

LA-UR-17-31422 (Accepted Manuscript)

The Characteristic Response of Whistler Mode Waves to Interplanetary Shocks

Yue, C.; Chen, L.; Bortnik, J.; Ma, Q.; Thorne, R. M.; Angelopoulos, V.; Li, J.; An, X.; Zhou, C.; Kletzing, C.; Reeves, Geoffrey D.; Spence, H. E.

Provided by the author(s) and the Los Alamos National Laboratory (2018-05-29).

To be published in: Journal of Geophysical Research: Space Physics

DOI to publisher's version: 10.1002/2017JA024574

Permalink to record: <http://permalink.lanl.gov/object/view?what=info:lanl-repo/lareport/LA-UR-17-31422>

Disclaimer:

Approved for public release. Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

1 **The characteristic response of whistler mode waves to interplanetary shocks**

2 Chao Yue^{1, 2}, Lunjin Chen³, Jacob Bortnik¹, Qianli Ma^{1, 4}, Richard M. Thorne¹, Vassilis
3 Angelopoulos^{5, 6}, Jinxing Li¹, Xin An¹, Chen Zhou⁷, Craig Kletzing⁸, Geoffrey D.
4 Reeves^{9, 10}, Harlan E. Spence¹¹

5 1. Department of Atmospheric and Oceanic Sciences, University of California, Los
6 Angeles, California, USA

7 2. University Corporation for Atmospheric Research, Boulder, CO, USA

8 3. Physics Department, University of Texas at Dallas, Richardson, TX

9 4. Center for Space Physics, Boston University, Boston, Massachusetts, USA.

10 5. Department of Earth, Planetary and Space Sciences, University of California, Los
11 Angeles, California, USA

12 6. Institute of Geophysics and Planetary Physics, University of California, Los Angeles,
13 California, USA

14 7. Department of Space Physics, School of Electronic Information, Wuhan University,
15 Wuhan, China

16 8. Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa, USA

17 9. Space Science and Applications Group, Los Alamos National Laboratory, Los
18 Alamos, New Mexico, USA.

19 10. Space Sciences Division at the New Mexico Consortium, Los Alamos, New Mexico,
20 USA.

21 11. Institute for the Study of Earth, Oceans, and Space, University of New Hampshire,
22 Durham, New Hampshire, USA.

23

24 **Abstract:**

25 Magnetospheric whistler mode waves play a key role in regulating the dynamics of the
26 electron radiation belts. Recent satellite observations indicate a significant influence of
27 interplanetary (IP) shocks on whistler mode wave power in the inner magnetosphere. In
28 this study, we statistically investigate the response of whistler mode chorus and
29 plasmaspheric hiss to IP shocks based on Van Allen Probes and THEMIS satellite
30 observations. Immediately after the IP shock arrival, chorus wave power is usually
31 intensified, often at dawn, while plasmaspheric hiss wave power predominantly decreases
32 near the dayside but intensifies near the nightside. We conclude that chorus wave
33 intensification outside the plasmasphere is probably associated with the suprathermal
34 electron flux enhancement caused by the IP shock. On the other hand, the solar wind
35 dynamic pressure increase changes the magnetic field configuration to favor ray
36 penetration into the nightside and promote ray refraction away from the dayside,
37 explaining the magnetic local time (MLT) dependent responses of plasmaspheric hiss
38 waves following IP shock arrivals.

39

40

41

42

43

44

45

46

47

48 1. Introduction

49 Chorus emissions are intense electromagnetic whistler mode waves with discrete
50 elements, excited naturally in the low-density region outside the plasmapause due to
51 cyclotron instability of energetic anisotropic electrons [Tsurutani and Smith, 1974;
52 Meredith *et al.*, 2001, 2003; Yue *et al.*, 2016b; An *et al.*, 2017]. They typically occur in the
53 range $0.1\text{--}0.8 f_{ce}$ (f_{ce} is the equatorial electron cyclotron frequency), commonly in two
54 distinct bands (lower and upper bands) with a gap near $0.5 f_{ce}$ [Tsurutani and Smith,
55 1977; Santolik *et al.*, 2003]. Previous studies have shown that nightside chorus waves are
56 confined to within $\sim 15^\circ$ of the magnetic equator, whereas dayside chorus waves can
57 extend to higher magnetic latitudes (MLAT) [e.g., Li *et al.*, 2009; Bunch *et al.*, 2011].
58 Recent studies have demonstrated the important role played by chorus waves in both the
59 loss of plasma sheet electrons and the acceleration of radiation belt relativistic electrons
60 [e.g., Lorentzen *et al.*, 2001; Horne *et al.*, 2005; Thorne *et al.*, 2005; Chen *et al.*, 2007; Li
61 *et al.*, 2007; Shprits *et al.*, 2009; Thorne, 2010; Reeves *et al.*, 2013; Thorne *et al.*, 2013a;
62 2013b; Ni *et al.*, 2014; Baker *et al.*, 2014].

63 Plasmaspheric hiss waves is a structureless, broadband whistler mode emission
64 typically observed within the high plasma density regions that surround the Earth,
65 including the plasmasphere and plasmaspheric plumes [Dunckel and Helliwell, 1969;
66 Thorne *et al.*, 1973; Meredith *et al.*, 2004; Summers *et al.*, 2008]. Plasmaspheric hiss is
67 widely distributed in radial distance and magnetic local time (MLT); the strongest
68 emissions typically occur near the dayside plasmasphere [Li *et al.*, 2015; Spasojevic *et al.*,
69 2015]. Plasmaspheric hiss causes precipitation of electrons from tens of keV to a few
70 MeV to the upper atmosphere through pitch angle scattering on time scales ranging from
71 days to weeks [Lyons and Thorne, 1973; Meredith *et al.*, 2006, 2007, 2009; Thorne *et al.*,

72 2013b; *Ma et al.*, 2016]. Ray tracing and conjunctive satellite observations have shown
73 that whistler mode chorus waves outside the plasmapause can propagate into the
74 plasmasphere where it can be amplified further to form plasmaspheric hiss [*Bortnik et al.*,
75 2008, 2009a; 2009b; *Chen et al.*, 2012].

76 The whistler wave power in the inner magnetosphere may significantly change
77 following the arrival of an interplanetary (IP) shock. *Su et al.* [2015] have reported
78 enhanced damping and resultant disappearance of plasmaspheric hiss due to increased
79 fluxes of superthermal electrons during an IP shock event with Van Allen Probes
80 observations. The disappearance of plasmaspheric hiss, exohiss, and chorus waves may
81 also be caused by increased field line inhomogeneity after the solar wind dynamic
82 pressure decrease [*Liu et al.*, 2017], which tends to inhibit wave growth and propagation.

83 Only few studies of the whistler wave amplification/suppression have been done
84 in the past due to the scarcity of such events and the fortuitous presence of near-Earth
85 satellites at the right locations to observe the waves. It is thus presently unclear what the
86 effects of IP shocks on whistler mode waves are as function of MLT, and what controls
87 the wave amplification or damping during the passage of IP shocks. Such knowledge is
88 critical in order to further understand the origin of particle acceleration or precipitation
89 during the passage of IP shocks. Towards that goal, we surveyed 86 forward IP shock
90 (dynamic pressure abrupt increases following IP shock arrival) events from 2010 to 2016
91 based on the upstream Advanced Composition Explorer (ACE) and Wind satellite
92 observations (the shock list can be found here: <https://www.cfa.harvard.edu/shocks/>) to
93 investigate the effects of IP shocks on the whistler mode waves, including plasmaspheric
94 hiss and whistler mode chorus waves, using Van Allen Probes (A and B) and Time

95 History of Events and Macroscale Interactions during Substorms (THEMIS) (A, D and E)
96 spacecraft observations, and report the different responses of chorus wave and
97 plasmaspheric hiss at different MLTs to the IP shocks. We also employed the two near-
98 Earth ARTEMIS P1 and P2 satellites (also known as THEMIS B and C), when available,
99 as high-fidelity upstream monitors.

100 **2. Data and Instrumentation**

101 Van Allen Probes (otherwise known as the Radiation Belt Storm Probes, RBSP,
102 mission) consists of two identically instrumented, near-equatorial (10° inclination)
103 spacecraft in operation since 30 August 2012 [*Mauk et al.*, 2013]. Both satellites are
104 equipped with comprehensive suites of particles and fields instruments. Here we perform
105 our survey by using the electric and magnetic power spectral densities from the High-
106 Frequency Receiver (HFR) and the Waveform Receiver (WFR) of the Electric and
107 Magnetic Field Instrument Suite and Integrated Science instrument (EMFISIS) [*Kletzing
et al.*, 2013]. The suprathermal (hundreds of eV to tens of keV) electron fluxes are
109 observed by the Helium Oxygen Proton Electron Mass Spectrometer (HOPE) [*Funsten et
al.*, 2013] of the Energetic Particle, Composition, and Thermal Plasma (ECT) Suite
111 [*Spence et al.*, 2013]. Background electron density is derived from the upper hybrid
112 resonance frequency measured by EMFISIS or from the spacecraft potential measured by
113 the Electric Field and Waves (EFW) instrument [*Wygant et al.*, 2013].

114 THEMIS consists of five identically instrumented satellites designed to study
115 energy releases during magnetospheric substorms [*Angelopoulos et al.*, 2008]. The wave
116 magnetic power spectral density is obtained from the Search Coil Magnetometer (SCM)
117 [*Le Contel et al.*, 2008]. Suprathermal electron fluxes, ion density, and flow velocity are

118 obtained from the Electrostatic Analyzer (ESA) [McFadden *et al.*, 2008]. The magnetic
119 field is measured by the Flux Gate Magnetometer (FGM) [Auster *et al.*, 2008]. Electron
120 density is derived from the spacecraft potential, measured by the Electric Field
121 Instrument (EFI) [Bonnell *et al.*, 2008] and ESA.

122 We investigate the wave power distribution of whistler mode waves during each
123 of the 86 IP shocks. Seventy events were observed by Van Allen Probes and sixty by
124 THEMIS, fewer due to THEMIS' higher apogee ($\sim 12R_E$) causing those spacecraft to be
125 located often outside the magnetopause after impact of the IP shock and also due to the
126 $\sim 50\%$ duty cycle of high-resolution fast survey data due to telemetry limitations. The
127 background electron density and/or upper hybrid resonance frequency are used to identify
128 satellite location with respect to the plasmapause [e.g., Meredith *et al.*, 2004].
129 Plasmaspheric hiss waves are identified typically inside the plasmasphere, and chorus
130 waves typically in the plasma trough. Each single spacecraft observation around any of
131 the IP shocks is counted as one event. There are 123 events where spacecraft are inside
132 the plasmasphere and 151 events where spacecraft are in plasma trough. Using 10^{-14}
133 $(V/m)^2/Hz$ and $10^{-9} (nT)^2/Hz$ as the lowest power thresholds for electric and magnetic
134 power densities, respectively, we find 43 (35%) plasmaspheric hiss
135 reduction/disappearance events, 36 (29%) plasmaspheric hiss excitation/intensification
136 events and 62 (41%) chorus wave excitation/intensification events in response to the IP
137 shocks.

138 **3. Results**

139 **3.1. Case study**

140 Figure 1 shows a representative response of whistler mode waves following an IP
141 shock, at 16:53 UT on 7 June 2014. Figure 1a shows the solar wind magnetic field
142 magnitude, x-component of solar wind velocity in GSE coordinate, ion number density
143 and dynamic pressure at THEMIS-C (ARTEMIS-P2) located at (-21.2, 57.5, -1.7) R_E ,
144 outside the magnetopause. It observed the IP shock at 16:57 UT, as a total magnetic field
145 (black curve) increase from 5 to \sim 15 nT, a solar wind velocity (red curve) increase (-300
146 to -400 km/s), ion number density increase (5 to 15 cm^{-3}), and dynamic pressure rise (1 to
147 4 nPa). In response, the AE and symH indices increased abruptly around 16:53 UT from
148 100 to >300 nT and from -5 to +25 nT, respectively (Figure 1b).

149 Figures 1c and 1d show the HFR-measured electric (top panels) and the WFR-
150 measured electric and magnetic power spectral densities (2nd and 3rd panels), and the
151 electron omni-directional energy flux from 100 eV to 20 keV (bottom panels) on board
152 Van Allen Probe A and B, respectively. Vertical dashed lines mark the IP shock arrival
153 (16:53 UT). The upper hybrid frequencies (positively correlated with the background
154 electron density [Kurth *et al.*, 2014]) observed by HFR are around 20 kHz and >100 kHz
155 in Figures 1c and 1d respectively, indicating the locations of Van Allen Probe A being
156 outside and B being inside the plasmasphere. After the shock arrival, Van Allen Probe A
157 observes lower band chorus excitation/intensification for several minutes. The
158 simultaneously observed suprathermal electron flux increases could be responsible for the
159 chorus emissions [e.g., Meredith *et al.*, 2002; Miyoshi *et al.*, 2007]. On the other hand,
160 Van Allen Probe B, inside the plasmasphere, observes the disappearance/reduction of
161 plasmaspheric hiss for an extended period after the shock arrival, and the suprathermal
162 electron flux also increases there.

163 Opposite plasmaspheric hiss response can be observed at different spacecraft
164 located at different MLTs during a single IP shock event. Figure 2 shows an IP shock at
165 17:05 on 7 February 2014 (format similar to Figure 1). THEMIS-C at (-8.3, 60.7, -2.8) R_E
166 observed an IP shock at 17:04 UT as a total magnetic field (black curve) increase (5 to
167 ~12nT), solar wind velocity (red curve) increase (-300 to -400 km/s), ion number density
168 increase (4 to 13 cm^{-3}), and dynamic pressure increase (1 to 3 nPa) (Figure 2a). At 07:05
169 UT, AE and symH abruptly increased (0 to >150 nT and -5 to +20 nT, respectively)
170 indicating the arrival of the shock arrival. Shortly thereafter, THEMIS-D, at L=8.4 at
171 dusk, observed newly excited chorus waves (Figure 2b), while Van Allen Probes A and
172 B, both inside the plasmasphere, observed hiss intensification at dusk (Figure 2c) and hiss
173 disappearance/reduction at dawn (Figure 2d), respectively. The suprathermal electron
174 energy flux of 0.3 to 1 keV (Figure 2d) shows obvious increase following the IP shock
175 arrival.

176 **3.2. Statistical results**

177 The two representative observations in Figures 1 and 2 indicate that the chorus
178 waves and plasmaspheric hiss can exhibit dramatically different responses to IP shocks,
179 at different locations. In order to understand the characteristics of these whistler mode
180 waves and look for patterns on a global scale, we have conducted a statistical survey by
181 investigating the wave power variations during each of the 86 IP shock events we have
182 identified. Figure 3 shows the statistical distributions of the whistler mode chorus and
183 plasmaspheric hiss wave responses to IP shocks observed by the Van Allen Probes and
184 THEMIS.

185 Van Allen Probes (cross signs) and THEMIS (diamond signs) locations at the
186 time of IP shock arrival are shown in Figure 3a, together with the corresponding whistler
187 wave response (color-coded). Figures 3b and 3c show whistler event distributions as
188 function of MLTs and MLAT, respectively. Blue color represents hiss wave power
189 reduction/disappearance; Red color represents hiss wave power intensification/excitation;
190 Black represents chorus wave intensification/excitation. As seen in the figure, there was
191 only intensification and no evidence of chorus wave reduction from our IP shock event
192 list (we only investigate the forward IP shock events in association with solar wind
193 dynamic pressure increase).

194 Chorus wave amplifications are mostly observed at higher L shells and outside the
195 plasmasphere (Figure 3a), with a peak in MLT at the post-midnight to dawn sector
196 (Figure 3b), where presumably electron injections provide the free energy source.
197 Meanwhile, the plasmaspheric hiss wave disappearance/reduction occurs mostly on the
198 dayside, while hiss intensification events occur at all local times except for the noon
199 sector following the IP shock arrival. The immediate reduction/disappearance of
200 plasmaspheric hiss following the IP shock arrival, demonstrates that hiss damping rates
201 should be significantly increased, such that hiss wave lifetimes is comparable to the short
202 time scale of the shock impact (~ 1 min). Although more wave events were observed at
203 lower latitude ranges (due to the spacecraft trajectory), no clear latitude dependence of
204 the wave response is found in our survey.

205 **4. Discussion**

206 When an IP shock impinges upon the Earth's magnetosphere, the magnetic field
207 intensity due to the solar wind dynamic pressure increase, and the dayside magnetic field

208 configuration becomes more compressed while the nightside magnetic field becomes
209 more stretched [e.g., *Wang et al.*, 2009; *Yue et al.*, 2009; 2011a]. Meanwhile, the thermal
210 plasma is adiabatically heated mainly in the perpendicular direction resulting in an
211 increase in the electron anisotropy. Subsequently, geomagnetic activity is broadly
212 enhanced, which includes the appearance of many wave phenomena and substorm
213 injections [e.g., *Yue et al.*, 2010; 2011b; 2013; 2016a]. Previously *Zhou et al.* [2015] have
214 shown that chorus waves at the dayside magnetosphere are excited after the IP shock
215 arrival. The IP shock impinging on the magnetosphere leads to a more homogeneous
216 background magnetic field configurations in the near-equatorial dayside magnetosphere
217 and therefore, lower the threshold of nonlinear chorus wave growth, favoring chorus
218 wave generation [*Tao et al.*, 2014; *Keika et al.*, 2012]. This is supported by the
219 observational evidence that a decrease of solar wind dynamic pressure causes an increase
220 of the threshold for chorus wave excitation, and thus results in disappearance of
221 plasmaspheric hiss and exohiss [*Liu et al.*, 2017].

222 In this study, we have found that chorus waves intensified both on the dayside and
223 the nightside after the IP shock arrival. We have also investigated the IP shock list by
224 *Zhou et al.* [2015], and found that there were in fact, many events associated with chorus
225 excitation/intensification on the nightside or at near Earth dayside region which were not
226 originally detected. However, the authors claim that these chorus
227 excitation/intensification events are not associated with magnetic field topology change
228 which is the focus of their paper (private communication). Given the fact that chorus
229 wave is excited/intensified following IP shock arrival at all MLTs, it is reasonable to
230 expect that in addition to the background magnetic field geometry change, another

231 important factor that causes chorus wave excitation/intensification is the enhanced flux
232 (and anisotropy) of suprathermal electrons produced by IP shocks. We have checked all
233 the chorus intensification events observed by Van Allen Probes and found that about 80%
234 of them show suprathermal electron flux (anisotropy) increase.

235 Considering the MLT dependence of plasmaspheric hiss reduction or
236 intensification, the major factors that could affect hiss waves include: (1) the ability of
237 whistler-mode waves to enter the plasmasphere from outside; (2) the length of
238 propagation paths; (3) the chorus Landau damping rate which is determined by
239 suprathermal electron flux level; (4) hiss Landau damping inside the plasmasphere which
240 is usually much weaker compared with chorus wave Landau damping in the
241 plasmatrough region. The fist factor controls accessibility of chorus waves into the
242 plasmasphere through propagation, while the latter three factors control overall path-
243 integrated damping before and after entering the plasmasphere. Figure 4 shows an
244 example of ray tracing in the noon-midnight meridian plane for two different
245 geomagnetic field configurations ($K_p=1$ and $K_p=6$) of Tsyganenko 89 (T89) magnetic
246 field model [Tsyganenko, 1989]. Chorus waves of different wave normal angles (color-
247 coded) are launched in this model with a fixed frequency 500 Hz at $L=7$ at the magnetic
248 equator. The background density model adopts a modified diffusive equilibrium model
249 with a plasmapause location at $L_{pp} = 5.5$. The density model parameters are similar to
250 those of *Chen et al.* [2012]. Note that instead of using dipole magnetic field, the ray
251 tracing code (HOTRAY [Horne, 1989]) is extended to a more realistic T89 model to
252 investigate the effect of magnetic field geometry on whistler mode propagation.

253 Compared to the magnetic field configuration corresponding to $K_p=1$ (Figure 4,
254 top), for $K_p=6$ the magnetic field lines are more compressed on the dayside while they
255 are more stretched at the nightside (Figure 4, bottom). The choice of the two magnetic
256 field configurations is intended to model the magnetic field configuration change just
257 before ($K_p=1$) and just after ($K_p=6$) the IP shock impinging the Earth's magnetosphere.
258 From the comparison of ray paths on the nightside for the two conditions, there are much
259 more rays, especially those with initial wave normal closer to the parallel direction,
260 propagating into the plasmapshere for $K_p=6$ than during $K_p=1$. This can result in the
261 plasmaspheric hiss intensification at the nightside, after the shock arrival. We have tested
262 different magnetic field configurations, and found that a more stretched magnetic field
263 configuration favors the chorus wave entrance into the plasmasphere. Generally, the
264 waves with wave normal angles between 30° to 60° have easier access into the
265 plasmasphere [e.g., *Chen et al.*, 2012], whereas with a stretched magnetic field
266 configuration, chorus waves with almost all wave normal angles can propagate into the
267 plasmasphere and evolve into plasmaspheric hiss. Examination of the dayside ray paths
268 shows no significant change in terms of the number of rays that access the plasmasphere
269 compared to the nightside. Note that here we did not consider chorus wave Landau
270 damping for the ray tracing result to keep the model simple and only assess the
271 propagation effect of magnetic field configuration. However, Landau damping may play
272 a role in reducing the wave power of chorus when propagating away from the equatorial
273 source region, and therefore prevent chorus from evolving into the plasmasphere [e.g., *Su*
274 *et al.*, 2015]. In our survey, we have observed about 50% of chorus wave events with

275 electron parallel flux increases after the IP shock arrival, which may result in the increase
276 of Landau damping along magnetic field line.

277 **5. Summary**

278 In this paper, we have performed a statistical study of whistler mode wave
279 modifications in response to IP shocks based on data from both Van Allen Probes and
280 THEMIS observations. 86 IP shock events were studied and we found 43 (35%)
281 plasmaspheric hiss reduction/disappearance events, 36 (29%) hiss
282 excitation/intensification events and 62 (41%) chorus wave excitation/intensification
283 events from single satellite observation. Our main findings are:

- 284 1. Chorus wave power is usually intensified, with most cases occurring
285 predominately at dawn. This is generally caused by the enhancement of
286 suprathermal electrons produced by IP shock compressions.
- 287 2. Plasmaspheric hiss disappearance events occur predominantly on the dayside.
288 This is probably related to the enhanced Landau damping from the observed
289 enhancements in suprathermal electron flux as well as the slight reduction in
290 accessibility of chorus waves into the plasmasphere due to the compressed
291 magnetic field configuration following the IP shock arrival (based on our ray
292 tracing result).
- 293 3. Plasmaspheric hiss intensifications occur mostly on the nightside. This can be
294 explained by the enhanced accessibility of chorus waves, which refract into
295 the plasmasphere due to the magnetic field stretching after the shock arrival.
296 On average, plasmaspheric hiss intensities are an order of magnitude larger on the
297 dayside than on the nightside due to stronger Landau damping on the nightside, and hiss

298 intensity increases during high solar wind dynamic pressure [Tsurutani *et al.*, 2015].
299 However, in this study, we have demonstrated that abrupt solar wind dynamic pressure
300 increases cause plasmaspheric hiss disappearance on the dayside and intensification on
301 the nightside following the changes in magnetic field configuration, which favors ray
302 penetration into the plasmasphere on the nightside while preventing ray refraction at
303 dayside. The MLT-dependent response of plasmaspheric hiss to IP shocks was not
304 expected and is not well understood. The nightside ray number increases are clearly
305 demonstrated by our ray tracing model, whereas the hiss reduction/disappearance and the
306 chorus wave excitation/intensification right after the shock arrival still needs further
307 detailed investigation for a more comprehensive explanation. For example, Landau
308 damping could be another factor causing the hiss reduction/disappearance on the dayside.
309 Since the wave power and distributions significantly vary following the IP shock arrival,
310 our study suggests the importance of investigating the detailed wave and particle
311 distributions in studying the local wave-particle interactions especially around the periods
312 of IP shocks.

313

314 **Acknowledgments**

315 This work was supported by the NASA Living With a Star Jack Eddy Postdoctoral
316 Fellowship Program, administered by the UCAR Visiting Scientist Programs. Jacob
317 Bortnik and Lunjin Chen gratefully acknowledge support from NASA LWS grant
318 NNX13AI61G and NASA HTIDES grant NNX16AG21G. We acknowledge use of Van
319 Allen Probes data of the Level 3 HOPE omni-dimensional data obtained from the RBSP-
320 ECT website (www.rbsp-ect.lanl.gov/data_pub/rbspb/hope/level3/PA/), made publicly

321 available through NASA prime contract number NAS5-01072. We acknowledge the Van
322 Allen Probes data from the EMFISIS instrument obtained from
323 <http://emfisis.physics.uiowa.edu/Flight/>, and the THEMIS data obtained from
324 <http://themis.ssl.berkeley.edu/data/themis/>. We thank the World Data Center for
325 Geomagnetism, Kyoto for providing geomagnetic indices (<http://wdc.kugi.kyoto-u.ac.jp/kp/index.html>), and the Space Physics Data Facility at the NASA Goddard Space
326 Flight Center for providing the OMNI data
327 (ftp://spdf.gsfc.nasa.gov/pub/data/omni/omni_cdaweb/).

329

330 **References:**

331 An, X., C. Yue, J. Bortnik, V. Decyk, W. Li, and R. M. Thorne (2017), On the parameter
332 dependence of the whistler anisotropy instability, *J. Geophys. Res. Space Physics*, 122,
333 doi:10.1002/2017JA023895.

334 Angelopoulos, V., et al. (2008), First results from the THEMIS mission, *Space Sci. Rev.*,
335 141, 453–476, doi:10.1007/s11214-008-9378-4.

336 Auster, H. U., et al. (2008), The THEMIS fluxgate magnetometer, *Space Sci. Rev.*, 141,
337 235–264, doi:10.1007/s11214-008-9365-9.

338 Baker, D. N., et al. (2014), An impenetrable barrier to ultrarelativistic electrons in the
339 Van Allen radiation belts, *Nature*, 515, 531–534, doi:10.1038/nature13956.

340 Bonnell, J. W., F. S. Mozer, G. T. Delory, A. J. Hull, R. E. Ergun, C. M. Cully, V.
341 Angelopoulos, and P. R. Harvey (2008), The Electric Field Instrument (EFI) for THEMIS,
342 *Space Sci. Rev.*, 141, 303–341, doi:10.1007/s11214-008-9469-2.

343 Bortnik, J., R. M. Thorne, and N. P. Meredith (2008), The unexpected origin of
344 plasmaspheric hiss from discrete chorus emissions, *Nature*, 452, 62–66,
345 doi:10.1038/nature06741.

346 Bortnik, J., W. Li, R. M. Thorne, V. Angelopoulos, C. Cully, J. Bonnell, O. LeContel,
347 and A. Roux (2009a), An observation linking the origin of plasmaspheric hiss to discrete
348 chorus emissions, *Science*, 324, 775–778.

349 Bortnik, J., R. M. Thorne, and N. P. Meredith (2009b), Plasmaspheric hiss overview and
350 relation to chorus, *J. Atmos. Sol. Terr. Phys.*, 71, 1636–1646.

351 Bunch, N. L., M. Spasojevic, and Y. Y. Shprits (2011), On the latitudinal extent of chorus
352 emissions as observed by the Polar Plasma Wave Instrument, *J. Geophys. Res.*, 116,
353 A04204, doi:10.1029/2010JA016181.

354 Chen, L., J. Bortnik, W. Li, R. M. Thorne, and R. B. Horne (2012), Modeling the
355 properties of plasmaspheric hiss: 1. Dependence on chorus wave emission, *J. Geophys.
356 Res.*, 117, A05201, doi:10.1029/2011JA017201.

357 Chen, Y., G. D. Reeves, and R. H. W. Friedel (2007), The energization of relativistic
358 electrons in the outer Van Allen radiation belt, *Nat. Phys.*, 3, 614–617,
359 doi:10.1038/nphys655.

360 Dunckel, N., and R. A. Helliwell (1969), Whistler mode emissions on the OGO 1 satellite,
361 *J. Geophys. Res.*, 74, 6371–6385, doi:10.1029/JA074i026p06371.

362 Funsten, H. O. et al. (2013), Helium, Oxygen, Proton, and Electron (HOPE) Mass
363 Spectrometer for the Radiation Belt Storm Probes Mission, *Space Sci Rev*, 1–62,
364 doi:10.1007/s11214-013- 9968-7.

365 Horne, R. B. (1989), Path-integrated growth of electrostatic waves: The generation of
366 terrestrial myriametric radiation, *J. Geophys. Res.*, 94(A7), 8895–8909.

367 Horne, R. B., et al. (2005), Wave acceleration of electrons in the Van Allen radiation
368 belts, *Nature*, 437, 227–230, doi:10.1038/nature03939.

369 Keika, K., M. Spasojevic, W. Li, J. Bortnik, Y. Miyoshi, and V. Angelopoulos (2012),
370 PENGUIn/AGO and THEMIS conjugate observations of whistler mode chorus waves in
371 the dayside uniform zone under steady solar wind and quiet geomagnetic conditions, *J.*
372 *Geophys. Res.*, 117, A07212, doi:10.1029/2012JA017708.

373 Kennel, C. F., and H. E. Petschek (1966), Limit on stably trapped particle fluxes, *J.*
374 *Geophys. Res.*, 71(1), 1–28, doi:10.1029/JZ071i001p00001.

375 Kletzing, C. A., et al. (2013), The Electric and Magnetic Field Instrument Suit and
376 Integrated Science (EMFISIS) on RBSP, *Space Sci. Rev.*, doi:10.1007/s11214-013-9993-
377 6.

378 Kurth, W. S., S. D. Pascuale, J. B. Faden, C. A. Kletzing, G. B. Hospodarsky, S. Thaller,
379 and J. R. Wygant (2014), Electron densities inferred from plasma wave spectra obtained
380 by the waves instrument on Van Allen Probes, *J. Geophys. Res. Space Physics*, 120, 904–
381 914, doi:10.1002/2014JA020857.

382 Le Contel, O., et al. (2008), First results of the THEMIS Search Coil Magnetometers,
383 *Space Sci. Rev.*, 141, 509–34, doi:10.1007/s11214-008-9371-y.

384 Li, W., Y. Y. Shprits, and R. M. Thorne (2007), Dynamic evolution of energetic outer
385 zone electrons due to wave-particle interactions during storms, *J. Geophys. Res.*, 112,
386 A10220, doi:10.1029/2007JA012368.

387 Li, W., et al. (2009), Global distribution of whistler-mode chorus waves observed on the
388 THEMIS spacecraft, *Geophys. Res. Lett.*, 36, L09104, doi:10.1029/2009GL037595.

389 Li, W., Q. Ma, R. M. Thorne, J. Bortnik, C. A. Kletzing, W. S. Kurth, G. B. Hospodarsky,
390 and Y. Nishimura (2015), Statistical properties of plasmaspheric hiss derived from Van
391 Allen Probes data and their effects on radiation belt electron dynamics, *J. Geophys. Res.*
392 *Space Physics*, 120, 3393–3405, doi:10.1002/2015JA021048.

393 Liu, N., et al. (2017), Simultaneous disappearances of plasmaspheric hiss, exohiss, and
394 chorus waves triggered by a sudden decrease in solar wind dynamic pressure, *Geophys.*
395 *Res. Lett.*, 44, 52–61, doi:10.1002/2016GL071987.

396 Lorentzen, K. R., J. B. Blake, U. S. Inan, and J. Bortnik (2001), Observations of
397 relativistic electron microbursts in association with VLF chorus, *J. Geophys. Res.*,
398 106(A4), 6017–6027, doi:10.1029/2000JA003018.

399 Lyons, L. R., and R. M. Thorne (1973), Equilibrium structure of radiation belt electrons,
400 *J. Geophys. Res.*, 78(13), 2142–2149, doi:10.1029/JA078i013p02142.

401 Ma, Q., et al. (2016), Characteristic energy range of electron scattering due to
402 plasmaspheric hiss, *J. Geophys. Res. Space Physics*, 121, 11, 737–11, 749,
403 doi:10.1002/2016JA023311.

404 Mauk, B. H., N. J. Fox, S. G. Kanekal, R. L. Kessel, D. G. Sibeck, and A. Ukhorskiy
405 (2013), Science Objectives and Rationale for the Radiation Belt Storm Probes Mission,
406 *Space Sci Rev*, 179(1), 3–27, doi:10.1007/s11214-012-9908-y.

407 McFadden, J. P., C. W. Carlson, D. Larson, J. Bonnell, F. Mozer, V. Angelopoulos, K.-H.
408 Glassmeier, and U. Auster (2008), THEMIS ESA first science results and performance
409 issues, *Space Sci. Rev.*, 141, 477–508, doi:10.1007/s11214-008-9433-1.

410 Meredith, N. P., R. B. Horne, and R. R. Anderson (2001), Substorm dependence of
411 chorus amplitudes: Implications for the acceleration of electrons to relativistic energies, *J.*
412 *Geophys. Res.*, 106(A7), 13,165–13,178, doi:10.1029/2000JA900156.

413 Meredith, N. P., R. B. Horne, R. H. A. Iles, R. M. Thorne, D. Heynderickx, and R. R.
414 Anderson (2002), Outer zone relativistic electron acceleration associated with
415 substorm - enhanced whistler mode chorus, *J. Geophys. Res.*, 107(A7), 1144,
416 doi:10.1029/2001JA900146.

417 Meredith, N. P., R. B. Horne, R. M. Thorne, and R. R. Anderson (2003), Favored regions
418 for chorus-driven electron acceleration to relativistic energies in the Earth's outer
419 radiation belt, *Geophys. Res. Lett.*, 30(16),1871, doi:10.1029/2003GL017698.

420 Meredith, N. P., R. B. Horne, R. M. Thorne, D. Summers, and R. R. Anderson (2004),
421 Substorm dependence of plasmaspheric hiss, *J. Geophys. Res.*, 109, A06209,
422 doi:10.1029/2004JA010387.

423 Meredith, N. P., R. B. Horne, S. A. Glauert, R. M. Thorne, D. Summers, J. M. Albert,
424 and R. R. Anderson (2006), Energetic outer zone electron loss timescales during low
425 geomagnetic activity, *J. Geophys. Res.*, 111, A05212, doi:10.1029/2005JA011516.

426 Meredith, N. P., R. B. Horne, S. A. Glauert, and R. R. Anderson (2007), Slot region
427 electron loss timescales due to plasmaspheric hiss and lightning-generated whistlers, *J.*
428 *Geophys. Res.*, 112, A08214, doi:10.1029/2007JA012413.

429 Meredith, N. P., R. B. Horne, S. A. Glauert, D. N. Baker, S. G. Kanekal, and J. M. Albert
430 (2009), Relativistic electron loss timescales in the slot region, *J. Geophys. Res.*, 114,
431 A03222, doi:10.1029/2008JA013889.

432 Miyoshi, Y., A. Morioka, R. Kataoka, Y. Kasahara, and T. Mukai (2007), Evolution of
433 the outer radiation belt during the November 1993 storms driven by corotating interaction
434 regions, *J. Geophys. Res.*, 112, A05210, doi:10.1029/2006JA012148.

435 Ni, B., et al. (2014), Resonant scattering of energetic electrons by unusual low-frequency
436 hiss, *Geophys. Res. Lett.*, 41, 1854–1861, doi:10.1002/2014GL059389.

437 Reeves, G. D., et al. (2013), Electron acceleration in the heart of the Van Allen radiation
438 belts, *Science*, 341(6149), 991–994, doi:10.1126/science.1237743.

439 Santolík, O., D. A. Gurnett, J. S. Pickett, M. Parrot, and N. Cornilleau-Wehrlin (2003),
440 Spatio-temporal structure of storm-time chorus, *J. Geophys. Res.*, 108(A7), 1278,
441 doi:10.1029/2002JA009791.

442 Shprits, Y. Y., D. Subbotin, and B. Ni (2009), Evolution of electron fluxes in the outer
443 radiation belt computed with the VERB code, *J. Geophys. Res.*, 114, A11209,
444 doi:10.1029/2008JA013784.

445 Spasojevic, M., Y. Y. Shprits, and K. Orlova (2015), Global empirical models of
446 plasmaspheric hiss using Van Allen Probes, *J. Geophys. Res. Space Physics*, 120,
447 10,370–10,383, doi:10.1002/2015JA021803.

448 Spence, H., et al. (2013), Science goals and overview of the Radiation Belt Storm Probes
449 (RBSP) Energetic Particle, Composition, and Thermal Plasma (ECT) suite on NASA's
450 Van Allen Probes mission, *Space Sci. Rev.*, 179(1-4), 311–336, doi:10.1007/s11214-013-
451 0007-5.

452 Su, Z., et al. (2015), Disappearance of plasmaspheric hiss following interplanetary shock,
453 *Geophys. Res. Lett.*, 42, 3129–3140, doi:10.1002/2015GL063906.

454 Summers, D., B. Ni, N. P. Meredith, R. B. Horne, R. M. Thorne, M. B. Moldwin, and R.
455 R. Anderson (2008), Electron scattering by whistler-mode elf hiss in plasmaspheric
456 plumes, *J. Geophys. Res.*, 113, A04219, doi:10.1029/2007JA012678.

457 Tao, X., Q. Lu, S. Wang, and L. Dai (2014), Effects of magnetic field configuration on
458 the day-night asymmetry of chorus occurrence rate: A numerical study, *Geophys. Res.*
459 Lett., 41, 6577–6582, doi:10.1002/2014GL061493.

460 Thorne, R. M., E. J. Smith, R. K. Burton, and R. E. Holzer (1973), Plasmaspheric hiss, *J.*
461 *Geophys. Res.*, 78, 1581–1596, doi:10.1029/JA078i010p01581.

462 Thorne, R. M., T. P. O'Brien, Y. Y. Shprits, D. Summers, and R. B. Horne (2005),
463 Timescale for MeV electron microburst loss during geomagnetic storms, *J. Geophys.*
464 *Res.*, 110, A09202, doi:10.1029/2004JA010882.

465 Thorne, R. M., et al. (2013a), Rapid local acceleration of relativistic radiation-belt
466 electrons by magnetospheric chorus, *Nature*, 504, 411–414, doi:10.1038/nature12889.

467 Thorne, R. M., et al. (2013b), Evolution and slow decay of an unusual narrow ring of
468 relativistic electrons near $L \sim 3.2$ following the September 2012 magnetic storm,
469 *Geophys. Res. Lett.*, 40, 3507–3511, doi:10.1002/grl.50627.

470 Tsurutani, B. T., and E. J. Smith (1974), Postmidnight chorus: A substorm phenomenon
471 Tsurutani, B. T., and E. J. Smith (1974), Postmidnight chorus: A substorm phenomenon,
472 *J. Geophys. Res.*, 79(1), 118–127, doi:10.1029/JA079i001p00118.

473 Tsurutani, B. T., and E. J. Smith (1977), Two types of magnetospheric ELF chorus and
474 their substorm dependences, *J. Geophys. Res.*, 82(32), 5112–5128,
475 doi:10.1029/JA082i032p05112.

476 Tsurutani, B. T., B. J. Falkowski, J. S. Pickett, O. Santolik, and G. S. Lakhina (2015),

477 Plasmaspheric hiss properties: Observations from Polar, *J. Geophys. Res. Space Physics*,
478 120, 414–431, doi:10.1002/2014JA020518.

479 Tsyganenko, N. A. (1989), A magnetospheric magnetic field model with a warped tail
480 current sheet, *Planet. Space Sci.*, 37, 5–20.

481 Wang, C., J. B. Liu, H. Li, Z. H. Huang, J. D. Richardson, and J. R. Kan (2009),
482 Geospace magnetic field responses to interplanetary shocks, *J. Geophys. Res.*, 114,
483 A05211, doi:10.1029/2008JA013794.

484 Wygant, J. R., et al. (2013), The electric field and waves instruments on the radiation belt
485 storm probes mission, *Space Sci. Rev.*, 179(1-4), 183–220, doi:10.1007/s11214-013-
486 0013-7.

487 Yue, C., Q.-G. Zong, and Y. F. Wang (2009), Response of the magnetic field and
488 plasmas at the geosynchronous orbit to interplanetary shock, *Chin. Sci. Bull.*, 54, 4241–
489 4252, doi:10.1007/s11434-009-0649-6.

490 Yue, C., Q.-G. Zong, H. Zhang, Y. F. Wang, C. J. Yuan, Z. Y. Pu, S. Y. Fu, A. T. Y. Lui,
491 B. Yang, and C. R. Wang (2010), Geomagnetic activities triggered by interplanetary
492 shocks, *J. Geophys. Res.*, 115, A00I05, doi:10.1029/2010JA015356.

493 Yue, C., Q. Zong, Y. Wang, I. I. Vogiatzis, Z. Pu, S. Fu, and Q. Shi (2011a), Inner
494 magnetosphere plasma characteristics in response to interplanetary shock impacts, *J.*
495 *Geophys. Res.*, 116, A11206, doi:10.1029/2011JA016736.

496 Yue, C., and Q. Zong (2011b), Solar wind parameters and geomagnetic indices for four
497 different interplanetary shock/ICME structures, *J. Geophys. Res.*, 116, A12201,
498 doi:10.1029/2011JA017013.

499 Yue, C., Y. Nishimura, L. R. Lyons, V. Angelopoulos, E. F. Donovan, Q. Shi, Z. Yao,
500 and J. W. Bonnell (2013), Coordinated THEMIS spacecraft and all-sky imager
501 observations of interplanetary shock effects on plasma sheet flow bursts, poleward
502 boundary intensifications, and streamers, *J. Geophys. Res. Space Physics*, 118, 3346–
503 3356, doi:10.1002/jgra.50372.

504 Yue, C., et al. (2016a), Rapid enhancement of low-energy (<100 eV) ion flux in response
505 to interplanetary shocks based on two Van Allen Probes case studies: Implications for
506 source regions and heating mechanisms, *J. Geophys. Res. Space Physics*, 121, 6430–
507 6443, doi:10.1002/2016JA022808.

508 Yue, C., X. An, J. Bortnik, Q. Ma, W. Li, R. M. Thorne, G. D. Reeves, M. Gkioulidou, D.
509 G. Mitchell, and C. A. Kletzing (2016b), The relationship between the macroscopic state
510 of electrons and the properties of chorus waves observed by the Van Allen Probes,
511 *Geophys. Res. Lett.*, 43, 7804–7812, doi:10.1002/2016GL070084.

512 Zhou, C., et al. (2015), Excitation of dayside chorus waves due to magnetic field line
513 compression in response to interplanetary shocks, *J. Geophys. Res. Space Physics*, 120,
514 8327–8338, doi:10.1002/2015JA021530.

515

516 **Figure Captions:**

517 **Figure 1.** (a) An IP shock observed by the THEMIS-C spacecraft at 16:57 UT at (-21.2,
518 57.5, -1.7) R_E in solar wind on 7 June 2014. The top panel shows magnetic field
519 magnitude in black and the X-component of solar wind velocity in GSE coordinate in
520 red. The bottom panel shows ion density in black and dynamic pressure in red; (b) The
521 variations of geomagnetic indices during the same time interval as in Figure 1a. The

522 vertical dashed line marks the shock arrival time at ground observation; (c) and (d) are
523 the wave and electron measurements by Van Allen Probes A and B, respectively. The
524 panels from top to bottom are the electric spectral density in the HFR channel, electric
525 and magnetic field power spectral densities in the WFR channel, and the omni-directional
526 electron energy flux from 0.1 to 20 keV. The vertical dashed line marks the shock arrival
527 time.

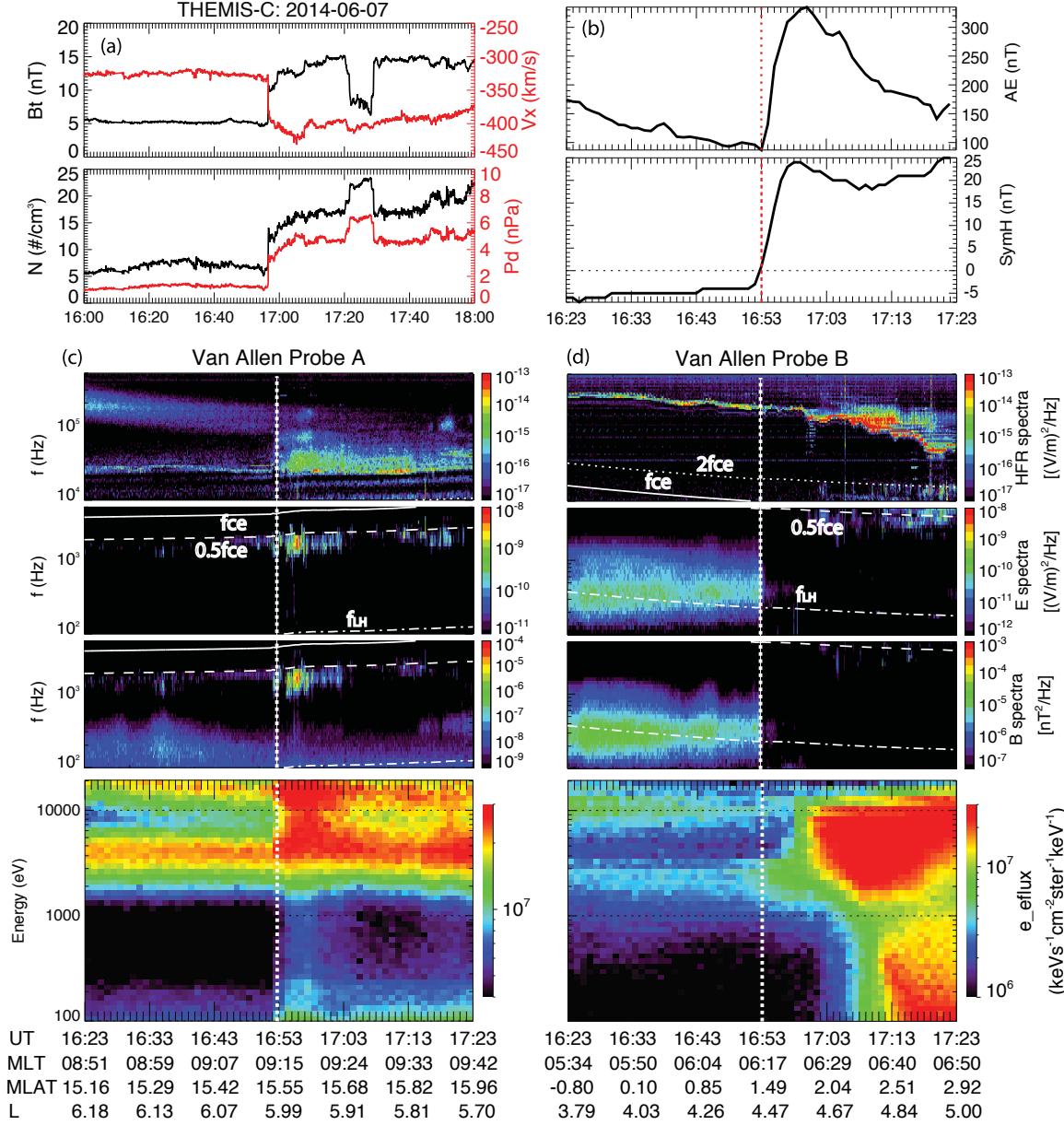
528

529 **Figure 2.** (a) An IP shock observed by the THEMIS-C spacecraft at 17:04 UT at (-8.3,
530 60.7, -2.8) R_E in solar wind on 7 February 2014. The first panel shows magnetic field
531 magnitude in black and the X-component of solar wind velocity in GSE coordinates in
532 red. The second panel shows ion density in black and dynamic pressure in red. The
533 bottom panel shows the variations of AE index in black and symH in red. (b) The
534 magnetic field power spectral density in the parallel and perpendicular directions
535 observed by THEMIS-D. The vertical dashed line marks the IP shock arrival time. (c)
536 and (d) are the wave and electron measurements made by Van Allen Probes A and B,
537 respectively. The panels from top to bottom are the electric spectral density in the HFR
538 channel, electric and magnetic field power spectral density in the WFR channel, and the
539 omni-directional electron energy flux from 0.1 to 20 keV. The vertical dashed line marks
540 the shock arrival time.

541

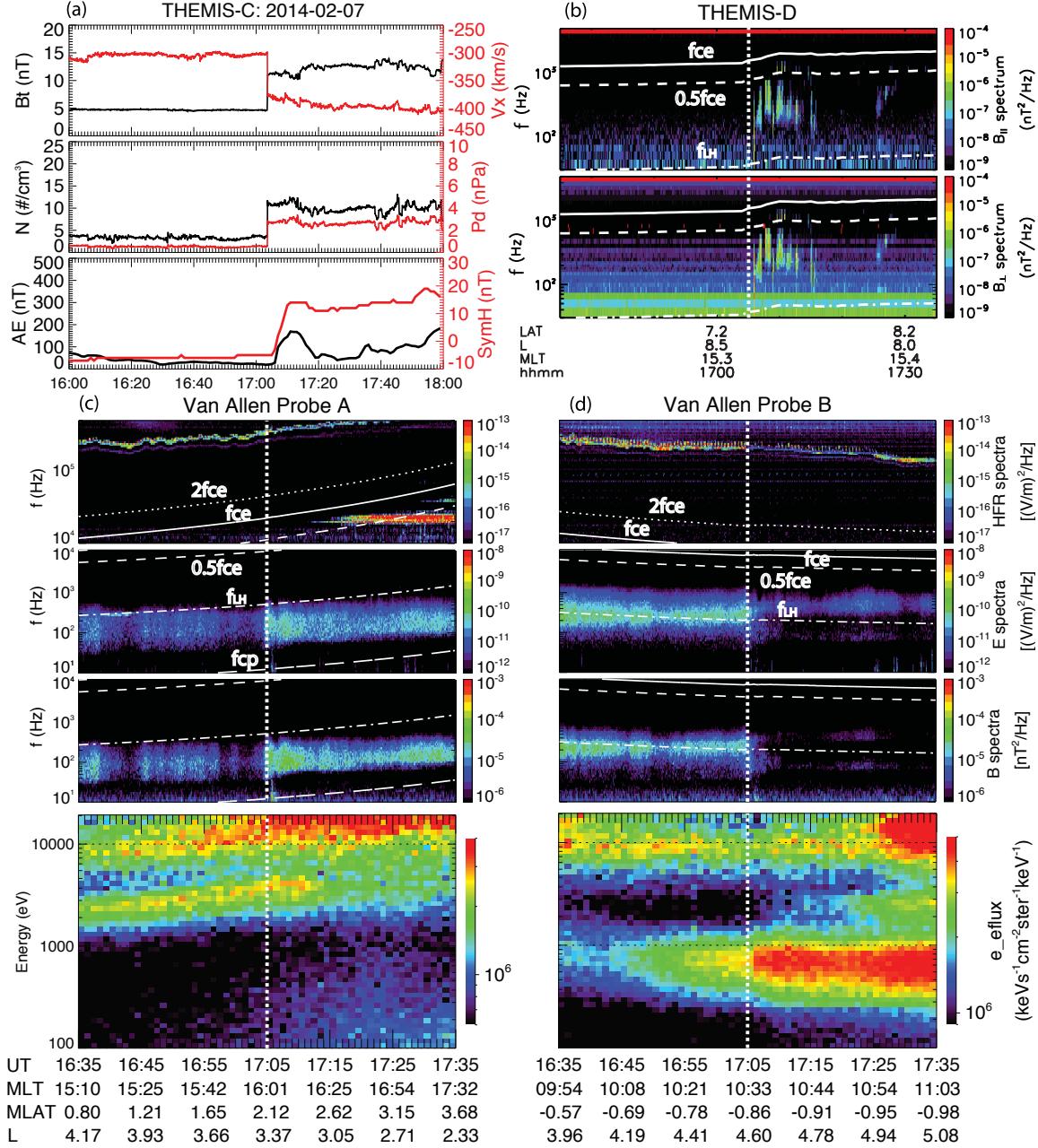
542 **Figure 3.** The global distribution of the whistler mode chorus and plasmaspheric hiss
543 wave responses to IP shocks observed by Van Allen Probes and THEMIS satellites. (a)
544 Distribution in the X-Y plane in SM coordinates. The cross sign represents the locations

545 of Van Allen Probes and the diamond sign represents the locations of THEMIS satellites
546 around the IP shock arrival time; (b) and (c) Event distributions as function of MLTs (b)
547 and MLAT (c). Blue color represents hiss wave reduction/disappearance; Red color
548 represents hiss wave intensification/excitation; Black represents chorus wave
549 intensification/excitation.

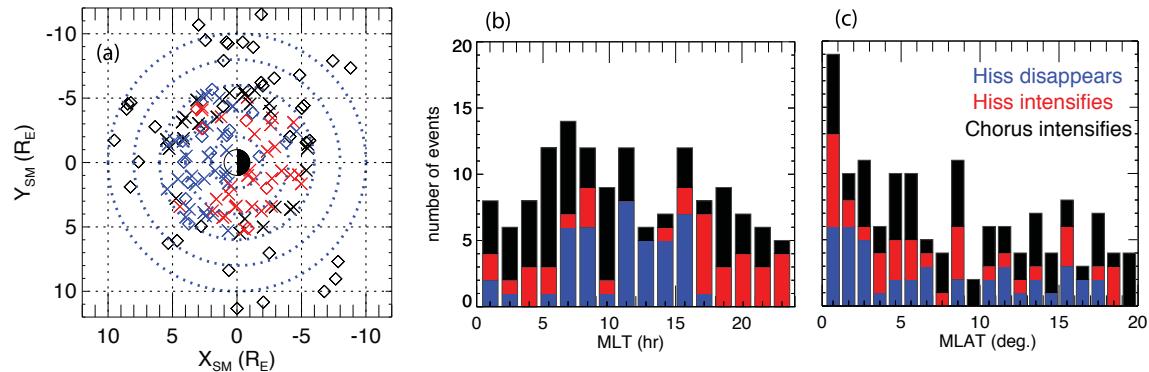

550

551

552 **Figure 4.** Illustration of ray tracing in the noon-midnight meridian plane for chorus
553 waves of different wave normal angles (color-coded) launched with a fixed frequency
554 500 Hz at $L=7$ at the magnetic equator during quiet ($K_p=1$, top panel) and disturbed
555 ($K_p=6$, bottom panel) conditions based on T89 magnetic field model. The plasmapause
556 location is at $L_{pp}=5.5$.


557

Figures.


Figure 1. (a) An IP shock observed by the THEMIS-C spacecraft at 16:57 UT at (-21.2, 57.5, -1.7) R_E in solar wind on 7 June 2014. The top panel shows magnetic field magnitude in black and the X-component of solar wind velocity in GSE coordinate in red. The bottom panel shows ion density in black and dynamic pressure in red; (b) The variations of geomagnetic indices during the same time interval as in Figure 1a. The vertical dashed line marks the shock arrival time at ground observation; (c) and (d) are

the wave and electron measurements by Van Allen Probes A and B, respectively. The panels from top to bottom are the electric spectral density in the HFR channel, electric and magnetic field power spectral densities in the WFR channel, and the omni-directional electron energy flux from 0.1 to 20 keV. The vertical dashed line marks the shock arrival time.

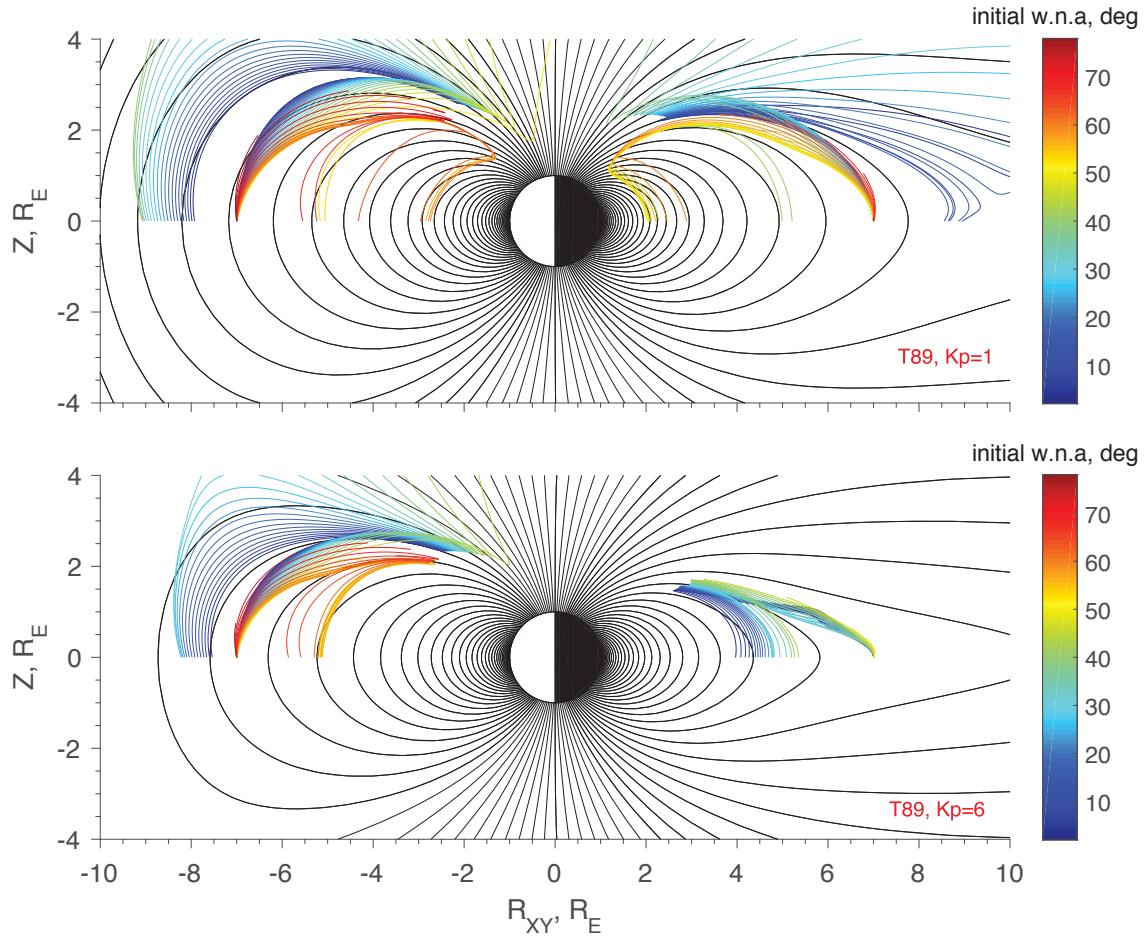


Figure 2. (a) An IP shock observed by the THEMIS-C spacecraft at 17:04 UT at (-8.3, 60.7, -2.8) R_E in solar wind on 7 February 2014. The first panel shows magnetic field magnitude in black and the X-component of solar wind velocity in GSE coordinates in red. The second panel shows ion density in black and dynamic pressure in red. The bottom panel shows the variations of AE index in black and symH in red. (b) The

magnetic field power spectral density in the parallel and perpendicular directions observed by THEMIS-D. The vertical dashed line marks the IP shock arrival time. (c) and (d) are the wave and electron measurements made by Van Allen Probes A and B, respectively. The panels from top to bottom are the electric spectral density in the HFR channel, electric and magnetic field power spectral density in the WFR channel, and the omni-directional electron energy flux from 0.1 to 20 keV. The vertical dashed line marks the shock arrival time.

Figure 3. The global distribution of the chorus and hiss wave responses to IP shocks observed by Van Allen Probes and THEMIS satellites. (a) Distribution in the X-Y plane in SM coordinates. The cross sign represents the locations of Van Allen Probes and the diamond sign represents the locations of THEMIS satellites around the IP shock arrival time; (b) and (c) Event distributions as function of MLTs (b) and MLAT (c). Blue color represents hiss wave reduction/disappearance; Red color represents hiss wave intensification/excitation; Black represents chorus wave intensification/excitation.

Figure 4. Illustration of ray tracing in the noon-midnight meridian plane for chorus waves of different wave normal angles (color-coded) launched with a fixed frequency 500 Hz at $L=7$ at the magnetic equator during quiet ($Kp=1$, top panel) and disturbed ($Kp=6$, bottom panel) conditions based on T89 magnetic field model. The plasmapause location is at $L_{pp}=5.5$.