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Summary 
Fluctuation Electron Microscopy (FEM) is a technique that examines the fluctuations in electron 
scattering across a uniformly thin amorphous sample. The statistics of the intensity fluctuations, 
mean and variance, reveal any underlying medium-range order present in the structure. 

The goals of this project were: (1) To determine the fundamentals of the scattering physics that 
gives rise to the variance signal in fluctuation electron microscopy (FEM); (2) To use these 
discoveries to find ways to quantify FEM; (3) To apply the FEM method to interesting and 
technologically important families of amorphous materials, particularly those with important 
applications in energy-related processes. 

Excellent progress was made in items (1) and (2). In stage (3) we did not examine the metamict 
zircons, as proposed. Instead, we examined films of polycrystalline and amorphous semi-
conducting diamond. 

Significant accomplishments are: 
(1) A Reverse Monte Carlo procedure was successfully implemented to invert FEM data into 

a structural model. This is computer-intensive, but it demonstrated that diffraction and 
FEM data from amorphous silicon are most consistent with a paracrystallite model. This 
means that there is more diamond-like topology present in amorphous silicon than is 
predicted by the continuous random network model. 

(2) There is significant displacement decoherence arising in diffraction from amorphous 
silicon and carbon. The samples are being bombarded by the electron beam and atoms do 
not stay still while being irradiated – much more than was formerly understood. The atom 
motions cause the destructive and constructive interferences in the diffraction pattern to 
fluctuate with time, and it is the time-averaged speckle that is being measured. The 
variance is reduced by a factor m, 4 ≤ m ≤ 1000, relative to that predicted by kinematical 
scattering theory. 

(3) Speckle intensity obeys a gamma distribution, where the mean intensity ܫ ̅and m are the 
two parameters governing the shape of the gamma distribution profile. m is determined 
by the illumination spatial coherence, which is normally very high, and mostly by the 
displacement decoherence within the sample. 

(4) Amorphous materials are more affected by the electron beam than are crystalline 
materials. Different samples exhibit different disruptibility, as measured by the effective 
values of m that fit the data. 

(5) Understanding the origin of the displacement decoherence better should lead to efficient 
methods for computing the observed variance from amorphous materials.  

 
 



Accomplishments 
 
(1) Reverse Monte Carlo studies of Fluctuation Electron Microscopy and Diffraction data.  

 
It is hard to develop a direct method for inverting variance data into a structure. Since variance 
depends on the square of intensity, which in turn depends on atom-pair correlations, then 
variance depends on pair-pair correlations. Such correlations have too many degrees of freedom 
to solve directly. 

Both the electron diffraction data and the FEM variance data were used as input experimental 
constraints in a computer program that adjusts the atom locations in a model so as to minimize 
the differences between the experimental and simulated data. The Tersoff potential for Si was 
also applied as a third constraint to ensure chemically reasonable local bonding. The atom moves 
are made randomly. The move is evaluated according to the standard Metropolis algorithm; if it 
improves, the fit is kept; otherwise the probability that it is kept is determined according to a 
pseudo-Boltzmann factor. This depends on a pseudo-temperature that is applied to the model. 
We refer to this method as Experimentally Constrained Structural relaxation, ECSR. 

In collaboration with a group at the Australian National University and at Monash University, we 
applied our ECSR method to a series of amorphous silicon samples that were prepared in 
different ways [4,6,8]. The samples were: Si-ion implanted amorphous silicon; pressure-induced 
amorphous silicon. Two additional samples were the thermally annealed variants. It is 
remarkable that the diffraction patterns, and hence the pair distribution functions, of all four 
samples are essentially identical (see Figure 1, left). However, the variance plots (Figure 1, right) 
are significantly different, indicating that the medium-range order is different between the four 
samples. (The annealed plots are omitted in Figure 1.) 

 

Figure 1: Left: Reduced pair distribution functions G(r) for experimental data from amorphous silicon 
(solid blue line) and for models obtained by structural relaxation (red circles). For both the Si-implanted 
and pressure-induced amorphous samples, models were obtained by starting from random atomic 
configurations and from unfaulted cubic crystalline structures. In all four cases, the agreement between 
model and data is excellent. For clarity, the three upper plots are displaced vertically by offset increments 
of 1 Å-3. Right: Normalized variance distribution functions V(Q) for experimental data (solid blue line) 
and for models obtained by experimentally constrained structural relaxation (red circles). As for the 
reduced pair distribution functions, the agreement between models and data is excellent. In these plots, 
the model variance was scaled so that the area under each curve matched that for the data. For clarity, the 
three upper pairs of plots are displaced vertically by a constant offset of 0.1. 



The ECSR code generated distinct models for the four materials. The as-prepared materials 
exhibited significant crystalline topology, whereas the annealed samples showed no crystalline 
topology at length scales greater than about 0.5 nm.  

A section from the model for the Si-implanted material (not relaxed) is shown in Figure 2. It is 
oriented so as to reveal one of the several ordered regions that occur. These ordered regions are 
paracrystalline, in the sense that they are topologically ordered with the cubic silicon structure 
but are also strained. The annealed samples do not show any paracrystallinity and appear 
essentially similar to the tangled regions outside the paracrystallite in the figure. 

In this study, we defined an atom as being part of a paracrystalline cubic Si structure if it 
exhibited the same topological “vertex symbol” as that for cubic Si. Essentially, the vertex 
symbol lists the size and number of the circuits that loop back to that atom. Since a tetrahedrally-
coordinated atom has six inter-vertex angles, there are at least six distinct pathways that loop 
back to the atom, leaving along one bond, but returning along a different bond. In many 
instances, there are multiple paths for each intervertex angle. Every atom in cubic diamond has 
the vertex symbol, 6ଶ ∙ 6ଶ 	 ∙ 6ଶ ∙ 6ଶ ∙ 	6ଶ ∙ 	6ଶ ∙ 6ଶ, involving a total of 28 neighboring atoms that 
are visited by the circuits. This means that every intervertex angle has two distinct shortest paths, 
each involving six atoms, including the central atom. We defined a Si atom in the amorphous 
structure to be paracrystalline if it has the 6ଶ ∙ 6ଶ 	 ∙ 6ଶ ∙ 6ଶ ∙ 	6ଶ ∙ 	6ଶ ∙ 6ଶ vertex symbol involving 
exactly 28 neighbors. 

Figure 2 shows one of the paracrystalline models that emerged from our ECSR analysis of the 
as-implanted (un-annealed) amorphous Si. The red atoms each have vertex symbol 6ଶ ∙ 6ଶ 	 ∙ 6ଶ ∙
6ଶ ∙ 	6ଶ ∙ 	6ଶ ∙ 6ଶ, and so this represents a significantly-sized paracrystallite. 

The presence of paracrystallinity in amorphous Si was already strongly suspected from our prior 
studies, based on labor-intensive comparison of data with simulations based on inspired models. 
The significance of the ECSR result is that the paracrystallinity in the model emerged naturally 

 

Figure 2: Paracrystalline model of amorphous silicon. The red bonded region shows a strained cubic 
silicon paracrystallite embedded in a matrix of disordered silicon (unbonded blue dots). The 
paracrystallite is viewed close to the cubic [110] direction. The region of blue bonded atoms is also 
disordered and illustrates more clearly the bonding disorder. The model diameter is about 2 nm. 



from the data, without any user bias. This elevates our confidence about our previous 
conclusions and in the validity of our approach. 

A curious observation arose when examining the two basic types of amorphous silicon, as shown 
in Figure 3. The as-prepared Si-implanted amorphous silicon (solid red circles) exhibits 
pronounced peaks, which are suppressed by annealing (red open circles). Conversely, the as-
prepared pressure-induced amorphized sample exhibits low variance (solid blue squares). Upon 
annealing, the variance increases (open blue squares) and closely matches that for the annealed 
pressure-induced sample. This suggests that the annealed samples are closely similar, whereas 
the as-prepared materials are quite different. This suggests that this state could be the attractor 
state for amorphous silicon, generally reached by annealing. 

Further, as will be discussed in more detail later, the low overall variance of the pressure-induced 
sample indicates that the material is more disruptible by the electron beam, suggesting that it is 
more metastable material than is the Si-implanted material. 

There was one puzzling outcome from this study: the observed normalized variance was a factor 
of about 12 – 20 smaller than the calculated variance. Kinematical diffraction theory of electron 
sis pretty good, and this anomaly could not be explained. It was handled by simply introducing 
an additional parameter that scaled the mean experimental variance to match the mean computed 
variance. At the time of this study, we suspected that incoherence in the electron illumination 
was the likely source of the discrepancy. As we show in section 5 below, we later realized that it 
is displacement decoherence, arising within the sample, that is the source. 

 

Figure 3: Plots of normalized variance for four types of amorphous silicon. Two amorphous materials 
were prepared from single crystal Si by: Si-implantation; high indentation pressure. These two samples 
were also annealed, to produce two distinct materials. The variance for the Si-implanted material is 
highest and is reduces upon annealing (red curves). The variance of the pressure-induced material is low 
but increases upon annealing. The variance plots for the two annealed materials are similar, suggesting 
that the annealed structure is a type of attractor state for amorphous Si. 



In summary, in collaboration with Dr. Borisenko at Oxford, we have confirmed that as-prepared 
amorphous silicon contains a high density of paracrystalline material – that is, small regions that 
are 1 – 2 nm in diameter that contain strained cubic silicon (Fig. 2). The size and density of 
paracrystallites diminish when the amorphous silicon film is annealed below the recrystallization 
temperature to an attractor state, but they do not disappear entirely. 

 
(2) Void models  

Our paracrystallite model is not widely accepted by the x-ray community, who rely on high 
resolution diffraction to obtain radial distributions functions. Roorda and Lewis (S. Roorda, L. J. 
Lewis, Comment on “The local structure of amorphous silicon”. Science 338, 1539-b (2012); 
www.sciencemag.org/cgi/content/full/338/6114/1539-c) questioned our ECSR results, which 
contradicted an earlier x-ray and neutron diffraction study and which resulted in an exchange in 
Science. As pointed out above, sample-averaged diffraction alone is insensitive to medium-range 
order but is very effective at probing the averaged short-range order. We are confident in the 
correctness of our claim, because ordered regions are observable in diffraction when a 0.5 nm 
probe is scanned around the thinned sample. One possibility for the discrepancy is that the film 
surfaces tend to recrystallize, producing a stronger effect in the thin films used in electron 
microscopy. However, there is no evidence for such surface relaxation when cross section 
samples are examined. 

It is an important maxim in science that “we must not fool ourselves and adhere too strongly to 
preferred theories.” Accordingly, we devoted some considerable effort to exploring other models 
for amorphous silicon that might explain the observed data, but which might contradict the 
ECSR results. particularly those containing voids, which others have claimed also satisfy the 
FEM data (P. Biswas, R. Atta-Fynn, D. A. Drabold, Reverse Monte Carlo modeling of 
amorphous silicon. Phys. Rev. B 69, 195207 (2004).) 

According to K. Laaziri et al., (Phys. Rev. B 60, 13520 (1999)), each silicon atom in amorphous 
silicon has a coordination of 3.88 atoms. For tetrahedral materials, this means that about one 
atom out of every eight is missing. A missing atom is a void, of sorts, but do the missing atoms 
aggregate to form larger voids? 

We conjectured that the computer-generated void model of Biswas et al is deceptive. It seemed 
plausible that the void surfaces might be providing easy nucleation sites for paracrystallites in 
their computer-generated models, and so their models could be paracrystalline after all. We 
prepared a set of periodic void models that contained 1728 silicon atoms per cell. After six 
months of computational relaxation of the models, no paracrystallites emerged, despite the fact 
that excellent agreement with both diffraction data and variance data were obtained. This was a 
bewildering result as it is hard to understand how variance peaks at the cubic-silicon 111, 220 
and 311 reflections can be created by voids. We found that; 

The void models show medium-range order, but no short-range order. Although this result 
satisfies the data, it is hard to understand how such a structure can be legitimate. This emphasizes 
the fact that, although our reverse Monte Carlo method constrains the possible space of models 
much better than does diffraction alone, it still leaves open the possibility of non-physical 
models. The paracrystallite model remains the most physically reasonable model. 



This void study is inconclusive and no publication has been submitted. Atomic vacancies must 
be present in amorphous silicon, but it is still not clear how they are arranged, if at all. They 
could be present at the paracrystallite surface boundaries. This study is ongoing. 

(3) Computational study of polycrystalline silicon. 

It appears likely that the paracrystallites in amorphous silicon are distributed within a disordered 
matrix. To explore this idea, we examined simulated electron microdiffraction patterns from 
models of thin polycrystalline silicon [3]. 

The models were made by a Voronoi tessellation of random points in a box. The Voronoi 
domains were randomly selected to contain either a randomly-oriented cubic crystalline grain or 
a region of a random network material. The microdiffraction simulations from coherent probes of 
different widths were computed at the ideal kinematical limit, ignoring inelastic and multiple 
scattering. The scattered intensity variance fluctuations were found to increase monotonically 
with the percentage of crystalline grains in the material, which was expected. Unexpectedly, 
anomalously high variance was observed for models that approached 100% crystalline grains 
with no imperfections. This was attributed to scattering interference terms between adjoining 
grains, generating a type of super-variance. 

We confirmed that the reduced normalized variance, ܸሺ݇ሻ െ 1, that is associated with four-body 
correlations at scattering vector k, varies inversely with specimen thickness. Further, for probe 
sizes R larger than the mean grain size, we confirm that the reduced normalized variance obeys 
the predicted form given by Gibson et al. (Ultramicroscopy, 83, 169–178; 2000) for the 
kinematical coherent scattering limit. 

Although FEM is in principle a quantitative experimental method, in exactly the same sense that 
high-resolution imaging and electron diffraction are quantitative, it has been difficult so far to 
come up with a straightforward analytical procedure to process the data to obtain a model. It is 
not sufficient to measure lattice spacings, or index reflections. A physical model is needed to 

Figure 4: Three-dimensional plot of the 
calculated normalized variance, V(k), as a 
function of scattering vector k and microscope 
resolution, R.  The mean paracrystalline grain 
size is 1.2 nm. The variance is a maximum near 
R ≈ 0.8 nm, which is the value of   for this 
model. For ܴ ൐ Λ  the variance decays 
approximately as ܴିଶ, as the model predicts for 
this regime. These plots do not compensate for 
decoherence effects, and so the baseline 
normalized variance equals 1.0. 

 



explain FEM data. The reverse Monte Carlo method described in section (1) goes a long way 
towards remedying this issue, but that requires vast computational resources. 

Although FEM is quantitative, some of the contributions to the speckle contrast were still poorly 
understood. In particular, the normalized variance is typically about one to three orders of 
magnitude less than that expected from simple kinematical scattering. Important progress has 
been made towards understanding the origin of this speckle contrast suppression, which we refer 
to as decoherence. Our progress in this area is described in more detail in a later section. 

A detailed computational analysis of the statistics of scattering from granular materials confirms 
that an earlier model relating normalized variance to a characteristic length scale of medium-
range order, , and the scattering vector is essentially correct. We showed that the normalized 
variance V (k, R), as a function of scattering vector k and resolution R is 

                                            
1

V (k, R)1

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


b

3 R2 , 

where a and b are constants. Plots of V (k, R)1 1
 vs. R2  give straight lines whose slope and 

intercept give . 

A computational model (Fig. 4) confirms that this equation is valid provided R   , i.e. that the 
microscope resolution (controlled by the objective aperture size) is greater than the characteristic 
length scale of the medium-range ordering. This asserts one of the more paradoxical results of 
FEM – that the technique works best at low resolution. 

An important step forward for quantifying the effects of thickness and decoherence on the 
normalized variance was made by identifying the invariant quantity 
 
                                           mVm (k;t)1 t  constant . 

 
Vm (k;t) is the normalized variance at scattering vector k for a sample thickness t, where t   . m 
is a parameter that characterizes the incoherence/decoherence. This useful relation allows us to 
compute the variance for the simpler m=1 case, and thinner sample, t1 , and apply 
 

                                      Vm (k;t) 
1

m

t1

t
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The computation of V1(k;t1)  for m=1, and a much thinner model, t1 , would appear to provide a 
way to speed up the simulation of the desired quantity Vm (k;t) considerably. Although the above 
equation now seems obvious with hindsight, it remained elusive for over a decade. The 
significance is that this equation allows a significant speedup of variance computations for 
thicker samples, while potentially compensating for the effects of decoherence, which are 
governed by the parameter m. The deeper significance of the parameter, m, will be revealed in 
section 5. 



 (3) Correlographs: An alternative method for determining structural correlations within 
diffraction data. 

P. Wochner et al ( Proc. Natl. Acad. Sci. U.S.A. 106, 11 511, 2009) had earlier presented an x-
ray study indicating that five-fold, and odd-numbered axial symmetries were observed in focused 
x-ray probe studies of latex-sphere samples. Our earlier studies using fluctuation x-ray 
microscopy of similar samples did not see such symmetries. 

We undertook to repeat the methodology (which had been proposed earlier by Clark, Ackerson 
and Hurd, Phys. Rev. Lett. 50, 1459, 1983) in the TEM on an amorphous silicon sample [1]. 

A perfectly coherent electron probe was focused to various probe sizes between about 0.3 nm to 
8 nm and FEM diffraction data were collected as usual. In addition to computing the normalized 
variance, the normalized autocorrelation function along the azimuthal axis, ߶, was calculated for 
each diffraction pattern, 

 

 

Here, Δ is a dummy variable representing integration over the full 360° azimuthal angle for an 
angular offset of ߶. 

 

Figure 5: (a) Typical electron coherent nanodiffraction pattern from the 20-nm thick amorphous silicon 
film using a probe of nominal resolution 2.3 nm. (b) The associated correlograph. The scattering vector k 
for both the nanodiffraction pattern and correlograph are aligned on the plot. The vertical axis on the 
correlograph represents the azimuthal angle ߶. (c) Logarithm of the azimuthally-averaged mean diffracted 
intensity versus k for 200 nanodiffraction patterns. (d) Normalized variance plot for this sample, showing 
the three signature peaks confirming the presence of paracrystallinity. 
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Figure 5 outlines the procedure. A diffraction pattern is acquired (Fig 5a). The angular 
correlation is made, and then the azimuthal angle is unwrapped and placed on the y axis. The 
radial component of the scattering vector is laid along the x axis (Fig 5b). The logarithm of the 
mean diffraction profile, and the normalized variance are also presented in Figs 5c and 5d. 

 

Figure 6: Typical correlographs taken from four probe positions on the sample for a probe resolution 1.0 
nm. Correlographs are highly variable between scanned points and tend to show strong features near 
scattering vectors corresponding to strong Bragg reflections, hkl, of crystalline cubic silicon. Strong 
correlations can also occur near forbidden reflections such as 110 and 200. The uniform grey band on the 
left is from the beam stop. The semiangle subtended by the illumination disk along the k axis is indicated 
by the black bar. 
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Figure 7: Mean correlographs, averaged over 200 probed positions for four different probe resolutions, 
R. (a) R = 0.3 nm. (b) R = 1.0 nm. (c) R = 1.5 nm. (d) R = 2.3 nm. The high-resolution correlograph, (a), 
shows little correlation. The lower-resolution correlographs (b), (c), and (d) show strong 180° Friedel 
correlations between the 111 and 111 peaks, and the 222 and 222 Friedel peaks. The semiangle 
subtended by the illumination disk is indicated by the horizontal black bars. 

0
0

180

5 10k nm-1 5 10k nm-1

(°)

0

180

360

(°)

a b

c d

110 200
111 220

400
222

333311 110 200
111 220

400
222

333311

311

111

111

222
220



Figure 6 shows typical correlographs obtained from different locations within the sample. Strong 
indications of 2-fold and six-fold symmetry appear in some of the patterns, which were less 
obvious in the original diffraction patterns. 

Figure 7 shows the sample-averaged correlographs for four different electron probe sizes. A 
strong 2-fold symmetry appears, with indications of a strong Friedel peak at the 111 and 222 
positions (i.e. at the 180° line for the 111 and 222 reflections) for the larger probe sizes. This 
probably arises because larger probes have a smaller range of incident angles at the sample. Any 
strong diffracted peak, at ݄݈݇ will tend to produce a strong Friedel peak at ݄݈݇ provided the 
scattering angles are small. A strongly convergent probe (i.e. small probe) will have only a small 
region in the Friedel condition because of the curvature of the Ewald sphere. 

The data in Figure 7 were matched to simulations and were found to be consistent with a 
structure that has about 10% paracrystalline Si in a disordered matrix – an observation that is 
evident in the individual diffraction patterns. 

(4) Speckle Statistics: A model for the speckle intensity distribution. 

For random speckle in an image, with a fixed mean intensity, intensity is expected to be 
distributed as a negative exponential [7, 10], 

ܲሺܫሻ ൌ 	 ଵ
ூ̅
exp	ቀെ ூ

ூ
ቁ̅. 

 intensity. This result suggests that the most common intensity encountered in an	mean	the	is̅	ܫ
image pixel is zero. Puzzlingly, zero is almost never observed experimentally. The negative 
exponential model arises for exactly the same mathematical reasons as does the Boltzmann 
distribution in quantum mechanical systems, which is also a negative exponential. If we have an 
image of (say) 1000 ൈ 1000 pixels, with a mean intensity of (say) 100 counts per pixel, there is 
only one arrangement in which all 106 pixels get exactly 100 counts. However, suppose we allow 

           

 

Figure 8: Left: Speckle in a tilted dark-field image of amorphous carbon. Right: Typical speckle statistics from 
similar images (red circles). The blue curve is a fit to the gamma distribution, where the equation itself is 
presented in the graphic. The fit to the gamma distribution is remarkably good. The meaning of the parameter m 
was once thought to relate to the number of incoherent sources in the illumination. It is now realized that it 
relates to the decoherence induced by the scattering processes in the sample, such as beam damage and multiple 
scattering. For comparison, the idealized negative exponential curve is also shown (black line). 



one pixel to have 101 counts with another pixel getting just 99 counts, and all others remain at 
100 counts, we have 10଺ possible locations for the pixel with 101 counts, and 10଺ െ 1 locations 
for the pixel with 99 counts, giving a total of ~10ଵଶ arrangements. Clearly, if all that we know of 
the image is the mean intensity, then the likelihood that all pixels are the same value, 100, is 
close to zero. Of course, intensities can be any distribution, provided the mean intensity is 
constrained. The negative exponential is obtained by maximizing the informational entropy 
consistent with the mean intensity ܫ.̅ By far, the most common arrangement of intensities under 
this sole constraint has a negative-exponential intensity histogram (see solid line in Fig 8). 

In practice, we observe the distribution shown in red points in Figure 8. We found that we could 
match this curve to a gamma distribution (the equation is shown in Figure 8), where an 
additional parameter m is required as well as the mean intensity ܫ.̅ We originally argued that the 
parameter m represented spatial incoherence in the probe. A fully coherent probe would have 
m=1, whereupon the gamma distribution gives the negative exponential as before. Experimental 
observations show that values of m range between about 4 and 1000, values that are inconsistent 
with the known probe coherence, which would give m values closer to 1.0. 

The negative-exponential distribution is never observed in FEM experiments. For a random 
speckle distribution with incoherent illumination, the variance is 1/m. The normalized variance 
background gives us a way to estimate the m value of our materials. 

It was a longstanding puzzle as to why the measured m value was usually one to three orders of 
magnitude less than the known incoherence parameter. This puzzle emerged in part 1 of our 
study. Since the illumination coherence corresponded to values of m≈1, we needed to identify 
another source for the parameter m. 

(5) Displacement decoherence: An explanation of the anomalously low normalized variance 
seen in experiments.  

An exhaustive study was made of amorphous Si and amorphous C, with variable fluence, fluence 
rates, voltage and thickness [10]. 

The normalized variance was found to decrease with increasing voltage and increasing fluence, 
suggesting that a damage mechanism might be at work. 

A number of models were considered, including beam damage, energy losses, large amplitude 
vibrations and multiple scattering. Excellent matches to the data were obtained from a physically 
unlikely model – for atomic vibration amplitudes of about 0.15 nm. This length scale is 
comparable to the Si-Si bond length (0.235 nm) and is therefore not physically realistic. 
However, it is telling that such an extreme phonon vibration model gives normalized variances 
that match the data qualitatively. Remarkably, the continuous random network (CRN) model 
gives no peaks when the atoms are stationary, but reproduces the peaks (locations and relative 
amplitudes) in the data quite well when the vibration amplitude is large. The paracrystallite 
model also reproduces the data well, as expected. Additional modeling revealed that the large 
vibrational amplitude, plus multiple scattering, accounts for the experimental data well. The big 
surprise is that the CRN model also reproduces features in the data. 

The vibration model is clearly unphysical. However, it appears to represent well the averaged 
effect of motions within the sample. For example, an electron may displace an atom, or break a 
bond, causing a larger section of material, with many atoms in it, to tilt. Although the individual 
motions are small, many atoms are affected. 



As noticed in section 1, Figure 3, amorphous materials appear to be more sensitive to the beam 
than crystals. Different amorphous Si samples appeared to have different disruptibilities. 

What appears to be happening is that during the acquisition of data in the CCD camera the 
samples moves about. The constructive and destructive interferences flicker rapidly over time 
and are therefore averaged out during the data acquisition time. This, in effect, adds a large 
incoherence to the data. It mimics spatial incoherence in the illumination, but is actually arising 
from atomic motion during the data acquisition. Its effect on the speckle intensity histogram is 
identical to that from incoherence, and it contributes large values of m, suppressing the 
normalized variance, which scales as 1/m. We refer to this effect as displacement decoherence. 

Modeling displacement decoherence is computer intensive. We are still working on finding a 
method to emulate it rapidly. This is important if we want the reverse Monte Carlo studies of 
section 1 to be free of the simple scaling parameter. We now know how to compute the variance 
suppression, but the present methods are impractical for Monte Carlo simulations. 

 

(5) A surprise in the First Born approximation. Principal collaborator, Dirk van Dyck, 
(University of Antwerp) 

The first Born approximation states that the scattered electron wavefunction from an atom is 

߰ሺrሻ ൌ 	 ݁௜k.r ൅
݂ሺqሻ
ߣ

݁௜௞௥

ݎ
 

f(q) is the electron scattering factor, k, the propagation wavevector, and ߣ is the electron 
wavelength. Since an atom is a weak phase object, we might have expected this equation to 
actually be 

߰ሺrሻ ൌ 	 ݁௜k.r ൅ ݅
݂ሺqሻ

ߣ
݁௜௞௥

ݎ
 

The factor of i giving the “correct” phase. I could not find an explanation for this apparent 
discrepancy, and many textbooks in fact present the second form. 

 

Figure 9: Computed normalized variance for three models of amorphous silicon. Left, a continuous random 
network model. Center, a randomize-location atomic model. Right, a paracrystalline model. In each model atoms 
are given a Gaussian vibration amplitude, with standard deviations of 0 to 0.15 nm. Curiously, the CRN model 
(left) shows no peaks when atoms are stationary, but peaks appear as the vibration amplitude is increased, matching 
the experimental data in location, but the amplitude is still too high. A random model (center) shows no peaks. The 
paracrystalline model (right) starts off with peaks that are too strong at zero vibrational amplitude, but also matches 
the data at larger vibration amplitudes. Clearly, a vibration amplitude of 0.15 nm is about 60% of a bond length and 
is not physically realistic. However, it is clear that the variance suppression is equivalent to such a vibration 
amplitude.  



Even more baffling is the fact that the Optical Theorem predicts that the first form has zero total 
scattering cross section – clearly incorrect! Nobody could resolve this puzzle for me, so, in 
collaboration with Dirk van Dyck, we reported this surprise in the journal Ultramicroscopy [5]. 

This article (as hoped) brought us an explanation for the mystery from M. Lentzen in Jülich. 
Although the last term of the First Born approximation looks like a spherical Huygen’s wavelet 
(in the near-field), leading us to conclude (erroneously) that there is a missing phase. However, it 
is modified by f(q), meaning that it is not a near-field term, but is in fact a far-field term. In other 
words, 1Å behind the atom, the wavefront is already in the far-field! The phase is indeed not i. 

It is satisfying to have this mystery resolved, since it relates intimately to the kinematical 
scattering theory that is used to compute the FEM variance. 

There is an amusing outcome related to this publication. I have received multiple requests from 
medical journals to write more on this topic. It was several years before I realized that they think 
the topic is about first-born children! 

(6) Interferometric diffraction from amorphous bilayers 

To examine the effect of sample thickness on the normalized speckle variance, we attempted 
several methods to get accurate control of sample thickness. This was surprisingly difficult. The 
best we could do was to use the micro-manipulator in a focused ion beam (FIB) machine to roll 
the sample into a tube with several layers of thickness and to then break the film so that we had 
multiple layers overlapping of identical thickness. The layer thickness was determined from the 
edge view of the rolled specimen and so we had up to six well-controlled thicknesses, including 
zero thickness (see Fig. 10) [11]. 

Remarkably, diffraction patterns from doubled layers in particular had fringes resembling 
Newton’s rings (Fig 11). The fringes arose because the doubled layers were not in contact in all 
places. The gap between the two plane layers gave rise to interference between the diffracted 

 

Figure 10: Terraces on carbon that are exactly 30 nm increments in thickness. Left, STEM bright field image; 
Right, STEM annular dark-field image. The region labelled “1” is a hole in the sample. 



waves from each film. 

This artifact gave us an excellent opportunity to measure directly the temporal coherence of the 
waves between the two layers, as well as a direct measure of the decoherence as a function of the 
scattering wavevector. Fringes disappeared when the layers were separated by more than a 
micron, consistent with known values of the coherence length in a LaB6 filament at 200 kV. 
Fringe intensity faded quickly with increasing wavevector k, confirming that the decoherence 
contributes a strong Debye-Waller type term that annihilates coherence above k ≥ 10 nm-1. 

This is not say that the vibration amplitudes are literally as large as 0.15 nm, as inferred in 
section (5). Instead, this result confirms that the aggregate sample motions (vibrations, local tilts, 
beam damage, etc) act analogously to an average vibration amplitude of 0.15 nm. 

 

 

 

 

Figure 11: Left top. Diffraction pattern from a single 30-nm thick layer of amorphous carbon. Top right. 
Diffraction from two overlapping layers of amorphous carbon. Note the large speckles in the former, and the 
concentric fringes in the latter. Bottom. These are the same as the diffraction patterns above, but unwrapped so 
that the vertical axis is the radial wavevector, and the bottom is the 360° range of the azimuthal angle. 
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