001]-

[111]-[110] planes (Fig. 1b). Angular dependent quantum oscillation data is shown for both

floating zone-grown and flux-grown single crystals, the observed angular dependence is inde-

pendent of the orientation of exposed crystal surfaces in both types of samples, in contrast to the

3



- 4 5 0 4 5 9 02 0 0

4 0 0

6 0 0
8 0 0

1 0 0 0
6 0 0 0

8 0 0 0
1 0 0 0 0
1 2 0 0 0
1 4 0 0 0
1 6 0 0 0
1 8 0 0 0

1 5 2 0 2 5 3 0 3 5 4 0
0

5

1 0

1 2 3 4
- 4
- 2
0
2
4

� =
 |M

 (µ
B p

er 
un

it c
ell)

× B
 (T

)| [
3D

 m
od

el]
 (×

 10
-4 )

3 D  b u l k

F / B

e

c

L a B 6

T  =  2  K
�   ~  [ 0 0 1 ]
F  =  5 . 9  T  

1 2 3 4
- 4
- 2
0
2
4

T  =  1 . 1 2 K
�  ~  [ 0 0 1 ]
F  =  3 1  T

F / B

S m B 6

� =
 |M

 (µ
B p

er 
un

it c
ell)

× B
 (T

)| [
3D

 m
od

el]
 (×

 10
-4 )

0 . 2 0 . 4 0 . 6
1 / B  ( T - 1 )

0 . 0 4 0 . 0 8 0 . 1 2
1 / B  ( T - 1 )

- 2 0
- 1 0
0
1 0
2 0

Capacitance (× 10 -4 pF)

- 5
0
5

Capacitance (× 10 -4 pF)

1 2 3 4
- 2 0 0
- 1 0 0

0
1 0 0
2 0 0

2 D  s u r f a c e

S m B 6

T  =  1 . 1 2 K
�  ~  [ 0 0 1 ]
F  =  3 1  T

g

f
� =

 |M
 (µ

B p
er 

un
it c

ell)
× B

 (T
)| [

2D
 m

od
el]

F / B

- 4
- 2
0
2
4

Capacitance (× 10 -4 pF)

0 . 0 4 0 . 0 8 0 . 1 2
1 / B  ( T - 1 )

a d

b

�

α
ρ

�

� '

 
�   (d e g r e e s )

[ 0 0 1 ] [ 1 1 1 ] [ 1 1 0 ][ 0 1 1 ]

S m B 6

�

�
�

 

Qu
an

tum
 os

cill
ati

on
 fre

qu
en

cy 
(T)

�
�

S m B 6

T  =  0 . 4  K
�   ~  [ 0 0 1 ]  

Ca
pa

cita
nc

e (
× 1

0-4  pF
)

B  ( T )

3 8 . 0 3 8 . 5 3 9 . 0 3 9 . 5

9

1 0

Ca
pa

cita
nc

e
(× 

10
-4  pF

)

B  ( T )

1 2 3 4
- 2
- 1
0
1
2

- 1 0
- 5
0
5
1 0

� = |M (µB  per unit cell)
× B (T)| [2D model] (× 10 -3)F / B

� =
 |M

 (µ
B p

er 
un

it c
ell)

× B
 (T

)| [
3D

 m
od

el]
 (×

 10
-3 )

3 D  b u l k

0 . 0 4 0 . 0 8 0 . 1 2
1 / B  ( T - 1 )

Figure 1: Comparison of quantum oscillations in SmB6 with three-dimensional bulk
Fermi surface model. a shows the measured oscillations in the magnetic torque for
a floating zone-grown crystal before any background subtraction with the inset giving
a magnified view of the high frequency oscillations visible at high magnetic fields. b,
Angular dependent quantum oscillation measurements in the [011]-[001] rotation plane
in the field range 8 T < B < 35 T on two crystals, and in the [001]-[111]-[110] rotation
plane in the field range 11 T < B < 40 T on two other, to complement previous angular
dependent measurements reported in ref. [13]. Open and closed circles represent data
from floating zone-grown crystals, open and closed diamonds, and squares represent
data from flux-grown crystals. Throughout, B = µ0H, where H is the applied magnetic
field. (Next page.)
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Figure 1: (Previous page.) Angular dependence of observed quantum oscillations is
in good agreement with the three-dimensional ellipsoidal model characteristic of rare-
earth metallic hexaborides and proposed in ref. [13] (shown by fit lines). c, Twelve
ellipsoidal electron pockets along the <110> directions, corresponding to the fit to the
ρ frequencies, and three large ellipsoidal electron pockets along the <100> directions,
corresponding to the fit to the α frequencies in b. e, The quantum oscillatory magnetic
moment (in µB per unit cell) corresponding to the measured lowest frequency oscilla-
tions in SmB6 (labelled ρ’ also corresponding to small ellipsoids [13, 14, 15, 16]). d,
The quantum oscillatory magnetic moment measured using a very similar experimen-
tal setup in LaB6 yields a value close to SmB6 assuming a bulk origin in both cases.
Dashed lines represent magnetic field dependence of the quantum oscillation ampli-
tude from an exponential damping (Dingle) fit. f, Size of the magnetic moment corre-
sponding to the measured lowest frequency oscillations in SmB6 were they to originate
from only the surface. g, Theoretical Lifshitz-Kosevich estimate for the quantum os-
cillatory magnetic moment (in µB per unit cell) including the angular anisotropy term,
Dingle and spin-splitting damping factors (Methods) indicated for a bulk origin (left-hand
axis), and for a surface origin (right-hand axis) of quantum oscillations. Good order of
magnitude agreement is seen with experiment assuming a bulk origin (d, e), whereas
the predicted theoretical maximum size is several orders of magnitude smaller than
experiment were the quantum oscillations were to arise from a surface atomic layer.

expectation for an origin of quantum oscillations from a surface layer. We note that the observa-

tion of quantum oscillation frequencies that span the entire angular range is inconsistent with a

two-dimensional Fermi surface geometry, for which quantum oscillation frequencies would be

expected to vanish at tilt angles corresponding to open Fermi surface orbits (see figures provided

in ref. [17]). We next establish the three-dimensional Fermi surface we access to correspond

to the bulk volume of the sample by a quantitative inspection of the observed large amplitude

of quantum oscillations in the magnetisation (Fig. 1). We choose for comparison the measured

lowest frequency quantum oscillations, which are closest to the zero phase (infinite field) limit.

Given the small size of the Fermi surface corresponding to the lowest frequency quantum oscil-

lations only occupying 0.1% of the Brillouin zone, the corresponding carrier density is very low.

This low carrier density leads to theoretical predictions of a small magnitude of quantum oscil-

5



lation amplitude (in units of µB per unit cell) in the case of a two-dimensional Fermi surface

originating from the surface atomic layer, as well as in the case of a three-dimensional Fermi

surface originating from the insulating bulk (Fig. 1g, Methods). We first compare the measured

quantum oscillation amplitude per unit cell assuming an origin from the entire bulk with the

theoretical prediction. We find good agreement within an order of magnitude of the measured

quantum oscillation amplitude (in units of µB per unit cell) with (i) the theoretical prediction

for a three-dimensional bulk Fermi surface made using the Lifshitz-Kosevich theory (Fig. 1e,

g, Methods), and (ii) an experimental comparison with the three-dimensional bulk Fermi sur-

face in metallic LaB6 (Fig. 1d, Methods). In contrast, were the observed quantum oscillations to

originate solely from the surface atomic layer, these would correspond to a very large amplitude

in µB per surface unit cell, given that surface unit cells constitute only a small fraction≈ 10−6 of

the total number of unit cells (Fig. 1f). We thus show that were quantum oscillations to originate

from a surface atomic layer, the theoretical prediction of the maximum possible amplitude of

quantum oscillations per surface unit cell would be several orders of magnitude smaller than the

experimentally observed quantum oscillation amplitude per surface unit cell, ruling out such an

origin of quantum oscillations reported here. Quantum oscillations in SmB6 are also observed

using capacitive Faraday magnetometry measurements in superconducting magnetic fields up to

14 T (see figure in ref. [17]), and bulk magnetic susceptibility measurements in pulsed magnetic

fields (see figure in ref. [17]).

We look for experimental evidence for low energy excitations within the charge gap of

SmB6, which we compare with the Fermi surface associated with the measured quantum oscil-

lations. The inset of Fig. 2a shows specific heat capacity measured in multiple single crystals

of SmB6 grown by the floating zone technique and by the flux growth technique, which are

either the same samples on which quantum oscillations are observed, or from the same crystal

growth. At low temperatures, a finite density of states at the Fermi energy within the charge
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gap is revealed by a finite value of the linear specific heat coefficient γ ≈ 4(2) mJ·mol−1·K−2

(see Methods), which rapidly increases with decreasing temperature (Fig. 2a). We compare the

size of the density of states measured from the linear specific heat coefficient, with the expec-

tation from the three-dimensional ellipsoidal Fermi surface geometry we fit to the measured

quantum oscillations (shown in Fig.1b), and effective masses measured from quantum oscilla-

tions (see figure in ref. [17] and Fig. 2c). A common origin of in-gap low energy excitations

is indicated from the good agreement we find between the value of density of states calculated

from the quantum oscillation-extracted Fermi surface γ ≈ 4(1) mJ·mol−1·K−2 on assuming a

contribution from the entire sample volume, and the value measured from the linear specific

heat capacity (Fig. 2c, Methods and ref. [18]). Further, the steep increase at low temperatures

of the value of γ closely resembles the steep increase of quantum oscillation amplitude at low

temperatures observed for the majority of quantum oscillation frequencies in the case of float-

ing zone-grown SmB6 (Figs. 2a-b, see figure in ref. [17]) [13]. The nuclear contribution to the

specific heat capacity is expected to be negligibly small in the experimental temperature range

below 1 K at zero magnetic field [19, 20] (see Methods), although an increase in nuclear contri-

bution in the presence of a magnetic field makes the accurate determination of low temperature

linear specific heat capacity in finite applied magnetic fields challenging (see Methods) [21].

Another probe of itinerant in-gap low energy excitations is provided by an experimental

estimate of the low temperature quantum oscillatory component of the entropy. We estimate

this low temperature entropy by measuring dMosc./dT (where Mosc. is the quantum oscillatory

magnetisation), which is related to the entropy by the Maxwell relation V
(
∂M
∂T

)

B

=

(
∂S
∂B

)

T

,

where V is the volume of the crystal, M is the magnetisation, and S is the entropy (see Meth-

ods). The value of dMosc./dT (shown in Fig. 2d) remains finite in amplitude down to tem-

peratures < 1 K, an order of magnitude below the charge gap 2-5 meV [8, 13, 21], provid-

ing evidence for a finite density of states within the charge gap. Importantly, we are able to
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Figure 2: Finite linear specific heat coefficient and quantum oscillatory entropy of SmB6.
a, Measured specific heat capacity of SmB6 for a floating zone-grown single crystal
(FZ) down to 63 mK, revealing a finite heat capacity divided by temperature at low tem-
peratures, unexpected for an insulator, with a surprising steep increase below ≈ 1 K
(similar to ref. [18]). The inset shows the measured specific heat capacity for two float-
ing zone-grown crystals (blue and green diamonds) and a flux-grown crystal (circles),
demonstrating a finite heat capacity divided by temperature at low temperatures across
all samples, with a more prominent increase below ≈ 1 K exhibited by floating zone-
grown crystals. b, Steep non Lifshitz-Kosevich low temperature upturn below ≈ 1 K in
quantum oscillation amplitude for the case of floating zone-grown SmB6 (purple, blue,
green diamonds, with the error corresponding to the noise floor of the Fourier trans-
form), with similarities to the low temperature upturn in the heat capacity divided by
temperature which is most prominent for this type of sample, shown in a. The inset
shows the prominent increase in quantum oscillation amplitude below approximately
1 K that deviates from Lifshitz-Kosevich temperature dependence is only observed in
the case of floating zone-grown crystals (three samples shown by purple, blue, and
green diamonds), and not flux-grown crystals (two samples shown by orange and red
diamonds). c, Measured effective mass of the various frequency branches of SmB6

from a Lifshitz-Kosevich fit down to 1 K (star symbols, see figure in ref. [17]), seen
to be very similar to the metallic rare-earth hexaborides [14, 15, 16, 54], especially
nonmagnetic LaB6. (Next page.)
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Figure 2: (Previous page.) d, Derivative with respect to temperature of the highest fre-
quency (α) magnetic quantum oscillation amplitude remains finite to low temperatures,
reflecting a finite quantum oscillatory entropy at temperatures well below the transport
gap scale (see Methods). The inset shows the magnetic quantum oscillation amplitude
of the α frequency as a function of temperature down to ≈ 1 K in a floating zone-grown
sample.

demonstrate the itinerant character of the in-gap density of states since the accessed entropy is

oscillatory, derived from the measured oscillatory magnetisation.

A further test of the itinerant nature of measured bulk in-gap low energy excitations is pro-

vided by a measurement of the thermal conductivity at temperatures� 1 K, where the phonon

contribution is strongly suppressed. Fig. 3a shows the measured low temperature thermal con-

ductivity of a single crystal of SmB6 grown using the floating zone technique. The phonon con-

tribution up to high temperatures can be modelled well by boundary limited phonons, shown

by the red line denoted by κph./T , accounting for the zero field thermal conductivity, and is

characteristic of high sample quality (see Methods). On subtracting the phonon contribution

from the measured thermal conductivity (inset to Fig. 3a), the remainder is seen to be very

small in zero field, but becomes increasingly large in an applied magnetic field, far exceeding

the Wiedemann-Franz expectation from the surface conducting layer by orders of magnitude

(see Methods). An origin of this additional contribution from phonons is unlikely, since the

phonon thermal conductivity is already at a maximum in the boundary scattering limit. The

possibility of a conventional magnon contribution is also not supported due to the absence of

static magnetic moments as inferred from muon spin resonance measurements [22], neutron

scattering measurements [23], and magnetisation measurements (see figure in ref. [17]).

Intriguingly, a similar observation of a substantial enhancement in low temperature thermal

conductivity with applied magnetic field has been observed in the Mott insulating organic sys-

tems EtMe3Sb[Pd(dmit)2]2 and κ-(BEDT-TTF)2Cu2(CN)3 [24, 25, 26, 27] (shown in Figs. 3c-

9



d), which have been associated with a theoretical model of novel spinon low energy excitations

that transport heat but not charge [28, 29, 30, 31]. Both systems display a finite linear spe-

cific heat capacity coefficient, while in EtMe3Sb[Pd(dmit)2]2 the thermal conductivity displays

a finite linear temperature dependence at low temperatures, in κ-(BEDT-TTF)2Cu2(CN)3 the

thermal conductivity displays a downturn as a function of temperature at millikelvin tempera-

tures. These experimental observations were collectively interpreted in terms of a neutral Fermi

surface in the organic spin liquid materials, potentially evincing a low temperature instability

in κ-(BEDT-TTF)2Cu2(CN)3. The intriguing similarity of our observations in SmB6 points to

a neutral Fermi surface comprising itinerant low energy excitations that transport heat, but not

charge in SmB6. Informing the search for more examples of similar material systems, we note

that such experimental signatures of neutral low energy excitations are likely to be more promi-

nent in materials positioned closer to gaplessness of neutral low energy excitations, potentially

tuned by factors such as applied magnetic field and materials parameters (Fig. 4).

A sufficiently large effective mean free path of itinerant low energy excitations is impor-

tant for the observation of magnetic quantum oscillations, thermal conductivity, and quantum

oscillatory entropy, in contrast to the measured specific heat capacity. A comparison between

measured quantities into which the effective mean free path enters is most meaningful at high

magnetic fields, where high frequency quantum oscillations corresponding to the largest ellip-

soidal (α) Fermi surface that dominates the density-of-states at the Fermi energy are observable.

Using assumptions relevant to a conventional metal with electronic excitations, the value of ex-

cess thermal conductivity we measure in floating zone-grown samples of SmB6 in an applied

magnetic field of 12 T and at temperatures of ≈ 200 mK corresponds to a mean free path esti-

mate of the dominant large Fermi surface of≈ 10−8 m. This estimate is similar to the estimated

mean free path of a few times 10−8 m obtained from the measured cyclotron radius and ex-

ponential damping (Dingle) term from quantum oscillations in magnetic fields of 35−45 T in

10
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Figure 3: Low temperature thermal conductivity of SmB6. a, Thermal conductivity (κ)
of a floating zone-grown single crystal of SmB6 plotted as κ/T as a function of T 2.
The value of thermal conductivity at the lowest measured temperature shows a nearly
fourfold increase in increasing applied magnetic fields up to 12 T. The zero field data
is largely accounted for by the phonon contribution (see Methods) calculated for a De-
bye temperature of ΘD = 373 K (red line denoted by κph./T ), obtained from elastic
constants [55]. The enhancement in a magnetic field is clearly seen in the inset upon
subtracting the phonon contribution. The thermal gradient is applied along the [100]
direction, with perpendicular magnetic field applied along [001]. b, Thermal conductiv-
ity as a function of magnetic field shows a significant increase with magnetic field for
a floating zone-grown single crystal. The inset shows a similarly large increase with
magnetic field for a second floating zone-grown single crystal, while the enhancement
for a flux-grown crystal is subtle [37]. c, Low temperature thermal conductivity mea-
sured on two different organic insulating spin liquids, taken from ref. [24], both of them
associated with a finite linear specific heat coefficient (inset [26, 27]), resembling our
findings in SmB6. d, Large magnetic field dependence of the low temperature thermal
conductivity measured in both organic spin liquids (from refs. [24, 25]), is seen to be
remarkably similar to our measurements in floating zone-grown SmB6.
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floating zone-grown samples (see Methods). The significantly larger exponential damping term

that renders the high frequency oscillations considerably smaller in size for the flux-grown sam-

ples compared to the floating zone-grown samples (see Methods), is consistent with the lower

magnetic field enhancement of the thermal conductivity seen for these samples (Fig. 3b inset).

A three-dimensional Fermi surface associated with bulk in-gap itinerant low energy excitations

in SmB6 is thus supported by our collective measurements down to low temperatures of specific

heat, magnetic quantum oscillations, thermal conductivity, and quantum oscillatory entropy.

Recent nuclear magnetic resonance (NMR) measurements also reveal consistent signatures of

an NMR relaxation rate divided by temperature which is constant as a function of temperature at

low temperature, instead of exponentially vanishing, as would be expected for a gapped density

of states ([19] and unpublished).

Our experimental results appear inconsistent with theoretical models that do not involve a

bulk in-gap density of states, such as those that invoke for instance surface states, quenched

disorder or interband tunneling phenomena [12, 32, 33, 34, 35, 36, 37]. We consider various

proposed alternative theoretical models that invoke novel itinerant low energy excitations within

the charge gap in SmB6 [28, 29, 30, 31, 38, 39, 40, 41, 42, 43, 44], including magnetic exci-

tons [38], neutral quasiparticles such as spinons [28, 29, 30, 31], composite excitons [41] and

Majorana fermions [42, 43, 44], and compare them with our key experimental observations. A

more extensive compilation of theoretical models proposed to explain quantum oscillations in

SmB6 is provided in the methods section.

A spinon model [28, 29, 30, 31] was earlier proposed for a single band Mott insulating

organic spin liquid, in which case a spinon Fermi surface arises from these neutral fermionic

particles. In this model, diamagnetism arises from the effects of non bilinear terms in the spin

Hamiltonian that depend on the applied magnetic field. The meaning of such field dependent

terms can be understood in a higher energy description that includes virtual charge fluctua-

12



tions over an extended range of sites [31, 45], the amplitude of which is enhanced close to the

insulator-metal phase boundary. Coupling to the electric field vanishes in the DC limit, but is

predicted to be finite in the finite frequency limit. This prediction is consistent with the obser-

vation of substantial bulk conductivity in SmB6 at a frequency of a few hundred GHz evidenced

by time domain terahertz spectroscopic experiments [46]. Caveats to this model include the

suggestion that quantum oscillations might not be observed in practice in the case of a single-

band Mott insulator due to the formation of Condon domains [30]. It is also unclear as to the

quantum oscillation frequencies that would be observed, given the potential difference between

the effective and applied magnetic field in this model [30]. In order to further probe such a

scenario, experiments to search for low energy spin excitations are indicated to complement the

high energy collective mode at 14 meV seen through inelastic neutron scattering [23], which is

at too high an energy scale to be directly related to the phenomena we observe.

More recently a magnetic exciton model [38] has been proposed, within which the low en-

ergy excitations are bosonic in character. Instead, fermionic excitations are associated with a

composite exciton model [41], which has recently been proposed for a strongly correlated three-

dimensional mixed valence insulator in the limit of strong Coulomb interaction. Under suitable

conditions a collective state of neutral fermionic composite excitons is predicted, which would

yield a Fermi surface of the same volume as the original conduction d-electron Fermi surface,

similar to our observations. A finite linear specific heat coefficient, a finite thermal conductivity

divided by temperature, a constant NMR relaxation rate divided by temperature at low temper-

atures, and appreciable frequency-dependent optical conductivity are predicted, in agreement

with our findings and other experiments [19, 46]. Quantum oscillations of the free energy peri-

odic in the inverse internal magnetic field are also predicted [47], although it is not clear as to

the size of the effective magnetic field that would be felt by the composite excitons compared

to the size of the physical applied magnetic field. In addition to quantum oscillations in the
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Figure 4: Schematic phase diagram adapted from numerical simulations. Phase diagram
adapted from Monte Carlo simulations of a magnetic Kondo lattice model [56], which
indicate a collapse of the neutral low energy gap in the region where the charge gap is
still finite. Our measurements suggest the location of SmB6 in the region of a small finite
charge gap, but on the brink of gapless neutral low energy excitations. More prominent
experimental signatures of neutral low energy excitations are likely to be observed in
materials positioned even closer to gaplessness, potentially tuned by external variables
such as applied magnetic field, or for SmB6 - increasing lattice density, as well as other
materials parameters.
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magnetisation, quantum oscillations in the electrical resistivity are also predicted to appear for

materials positioned closer to the insulator metal transition [47]. The observation of a finite

bulk thermal Hall effect would further establish a strong correspondence between the effective

magnetic field felt by the composite exciton, and the physical applied magnetic field within this

model.

We next consider the Majorana fermion model [42, 43, 44], where in contrast to the better

known slave-boson mean field model, the coupling of doubly degenerate conduction and f -

electron bands leads to four Majorana bands, one of which coincides in energy with the starting

conduction band but represents the spectrum of neutral rather than charged excitations. Within

this model, a Fermi surface of Majorana fermions therefore corresponds to the conduction elec-

tron Fermi surface (i.e. the same as the Fermi surface of RB6), in agreement with experiment.

While the electric current vanishes to lowest order in applied electric field in this model, it is

expected to be finite to second order, yielding a diamagnetic response. A frequency-dependent

optical conductivity response is further predicted, in agreement with time domain terahertz

spectroscopic experiments [46]. The ground state of this model is predicted to be a triplet su-

perconductor in which long range order is destroyed by fluctuations [44], the amplitude of which

is predicted to be magnetic field dependent, yielding a linear increase in low temperature ther-

mal conductivity in qualitative agreement with our experimental observation (Fig. 3b). Further

predictions of this model, such as the appearance of a superconducting Meissner effect at low

temperatures and low magnetic fields, remain to be further experimentally investigated [44].

The salient findings that identify a Fermi surface of neutral low energy excitations within

the charge gap are common to classes of samples grown by different techniques, as these exhibit

essentially the same specific heat capacities and bulk quantum oscillations in the magnetization

above 1 K (Fig. 1, insets to Fig. 2a,b). The Fermi surface and quasiparticle effective masses

inferred from these oscillations are consistent with the measured coefficient of the linear heat
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capacity (Figs. 1, 2a-c). Moreover, the oscillatory entropy inferred from the temperature deriva-

tive of the oscillatory magnetisation (Fig. 2d) confirms the itinerant nature of the excitations

within the charge gap. Differences below 1 K in observed quantities (seen in insets to Figs. 2a,b

and to 3b) do not affect our above key conclusions, and are likely due to subtle materials prop-

erty differences due to different growth conditions [48]. Similar sensitivity to preparation tech-

nique has been reported, for example, in the classic heavy fermion superconductor CeCu2Si2,

in which case the sensitivity has been interpreted in terms of effects such as differing lattice

density in samples prepared by different techniques [49].

Theoretical models of a Fermi surface from neutral quasiparticles are suggested as an ex-

planation for the breadth of surprising experimental observations in Kondo insulating SmB6,

although quantitative comparisons especially with the size of measured quantum oscillations,

remain outstanding. The physics captured by these mean field models may be similar to a dy-

namic model invoking slow fluctuations between a collectively hybridised insulating state and

an unhybridised dynamic state with a Fermi surface of conduction electrons [13]. We note that

our analysis of the experimental data and theoretical models proposed thus far assume a descrip-

tion in terms of low energy excitations. An outstanding possibility is the need for a description

that transcends quasiparticles, such as new classes of topological models [50] and holographic

models [51]. Our work has identified a new route for the realisation of the landmark paradigm

of a Fermi surface in the absence of a Fermi liquid in the class of Kondo insulators positioned at

the brink of a Kondo insulator to metal transition. Similar experiments are indicated to search

for clues in other families of Kondo insulators, including YbB12 [52], the system most similar to

SmB6 with a comparable size of charge gap and a finite measured linear specific heat capacity,

and SmS [53], which provides tuning possibilities to approach the insulator metal transition via

applied pressure.
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[10] Gabáni, S. et al. Pressure-induced Fermi-liquid behavior in the Kondo insulator SmB6:

Possible transition through a quantum critical point. Physical Review B 67, 172406 (2003).

17



[11] Barla, A. et al. High-pressure ground state of SmB6: electronic conduction and long range

magnetic order. Physical Review Letters 94, 166401 (2005).

[12] Li, G. et al. Two-dimensional Fermi surfaces in Kondo insulator SmB6. Science 346,

1208–1212 (2014).

[13] Tan, B. S. et al. Unconventional Fermi surface in an insulating state. Science 349, 287–290

(2015).

[14] Ishizawa, Y., Tanaka, T., Bannai, E. & Kawai, S. de Haas-van Alphen effect and Fermi

surface of LaB6. Journal of the Physical Society of Japan 42, 112–118 (1977).

[15] Harima, H., Sakai, O., Kasuya, T. & Yanase, A. New interpretation of the de Haas-van

Alphen signals of LaB6. Solid State Communications 66, 603–607 (1988).
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Methods
Conversion of measured quantum oscillations into bulk magnetic moment per unit cell.

Magnetic torque was measured via the capacitive torque technique, with a typical oscillation

size of ≈ 4·10−4 pF in the measured capacitance at a magnetic field of 15 T (see figure in

ref. [17]). Using the dimensions and Young’s modulus of our cantilever, we obtained a spring

constant k = 28(8) N·m−1. Similar values were found by estimation from displacement under

gravity, and displacement under a magnetic field gradient (Faraday balance). The torque τ on

the cantilever is proportional to its deflection, given by τ = Lkδ, where L is the length of the

cantilever, and δ is the deflection, which is in turn proportional to the change in capacitance by

δ = d0 ·∆C/C, with d0 being the distance between the opposing faces of the cantilever and the

bottom plate. The torque is related to the total magnetic moment µ via τ = µB sin θM , where

θM is the angle between the magnetic field B and the total magnetic moment µ. We express the

magnetic moment ps in units of Bohr magnetons per unit cell, by writing µ = (s/au.c.)
3psµB,

where s3 is the volume of the crystal, and au.c. is the lattice constant. Our final expression is

therefore

∆ps =
d0Lka

3
u.c.

s3µBBC sin θM
·∆C (1)

Using d0 = 0.1 mm, L = 3.8 mm, k = 28 N ·m−1, au.c. = 0.413 nm, s3 = 0.5 · 0.8 · 0.4 mm3,

this becomes

∆ps =
0.51

B sin θM
·∆C T · pF−1 µB per unit cell (2)

for the SmB6 measurements. From Fig. 1e we estimate the amplitude (zero to peak) of the

oscillations to be ≈ 1.1·10−5

sin θM
µB per unit cell at B = 18 T. Here, 0.1. sin θM .1 depending on

the orientation of the magnetic moment.

For LaB6, using a cantilever with slightly different dimensions, we have d0 = 0.1 mm,
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L = 3.8 mm k = 17(5) N ·m−1, au.c. = 0.416 nm, s3 = 1.0 · 1.0 · 0.25 mm3, and therefore

∆ps =
0.20

B sin θM
·∆C T · pF−1 µB per unit cell (3)

From Fig. 1d we find the amplitude of the oscillations to be ≈ 1.3·10−5

sin θM
µB per unit cell at

B = 9 T. Here, 0.1. sin θM .1 depending on the orientation of the magnetic moment (the

angle is taken to be positive throughout).

Calculation of the theoretical amplitude of bulk de Haas-van Alphen oscillations. The

fundamental oscillatory magnetisation M in the Lifshitz-Kosevich theory is given by

M = D ·RTRDRS · sin(2πF/B + φ) (4)

where RT , RD, and RS are the usual damping terms due to finite temperature, scattering, and

spin-splitting (see, e.g., ref. [57] and [58]). The exponential damping term RD is expressed

as RD = exp(−B0/B), where B0 reflects the strength of damping of the quantum oscillation

amplitude for each sample and frequency. D is the infinite field, zero spin-splitting amplitude

given by

D = −µBA
3/2
F me

2π4m∗

√
B

F |A′′| (5)

where µB is the Bohr magneton, AF is the Fermi surface area normal to the magnetic field B,

m∗ is the effective mass in absolute units, F is the oscillation frequency, and |A′′| is the second

derivative of the Fermi surface area with respect to the effective wave vector along B. We can

define the moment per unit cell in units of Bohr magnetons as Dv/µB, where v = a3u.c. is the

volume of the unit cell, so that the peak amplitude in the infinite field and zero spin-splitting

limit is

ps =
|D|v
µB

=

√
2π

|A′′|
me

m∗

(au.c.kF
π

)3√ B

8F
(6)

where we define kF , the effective Fermi wave vector, via AF = πk2F . The anisotropy term,
√

2π/|A′′| , is dependent on the eccentricity r of the ellipsoidal Fermi surface, and hereafter

will be written as f(r).
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Comparison of quantum oscillation amplitude in SmB6 and LaB6 with theoretical ampli-

tude.

The comparable size of quantum oscillations in the infinite field quantum limit measured in

SmB6 and LaB6 is shown in Fig. 1 as a function of the phase F/B. For the lowest frequency ρ′

branch in SmB6, the experimentally measured values correspond to F = 31 T, m∗/me = 0.12,

au.c. = 0.413 nm, and RD = exp(−30 T/B) as inferred from Fig. 1e. Estimating f(r) ≈ 1-

2, RS = 0.5-1, and taking into account a degeneracy factor of 2-8, the expectation for the

theoretical amplitude of the magnetic moment for the ρ′ frequency branch of SmB6 is of the

order ≈ 10−5-10−4 µB per unit cell at B = 16.7 T, including the angular anisotropy term f(r),

Dingle RD and spin-splitting RS damping factors. This is consistent in order of magnitude with

the experimentally measured amplitude of quantum oscillations shown below Eq. 2. Similarly

for LaB6, the low frequency oscillations correspond to experimentally measured values F =

5.9 T, m∗/me = 0.05, au.c. = 0.416 nm, RD = exp(−1 T/B) as inferred from Fig. 1d.

Estimating f(r) ≈ 1-2, RS = 0.5-1, and taking into account a degeneracy factor of 2 (from

ref. [15]), we find the theoretical amplitude to be of order≈ 10−4 µB per unit cell at B = 6.2 T,

including the angular anisotropy term f(r), Dingle RD and spin-splitting RS factors, again

consistent with the measured value shown below Eq. 3.

In Fig. 1g, the theoretically predicted amplitude of quantum oscillations in magnetic torque

(M × B where θM is the angle between M and B) rather than magnetisation (M) is plot-

ted, where M is in units of µB per unit cell, and B is in units of tesla. Given the range of

0.1 . sin θM . 1, we use an intermediate value of sin θM ≈ 0.5 for the simulation in Fig. 1g.

Intermediate values are also used of RD ≈ 0.166, RS ≈ 0.75 for both the three-dimensional

and two-dimensional simulation, as well as f(r) ≈ 4, and a degeneracy factor of 4 for the

three-dimensional simulation in Fig. 1g.

The exponential damping term in the case of SmB6 is considerably higher than in LaB6, as
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indicated from the magnetic field dependence shown in the figure provided in ref. [17], which

reveals a higher onset in magnetic field of observable quantum oscillations in SmB6 compared

to metallic LaB6. Both high magnetic fields and extremely high experimental sensitivity are

thus required to access especially high frequencies in SmB6. We note that while samples of

SmB6 prepared by different techniques yield the same quantum oscillation frequencies, size-

able variations can occur in the measured quantum oscillation amplitude; samples with the

largest quantum oscillation amplitude are selected for study on account of their high inverse

residual resistivity ratio and low finite specific heat coefficient, and by extensive screening in

high magnetic fields.

Comparison with surface quantum oscillation model for SmB6. The theoretical quantum

oscillation size is obtained from the carrier density corresponding to a two dimensional cylin-

drical Fermi surface. In the two-dimensional limit, the carrier density is directly related to the

Fermi surface area. Hence for the small ellipsoidal pockets that occupy a tiny fraction of the

Brillouin zone (the volume of the ρ′ pockets constitute 0.1% of the Brillouin zone), the theoret-

ical amplitude of quantum oscillations is expected to be very small. The carrier density per unit

surface area is given by

n =
2

(2π)2
πk2F (7)

including a factor of 2 for spin degeneracy. For the lowest observed quantum oscillation fre-

quency of F = 31 T, we find n = 1.5 · 1016 m−2. Defining the moment per unit cell in units of

Bohr magneton, the peak amplitude in the infinite field and zero spin-splitting limit is

ps = na2u.c.
2me

πm∗
=

4me

m∗

( kF
kBZ

)2
(8)

where kBZ = 2π/au.c., and m∗ is the effective mass in absolute units. The peak amplitude

of the quantum oscillations is found to have a theoretical maximum value of ≈ 10−2 µB per

surface unit cell in the infinite field limit prior to including Dingle and spin-splitting damping
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terms, which would reduce the theoretically predicted value to ≈ 10−3 µB per surface unit cell

at 18 T. In contrast, the measured quantum oscillations would correspond to an extremely large

magnetic moment per surface unit cell were they to arise from the surface, given that the surface

unit cells constitute only a tiny fraction ∼ 10−6 of the total number of unit cells. The measured

peak amplitude of the quantum oscillations on considering a surface origin would correspond to

a magnetic moment per surface unit cell of at least≈ 10 µB per surface unit cell at 18 T, a value

which would be even larger on accounting for the orientation of the magnetic moment sin θM

(Eq. 2). Such a large value is several orders of magnitude larger than the theoretical maximum

quantum oscillation size predicted for a surface atomic layer origin, ruling out such an origin

as an explanation for the quantum oscillations reported here. The high values reported for the

low-frequency quantum oscillations in ref. [12] are also at least an order of magnitude larger

than the theoretical maximum.

Quantitative comparison of the density of states at the Fermi energy from measured linear

specific heat coefficient and from measured quantum oscillations. Within the traditional

Fermi liquid theory, the quasiparticle density of states at the Fermi energy is directly related to

the linear specific heat coefficient γ by

N(EF ) =
3γ

π2k2B
(9)

We compare the quasiparticle density of states corresponding to the measured linear specific

heat capacity coefficient with that corresponding to the Fermi surface measured from quantum

oscillations. For a known Fermi surface geometry and quasiparticle velocity, the quasiparticle

density of states at the Fermi energy is given by

N(EF ) =
1

4π3~

∫

S

dS

|v∗| (10)

After Fig. 1, the main Fermi surface features in SmB6 can be described by ellipsoidal elec-

tron sheets, similar to other rare earth hexaborides. Ellipsoids with semi-principal axes ak0, bk0
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and ck0 can be parametrised by

EF =
~2k2x

2a2m∗
+

~2k2y
2b2m∗

+
~2k2z

2c2m∗
(11)

with kx = ak0 cosφ sin θ, ky = bk0 cosφ cos θ and kz = ck0 sinφ, k0 is a constant, and a, b

and c represent the relative ratios of the semi-principal axes. The area element in the integral

becomes that of an ellipsoid:

dS = k0 · cosφ
√
a2b2 sin2 φ+ c2 cos2 φ(a2 sin2 θ + b2 cos2 θ)dφdθ (12)

A full description of the quasiparticle velocity v∗ can be obtained for the Fermi surface de-

scribed by Eq. 11, via

|v∗| = |(1/~)∇kEF | =
~k0
abcm∗

√
a2b2 sin2 φ+ c2 cos2 φ(b2 sin2 θ + a2 cos2 θ) (13)

These allow the integral in Eq. 10 to be carried out over φ from −π/2 to π/2, and θ from 0 to

2π, to obtain the density of states, which can be computed for known semi-principal axes and

effective mass. In the special case of prolate ellipsoids this would lead to the result obtained in

ref. [59]. Here we assume contribution from both spin up and spin down Fermi surfaces.

The table provided in ref. [17] shows the effective masses and semi-principal axes obtained

for each Fermi surface sheet. Their contribution to the linear specific heat coefficient γ adds

up to γ = 4(1) mJ·mol−1·K−2, with the large α sheet contributing 3 mJ·mol−1·K−2. LaB6 has

a comparable α sheet [14], giving γ = 2.6 mJ·mol−1·K−2 following this calculation, the same

value as found by ref. [59]. This is smaller than the contribution from the α sheet found for

SmB6 due to the smaller eccentricity and effective mass.

Specific heat capacity measured for multiple samples and in a magnetic field. The mea-

sured linear specific heat coefficient is found to be similar for all samples studied in this

work. The range of values of the linear specific heat coefficient presented in the main text
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(γ ≈ 4(2) mJ·mol−1·K−2) reflects three different samples (two floating zone- and one flux-

grown) after phonon subtraction. The larger linear specific heat capacity reported in refs. [6, 60]

is most likely due to an additional contribution from a small fraction of Sm vacancies, as in-

ferred from Raman spectroscopy measurements [61].

The figure provided in ref. [17] shows specific heat measured in magnetic fields up to 14

T and down to 700 mK for floating zone-grown SmB6. We find that the specific heat in an

applied magnetic field retains the features seen at zero magnetic field. We note, however, as

also observed in ref. [21], that the increase in nuclear contribution with magnetic field at low

temperatures can make the extraction of linear specific heat in a magnetic field challenging, as

the nuclear contribution to the specific heat is proportional to the square of the magnetic field

and inversely proportional to the square of the temperature [62].

Negligible nuclear contribution to the heat capacity in zero magnetic field. In SmB6, only

boron contributes to the nuclear quadrupole specific heat CQ, because the samarium site in

the crystal has a cubic symmetry and hence the electric field gradient is zero. Boron has two

isotopes, 10B (natural abundance x10 = 19.9%, nuclear spin I10 = 3, nuclear electric quadrupole

moment Q10 = 84.6 millibarn) and 11B (x11 = 80.1%, I11 = 3/2, Q11 = 40.6 millibarn). In

zero magnetic field, the 10B spin has four energy levels owing to the electric field gradient [63],

resulting in a four-level scheme that gives the expression C10 = 12R(hν10/kBT )2 per mole of

10B for the specific heat for kBT � hν10. The 11B spin has two energy levels in zero magnetic

field, with a specific heat of C11 = R/4(hν11/kBT )2 per mole at kBT � hν11. Here, ν10

and ν11 represent the nuclear quadrupole resonance frequencies of 10B and 11B. The nuclear

quadrupole resonance frequency of 11B has been measured in SmB6 by several groups [19, 63],

giving ν11 = 0.570 MHz. ν10 can be estimated from ν11, as the nuclear quadrupole resonance

frequency is given by νQ = 3eQVzz/[2hI(2I − 1)], where Vzz is the largest principal axis
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component of the electric field gradient tensor [20]. Therefore,

ν10 =
Q10

Q11

I11(2I11 − 1)

I10(2I10 − 1)
ν11 (14)

and hence ν10 = 0.24 MHz. Finally, the total nuclear quadrupole specific heat is the com-

bination of C10 and C11, weighted according to their respective natural abundance, given by

CQ = 6(x10C10 +x11C11). By using the nuclear quadrupole resonance frequencies from above,

the nuclear quadrupole specific heat is found to be CQ = 2.30 · 10−8/T 2 (J·mol−1·K−1), far

too small to account for the observed upturn at low temperatures. At T = 60 mK, this would

correspond to only 6.38 µJ·mol−1·K−1, two orders of magnitude smaller than the measured

value.

Low-temperature thermal conductivity measurements. Thermal conductivity of three SmB6

crystals− two floating zone-grown, and one flux-grown− was measured at temperatures down

to ≈ 150 mK and in magnetic fields up to 12 T (see figure in ref. [17]). A significant magnetic

field enhancement in the low temperature thermal conductivity is seen especially in the floating

zone-grown single crystals. The enhancement of the low temperature value of thermal con-

ductivity in an applied magnetic field is a few orders of magnitude higher than the expectation

associated with the electrical conductivity within a traditional Fermi liquid model, calculated

using the Wiedemann-Franz relation and shown in the figure provided in ref. [17]. An increase

in nuclear contribution to the specific heat capacity in a magnetic field would not be expected to

contribute to the enhanced thermal conductivity, as it does not correspond to mobile excitations

capable of carrying heat.

The enhancement of the low temperature thermal conductivity in finite magnetic fields in

flux-grown crystals of SmB6 is subtle compared to the magnetic field-induced enhancement in

floating zone-grown crystals of SmB6. A similarly low enhancement has also been reported in

ref. [37], as shown in the figure provided in ref. [17]. Subtle differences in materials proper-
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ties between crystals prepared by the floating zone method and the flux growth technique are

likely to be responsible for the observed difference below 1 K in thermal conductivity, the up-

turn at low temperatures in the quantum oscillation amplitude [13] and the linear specific heat

coefficient (Fig. 2a). The smaller value of total thermal conductivity reported for a flux-grown

crystals of SmB6 in ref. [37] is consistent with the smaller sample thickness and hence a shorter

mean free path compared to those of the samples measured here.

Very small disorder effects would also play a role in the suppression of the low temperature

thermal conductivity. The high quality of our measured crystals is reflected in the large peak

in high temperature thermal conductivity shown in the figure provided in ref. [17], which is

considerably larger than those of previous generation samples [64]. Insulating materials exhibit

a peak in the thermal conductivity where the phonon mean free path transitions from being

limited by the sample boundaries at low temperatures, to being dominated by phonon-phonon

scattering (Umklapp processes) at higher temperatures. The magnitude of this high temperature

peak is strongly suppressed by lattice defects such as point defects, dislocations and stacking

faults, and consequently it is a good indicator of sample quality [65].

Low temperature measurements of the thermal conductivity in this material are challenging

because of the insulating character of this material, yielding large contact resistances. The large

contact resistance between the sample and the thermal link results in a small temperature gra-

dient across the sample. Measurements are hence very sensitive to factors such as thermometer

calibration, particularly at low temperatures where the settling time for thermal equilibrium is

rendered very long due to the high contact resistance. Another detrimental consequence of the

high contact resistance is the tendency of phonons to thermally decouple due to the high contact

resistance, as has been found for instance in the cuprate high temperature superconductors [66].

These effects impose a low temperature limit on the data, and we are careful with our measure-

ments to only report results within the low temperature limit where such effects are minimised.
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Calculation of the thermal conductivity contribution from phonon transport. The figure

provided in ref. [17] shows the thermal conductivity of two floating zone-growna single crystal

of floating zone-grown SmB6 in zero magnetic field, compared with the phonon contribution of

the thermal conductivity calculated from kinetic theory, which relates the thermal conductivity

κ to the heat capacity CV via the equation

κ =
1

3
CV dvs (15)

Here, CV is the heat capacity per unit unit volume, d is the average sample dimension, and

vs is the sound velocity of the material. The phonon contribution of the heat capacity at low

temperatures is given by

CV =
12π4

5

kB
a3u.c.

( T

ΘD

)3
(16)

We calculate the average sample dimension using d =
√

4tw/π, where t is the thickness, and

w is the width of the sample. The sound velocity is given by

vs =
2kB
h

ΘD

( π
6n

)1/3
(17)

where h is the Planck constant, and n is the number density of SmB6, given by n = a−3u.c..

For a Debye temperature of ΘD = 373 K [55], we obtain a sound velocity of vs = 5179 m/s.

Expressing κ/T as a function of T 2, we arrive at

κ/T = αT 2 (18)

where the gradient α is found to be α = 0.4772 W·m−1·K−4 for the floating zone-grown crystal

shown in Fig. 3b (t = 0.43 mm, w = 0.23 mm), and α = 0.5395 W·m−1·K−4 for floating

zone-grown crystal show in the inset of Fig. 3b (t = 0.34 mm, w = 0.37 mm). We find the

total low temperature thermal conductivity in zero magnetic field to be described well by the

calculated phonon contribution.
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Estimate of the effective mean free path. Even for the best samples of SmB6, quantum os-

cillations only become observable at significantly higher magnetic fields compared to metallic

LaB6, especially for the highest measured frequency, due to the much larger exponential damp-

ing term. The exponential damping term of the quantum oscillations, RD, can be expressed in

terms of the effective mean free path l as

RD = exp
(
−B0

B

)
= exp

(
−π~kF
eBl

)
(19)

where B0 is given by the Dingle temperature, TD, via B0 = 2π2kBm
∗

e~ TD, and kF is the average

Fermi wave vector, such that the effective mean free path is obtained as

l =
π~kF
eB0

(20)

At temperatures ≈ 1 K and magnetic fields in the range 35 − 45 T, we find that for the 11 kT

frequency we have kF =
√

2eF/~ = 5.8 · 109 m−1 and B0 ≈ 200 T for floating zone-

grown samples. This gives a mean free path of l ≈ 5 · 10−8 m in the magnetic field range

35 T ≤ B ≤ 45 T for floating zone-grown samples. In the case of flux-grown samples, we

find that the high frequency oscillations are significantly more suppressed in amplitude than

for floating zone-grown samples due to a considerably higher exponential damping factor as

revealed by their magnetic field dependence, making them much more challenging to observe.

To estimate the effective mean free path from the thermal conductivity, we use the formula

presented in ref. [67], relating the thermal conductivity κ to the scattering time τ

κ

T
=

k2Bτ

m∗a3u.c.
, (21)

where au.c. is the lattice constant of SmB6, m∗ is the effective mass in absolute units, and the

scattering time is given by τ = l
vF

, where vF is the Fermi velocity. We express vF in terms of

the Fermi wave vector kF via m∗vF = ~kF . This results in an expression for the mean free path

l =
κ

T

~kFa3u.c.
k2B

, (22)
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where kF =
√

2eF/~ = 5.8 · 109 m−1 for the 11 kT frequency, and au.c. = 0.413 nm . At

temperatures ≈ 0.2 K and magnetic fields ≈ 12 T, we find a value of κ/T = 0.04 W·m−1·K−2

for floating zone-grown samples from Fig. 3, giving a mean free path of l ≈ 9 · 10−9 m in

an applied magnetic field of 12 T. The lower value of the mean free path corresponding to

thermal conductivity compared to the mean free path from quantum oscillations potentially

reflects factors including a group velocity that is lower than the Fermi velocity due to a gapped

charged sector, different itinerant length scales relevant to the two measurements, the effect of

the lower magnetic fields at which the thermal conductivity measurements are performed, and

the effect of thermal decoupling of phonons [66].

Quantum oscillations in magnetisation. Quantum oscillations in the magnetisation measured

using capacitive Faraday magnetometry at the University of Tokyo are shown in the figure

provided in ref. [17] in a field range from 7 to 14 T. Quantum oscillations in the magnetic

susceptibility measured using extraction magnetometry in pulsed magnetic fields at the NHMFL

Los Alamos are shown in the figure provided in ref. [17] in a field range from 29 to 65 T.

Effective mass from quantum oscillations. The effective mass of each of the Fermi surface or-

bits is obtained by mapping the temperature dependence down to 1 K, in which regime the tem-

perature dependence is found to adhere to the Lifshitz-Kosevich form (see figure in ref. [17]).

Below temperatures of≈ 1 K, an anomalous increase in quantum oscillation amplitude that dis-

plays a marked departure from Lifshitz-Kosevich form is observed in the majority of observed

quantum oscillation frequencies in floating zone-grown samples (see figure in ref. [17]). A

Lifshitz-Kosevich fit performed to the temperature dependence down to 1 K yields an effective

mass which is in the range 0.1≤ m∗/me ≤1 for the observed frequencies.

The figure provided in ref. [17] shows the derivative of the oscillatory magnetisation with

respect to the temperature for the highest frequency which dominates the effective mass. The
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Maxwell relation for the Helmholtz free energy is

V

(
∂M

∂T

)

B

=

(
∂S

∂B

)

T

(23)

where V is the volume of the crystal, M is the magnetisation, and S is the entropy. The finite

value of the temperature derivative of the oscillatory magnetisation, and therefore of the en-

tropy at low temperatures reveals the presence of the low-lying itinerant elementary excitations

despite the charge gap in SmB6.

Theoretical models for quantum oscillations. Encouragingly, the challenge to develop a com-

plete theoretical model to capture the unconventional ground state of Kondo insulating SmB6

as revealed by the entire suite of experimental results presented here has led to the exploration

of new avenues including magnetic excitons, Majorana fermions, composite excitons, quan-

tum oscillations arising from inside a filled band, quantum oscillations arising from open Fermi

surfaces, an accompany-type valence fluctuation state, gapped charge quasiparticles and oth-

ers [38, 39, 41, 43, 44, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79].
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