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The search for a Fermi surface in the absence of a conventional Fermi liquid has thus
far yielded very few potential candidates. Among promising materials are spin-frustrated
Mott insulators near the insulator-metal transition, where theory predicts a Fermi sur-
face associated with neutral low energy excitations. Here we reveal another route to ex-
perimentally realise a Fermi surface in the absence of a Fermi liquid by the experimental
study of a Kondo insulator SmBg positioned close to the insulator-metal transition. We
present experimental signatures down to low temperatures (< 1 K) associated with a
Fermi surface in the bulk, including a sizeable linear specific heat coefficient, and on the
application of a finite magnetic field, bulk magnetic quantum oscillations, finite quantum
oscillatory entropy, and substantial enhancement in thermal conductivity well below the
charge gap energy scale. Thus, the weight of evidence indicates that despite an extreme
instance of Fermi liquid breakdown in Kondo insulating SmBg, a Fermi surface arises
from novel itinerant low energy excitations that couple to magnetic fields, but not weak

DC electric fields.



The f-electron system SmBg, which has been recently proposed to be a topological insula-
tor characterised by a conducting surface [1, 2, 3, 4, 5, 6, 7], has been long known to exhibit
Kondo insulating behaviour characterised by a collective f-d hybridisation charge gap in the
bulk. The bulk charge gap is evidenced in experiments such as infrared absorption, inelastic
neutron scattering, optical conductivity, electron tunnelling, intermediate-temperature specific
heat capacity, and electrical resistivity [8]. SmByg is further positioned in the close vicinity
of the Kondo insulator transition to a metallic phase, requiring as little as 40 kbar for met-
allisation [9, 10, 11]. The surprising observation of quantum oscillations in the magnetisation
unaccompanied by oscillations in the electrical resistance of SmBg was reported in ref. [12, 13].
While ref. [12] interpreted these quantum oscillations in the framework of a two-dimensional
Fermi surface from a conducting surface layer, ref. [13] in contrast associated them with a three-
dimensional Fermi surface from the insulating bulk. Here we test for three-dimensional bulk
Fermi surface character associated with the measured quantum oscillations in SmBg, and probe
for quantitative correspondence with an itinerant band of in-gap low energy excitations using
complementary experimental techniques.

Fig. 1a shows a sample of quantum oscillations in the magnetic torque before any back-
ground subtraction, measured in a floating zone-grown crystal of SmBg, revealing large oscil-
lations dominant against the measured background, with prominent high frequency oscillations
at high magnetic fields as shown by the inset. The correspondence of the measured quantum
oscillations to a three-dimensional ellipsoidal Fermi surface geometry characteristic of metal-
lic hexaborides (Fig. 1c, refs. [13, 14, 15, 16]) is seen from the extended angular dependence
of the measured quantum oscillations for tilt angles spanning both the [011]-[001] and [001]-
[111]-[110] planes (Fig. 1b). Angular dependent quantum oscillation data is shown for both
floating zone-grown and flux-grown single crystals, the observed angular dependence is inde-

pendent of the orientation of exposed crystal surfaces in both types of samples, in contrast to the
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Figure 1: Comparison of quantum oscillations in SmBg with three-dimensional bulk
Fermi surface model. a shows the measured oscillations in the magnetic torque for
a floating zone-grown crystal before any background subtraction with the inset giving
a magnified view of the high frequency oscillations visible at high magnetic fields. b,
Angular dependent quantum oscillation measurements in the [011]-[001] rotation plane
in the field range 8 T < B < 35 T on two crystals, and in the [001]-[111]-[110] rotation
plane in the field range 11 T < B < 40 T on two other, to complement previous angular
dependent measurements reported in ref. [13]. Open and closed circles represent data
from floating zone-grown crystals, open and closed diamonds, and squares represent
data from flux-grown crystals. Throughout, B = uoH, where H is the applied magnetic
field. (Next page.)



Figure 1: (Previous page.) Angular dependence of observed quantum oscillations is
in good agreement with the three-dimensional ellipsoidal model characteristic of rare-
earth metallic hexaborides and proposed in ref. [13] (shown by fit lines). ¢, Twelve
ellipsoidal electron pockets along the <110> directions, corresponding to the fit to the
p frequencies, and three large ellipsoidal electron pockets along the <100> directions,
corresponding to the fit to the o frequencies in b. e, The quantum oscillatory magnetic
moment (in up per unit cell) corresponding to the measured lowest frequency oscilla-
tions in SmBg (labelled p’ also corresponding to small ellipsoids [13, 14, 15, 16]). d,
The quantum oscillatory magnetic moment measured using a very similar experimen-
tal setup in LaBg yields a value close to SmBg assuming a bulk origin in both cases.
Dashed lines represent magnetic field dependence of the quantum oscillation ampli-
tude from an exponential damping (Dingle) fit. f, Size of the magnetic moment corre-
sponding to the measured lowest frequency oscillations in SmBg were they to originate
from only the surface. g, Theoretical Lifshitz-Kosevich estimate for the quantum os-
cillatory magnetic moment (in up per unit cell) including the angular anisotropy term,
Dingle and spin-splitting damping factors (Methods) indicated for a bulk origin (left-hand
axis), and for a surface origin (right-hand axis) of quantum oscillations. Good order of
magnitude agreement is seen with experiment assuming a bulk origin (d, e), whereas
the predicted theoretical maximum size is several orders of magnitude smaller than
experiment were the quantum oscillations were to arise from a surface atomic layer.

expectation for an origin of quantum oscillations from a surface layer. We note that the observa-
tion of quantum oscillation frequencies that span the entire angular range is inconsistent with a
two-dimensional Fermi surface geometry, for which quantum oscillation frequencies would be
expected to vanish at tilt angles corresponding to open Fermi surface orbits (see figures provided
in ref. [17]). We next establish the three-dimensional Fermi surface we access to correspond
to the bulk volume of the sample by a quantitative inspection of the observed large amplitude
of quantum oscillations in the magnetisation (Fig. 1). We choose for comparison the measured
lowest frequency quantum oscillations, which are closest to the zero phase (infinite field) limit.
Given the small size of the Fermi surface corresponding to the lowest frequency quantum oscil-
lations only occupying 0.1% of the Brillouin zone, the corresponding carrier density is very low.

This low carrier density leads to theoretical predictions of a small magnitude of quantum oscil-



lation amplitude (in units of up per unit cell) in the case of a two-dimensional Fermi surface
originating from the surface atomic layer, as well as in the case of a three-dimensional Fermi
surface originating from the insulating bulk (Fig. 1g, Methods). We first compare the measured
quantum oscillation amplitude per unit cell assuming an origin from the entire bulk with the
theoretical prediction. We find good agreement within an order of magnitude of the measured
quantum oscillation amplitude (in units of pup per unit cell) with (i) the theoretical prediction
for a three-dimensional bulk Fermi surface made using the Lifshitz-Kosevich theory (Fig. le,
g, Methods), and (i1) an experimental comparison with the three-dimensional bulk Fermi sur-
face in metallic LaBg (Fig. 1d, Methods). In contrast, were the observed quantum oscillations to
originate solely from the surface atomic layer, these would correspond to a very large amplitude
in up per surface unit cell, given that surface unit cells constitute only a small fraction ~ 10~¢ of
the total number of unit cells (Fig. 1f). We thus show that were quantum oscillations to originate
from a surface atomic layer, the theoretical prediction of the maximum possible amplitude of
quantum oscillations per surface unit cell would be several orders of magnitude smaller than the
experimentally observed quantum oscillation amplitude per surface unit cell, ruling out such an
origin of quantum oscillations reported here. Quantum oscillations in SmBg are also observed
using capacitive Faraday magnetometry measurements in superconducting magnetic fields up to
14 T (see figure in ref. [17]), and bulk magnetic susceptibility measurements in pulsed magnetic
fields (see figure in ref. [17]).

We look for experimental evidence for low energy excitations within the charge gap of
SmBg, which we compare with the Fermi surface associated with the measured quantum oscil-
lations. The inset of Fig. 2a shows specific heat capacity measured in multiple single crystals
of SmBg grown by the floating zone technique and by the flux growth technique, which are
either the same samples on which quantum oscillations are observed, or from the same crystal

growth. At low temperatures, a finite density of states at the Fermi energy within the charge



gap is revealed by a finite value of the linear specific heat coefficient 7 ~ 4(2) mJ-mol~!-K~2
(see Methods), which rapidly increases with decreasing temperature (Fig. 2a). We compare the
size of the density of states measured from the linear specific heat coefficient, with the expec-
tation from the three-dimensional ellipsoidal Fermi surface geometry we fit to the measured
quantum oscillations (shown in Fig.1b), and effective masses measured from quantum oscilla-
tions (see figure in ref. [17] and Fig. 2c). A common origin of in-gap low energy excitations
is indicated from the good agreement we find between the value of density of states calculated
from the quantum oscillation-extracted Fermi surface v ~ 4(1) mJ-mol~*-K~2 on assuming a
contribution from the entire sample volume, and the value measured from the linear specific
heat capacity (Fig. 2c, Methods and ref. [18]). Further, the steep increase at low temperatures
of the value of ~y closely resembles the steep increase of quantum oscillation amplitude at low
temperatures observed for the majority of quantum oscillation frequencies in the case of float-
ing zone-grown SmBg (Figs. 2a-b, see figure in ref. [17]) [13]. The nuclear contribution to the
specific heat capacity is expected to be negligibly small in the experimental temperature range
below 1 K at zero magnetic field [19, 20] (see Methods), although an increase in nuclear contri-
bution in the presence of a magnetic field makes the accurate determination of low temperature
linear specific heat capacity in finite applied magnetic fields challenging (see Methods) [21].
Another probe of itinerant in-gap low energy excitations is provided by an experimental
estimate of the low temperature quantum oscillatory component of the entropy. We estimate
this low temperature entropy by measuring dM,.. /dT (where M. is the quantum oscillatory
magnetisation), which is related to the entropy by the Maxwell relation V' (%—AI{) = (%) ,
where V' is the volume of the crystal, M is the magnetisation, and S is the entro;j)sy (see MetlTl—
ods). The value of dM,. /dT (shown in Fig. 2d) remains finite in amplitude down to tem-
peratures < 1 K, an order of magnitude below the charge gap 2-5 meV [8, 13, 21], provid-

ing evidence for a finite density of states within the charge gap. Importantly, we are able to
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Figure 2: Finite linear specific heat coefficient and quantum oscillatory entropy of SmBg.
a, Measured specific heat capacity of SmBg for a floating zone-grown single crystal
(FZ) down to 63 mK, revealing a finite heat capacity divided by temperature at low tem-
peratures, unexpected for an insulator, with a surprising steep increase below ~ 1 K
(similar to ref. [18]). The inset shows the measured specific heat capacity for two float-
ing zone-grown crystals (blue and green diamonds) and a flux-grown crystal (circles),
demonstrating a finite heat capacity divided by temperature at low temperatures across
all samples, with a more prominent increase below ~ 1 K exhibited by floating zone-
grown crystals. b, Steep non Lifshitz-Kosevich low temperature upturn below =~ 1 K in
quantum oscillation amplitude for the case of floating zone-grown SmB; (purple, blue,
green diamonds, with the error corresponding to the noise floor of the Fourier trans-
form), with similarities to the low temperature upturn in the heat capacity divided by
temperature which is most prominent for this type of sample, shown in a. The inset
shows the prominent increase in quantum oscillation amplitude below approximately
1 K that deviates from Lifshitz-Kosevich temperature dependence is only observed in
the case of floating zone-grown crystals (three samples shown by purple, blue, and
green diamonds), and not flux-grown crystals (two samples shown by orange and red
diamonds). ¢, Measured effective mass of the various frequency branches of SmBg
from a Lifshitz-Kosevich fit down to 1 K (star symbols, see figure in ref. [17]), seen
to be very similar to the metallic rare-earth hexaborides [14, 15, 16, 54], especially
nonmagnetic LaBg. (Next page.)



Figure 2: (Previous page.) d, Derivative with respect to temperature of the highest fre-
quency («) magnetic quantum oscillation amplitude remains finite to low temperatures,
reflecting a finite quantum oscillatory entropy at temperatures well below the transport
gap scale (see Methods). The inset shows the magnetic quantum oscillation amplitude
of the a frequency as a function of temperature down to ~ 1 K in a floating zone-grown
sample.

demonstrate the itinerant character of the in-gap density of states since the accessed entropy is
oscillatory, derived from the measured oscillatory magnetisation.

A further test of the itinerant nature of measured bulk in-gap low energy excitations is pro-
vided by a measurement of the thermal conductivity at temperatures < 1 K, where the phonon
contribution is strongly suppressed. Fig. 3a shows the measured low temperature thermal con-
ductivity of a single crystal of SmBg grown using the floating zone technique. The phonon con-
tribution up to high temperatures can be modelled well by boundary limited phonons, shown
by the red line denoted by . /7', accounting for the zero field thermal conductivity, and is
characteristic of high sample quality (see Methods). On subtracting the phonon contribution
from the measured thermal conductivity (inset to Fig. 3a), the remainder is seen to be very
small in zero field, but becomes increasingly large in an applied magnetic field, far exceeding
the Wiedemann-Franz expectation from the surface conducting layer by orders of magnitude
(see Methods). An origin of this additional contribution from phonons is unlikely, since the
phonon thermal conductivity is already at a maximum in the boundary scattering limit. The
possibility of a conventional magnon contribution is also not supported due to the absence of
static magnetic moments as inferred from muon spin resonance measurements [22], neutron
scattering measurements [23], and magnetisation measurements (see figure in ref. [17]).

Intriguingly, a similar observation of a substantial enhancement in low temperature thermal
conductivity with applied magnetic field has been observed in the Mott insulating organic sys-

tems EtMe3Sb[Pd(dmit)s ], and k-(BEDT-TTF),Cuy(CN)3 [24, 25, 26, 27] (shown in Figs. 3c-



d), which have been associated with a theoretical model of novel spinon low energy excitations
that transport heat but not charge [28, 29, 30, 31]. Both systems display a finite linear spe-
cific heat capacity coefficient, while in EtMe3Sb[Pd(dmit); ], the thermal conductivity displays
a finite linear temperature dependence at low temperatures, in k-(BEDT-TTF);Cuy(CN)3 the
thermal conductivity displays a downturn as a function of temperature at millikelvin tempera-
tures. These experimental observations were collectively interpreted in terms of a neutral Fermi
surface in the organic spin liquid materials, potentially evincing a low temperature instability
in k-(BEDT-TTF),Cuy(CN)3. The intriguing similarity of our observations in SmBg points to
a neutral Fermi surface comprising itinerant low energy excitations that transport heat, but not
charge in SmBg. Informing the search for more examples of similar material systems, we note
that such experimental signatures of neutral low energy excitations are likely to be more promi-
nent in materials positioned closer to gaplessness of neutral low energy excitations, potentially
tuned by factors such as applied magnetic field and materials parameters (Fig. 4).

A sufficiently large effective mean free path of itinerant low energy excitations is impor-
tant for the observation of magnetic quantum oscillations, thermal conductivity, and quantum
oscillatory entropy, in contrast to the measured specific heat capacity. A comparison between
measured quantities into which the effective mean free path enters is most meaningful at high
magnetic fields, where high frequency quantum oscillations corresponding to the largest ellip-
soidal (o) Fermi surface that dominates the density-of-states at the Fermi energy are observable.
Using assumptions relevant to a conventional metal with electronic excitations, the value of ex-
cess thermal conductivity we measure in floating zone-grown samples of SmBg in an applied
magnetic field of 12 T and at temperatures of ~ 200 mK corresponds to a mean free path esti-
mate of the dominant large Fermi surface of ~ 10~% m. This estimate is similar to the estimated
mean free path of a few times 10~® m obtained from the measured cyclotron radius and ex-

ponential damping (Dingle) term from quantum oscillations in magnetic fields of 35—45 T in
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Figure 3: Low temperature thermal conductivity of SmBg¢. a, Thermal conductivity (k)
of a floating zone-grown single crystal of SmBg plotted as «/7 as a function of T2.
The value of thermal conductivity at the lowest measured temperature shows a nearly
fourfold increase in increasing applied magnetic fields up to 12 T. The zero field data
is largely accounted for by the phonon contribution (see Methods) calculated for a De-
bye temperature of ©, = 373 K (red line denoted by «,, /T'), obtained from elastic
constants [55]. The enhancement in a magnetic field is clearly seen in the inset upon
subtracting the phonon contribution. The thermal gradient is applied along the [100]
direction, with perpendicular magnetic field applied along [001]. b, Thermal conductiv-
ity as a function of magnetic field shows a significant increase with magnetic field for
a floating zone-grown single crystal. The inset shows a similarly large increase with
magnetic field for a second floating zone-grown single crystal, while the enhancement
for a flux-grown crystal is subtle [37]. ¢, Low temperature thermal conductivity mea-
sured on two different organic insulating spin liquids, taken from ref. [24], both of them
associated with a finite linear specific heat coefficient (inset [26, 27]), resembling our
findings in SmBg. d, Large magnetic field dependence of the low temperature thermal
conductivity measured in both organic spin liquids (from refs. [24, 25]), is seen to be
remarkably similar to our measurements in floating zone-grown SmBg.
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floating zone-grown samples (see Methods). The significantly larger exponential damping term
that renders the high frequency oscillations considerably smaller in size for the flux-grown sam-
ples compared to the floating zone-grown samples (see Methods), is consistent with the lower
magnetic field enhancement of the thermal conductivity seen for these samples (Fig. 3b inset).
A three-dimensional Fermi surface associated with bulk in-gap itinerant low energy excitations
in SmBg is thus supported by our collective measurements down to low temperatures of specific
heat, magnetic quantum oscillations, thermal conductivity, and quantum oscillatory entropy.
Recent nuclear magnetic resonance (NMR) measurements also reveal consistent signatures of
an NMR relaxation rate divided by temperature which is constant as a function of temperature at
low temperature, instead of exponentially vanishing, as would be expected for a gapped density
of states ([19] and unpublished).

Our experimental results appear inconsistent with theoretical models that do not involve a
bulk in-gap density of states, such as those that invoke for instance surface states, quenched
disorder or interband tunneling phenomena [12, 32, 33, 34, 35, 36, 37]. We consider various
proposed alternative theoretical models that invoke novel itinerant low energy excitations within
the charge gap in SmBg [28, 29, 30, 31, 38, 39, 40, 41, 42, 43, 44], including magnetic exci-
tons [38], neutral quasiparticles such as spinons [28, 29, 30, 31], composite excitons [41] and
Majorana fermions [42, 43, 44], and compare them with our key experimental observations. A
more extensive compilation of theoretical models proposed to explain quantum oscillations in
SmBg is provided in the methods section.

A spinon model [28, 29, 30, 31] was earlier proposed for a single band Mott insulating
organic spin liquid, in which case a spinon Fermi surface arises from these neutral fermionic
particles. In this model, diamagnetism arises from the effects of non bilinear terms in the spin
Hamiltonian that depend on the applied magnetic field. The meaning of such field dependent

terms can be understood in a higher energy description that includes virtual charge fluctua-

12



tions over an extended range of sites [31, 45], the amplitude of which is enhanced close to the
insulator-metal phase boundary. Coupling to the electric field vanishes in the DC limit, but is
predicted to be finite in the finite frequency limit. This prediction is consistent with the obser-
vation of substantial bulk conductivity in SmBg at a frequency of a few hundred GHz evidenced
by time domain terahertz spectroscopic experiments [46]. Caveats to this model include the
suggestion that quantum oscillations might not be observed in practice in the case of a single-
band Mott insulator due to the formation of Condon domains [30]. It is also unclear as to the
quantum oscillation frequencies that would be observed, given the potential difference between
the effective and applied magnetic field in this model [30]. In order to further probe such a
scenario, experiments to search for low energy spin excitations are indicated to complement the
high energy collective mode at 14 meV seen through inelastic neutron scattering [23], which is
at too high an energy scale to be directly related to the phenomena we observe.

More recently a magnetic exciton model [38] has been proposed, within which the low en-
ergy excitations are bosonic in character. Instead, fermionic excitations are associated with a
composite exciton model [41], which has recently been proposed for a strongly correlated three-
dimensional mixed valence insulator in the limit of strong Coulomb interaction. Under suitable
conditions a collective state of neutral fermionic composite excitons is predicted, which would
yield a Fermi surface of the same volume as the original conduction d-electron Fermi surface,
similar to our observations. A finite linear specific heat coefficient, a finite thermal conductivity
divided by temperature, a constant NMR relaxation rate divided by temperature at low temper-
atures, and appreciable frequency-dependent optical conductivity are predicted, in agreement
with our findings and other experiments [19, 46]. Quantum oscillations of the free energy peri-
odic in the inverse internal magnetic field are also predicted [47], although it is not clear as to
the size of the effective magnetic field that would be felt by the composite excitons compared

to the size of the physical applied magnetic field. In addition to quantum oscillations in the

13



Temperature

Kondo exchange coupling —
(« lattice density)

Figure 4: Schematic phase diagram adapted from numerical simulations. Phase diagram
adapted from Monte Carlo simulations of a magnetic Kondo lattice model [56], which
indicate a collapse of the neutral low energy gap in the region where the charge gap is
still finite. Our measurements suggest the location of SmBg in the region of a small finite
charge gap, but on the brink of gapless neutral low energy excitations. More prominent
experimental signatures of neutral low energy excitations are likely to be observed in
materials positioned even closer to gaplessness, potentially tuned by external variables
such as applied magnetic field, or for SmBg - increasing lattice density, as well as other
materials parameters.
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magnetisation, quantum oscillations in the electrical resistivity are also predicted to appear for
materials positioned closer to the insulator metal transition [47]. The observation of a finite
bulk thermal Hall effect would further establish a strong correspondence between the effective
magnetic field felt by the composite exciton, and the physical applied magnetic field within this
model.

We next consider the Majorana fermion model [42, 43, 44], where in contrast to the better
known slave-boson mean field model, the coupling of doubly degenerate conduction and f-
electron bands leads to four Majorana bands, one of which coincides in energy with the starting
conduction band but represents the spectrum of neutral rather than charged excitations. Within
this model, a Fermi surface of Majorana fermions therefore corresponds to the conduction elec-
tron Fermi surface (i.e. the same as the Fermi surface of RBg), in agreement with experiment.
While the electric current vanishes to lowest order in applied electric field in this model, it is
expected to be finite to second order, yielding a diamagnetic response. A frequency-dependent
optical conductivity response is further predicted, in agreement with time domain terahertz
spectroscopic experiments [46]. The ground state of this model is predicted to be a triplet su-
perconductor in which long range order is destroyed by fluctuations [44], the amplitude of which
is predicted to be magnetic field dependent, yielding a linear increase in low temperature ther-
mal conductivity in qualitative agreement with our experimental observation (Fig. 3b). Further
predictions of this model, such as the appearance of a superconducting Meissner effect at low
temperatures and low magnetic fields, remain to be further experimentally investigated [44].

The salient findings that identify a Fermi surface of neutral low energy excitations within
the charge gap are common to classes of samples grown by different techniques, as these exhibit
essentially the same specific heat capacities and bulk quantum oscillations in the magnetization
above 1 K (Fig. 1, insets to Fig. 2a,b). The Fermi surface and quasiparticle effective masses

inferred from these oscillations are consistent with the measured coefficient of the linear heat
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capacity (Figs. 1, 2a-c). Moreover, the oscillatory entropy inferred from the temperature deriva-
tive of the oscillatory magnetisation (Fig. 2d) confirms the itinerant nature of the excitations
within the charge gap. Differences below 1 K in observed quantities (seen in insets to Figs. 2a,b
and to 3b) do not affect our above key conclusions, and are likely due to subtle materials prop-
erty differences due to different growth conditions [48]. Similar sensitivity to preparation tech-
nique has been reported, for example, in the classic heavy fermion superconductor CeCu,Sis,
in which case the sensitivity has been interpreted in terms of effects such as differing lattice
density in samples prepared by different techniques [49].

Theoretical models of a Fermi surface from neutral quasiparticles are suggested as an ex-
planation for the breadth of surprising experimental observations in Kondo insulating SmBg,
although quantitative comparisons especially with the size of measured quantum oscillations,
remain outstanding. The physics captured by these mean field models may be similar to a dy-
namic model invoking slow fluctuations between a collectively hybridised insulating state and
an unhybridised dynamic state with a Fermi surface of conduction electrons [13]. We note that
our analysis of the experimental data and theoretical models proposed thus far assume a descrip-
tion in terms of low energy excitations. An outstanding possibility is the need for a description
that transcends quasiparticles, such as new classes of topological models [50] and holographic
models [51]. Our work has identified a new route for the realisation of the landmark paradigm
of a Fermi surface in the absence of a Fermi liquid in the class of Kondo insulators positioned at
the brink of a Kondo insulator to metal transition. Similar experiments are indicated to search
for clues in other families of Kondo insulators, including YbB5 [52], the system most similar to
SmBg¢ with a comparable size of charge gap and a finite measured linear specific heat capacity,
and SmS [53], which provides tuning possibilities to approach the insulator metal transition via

applied pressure.
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Methods

Conversion of measured quantum oscillations into bulk magnetic moment per unit cell.
Magnetic torque was measured via the capacitive torque technique, with a typical oscillation
size of &~ 4-10~* pF in the measured capacitance at a magnetic field of 15 T (see figure in
ref. [17]). Using the dimensions and Young’s modulus of our cantilever, we obtained a spring
constant k£ = 28(8) N-m~!. Similar values were found by estimation from displacement under
gravity, and displacement under a magnetic field gradient (Faraday balance). The torque 7 on
the cantilever is proportional to its deflection, given by 7 = Lkd, where L is the length of the
cantilever, and ¢ is the deflection, which is in turn proportional to the change in capacitance by
d = do- AC/C, with dj being the distance between the opposing faces of the cantilever and the
bottom plate. The torque is related to the total magnetic moment y via 7 = B sin 6, where
0, is the angle between the magnetic field B and the total magnetic moment ;. We express the
magnetic moment p, in units of Bohr magnetons per unit cell, by writing 1 = (8/au.c.)*psiiB,
where s® is the volume of the crystal, and a,.. is the lattice constant. Our final expression is

therefore
dOLkaﬁ_C'
s3upBC'sin 0y,

Using dy = 0.1 mm, L = 3.8 mm, k = 28 N - m~ !, ay. = 0413 nm, s* =0.5-0.8- 0.4 mm?,

Aps = AC (D

this becomes
0.51

Apy = =
P BSiH@M

-AC' T - pF™! pup per unit cell 2)

for the SmBs measurements. From Fig. le we estimate the amplitude (zero to peak) of the

1.1-10—5

oscillations to be ~ ==
sin 6y

pp per unit cell at B = 18 T. Here, 0.1 sin ), <1 depending on
the orientation of the magnetic moment.

For LaBg, using a cantilever with slightly different dimensions, we have dy = 0.1 mm,
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L=38mmk=17(5)N-m™, ay.. = 0.416 nm, s* = 1.0 - 1.0 - 0.25 mm?, and therefore

0.20

Apy = ———
P B sin 0,

-AC T -pF~! g per unit cell (3)

1.3-10~°

From Fig. 1d we find the amplitude of the oscillations to be ~ == o

up per unit cell at
B = 9 T. Here, 0.1< sinf); <1 depending on the orientation of the magnetic moment (the
angle is taken to be positive throughout).

Calculation of the theoretical amplitude of bulk de Haas-van Alphen oscillations. The

fundamental oscillatory magnetisation ) in the Lifshitz-Kosevich theory is given by
M =D - RrRpRs - sin(2rF/B + ¢) 4)

where Ry, Rp, and Rg are the usual damping terms due to finite temperature, scattering, and
spin-splitting (see, e.g., ref. [57] and [58]). The exponential damping term Rp is expressed
as Rp = exp(—By/B), where By reflects the strength of damping of the quantum oscillation
amplitude for each sample and frequency. D is the infinite field, zero spin-splitting amplitude

given by
1B A?I’F/Qme B

D—
2mim* F|A"]

(&)

where 115 is the Bohr magneton, A is the Fermi surface area normal to the magnetic field B,
m* is the effective mass in absolute units, F' is the oscillation frequency, and | A”| is the second
derivative of the Fermi surface area with respect to the effective wave vector along 5. We can
define the moment per unit cell in units of Bohr magnetons as Dv/jup, where v = a3 _ is the

u.c

volume of the unit cell, so that the peak amplitude in the infinite field and zero spin-splitting

_ |Dv _ 21 M, (au.c,kp>3 /ﬁ ©)
bs 5% |A"|m*\ 7 8F

where we define kr, the effective Fermi wave vector, via Ar = wk%. The anisotropy term,

limit is

\/2m/|A”| , is dependent on the eccentricity 7 of the ellipsoidal Fermi surface, and hereafter

will be written as f(r).
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Comparison of quantum oscillation amplitude in SmBs and LaB; with theoretical ampli-
tude.

The comparable size of quantum oscillations in the infinite field quantum limit measured in
SmBg¢ and LaBg is shown in Fig. 1 as a function of the phase F'/ B. For the lowest frequency p’
branch in SmBg, the experimentally measured values correspond to F' = 31 T, m*/m, = 0.12,
Ay, = 0.413 nm, and Rp = exp(—30 T/B) as inferred from Fig. le. Estimating f(r) ~ 1-
2, Rg = 0.5-1, and taking into account a degeneracy factor of 2-8, the expectation for the
theoretical amplitude of the magnetic moment for the p’ frequency branch of SmBg is of the
order ~ 107°-10~* yp per unit cell at B = 16.7 T, including the angular anisotropy term f (),
Dingle I?p and spin-splitting Rs damping factors. This is consistent in order of magnitude with
the experimentally measured amplitude of quantum oscillations shown below Eq. 2. Similarly
for LaBg, the low frequency oscillations correspond to experimentally measured values F' =
59 T, m*/m, = 0.05, ay.. = 0.416 nm, Rp = exp(—1 T/B) as inferred from Fig. 1d.
Estimating f(r) ~ 1-2, Rg = 0.5-1, and taking into account a degeneracy factor of 2 (from
ref. [15]), we find the theoretical amplitude to be of order ~ 10~* 11 per unit cell at B = 6.2 T,
including the angular anisotropy term f(r), Dingle Rp and spin-splitting Rg factors, again
consistent with the measured value shown below Eq. 3.

In Fig. 1g, the theoretically predicted amplitude of quantum oscillations in magnetic torque
(M x B where 6), is the angle between M and B) rather than magnetisation (M) is plot-
ted, where M is in units of pup per unit cell, and B is in units of tesla. Given the range of
0.1 < sinfy; < 1, we use an intermediate value of sin 6, ~ 0.5 for the simulation in Fig. 1g.
Intermediate values are also used of Rp ~ 0.166, Rg ~ 0.75 for both the three-dimensional
and two-dimensional simulation, as well as f(r) & 4, and a degeneracy factor of 4 for the
three-dimensional simulation in Fig. 1g.

The exponential damping term in the case of SmBg is considerably higher than in LaBg, as
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indicated from the magnetic field dependence shown in the figure provided in ref. [17], which
reveals a higher onset in magnetic field of observable quantum oscillations in SmBg compared
to metallic LaBg. Both high magnetic fields and extremely high experimental sensitivity are
thus required to access especially high frequencies in SmBg. We note that while samples of
SmBg prepared by different techniques yield the same quantum oscillation frequencies, size-
able variations can occur in the measured quantum oscillation amplitude; samples with the
largest quantum oscillation amplitude are selected for study on account of their high inverse
residual resistivity ratio and low finite specific heat coefficient, and by extensive screening in
high magnetic fields.

Comparison with surface quantum oscillation model for SmBs. The theoretical quantum
oscillation size is obtained from the carrier density corresponding to a two dimensional cylin-
drical Fermi surface. In the two-dimensional limit, the carrier density is directly related to the
Fermi surface area. Hence for the small ellipsoidal pockets that occupy a tiny fraction of the
Brillouin zone (the volume of the p’ pockets constitute 0.1% of the Brillouin zone), the theoret-
ical amplitude of quantum oscillations is expected to be very small. The carrier density per unit
surface area is given by

2

including a factor of 2 for spin degeneracy. For the lowest observed quantum oscillation fre-
quency of F' = 31 T, we find n = 1.5 - 10'® m~2. Defining the moment per unit cell in units of

Bohr magneton, the peak amplitude in the infinite field and zero spin-splitting limit is

®)

2
Ps = na =
W mx m*

2m.  4m, ( kp )2
kpz

where kpy; = 2m/a,., and m* is the effective mass in absolute units. The peak amplitude
of the quantum oscillations is found to have a theoretical maximum value of ~ 1072 up per

surface unit cell in the infinite field limit prior to including Dingle and spin-splitting damping
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terms, which would reduce the theoretically predicted value to ~ 10~ pp per surface unit cell
at 18 T. In contrast, the measured quantum oscillations would correspond to an extremely large
magnetic moment per surface unit cell were they to arise from the surface, given that the surface
unit cells constitute only a tiny fraction ~ 1079 of the total number of unit cells. The measured
peak amplitude of the quantum oscillations on considering a surface origin would correspond to
a magnetic moment per surface unit cell of at least ~ 10 up per surface unit cell at 18 T, a value
which would be even larger on accounting for the orientation of the magnetic moment sin 6,
(Eqg. 2). Such a large value is several orders of magnitude larger than the theoretical maximum
quantum oscillation size predicted for a surface atomic layer origin, ruling out such an origin
as an explanation for the quantum oscillations reported here. The high values reported for the
low-frequency quantum oscillations in ref. [12] are also at least an order of magnitude larger
than the theoretical maximum.

Quantitative comparison of the density of states at the Fermi energy from measured linear
specific heat coefficient and from measured quantum oscillations. Within the traditional
Fermi liquid theory, the quasiparticle density of states at the Fermi energy is directly related to

the linear specific heat coefficient v by

3y
2k,

N(Ep) =

€))

We compare the quasiparticle density of states corresponding to the measured linear specific
heat capacity coefficient with that corresponding to the Fermi surface measured from quantum
oscillations. For a known Fermi surface geometry and quasiparticle velocity, the quasiparticle
density of states at the Fermi energy is given by

1 as
Am3h fg v

N(EF) (10)

After Fig. 1, the main Fermi surface features in SmBg can be described by ellipsoidal elec-

tron sheets, similar to other rare earth hexaborides. Ellipsoids with semi-principal axes akg, bk
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and ckg can be parametrised by

k2 Rk hPk?

- 2a?2m*  202m*  2cZm*

Ep (11)

with k, = akgcos¢sinf, k, = bkgcos¢cost and k, = ckgsin ¢, ko is a constant, and a, b
and c represent the relative ratios of the semi-principal axes. The area element in the integral

becomes that of an ellipsoid:

dS = kg - cos ¢\/a2b2 sin? ¢ + ¢2 cos? ¢(a2 sin® O + b2 cos? ) dodl (12)

A full description of the quasiparticle velocity v* can be obtained for the Fermi surface de-

scribed by Eq. 11, via

hko

| =[(1/h)VLEr| =
0] = (/) ViEp| = -

- \/a2b2 sin? ¢ + c2 cos? ¢(b? sin? 6 + a2 cos? 0) (13)

These allow the integral in Eq. 10 to be carried out over ¢ from — /2 to /2, and 6 from 0 to
2, to obtain the density of states, which can be computed for known semi-principal axes and
effective mass. In the special case of prolate ellipsoids this would lead to the result obtained in
ref. [59]. Here we assume contribution from both spin up and spin down Fermi surfaces.

The table provided in ref. [17] shows the effective masses and semi-principal axes obtained
for each Fermi surface sheet. Their contribution to the linear specific heat coefficient v adds
up to v = 4(1) mJ-mol~1-K~2, with the large « sheet contributing 3 mJ-mol~'-K—2. LaBg has
a comparable « sheet [14], giving v = 2.6 mJ-mol~!-K~? following this calculation, the same
value as found by ref. [59]. This is smaller than the contribution from the « sheet found for
SmBg due to the smaller eccentricity and effective mass.

Specific heat capacity measured for multiple samples and in a magnetic field. The mea-
sured linear specific heat coefficient is found to be similar for all samples studied in this

work. The range of values of the linear specific heat coefficient presented in the main text
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(v ~ 4(2) mJ-mol~!-K~?) reflects three different samples (two floating zone- and one flux-
grown) after phonon subtraction. The larger linear specific heat capacity reported in refs. [6, 60]
is most likely due to an additional contribution from a small fraction of Sm vacancies, as in-
ferred from Raman spectroscopy measurements [61].

The figure provided in ref. [17] shows specific heat measured in magnetic fields up to 14
T and down to 700 mK for floating zone-grown SmBg. We find that the specific heat in an
applied magnetic field retains the features seen at zero magnetic field. We note, however, as
also observed in ref. [21], that the increase in nuclear contribution with magnetic field at low
temperatures can make the extraction of linear specific heat in a magnetic field challenging, as
the nuclear contribution to the specific heat is proportional to the square of the magnetic field
and inversely proportional to the square of the temperature [62].
Negligible nuclear contribution to the heat capacity in zero magnetic field. In SmBg, only
boron contributes to the nuclear quadrupole specific heat C, because the samarium site in
the crystal has a cubic symmetry and hence the electric field gradient is zero. Boron has two
isotopes, B (natural abundance 1o = 19.9%, nuclear spin I}, = 3, nuclear electric quadrupole
moment Q9 = 84.6 millibarn) and 'B (z1; = 80.1%, I;; = 3/2, Q1; = 40.6 millibarn). In
zero magnetic field, the 1°B spin has four energy levels owing to the electric field gradient [63],
resulting in a four-level scheme that gives the expression Cyg = 12R(hv1o/kpT)? per mole of
10B for the specific heat for kg1 > hvyo. The 1'B spin has two energy levels in zero magnetic
field, with a specific heat of C}; = R/4(hvy1/kpT)? per mole at kgT > hvyy. Here, vy
and vy, represent the nuclear quadrupole resonance frequencies of °B and !'B. The nuclear
quadrupole resonance frequency of 1'B has been measured in SmBg by several groups [19, 63],
giving v1; = 0.570 MHz. 14, can be estimated from 147, as the nuclear quadrupole resonance

frequency is given by vy = 3eQV.,/[2hI(2] — 1)], where V,, is the largest principal axis
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component of the electric field gradient tensor [20]. Therefore,

1o = Q10 111(2111 — 1)V11
Q1 L0260 — 1)

(14)

and hence vy = 0.24 MHz. Finally, the total nuclear quadrupole specific heat is the com-
bination of 'y and C';, weighted according to their respective natural abundance, given by
Cqo = 6(x10C10+ 11C11). By using the nuclear quadrupole resonance frequencies from above,
the nuclear quadrupole specific heat is found to be Cg = 2.30 - 107 /7% (J-mol !-K™1), far
too small to account for the observed upturn at low temperatures. At 7" = 60 mK, this would
correspond to only 6.38 pJ-mol~!-K~!, two orders of magnitude smaller than the measured
value.
Low-temperature thermal conductivity measurements. Thermal conductivity of three SmBg
crystals — two floating zone-grown, and one flux-grown — was measured at temperatures down
to ~ 150 mK and in magnetic fields up to 12 T (see figure in ref. [17]). A significant magnetic
field enhancement in the low temperature thermal conductivity is seen especially in the floating
zone-grown single crystals. The enhancement of the low temperature value of thermal con-
ductivity in an applied magnetic field is a few orders of magnitude higher than the expectation
associated with the electrical conductivity within a traditional Fermi liquid model, calculated
using the Wiedemann-Franz relation and shown in the figure provided in ref. [17]. An increase
in nuclear contribution to the specific heat capacity in a magnetic field would not be expected to
contribute to the enhanced thermal conductivity, as it does not correspond to mobile excitations
capable of carrying heat.

The enhancement of the low temperature thermal conductivity in finite magnetic fields in
flux-grown crystals of SmBg is subtle compared to the magnetic field-induced enhancement in
floating zone-grown crystals of SmBg. A similarly low enhancement has also been reported in

ref. [37], as shown in the figure provided in ref. [17]. Subtle differences in materials proper-

33



ties between crystals prepared by the floating zone method and the flux growth technique are
likely to be responsible for the observed difference below 1 K in thermal conductivity, the up-
turn at low temperatures in the quantum oscillation amplitude [13] and the linear specific heat
coefficient (Fig. 2a). The smaller value of total thermal conductivity reported for a flux-grown
crystals of SmBg in ref. [37] is consistent with the smaller sample thickness and hence a shorter
mean free path compared to those of the samples measured here.

Very small disorder effects would also play a role in the suppression of the low temperature
thermal conductivity. The high quality of our measured crystals is reflected in the large peak
in high temperature thermal conductivity shown in the figure provided in ref. [17], which is
considerably larger than those of previous generation samples [64]. Insulating materials exhibit
a peak in the thermal conductivity where the phonon mean free path transitions from being
limited by the sample boundaries at low temperatures, to being dominated by phonon-phonon
scattering (Umklapp processes) at higher temperatures. The magnitude of this high temperature
peak is strongly suppressed by lattice defects such as point defects, dislocations and stacking
faults, and consequently it is a good indicator of sample quality [65].

Low temperature measurements of the thermal conductivity in this material are challenging
because of the insulating character of this material, yielding large contact resistances. The large
contact resistance between the sample and the thermal link results in a small temperature gra-
dient across the sample. Measurements are hence very sensitive to factors such as thermometer
calibration, particularly at low temperatures where the settling time for thermal equilibrium is
rendered very long due to the high contact resistance. Another detrimental consequence of the
high contact resistance is the tendency of phonons to thermally decouple due to the high contact
resistance, as has been found for instance in the cuprate high temperature superconductors [66].
These effects impose a low temperature limit on the data, and we are careful with our measure-

ments to only report results within the low temperature limit where such effects are minimised.
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Calculation of the thermal conductivity contribution from phonon transport. The figure
provided in ref. [17] shows the thermal conductivity of two floating zone-growna single crystal
of floating zone-grown SmBg in zero magnetic field, compared with the phonon contribution of
the thermal conductivity calculated from kinetic theory, which relates the thermal conductivity

k to the heat capacity C'y via the equation
1
K = §Cvdvs (15)

Here, C'y is the heat capacity per unit unit volume, d is the average sample dimension, and
v, 1s the sound velocity of the material. The phonon contribution of the heat capacity at low

temperatures is given by

127* kg ¢ T \3
Oy = (o) 16

v o ai.c. @D ( )
We calculate the average sample dimension using d = \/4tw /7, where t is the thickness, and

w 1is the width of the sample. The sound velocity is given by

on(s)”

vs = ——0p

N (7)

where h is the Planck constant, and n is the number density of SmBg, given by n = a;2.

For a Debye temperature of ©p = 373 K [55], we obtain a sound velocity of vy = 5179 m/s.

Expressing /T as a function of 72, we arrive at
k)T = oT? (18)

where the gradient « is found to be a = 0.4772 W-m~!.K~* for the floating zone-grown crystal
shown in Fig. 3b (¢ = 0.43 mm, w = 0.23 mm), and o = 0.5395 W-m~ 1. K~ for floating
zone-grown crystal show in the inset of Fig. 3b (f = 0.34 mm, w = 0.37 mm). We find the
total low temperature thermal conductivity in zero magnetic field to be described well by the

calculated phonon contribution.
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Estimate of the effective mean free path. Even for the best samples of SmBg, quantum os-
cillations only become observable at significantly higher magnetic fields compared to metallic
LaBg, especially for the highest measured frequency, due to the much larger exponential damp-
ing term. The exponential damping term of the quantum oscillations, 2, can be expressed in

terms of the effective mean free path [ as

B hk
fin = exp () = e (57 09)
where By is given by the Dingle temperature, T, via By = Q”QIZ—F?WTD, and kp is the average

Fermi wave vector, such that the effective mean free path is obtained as

thp
BBQ

l:

(20)

At temperatures ~ 1 K and magnetic fields in the range 35 — 45 T, we find that for the 11 kT
frequency we have kr = /2¢F/h = 5.8 -10° m~! and By = 200 T for floating zone-
grown samples. This gives a mean free path of [ &~ 5 - 107® m in the magnetic field range
35T < B < 45T for floating zone-grown samples. In the case of flux-grown samples, we
find that the high frequency oscillations are significantly more suppressed in amplitude than
for floating zone-grown samples due to a considerably higher exponential damping factor as
revealed by their magnetic field dependence, making them much more challenging to observe.

To estimate the effective mean free path from the thermal conductivity, we use the formula
presented in ref. [67], relating the thermal conductivity x to the scattering time 7

2
k kT

o * 43
T moay ..

: 1)

where a, .. is the lattice constant of SmBg, m* is the effective mass in absolute units, and the
scattering time is given by 7 = #, where v is the Fermi velocity. We express vg in terms of
the Fermi wave vector kr via m*vg = hkp. This results in an expression for the mean free path

J_F hkpal .
T k3

(22)
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where kp = \/m = 5.8 - 10 m™! for the 11 kT frequency, and a,. = 0.413 nm . At
temperatures ~ 0.2 K and magnetic fields ~ 12 T, we find a value of x/T = 0.04 W-m~.K~2
for floating zone-grown samples from Fig. 3, giving a mean free path of [ ~ 9 - 107" m in
an applied magnetic field of 12 T. The lower value of the mean free path corresponding to
thermal conductivity compared to the mean free path from quantum oscillations potentially
reflects factors including a group velocity that is lower than the Fermi velocity due to a gapped
charged sector, different itinerant length scales relevant to the two measurements, the effect of
the lower magnetic fields at which the thermal conductivity measurements are performed, and
the effect of thermal decoupling of phonons [66].
Quantum oscillations in magnetisation. Quantum oscillations in the magnetisation measured
using capacitive Faraday magnetometry at the University of Tokyo are shown in the figure
provided in ref. [17] in a field range from 7 to 14 T. Quantum oscillations in the magnetic
susceptibility measured using extraction magnetometry in pulsed magnetic fields at the NHMFL
Los Alamos are shown in the figure provided in ref. [17] in a field range from 29 to 65 T.
Effective mass from quantum oscillations. The effective mass of each of the Fermi surface or-
bits is obtained by mapping the temperature dependence down to 1 K, in which regime the tem-
perature dependence is found to adhere to the Lifshitz-Kosevich form (see figure in ref. [17]).
Below temperatures of ~ 1 K, an anomalous increase in quantum oscillation amplitude that dis-
plays a marked departure from Lifshitz-Kosevich form is observed in the majority of observed
quantum oscillation frequencies in floating zone-grown samples (see figure in ref. [17]). A
Lifshitz-Kosevich fit performed to the temperature dependence down to 1 K yields an effective
mass which is in the range 0.1< m*/m, <1 for the observed frequencies.

The figure provided in ref. [17] shows the derivative of the oscillatory magnetisation with

respect to the temperature for the highest frequency which dominates the effective mass. The
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Maxwell relation for the Helmholtz free energy is

oM 0S8
V(a—T)B - (a—B)T )

where V is the volume of the crystal, M is the magnetisation, and S is the entropy. The finite
value of the temperature derivative of the oscillatory magnetisation, and therefore of the en-
tropy at low temperatures reveals the presence of the low-lying itinerant elementary excitations
despite the charge gap in SmBg.

Theoretical models for quantum oscillations. Encouragingly, the challenge to develop a com-
plete theoretical model to capture the unconventional ground state of Kondo insulating SmBg
as revealed by the entire suite of experimental results presented here has led to the exploration
of new avenues including magnetic excitons, Majorana fermions, composite excitons, quan-
tum oscillations arising from inside a filled band, quantum oscillations arising from open Fermi
surfaces, an accompany-type valence fluctuation state, gapped charge quasiparticles and oth-

ers [38, 39, 41, 43, 44, 68, 69, 70, 71, 72,73, 74,75, 76, 77, 78, 79].
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