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1 Introduction

Rapid advancements in parallel computing over the last two decades have enabled simulations of
complex, coupled systems through partitioning. In partitioned analysis, independently developed
constituent models communicate, representing dependencies between multiple physical
phenomena that occur in the full system. Figure 1 schematically demonstrates a coupled system
with two constituent models, each resolving different physical behavior. In this figure, the
constituent model, denoted as the “consumer,” relies upon some input parameter that is being
provided by the constituent model acting as a “feeder”. The role of the feeder model is to map
operating conditions (i.e. those that are stimulating the process) to consumer inputs, thus providing
functional inputs to the consumer model®. Problems arise if the feeder model cannot be built-a
challenge that is prevalent for highly complex systems in extreme operational conditions that push
the limits of our understanding of underlying physical behavior. Often, these are also the situations
where separate-effect experiments isolating the physical phenomena are not available; meaning
that experimentally determining the unknown constituent behavior is not possible (Bauer and
Holland, 1995; Unal et al., 2013), and that integral-effect experiments that reflect the behavior of
the complete system tend to be the only available observations. In this paper, the authors advocate
for the usefulness of integral-effect experiments in furthering a model developer’s knowledge of
the physics principles governing the system behavior of interest.
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Figure 1. Empirical representation of constituent model to simulate a coupled system through
partitioned analysis.
Thermo-mechanical coupling where the thermal model (feeder) influences the behavior of the
mechanical model (consumer) is one such multi-physics application that plays a role in a wide
range of engineering applications, for example, shape memory alloys that return to their original

* The feeder/consumer constituent relationship shown here represents a weakly coupled system. The case of strongly
coupled models, where feedback between constituents creates a loop that must be solved iteratively, is beyond the
scope of this paper.



undeformed shapes when heated (Duni¢ et al., 2012), rock fracture behavior where temperature
changes in a rock mass influence the elastic properties (Auricchio et al., 2007; Shen et al., 2014),
and nuclear reactors where the high temperature loads experienced during irradiation change the
material density, gas production, and thus mechanical behavior of fuel materials (Williamson et
al., 2012; Galloway et al., 2015). Modeling of such coupled systems, where material properties are
dependent upon temperature, often results in the scenario shown previously in Figure 1, as the
precise effects of temperature on material properties in highly complex systems may be unknown
and not possible to observe experimentally in an isolated manner. For example, changes in thermal
conductivity of metallic fuels due to irradiation in a nuclear reactor is a physical process which is
neither theoretically well understood nor possible to isolate in experimental measurements, yet it
is known to be influential in the reactor behavior (Bauer and Holland, 1995). In the absence of a
feeder thermal constituent model, the consumer mechanical model would be bound to an
incomplete (and thus, inaccurate) representation of reality, as the temperature dependency of its
parameters are not accounted for. As a result, the mechanical constituent model, if calibrated with
one dataset at a given temperature, would be unable to produce validated predictions of another
dataset collected at a different temperature (as in the case documented in Jackson et al., (2014)).

This paper presents a statistical inference method in which integral-effect experiments as well as
the available mechanical model are used to empirically infer a mathematical representation for the
thermal constituent model that is otherwise unattainable (i.e. empirical constituent model in Figure
1). The paper is organized as follows. The inverse analysis methodology is presented in Section 2
followed by a conceptual demonstration in Section 3. Section 4 focuses on a thermo-mechanical
application where different temperatures experienced during system operations change a metallic
material’s crystal properties, and therefore its mechanical behavior. The proposed methodology is
applied in a case study of 5182 aluminum, which has an experimentally demonstrated dependence
of the material behavior on both temperature and strain rate, for which constituent models are
currently unavailable. Section 5 concludes the findings and presents a path forward for future
work.

2 Methodology for Inferring Coupling Relationships through Inverse Analysis
2.1 Integral-Effect Experiment-Based Inference

The proposed approach seeks to learn the relationship of physics-based consumer constituent
inputs to operational states. Such relationships would be represented as predictions of the feeder
constituent model if it were to be available but instead become uncertain input parameters of the
consumer model when the feeder model cannot be obtained (recall Figure 1). Of course, the
consumer model could also have parameters that are not dependent upon the feeder model. Thus,
two sets of uncertain input parameters must be considered for the consumer constituent: constant
parameters, 6. that are not reliant upon other operational conditions and functional parameters, 0y
that are reliant upon operational conditions (Figure 2). Similarly, the physics-based consumer
model may also have two different types of operational parameters: parameters that the coupling
depends upon (i.e. temperature in the thermo-mechanical example) that are denoted as dependent



operational parameters, xy and the parameters that the coupling does not depend that are be
denoted as independent operational parameters, x. (Figure 2).
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Figure 2. Variables of interest for the feeder and consumer models.

Ultimately, the goal is to represent predictions of the missing feeder constituent model as a
functional parameter of the consumer constituent, such that 8y = 04xy) (Brown and Atamturktur,
2018). This is accomplished through inverse analysis using integral-effect experimental
observations, y, as our knowledge of the desired full-system behavior with uncertainty in the form
of experimental error, € (Eq. 1). As shown in Eq. 1, where 7 is the discrete number of settings for
experimental data points, the consumer constituent model, 7, effectively becomes a semi-empirical
partitioned representation of the coupled system once O1xy) is identified and included as an
empirically derived feeder constituent.

y(xé) = n( x¢, 0xf) ) + e(xf) wherei=1,2,...,n (Eq. 1)

Additionally, the physics-based consumer constituent model may have its own parametric
uncertainty as well as other operational states on which the feeder constituent does not depend.
These uncertain physical parameters, €. and the feeder constituent model, #1xy can be inferred
simultaneously as shown in Eq. 2, where m indicates the discrete points at which experimental
data is available in the control dimension of x.. Consideration of the consumer model uncertainties
concurrently with the empirical model inference will reduce the risk of unwarranted
compensations that may otherwise degrade the realism of the empirical model. Inclusion of
experiments across various control dimensions may also provide additional data points to inform
the functional parameter inference.

yxi, xJ) = n( x¢, xJ, 0(xr), 0c ) + g(xf, x/) where i=1,2,...,n and j=1,2,....m (Eq. 2)

Knowing that the experiments are only a best estimate of the true response, we recognize
experimental error at every sample point as g(x/ , x/). Experimental error is assumed to be
independent and identically normally distributed over all inputs with precision, A, and is modeled
accordingly & ~ N (0, AI).

2.2 Gaussian Process Representation of Functional Parameters

Any available prior knowledge concerning the functional form of the empirical constituent fyx;y),
perhaps in the form of expert opinion or parametric trends observed in predictions from legacy
codes, can be incorporated into inference. For example, Atamturktur et al. (2015) determined a
functional input parameter by calibrating coefficients of a pre-defined function selected by expert
opinion. If prior knowledge regarding #sx;y) is not available, however, a Gaussian process (GP)



can be used without imposing restrictions on the functional form of @y (MacKay, 1998; Neal,
1998; Kennedy and O’Hagan, 2001; Bastos and O’Hagan, 2009). In the case that a model has more
than one missing constituent, a separate GP and its associated hyperparameters would need to be
inferred for each.

A GP is a stochastic process used to relate points along some control dimension, x, where the
nature of the relationship is specified by a mean and covariance function (Eq. 3). The GP applied
herein adopts a squared exponential correlation function to relate points along the functional
parameter, 0y, with respect to the dependent operational parameter, xz. All input parameter values
of the model are scaled to a unit hypercube for the inverse analysis, justifying the selection of a
mean of 0.5 for the GP. The squared exponential correlation function (Eq. 4) is one of the most
commonly implemented, as its realizations are smooth, infinitely differentiable functions capable
of representing a wide range of continuous functions (Rasmussen and Williams, 2006; Swiler,
2006). The dimensionality of the functional control parameter is represented by d.

0;~GP (0.5,,15]}R(xf,xf')) (Eq. 3)

2
ROy") = exp (S —475, (37, —x7,) | where k=12,...d (Eq. 4)
For simplicity, the remainder of this discussion assumes that d is equal to one. The GP given in
Eq. 4 has two hyperparameters, Aq o the precision parameter which controls the magnitude of
variations in 6, and y, f, the smoothness parameter which defines the inverse length scale of xr

across which 6 is expected to be correlated, meaning that a larger value of yg J results in smaller

correlations across xy (Williams and Rasmussen, 1996). These hyperparameters control the
functional form of the GP for 6;(xf) and thus must be learned from the data. To do so, prior

distributions are assumed for the two GP hyperparameters, Ag ; and pg ;= e "% Herein, a beta
hyperprior (Eq. 5) is applied to pg o where the shape parameter b, can be used to enforce

smoothness by concentrating the distribution near one. A gamma hyperprior (Eq. 6) is applied to
Ag

I&
p9f~Beta(1, b,), b, >0 (Eq. 5)
/19f~Ga(a,1,b,1), a,l,bll >0 (Eq. 6)

If the sampled xrvalues are identical (or near-identical), the correlation matrix associated with the
GP might have problems with matrix inversion due to near-singularity, which is commonly
avoided by the addition of some nugget parameter to the diagonal of the correlation matrix (Sacks
et al., 1989; Neal, 1998; Santner et al., 2003). Following Ranjan et al. (2011), here the nugget 6 is

determined with § = max (Ay(x(R) — 620)(K(R))_1(€20 —1)71, 0), where 4y is the largest
eigenvalue of the correlation matrix R, k(R) is the condition number of R, and e?°is the threshold
on the condition number above which we consider R to be numerically unstable.



2.3 Bayesian Inference for Inverse Analysis

The Bayesian solution to the inverse analysis in Eq. 2 infers the posterior distribution of parameters
conditioned upon the experimental measurements (Eq. 7). The experimental data, y(x; x.) are
standardized to have a mean of zero and a standard deviation of one.

P (GC,Bf,Agf,p9f|y(x,, xc)) o L(y(xf,x.)10.,05,29,p9) X P(8;) X P(8,) X P (Agf) x P (pgf) (Eq. 7)

The posterior distribution given in Equation 7 can be obtained through Markov chain Monte Carlo
sampling of the parameter space, requiring hundreds to thousands of runs depending on the
dimensionality of the problem (Gilks et al., 1995; Higdon et al., 2004). In this study, Gibbs
sampling, a specific case of the Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings,
1970; Geman and Geman, 1984), is used to sample the approximate posterior, where each step of
the sampling is taken from a full conditional distribution of one parameter. Gibbs sampling cycles
through each parameter individually to explore the domain (Gelfand and Smith, 1990). In the
Gibbs sequence, each time hyperparameters of the GP for 6 are updated, the correlation matrix
needs to be inverted, an operation of complexity n°, where 7 is the size of the correlation function
(i.e. number of data points in xy), while full Gibbs scan for model parameters 6; has complexity
n’. Noticing that additional Gibbs samples taken between hyperparameter updates adds only
marginally to the computational cost, Neal (1998) suggested conducting subiterations (i.e.
additional Metropolis steps) for vector-valued variables within the Gibbs sampler to potentially
increase the rate of convergence. Herein, we implement such subiterations on 6. In each full
iteration all GP hyperparameters are sampled once. From the current set of GP hyperparameters,
multiple realizations of 6 (xy) are then drawn by subiterations. In other words, for a given Gibbs
sample the GP covariance is fixed while the functional parameter defined by said GP is updated
by Metropolis steps. The effects of such additional Gibbs samples are discussed in Section 3.2.

3 Proof-of-Concept Demonstration

This section presents an academic proof-of-concept example with synthetically generated integral-
effect experiments. Synthetically generating experiments allows control of the true value of the
empirical constituent to be inferred, thus providing a means for evaluation of the capability of the
proposed inference methodology.

3.1 Model Definition and Integral-effect Experiments

Consider a consumer model, n(x.,8;) = 6,x.*, that relates operational parameters to a system
response that has been captured by integral-effect experiments conducted at a finite number of
select operational parameter settings (shown in Figure 3). In this example, synthetic integral effect
experiments are generated using the ‘true’ underlying functional dependence, 6, = 2,/x;. The
integral effect experiments demonstrate a dependence upon the control parameter, x; but this
dependence is not represented in the available consumer constituent model. Predictions of this
consumer constituent model where the functional relationship is currently unaccounted for and its
prediction errors are shown in Figure 4.
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Figure 4. (Left) Physics-based model predictions where relationship to xyis unmodeled and
(right) error resulting in the physics-based predictions due to these modeling assumptions.

The inverse analysis method discussed in Section 2 is implemented to construct the relationship
between 6 and xr from integral-effect experiments, shown in Figure 3, developing an empirical
model to represent 6y = f{xy). Table 1 provides details of the parameter ranges for the inverse
analysis, as well as the true functional form of a deterministic feeder model, which is currently

missing and will be inferred empirically.



Table 1. Prior distributions and ranges for physics-based model parameters and GP

hyperparameters.
Model Parameters
Minimum  Maximum True Value
. Independent Control (x.) 0 4 -
State Variables (x)
Dependent Control (xy) 0 4 -
Uncertain Model Functional Parameter
2
Parameters (0) (6p) ! 5 ‘/x—f
GP Hyperparameters
Hyperparameter Prior Distribution
Aoy Ga(s, 5)
Por Beta(1, 0.2)

3.2 Inverse Analysis: Results and Discussion

Twenty points are sampled along both x. and xz, with the middle 20% of the data in both operational
parameter spaces held out as a validation set (Figure 3). As discussed in Section 2, a GP and its
associated hyperparameters are inferred to define the empirical constituent 6/(xy) rather than
imposing a user-defined functional form. Prior distributions on the GP hyperparameters are
defined to yield an a priori mean of 1 and standard deviation of approximately 0.45 for Asand to
concentrate the density of pg ; close to 1. During the sampling algorithm, the functional parameter,

0r1s not confined by the prior bounds, as the sampling is allowed to explore beyond the initially
defined minimum and maximum values. However, should the analyst prefer to place stricter
boundaries on the functional parameter, such restrictions may be implemented (Brown and
Atamturktur, 2018).

Burn-in runs are completed for 2000 iterations followed by the drawing of 2000 samples, each of
which utilizes ten subiterations during the 6y sampling. Three Markov chain Monte Carlo chains
are carried out, each starting with different initial parameter values to ensure a converged solution
and adequate mixing of the chains. Within each of these chains every other sample is retained,
resulting in a collection of 3000 samples. The resulting approximate posterior distribution of the
empirical constituent model form generated from these samples is shown in Figure 5.
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Figure 5. Posterior distribution of the empirical model O¢(xy) with predicted functional behavior
at holdout settings.

This empirically inferred feeder model, 6¢(xy) can now be coupled to the consumer model. Mean
predictions made with this new experimentally augmented partitioned model are shown in Figure
6, as well as the error remaining in these predictions. Compared to the simulations with the stand-
alone consumer model operating without the functional parameter representation (recall Figure 4),
the predictive capability of the model has greatly improved, with the average percent error
reducing from 33.42% in stand-alone to 18.05% with the coupled empirical constituent and
physics-based constituent system model, a 46% overall reduction in the prediction error. Not only
was the predictive capability improved, but knowledge of the underlying coupling physics was
also gained through the functional form of the previously unknown dependence.
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Figure 6. (Left) Predictions of the newly developed experimentally augmented partitioned model
with a feeder empirical constituent coupled to the original consumer constituent and (Right)
Error remaining in the coupled predictions compared to integral-effect experiments.



3.3 Effect of Subiterative Sampling of the Functional Calibration Parameter

Recall from Section 2.3 that the functional parameter is sampled repeatedly with subiterations in
accordance with the recommendations of Neal (1998) to improve the mixing of the Markov chain.
Neal (1998) originally proposed subiterations to reduce computational costs in problems where
computing the covariance matrix is computationally demanding but computation of the likelihood
is fast. In applying this method to engineering problems there are two scenarios that may be
encountered; dense parameter sampling and computationally demanding model evaluations.

3.3.1 Large Covariance Matrix

As Neal (1998) presumed, the dense sampling of the dependent control parameter, or several
dependent control parameters for a single functional parameter, will result in a large covariance
matrix requiring inversions for every sample of the GP hyperparameters. In this case, dense
sampling refers to the number of dependent control points, xf, at which simulations are compared
to experimental measurements. A fast-running model (less than 0.001 second to evaluate) is
assumed and an analysis of the effect of subiterations in dense sampling is completed. The nominal
model presented in Section 3.1 is used as a baseline for comparison. Size of the covariance matrix
is increased by sampling the dependent control parameter, xy, on a finer grid. In every case shown,
20% of the data remains as a holdout set and the number of total samples of the functional
parameter each (meaning the number of subiterations multiplied by the number of Gibbs iterations)
is kept constant at 1000 for three chains with different starting values, producing a full distribution
of 3000 samples.

Figure 7 shows the degree to which the overall error of the empirical function is decreased with
subiterations as well as the decrease in computational time required to complete the inference as
the number of subiterations is increased, with the number of samples in the xy dimension (and
therefore the size of the covariance matrix) is denoted by N.. Table 2 further emphasizes this point,
showing a continued decrease in computational time with increasing number of subiterations. Also
shown in Table 2 is that the error of the empirical model stabilizes at around four subiterations. In
all of the different dimensionality cases tested, accuracy and computational efficiency are found
to improve together as the number of subiterations increases. The first row of Table 2 shows the
initial computational error and computational time resulting with one subiteration and 1000 Gibbs
iterations. Figure 6 and Table 2 illustrate the accuracy of the functional parameter by root mean
squared error:

RMSE = Zlivzﬁ(gjtfrue(xfi)—g;nferred(xfi))z

(Eq. 8)

Ny
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Figure 7. Convergence of parameter value error, standard deviation, and total computational
time as number of subiterations of the 0y parameter is increased.

Table 2. Accuracy and computational gains with increased parameter dimensionality.

20 samples 200 samples 2000 samples
% % Decrease
Number of Decrease in Comp. % Decrease % Decrease in | % Decrease % Decrease in
Subiterations in Error Time in Error Comp. Time in Error Comp. Time
1 0.475 75s 0.455 42.6s 0.99 16,079 s
2 18.3% 33.8% 66.8% 44.0% 10.4% 46.5%
3 69.2% 44.5% 81.6% 56.9% 33.0% 61.4%
4 68.7% 49.9% 84.7% 63.0% 45.7% 69.4%
5 66.9% 53.1% 85.8% 68.1% 43.9% 73.7%
6 76.9% 55.1% 86.1% 70.2% 45.9% 77.3%
7 76.9% 56.8% 86.7% 72.9% 45.9% 79.4%
8 76.1% 57.9% 85.7% 74.4% 46.9% 81.2%
9 76.5% 58.6% 86.4% 74.9% 45.6% 82.9%
10 80.3% 59.6% 87.0% 75.6% 47.9% 84.0%

3.3.2 Computationally Demanding Model

The second case worth investigating is when the computational cost of the physics-based model is
on the order of a few seconds (such as that of the VPSC model presented in Section 4), and the
analyst chooses to evaluate the model itself rather than bypassing it with an emulator during
computation of the likelihood. The desire to maintain the physics through model evaluations rather
than low-fidelity surrogates is evident in the push for high-fidelity model implementation as well
as growing research in multi-fidelity models when possible (Ng and Willcox, 2014). Such is the
situation to be investigated here.

Suppose a set number of Gibbs samples for every parameter and hyperparameter has been selected
and set to 1000. However, the chain mixing may be found insufficient as convergence is not
achieved with this setting. In this case, though the problem may be low dimensional, the analyst
may choose to begin conducting subiterations of the functional parameter to improve the
convergence, requiring an increased number of evaluations of the physics-based model within each

10



Gibbs step. The results of such a decision are shown here for the nominal model presented in
Section 3.1 with xr sampled at 20 locations, 16 of which are used for the inference and 4 of which
are kept as a holdout set, resulting in a low dimensional 16x16 covariance matrix.

Figure 8 illustrates the change in the resulting empirical constituent for a varying number of
subiterations of the vector-valued parameter, 6. In this figure, every case utilizes three chains with
different starting values and total 1000 samples of the functional parameter each (meaning the
number of subiterations multiplied by the number of Gibbs iterations always equals 1000) with
1000 total runs being used in the burn-in step followed by 1000 total runs in the sampling step.
Although each of the figures are generated with 3000 total samples once the three chains are
combined, the GPs trained with up to two Gibbs subiterations of & or less exhibit unsatisfactory
convergence, as shown by the fact that all 1000 samples for each chain overlay each other making
the appearance of only 3 samples drawn rather than 3000. These findings indicate that the proposal
distributions being generated with 1 or 2 subsamples are consistently rejected, causing the adaptive
step-size to reduce towards zero and the proposals values to become constant. This problem is
relieved as the number of subiterations is increased.

11
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Figure 8. Improved convergence of posterior distributions with increased subiterations of the 6.

The small difference in samples from three subiterations to four, and likewise as subiterations
continue to increase, is noticeable. Results demonstrate that once chains have sufficiently mixed
and converged, little gains in prediction accuracy and precision may be gained from increased
subsampling. Though the accuracy does not continue to improve with subiterations, the
computational time does continue to decrease, demonstrating the capability of increased
subiterations to support the use of more computationally demanding models. Figure 9 illustrates
this trend, where the computational time continues to decrease without gaining or sacrificing
significant neither accuracy nor precision, where computational time is the total time required to
sample the three distinct chains run in serial.

Table 3 further emphasizes this point, where computational time is the total time required to sample
the three distinct chains. In addition to the accuracy of the functional parameter estimation,
uncertainty remaining in the estimation is represented in Figure 9 by standard deviation, which is
averaged over all xypoints.

12
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Figure 9. Convergence of parameter value error, standard deviation, and total computational
time as number of subiterations of the 0y parameter is increased.

Table 3. Change in inference results as number of iterations is increased.

Percent Decrease Percent Decrease in
Number of in Error from Computational Computation Time
Subiterations RMS error 1 sample Time (seconds) from 1 sample
1 0.322 -- 14.9 -
2 0.200 37.9% 9.18 38.4%
3 0.136 57.8% 7.25 51.3%
4 0.140 56.5% 6.36 57.3%
5 0.102 68.3% 5.95 60.1%
6 0.114 64.6% 5.63 62.2%
7 0.100 68.9% 5.43 63.6%
8 0.107 66.8% 5.10 65.8%
9 0.118 63.4% 5.03 66.2%
10 0.101 68.6% 5.06 66.0%

Figure 8 and Table 3 are computed with the nominal computer model, which operates at
approximately 7x10# seconds per model evaluation. This computational time is on the order of a
surrogate model. However, the computation becomes more demanding as the physics-based model
becomes increasingly demanding, such as the plasticity model to be discussed in Section 4. As
such, the computational time of the physics-based model is increased and the analysis of the gains
in accuracy and total computation time is assessed, the results of which are shown in Table 4,
where the initial computational time with one subiteration and 1000 Gibbs iterations is shown in
the row where number of samples is equal to one. This table serves to demonstrate the consistent
trend in the percent decrease in computational time across the varied model run times, although
this trend is difficult to see in Figure 9 due to the drastically different initial total computational
times for each of the models. Another notable observation from Table 4 is that the rate at which
computational demands decrease becomes less as the time required for a single model evaluation

13



increases, though the trend of continued gains in total computational time is still observed. These
findings indicate that subiterations may alleviate the computational demands associated with the
implementation of physics-based models and reduce the need to use surrogate models in the
functional parameter sampling.

Table 4. Reduction in computational demands with the addition of subiterations.

Percent Decrease in Comp. Time
Number of 0.01 s per 0.05 s per 0.10 s per 0.50 s per 1.00 s per
Sublterations evaluation evaluation evaluation evaluation evaluation
1 443 s 2,132s 4,217 s 21,040 s 42,050 s
2 15.1% 14.4% 14.3% 14.3% 14.3%
3 19.9% 19.0% 18.9% 18.9% 18.9%
4 22.5% 21.6% 21.5% 21.5% 21.4%
5 24.0% 23.1% 22.9% 22.9% 22.9%
6 24.8% 24.1% 23.7% 23.7% 23.7%
7 25.2% 25.0% 24.3% 24.4% 24.4%
8 25.8% 25.8% 24.9% 25.0% 25.0%
9 25.8% 25.6% 24.7% 24.8% 24.8%
10 26.9% 26.5% 25.7% 25.7% 25.7%

4 5182 Aluminum with Temperature and Strain Rate Dependencies
4.1 Viscoplastic Self-Consistent Model and Experiments

The viscoplastic self-consistent (VPSC) model predicts texture evolution of highly anisotropic
polycrystalline materials. One such material is the 5182 aluminum alloy, which in addition to
exhibiting viscoplastic behavior also displays temperature and strain rate dependencies, captured
by experiments conducted by Chen et al. (1998) (Figure 10). In an effort to identify the cause of
the dependence, Stout et al. (1998) collected texture measurements in combination with the
mechanical measurements. Texture measurements revealed that 5182 aluminum favors the classic
(101) deformation texture at temperatures below 300°C but transitions to a combination of the
classic (101) and static recrystallization (001) textures at temperatures above 400°C (Figure 10).
Available experimental stress-strain curves reveal this temperature dependence at two separate
strain rates (0.001 and 1 s!), as shown in Figure 10. Stress values are collected at 30 points along
each of the four curves, with strains ranging from 0 to 0.58 and samples spaced 0.02 apart. Despite
this known temperature dependence, there is currently no constituent model for the thermal
analysis available to couple with VPSC and represent the effects of temperature on material
behavior. The current model configuration is shown in Figure 11.

14
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Figure 10. Uniaxial compression experimental tests of 5182 Al and different strain rates and
temperatures.

The VPSC model predicts the behavior of polycrystals with viscoplastic deformations using the
governing equation shown in Eq. 9:

. . S ng
=7, L5 m® ('mr—"') sgn(m?: o) (Eq.9)

where o is the stress applied to the crystal, € is the strain rate, s is the number of slip and twinning
systems active in the material (which is two in the case of the glide-only 5182 aluminum model),
m?® is the Schmid tensor associated with glide, 7 is the critical resolved shear stress, the exponent,
ng, represents the inverse of rate-sensitivity for glide activity, and y, denotes a normalization
factor. The strain rate equation is summed over all active slip systems, N;. Within this equation
two parameters associated with the glide behavior n, and resolved shear stress for the first
deformation system, 72 are uncertain. While the glide parameter remains constant throughout the
domain (Atamturktur et al., 2015), the critical resolved shear stress represents a hardening function
and therefore is the parameter related to the changing texture evolution with respect to temperature
and strain rate. This thermo-mechanical coupling between hardening parameters, temperature and
strain rate on texture development can be accounted for through an empirical constituent model
making 7, a function of 7, thus resulting an experimentally augmented partitioned model.

x: Teé —Jp|  Physics-
0: n,.1, —) based VPSC | y: 0
model

Figure 11. Current physics-based VPSC model without thermal constituent to represent thermo-
mechanical coupling.

4.2 Inference of VPSC Weakly Coupled Physics: State-Aware Problem Formulation

Incorporating the empirical model with the physics-based plasticity model, the experimentally
augmented coupled model may be written as:

o=1 (s, g, Tlg,TO(T)) (Eq. 10)
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where stress is the prediction to be compared with experiments (recall Figure 10). The roles of the
input parameters in the inverse procedure and their respective ranges for the analysis are detailed
in Table 5. Uniform prior distributions are assumed for both parameters with upper and lower
bounds as indicated in Table 5. No constraints are placed on the form of the empirical feeder model
inferred to represent the thermal constituent. These large ranges and minimal constraints leave
much flexibility to the inverse analysis, making it possible to learn as much as possible from the
experimental data.

Table 5.Parameter values of VPSC model and prior distribution of GP hyperparameters.

Model Parameter Minimum Maximum

Independent Control (x.) Strain (g) 0 0.58
State Variables (x)
Dependent Control (xy) Temperature (7) [C"] 180 570
Uncertain Model Constant Parameter (6.) ng 1 5
Parameters (6) Functional Parameter (6)) T, [MPa] 2 1500

GP Hyperparameter Prior Distribution
Aoy Ga(5, 5)
por Beta(1, 0.2)

Prior distributions on the GP hyperparameters for the functional parameter, 7,, are defined the
same as in Section 3.2. Burn-in runs are completed for 800 iterations followed by the drawing of
1000 samples, each of which utilized ten subiterations of the 6y sampling. Three MCMC chains
are carried out, each starting with different initial values of all the parameter values to ensure that
a converged solution is reached, ultimately leading to a collection of 3000 samples. To confirm
the accuracy of the inverse procedure, 20% of the experimental data (ranging from a strain of 0.24
to 0.34) is held out during the inverse analysis for all temperature settings.

4.3 Results of Inverse Analysis

The posterior distribution of the 7, function is shown in Figure 12, where grey lines illustrate 3000
realizations and the solid black and dashed black lines denote the mean and one standard deviation
of the posterior, respectively. Posterior distributions of the GP hyperparameters are shown in
Figure 13. Statistics of the posterior for the empirical thermo-mechanical model at the available
temperature settings are provided in Table 6.
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Figure 12. Posterior distribution of the functional parameter T, at a strain rate of 1 s..
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Figure 13. Posterior distributions of the empirical GP model hyperparameters.

Recall that the parameter n, in the physics-based VPSC model is also uncertain though it has no
dependence on the operational settings. The posterior distribution obtained for n,, shown in Figure
14, is relatively little Bayesian learning when the inverse analysis is completed at a strain rate of
1 s’ The inability to calibrate n, implies that the model’s stress predictions are insensitive at this
strain rate value, which is confirmed by an analysis of variance conducted at the both strain rate
settings. The sensitivity of model output to ngindeed varies greatly as a function of strain rate: 7,
contributes to 100% of the variability in model predictions at a strain rate of 1 s™! while the R?
values in the main effect screening at a strain rate of 0.001 s are 42% and 58% for 7, and n,
respectively. Posterior distributions of the constant and functional parameters with respect to
experiments at a strain rate of 0.001 s! are shown in Figure 15. Comparison of the calibrated
parameter values and remaining uncertainty at both strain rate settings is shown in Table 6, where
the mean and standard deviation of posteriors for the functional parameter are shown at available
temperature settings, as the posterior varies throughout the operational domain. The difference in
the 7o functions for the two strain rates is to be expected given the known dependence on strain
rate (Atamturktur et al., 2015; Chen et al., 1998; Lebensohn et al., 2010; Stout et al., 1998).
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Figure 14. Posterior distribution of constant VPSC physics-based model parameter when
operating at a strain rate of 1s..

In Table 6, the difference in standard deviations of inferred parameter values, indicating
uncertainty remaining in the predictions, are worth noting for the two different strain rate settings.
When the inverse analysis is completed with respect to experiments conducted at a strain rate of 1
s'! (where the model is highly sensitive to 7, and not at all sensitive to ng) the standard deviation
of ng is 24.9% of the mean value. When the model is calibrated with respect to experiments
conducted at a strain rate of 0.001 s™! (where the model also becomes sensitive to ng), the standard
deviation of ng is reduced to 10.7% of the mean value. Results of this analysis suggest that the
model calibration would improve if both strain rate settings could be considered simultaneously.
Provided the opportunity for more data at other strain rate settings, training a function for 7,
dependent upon both temperature and strain rate would be the best path forward.

2 2000

15 I 15008
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o
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Figure 15. Posterior distributions of the (left) constant VPSC model parameter, ng and (right)
functional parameter T, inferred for operations at a strain rate of 0.001 s,
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Table 6. Comparison of the empirical thermo-mechanical constituent model and uncertain
VPSC model parameter for inverse analysis with different strain rates.

Strain Rate = 1 s™* Strain Rate = 0.001 s

Temperature Standard Standard

Parameter Setting (C°) Mean Deviation Mean Deviation

Constant Parameter (6.)

n -- 3.57 0.89 2.80 0.30
200 102.2 11.23 1115.3 310.6
Functional Parameter (6)) 300 75.70 8.29 545.5 198.7
To [MPa] 400 49.44 7.68 162.4 83.41
500 28.28 10.05 112.0 64.95

With the model parameters and corresponding GP hyperparameters determined through the inverse
analysis, the resulting GP model for 7,(7) is used to determine a trained polynomial function that
is then implemented as an empirical thermal constituent model and coupled with the existing
physics-based VPSC plasticity model. The newly available experimentally augmented partitioned
model simulating the thermo-mechanical coupling is shown in Figure 16. Figure 17 illustrates
ultimate stress predictions of the coupled model compared with the available experimental data.
Ultimate stress is the stress value obtained at the last strain value, which is typically the prediction
of greatest interest to decision makers as it relates to the point at which failure is most likely to
occur. Table 7 provides statistics of the predictions of the newly available experimentally
augmented model with the GP thermal constituent coupled to the VPSC mechanical constituent.
This table captures an averaged picture of results of the empirically augmented model across all
strain settings as opposed to only the final strain shown in Figure 17.

X6 ¢ _}
0.: n,—p

Physics-based .
VPSC model | ¥

Empirical
xg T p
il Thermal Model

04(xp): 7,(7)

Figure 16. Coupled thermo-mechanical model, composed of an empirical thermal constituent
and physics-based plasticity constituent, for predicting mechanical behavior of 5182 aluminum
alloy at varying temperature settings.
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Figure 17. Ultimate stress predictions taken at the maximum strain value at a strain rate of 1s!
with remaining uncertainty.

Table 7. Statistics of the experimentally augmented GP-VPSC thermo-mechanical model value
at a strain rate of 1s™'.

Predictions of Coupled Thermo-mechanical Model
[o(T, )]
Temperature Setting RMS Error Average Standard Deviation
(eh) (MPa) (MPa)
200 34.9 36.5
300 14.9 27.7
400 3.50 24.0
500 2.29 25.6

5 Conclusions

Model developers are recognizing more than ever the need to account for interrelated physics and
scales through coupled modeling. Partitioned analysis presents an attractive solution for these
complex problems. However, the physics of one or more constituents in these relationships is
sometimes unknown and therefore cannot be modeled directly. The omission of a constituent
model degrades the predictive capability of the full system, causing model bias. Traditional model
calibration in the Bayesian context requires this model bias to be represented by a discrepancy
term. However, determining missing relationships during the parameter calibration can potentially
mitigate this model bias without a discrepancy model (Atamturktur et al. 2016).
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Deciphering model bias is problem that becomes more pronounced as the complexity of the system
increases and knowledge regarding the underlying physics becomes increasingly incomplete. For
instance, the physics-based model may be a legacy code that cannot be easily changed. Missing
coupling relationships can occur in legacy codes when, for example, new materials or systems are
being implemented in the code where an operational state, which was not influential previously,
becomes influential, or when new experiments become available showing dependence that was
previously unknown. Furthermore, the empirical model will be intrinsically application-dependent
based on the integral-effect experiments used in the inverse analysis. Therefore, different empirical
models may be inferred for a variety of applications and partitioned analysis makes swapping
empirical models for different applications a simple process.

The notion of treating the empirically derived function as an independent constituent model is
attractive as it isolates the empirical components (conditioned upon experiments) from the physics-
based components (based on fist principle understanding). This transparency, which would be lost
if the empirical relationship was directly integrated into the physics-based model with a monolithic
approach, allows for easy updating of the empirical model as new data becomes available.
Maintaining separation also provides clear indication of experimentally-conditioned model
components to future code developers and designers.

The inverse analysis proposed herein infers, from readily available integral-effect experimental
measurements, the functional relationships neglected in physics-based models, providing the
model developer with an empirical constituent model that can be coupled to the existing physics-
based model to account for important dependencies. In addition to yielding a more accurate
computer model, inferring this unknown relationship from observations provides insight into a
more complete mathematical representation of the nature of missing physical relationships,
furthering the scientific understanding of these processes. In the case that all missing physics in
the model is explained by the parameter relationships inferred by dependent calibration, the model
bias of traditional calibration could be eliminated. However, if other relevant physics or parameters
remain absent from the model, then model bias will remain and a discrepancy model will be
necessary in the calibration, thus modifying Eq. 2 to include a discrepancy model, J, as shown in
Eq. 11. Defining this discrepancy model across several dependent and independent control
domains is an area of interest for future work.

V(x¢, xJ) = n( x¢, xJ, 0dx¢), 0c ) + e(x¢ , xJ) + I(x{ , xJ) (Eq. 11)
where i=1,2, ...,n and j=1,2,....m

Finally, the GP approach developed herein is capable of providing not only GP hyperparameter
values, but also recommendations of parametric model forms for future use as the empirical
constituent is coupled to the existing physics-based model. The advantage of beginning the
functional exploration with a GP is the few number of hyperparameters required, allowing the
MCMC to deal with smaller dimensional parameter spaces, thus maintaining feasible
computational times. The GP inferred by few hyperparameters would suggest a proper parametric
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model form for further inference. The parametric model may then be applied for sampling highly
discretized control domains without the computational constraint of a large covariance matrix.

The proposed methodology has demonstrated the capability to infer a physical dependence of 5182
aluminum material properties on the temperature at which the material is being loaded, producing
an empirical model to be coupled with the existing VPSC physics-based model. These results show
the promise of Gaussian process inverse analysis to demystify influential thermo-mechanical
relationships underlying complex materials implemented in engineering and science today. The
case study presented with 5182 aluminum also illustrates a path forward for continued
development of the method to provide empirical constituent models dependent upon more than
one operational state. Furthermore, the possibility of missing physics of the computer model as a
consequence of missing model parameters resulting in a level of discrepancy bias remaining is
recognized. Hence, discrepancy should also be included in this calibration framework.
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