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Abstract 
 

A validation is reported for micromechanical simulation using a reimplementation of an 

elasto-viscoplastic FFT-based (EVPFFT) formulation, i.e., the Micromechanical Analysis of Stress-

strain Inhomogeneities with fast Fourier transform (MASSIF) code, against experimental data 

obtained from synchrotron x-ray diffraction. The experimental data was collected during in-situ 

deformation of a titanium alloy specimen by High Energy Diffraction Microscopy (HEDM), which 

provided the average elastic strain tensor and orientation of each grain in a polycrystalline 

sample. MASSIF was used to calculate the local micromechanical fields in a Ti-7Al polycrystalline 

sample at different load levels. The initially attempted simulation showed that, although the 

effective response was calibrated to reproduce the experiment, MASSIF was not able to 

reproduce the micromechanical fields at the scale of individual grains. The differences between 

calculated and measured averages at the grain scale were related to initial residual strains 

resulting from the prior processing of the material, which had not been incorporated in the 

original calculation. Accordingly, a new simulation was instantiated using information on the 

measured residual strains to define a set of eigenstrains, calculated via an Eshelby 

approximation. This initialization significantly improved the correlation between calculated and 

simulated fields for all strain and stress components, for measurements performed within the 

elastic regime. For the measurements at the highest load, which was past plastic yield, the 

correlations deteriorated because of plastic deformation at the grain level and the lack of an 

accurate enough constitutive description in this deformation regime. 
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1. Introduction 
 

Failure is the most general limitation in engineering applications of polycrystalline materials. 

In the absence of macroscopic stress concentrations, damage nucleation usually originates from 

deformation heterogeneities at the intergranular scale. Experimental techniques have been 

widely used to capture local heterogeneities in polycrystalline materials in an attempt to 

identify the regions where damage is most likely to nucleate [1]. While these experimental 

methods, including both in-situ and ex-situ measurements, are costly and time consuming, 

mesoscale modeling applied to engineering design can be a faster alternative. However, in 

order to apply mesoscale simulations to design novel materials, these models must be 

rigorously validated against experimental evidence at the relevant length scales. 

The validation of mesoscale modeling is usually performed by comparison with 

micromechanical measurements of attributes such as local strain fields, local crystallographic 

texture, and evolving shape of grains. Digital image correlation (DIC) is a common technique to 

measure local total (elastic + plastic) strain fields calculated from the relative displacement of 

points on the surface of a sample during deformation [2,3]. EBSD is another useful and common 

method utilized for model validation, by which the evolving shapes and orientations of grains 

on a surface during deformation are determined [4–6]. Nevertheless, DIC and EBSD only 

provide information from the surface of the sample, while sub-surface microstructural 

information is not accessible without serial sectioning. Serial sectioning combined with EBSD, 

known as 3D-EBSD, provides information on the three-dimensional (3D) microstructure and 

shape of grains [7–9]. However, the destructive nature of 3D-EBSD means that only the final 

state of the sample can be evaluated; model validation studies that utilize an experimentally 

measured microstructure must therefore be limited to small amounts of deformation [10]. It 

also means repeated scans of the same volume to assess the evolution of micromechanical 

state are not possible. 

High-Energy Diffraction Microscopy (HEDM) – an in-situ and a non-destructive experimental 

technique – can provide simultaneous measures of the microstructure and micromechanical 

state for O(103) grains comprising a mesoscopic volume during deformation [11–13]. Far-field 

HEDM (ff-HEDM) provides average orientations, elastic strain tensors, centroidal coordinates, 

and relative volumes on a per-grain basis [14–16],  while near-field HEDM (nf-HEDM) provides 

spatially-resolved crystallographic orientation maps, which reveal both grain morphology as 

well as intragranular misorientation [17,18]. Pokharel et al. [1] showed that mesoscale models 

can successfully predict global quantities such as effective stress, strain, and crystallographic 

texture, whereas agreement deteriorates between the predicted inter- and intragranular fields 

and those measured by HEDM. Turner et al. [19] performed crystal plasticity Finite Elements 

(CP-FEM) simulations on a virtual microstructure instantiated from an HEDM measurement to 

predict local micromechanical fields in a Ti-7Al specimen subjected to tensile deformation. The 
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results showed good agreement for the changes in elastic strain as a function of loading, but 

the simulation was not able to accurately reproduce the intergranular stresses. They concluded 

that the lack of consideration of the initial residual stress in the material was the main source of 

disagreement between calculated and simulated results. One of the key contributions of this 

work is to show that the incorporation of the initial residual stress distribution allows for better 

predictions of the intergranular strain values following deformation. 

Grain-level residual stresses may be produced in a material as a result of thermomechanical 

processing history [20] and have been previously observed in Ti-7Al [21] as well as other 

materials [16,22] using ff-HEDM. The use of ff-HEDM to measure the initial residual stress state 

allows for the opportunity to incorporate this information into mesoscale modeling. In this 

work, we utilize HEDM data of Ti-7Al measured by Turner et al. [23], and use the 

Micromechanical Analysis of Stress-Strain Inhomogeneities with fast Fourier transforms 

(MASSIF) code, which is a parallelized version of the original elasto-viscoplastic FFT-based 

(EVPFFT) code [24] with Hierarchical Data Format (HDF) input/output [25], to simulate the 

uniaxial tension test.  This is done in combination with the method developed by Pokharel and 

Lebensohn [26] to instantiate the initial state of residual stresses in the micromechanical 

simulations. Next, we compare qualitatively and quantitatively the calculated micromechanical 

fields with the measured ones at grain scale for different macroscopic applied load levels, and 

describe the effect of residual stress on the predicted micromechanical fields. Finally, we 

discuss potential sources for the differences between calculated and measured fields at the 

grain scale.  

 
2. Materials and Methods 

 
As mentioned above, this work uses the results of an experiment performed by Turner et al. 

[19,23], in which microstructure and micromechanical fields in a single α-phase (HCP structure) 

titanium alloy (Ti-7Al) under tensile loading were characterized in-situ. This material is an 

interesting candidate for HEDM measurements and corresponding mesoscale modeling 

because of its elastic and plastic anisotropy. The cast material was subjected to 

thermomechanical processing [19,23] to obtain a single α-phase microstructure with ~100 µm 

average grain size and strong basal texture parallel to the direction 3 as shown in Fig. 1(a). The 

tensile sample was mounted with the tensile axis parallel to the direction 2 with respect to the 

sample reference frame.  

Before applying any mechanical loading, initial ff-HEDM was performed to measure the 

centroid, orientation, and initial elastic strain tensor in each grain, and nf-HEDM to map the 

orientation field in the central portion of the sample. Fig. 1(b) shows the measured ff-HEDM 

dataset in three dimensions. The three-dimensional microstructure used as input for our 

simulations was constructed by Voronoi tessellation using the measured grain centroid 
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positions as seeds. The ff-HEDM data set contains 550 grains in a unit cell with dimensions of 200 × 150 × 200 voxels. Fig. 1(c) shows the grain morphologies of 69 grains in the central 

region of the far field volume where nf-HEDM data was available (detailed information of this 

experiment can be found in [23]). Although initial ff-HEDM measurements were sought in an 

unloaded state, there was in fact a small axial loading of 23 MPa that resulted from the 

procedure of mounting the sample in the grips. This point will be extensively discussed in the 

initial Eigenstrain field section. 

To further measure the elastic strain tensor in each grain at different load levels, uniaxial 

loading was applied on the tensile sample up to three different loads, designated as load 1, 

load 2, and load 3 in Fig. 2(a), and ff-HEDM measurements were performed at each load. In the 

course of performing the analysis for this work, several errors were discovered in the published 

data archive [23]. First, the entry in the HDF5 archive for load 3 was found to be a duplicate of 

load 2. Second, a critical figure of merit for ranking the grains – discussed further below – was 

omitted. With the aim of facilitating future studies, Bernier, Shade, and Turner plan to submit 

an erratum to correct these issues, and also provide a more detailed description of the critical 

parameters used in the data reduction. 

There are two steps to the ff-HEDM analysis used to generate the grain-based data in [23]: a) 

indexing, in which orientations are assigned to the measured intensities in the rotation series; 

and b) subsequent fitting, in which parameters for orientation (3), center-of-mass coordinates 

(3), and lattice stretch (6) are optimized for each orientation (grain) for a total of 12 

parameters. Each step has an associated figure of merit used to cull and rank the results. For 

indexing, the figure of merit is “completeness” – the ratio of expected to predicted diffraction 

signals above a specified threshold and within a specified angular tolerance. The completeness 

serves as a minimum threshold of acceptance for an orientation to be labeled as a valid grain, 

and several factors must be considered in defining a suitable threshold. In general, the indexing 

process uses the first 5-6 Bragg reflections having the highest structure factor to avoid biasing 

out small grains. For these data, the minimum completeness was defined over the first five HCP 

reflections as 67 %, which yielded 605 orientations. Each orientation is subsequently fit using a 

forward-projection method to extract the associated diffracted beam vectors [15], yielding 

three components for each observed reflection over a minimum intensity threshold [15]. Fitting 

is typically performed over a larger range of reciprocal space than (orientation) indexing for 

additional strain resolution; in this case all reflections up to ~0.68 Å, which on average yielded 

~75 reflections per grain. The 12 grain parameters are optimized in a non-linear least squares 

problem formulated over the predicted and measured diffracted beam vector components.  

Accordingly, the objective function that is minimized is the sum of squared residuals, which are 

computed as the differences between the measured and calculated reciprocal lattice vectors 

for each grain. The final figure of merit for ranking grains post-refinement is defined as the sum 

of squared residuals of diffracted beam vector coordinates normalized by the total number of 
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degrees of freedom in the fit (i.e., the number of measured diffracted beam vector components 

divided by 12). There are many causes for grains with otherwise high completeness to have 

poor post-refinement figures of merit in ff-HEDM data reduction, the most common being due 

to overlapped reflections and/or reflections with a large angular extent resulting from 

substantial intragranular misorientation.  It is also possible for a small number of spurious 

orientations to persist through the indexing step. For this reason, the criterion for including a 

grain for comparison to simulated results is for the normalized sum of squared residuals to be ≤ 

10-3.  This culls the original 605 orientations down to 550 valid grains. 

 

3. Micromechanical Model 
 

A polycrystalline material is an aggregate of grains with different orientations. The difference 

in orientation between neighboring grains combined with the anisotropic elastic and plastic 

single crystal response causes local heterogeneities at the grain scale when the polycrystalline 

material is subjected to an external loading. These local heterogeneities can be the source of 

localized stress/strain regions in the microstructure, and consequently facilitate damage 

nucleation at the grain scale [27]. To predict local micromechanical fields at the grain scale, we 

use MASSIF code, which is based on the elasto-viscoplastic fast Fourier transform-based 

(EVPFFT) model of Lebensohn et al [24]. The FFT-based formulation, originally developed by 

Moulinec and Suquet [28] for linear composites, was improved by Michel et al. [29] in terms of 

its numerical convergence, to allow accurate prediction of local micromechanical fields in non-

linear composites. Lebensohn et al. [24] developed an elasto-viscoplastic version of the latter 

formulation for micromechanical predictions of plastically-deforming polycrystals. FFT-based 

methods use input from an image of the initial microstructure discretized on a regular grid, and 

calculate local strain and stress fields at each grid point that respectively fulfill equilibrium and 

compatibility, under the applied boundary conditions. EVPFFT/MASSIF is based on small strain  

kinematics [24] (a simplified assumption whose adoption is justified in this case due to the 

relatively small plastic deformation—even at the highest load—and, consequently, very minor 

lattice rotations) and uses the following constitutive relation between local strain and stress: 

 

���	
� = ���
 	
� + ���� 	
� = ������� 	
����	
� + ����,�	
� + ����� 	
, ��Δ� (1) 

 
where ���	
� is the local total strain at each grid point x, and is calculated as summation of the 

local elastic strain ���
 	
� and local plastic strain ���� 	
�. Elastic strain is computed via Hooke’s 

law at each point. Plastic strain after each time increment ∆t, is calculated based on an Euler 

discretization for the time integration of the local plastic strain rate, which is given by: 
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where ��� is a reference shear rate, Ns is the total number of slip systems,	 ! is the symmetric 

Schmid tensor for each slip system, �$ is the deviatoric stress tensor, %!  is the critical resolved 

shear stress (CRSS) in slip system s, and n is the rate-sensitivity exponent. The local CRSS and 

Schmid tensor are updated at the end of each strain step. The evolution of local CRSS at each 

point is calculated in this work by the Voce hardening law given by: 

 

∆%2 = 3%̅23Γ �ℎ27
7

��7  
 

(3) 

 

%̅2 = %� + 	%� + 8�Γ� 91 − exp	=− 8�Γ%� >? 
(4) 

 

Based on this, the hardening rate, 
@ABC
@D , for each slip system is given by: 

 3%̅23Γ = 8� + =E8�%� E %� − 8�> F
G =−Γ E
8�%�E> + E

8�%�E 8�ΓF
G =−Γ E
8�%�E> 

(5) 

 
 

where %2  is the critical resolved shear stress in slip system H, ℎ27 is the latent hardening 

showing how slip activity in slip system I harden the occurrence of slip in slip system H, ��7 is 

the shear rate of slip on system	I, Γ is the accumulated slip across all slip systems, and %�, %�, 8�, 8� are the Voce hardening law parameters. 

The current MPI implementation of MASSIF implements reading and writing data with 

parallel HDF libraries [25], which significantly increases the overall speed of simulations. The 

current simulation on a grid with 216	 × 	150	 × 216 points required a total time of 446 

seconds per each strain step using 54 processors on Bridges at the Pittsburgh Supercomputing 

Center, of which reading the input image and writing the output fields required 0.633 and 2.304 

seconds, respectively.   

 
4.   Simulation Instantiation 
 

In order to compute local micromechanical fields in the Ti-7Al alloy, we performed MASSIF 

simulations under uniaxial tension along the direction 2 on the measured ff-HEDM volume. We 

padded the HEDM microstructure with an 8-voxel buffer zone that has infinite compliance [30] 

in the direction 1 and direction 3; the calculation is thus periodic from a numerical point of view 
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but the loaded material is isolated in the directions 1 and 3. In direction 2, however, the top 

and bottom ends are in (periodic) contact, but a previous study [31] suggests that the errors 

introduced in the local fields by this spurious contact die down a few layers away from that 

location and have little impact on the overall results. 

 

4.1 Initial Eigenstrain Field 

 
If the undeformed material contains residual stresses, these need to be considered as the 

initial condition of the micromechanical calculation. The residual stresses are measured via ff-

HEDM as an elastic strain tensor in each grain. To approximate the initial micromechanical state 

in the material, these measured strains are converted to eigenstrains on a per-grain basis, 

which are then equilibrated in the first step of the simulation, to (ideally) reproduce the 

measured average elastic strains in the grains.  For this, Eq. (1)  was expanded by Pokharel and 

Lebensohn [26] to include a set of eigenstrains ���∗ 	
� to give: 

 

���	
� = ���
 	
� + ���� 	
� + ���∗ 	
� = ������� 	
����	
� + ����,�	
� + ����� 	
, ��∆� + ���∗ 	
�   (6) 

 

 The first step in the method presented in [26] gives an initial approximation of the relation 

between a uniform eigenstrain in each grain (i.e. ���∗ 	
� = ���∗,L), and the measured average 

elastic strain ���
,L  in the grain, using the following relation: 

 ���∗,L = 	M���� − N����������
,L (7) 

 

where  M����  is the Eshelby tensor, and N���� is the fourth-rank identity matrix. The Eshelby 

tensor is computed using the numerical solution given by Lebensohn et al. [32]. As noted 

above, the intention of introducing these eigenstrains is to obtain upon equilibration an elastic 

strain field whose grain averages match the measured residual elastic strains in the grains. 

While the ideal case corresponds to an unloaded state so that the initial strains are purely 

internal, the initial measurements for the Ti-7Al specimen were performed under a 23 MPa 

axial loading, due to limitations of the loading system used at the time. Thus, an additional 

challenge in this work was to consider the macroscopic contribution to the internal elastic 

strain in the initial state. To this end, we computed the average elastic strain tensor imposed by 

the applied 23 MPa at load 0 as: 

 

O�� = ∑���
,LQ� × QR × QS 
(8)  
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where O�� is the average of the elastic tensor in the ff-HEDM dataset, ∑���
,L is the summation 

of the elastic tensor measured by ff-HEDM, and Q� ×QR ×QS is the total number of points in 

the ff-HEDM volume, not including the buffer points. Then, the initial residual elastic tensor in 

each grain used in the eigenstrain calculation, Eq. (6), is given by: 

 ���T,L = ���
,L − O�� (9)  

 

where ���T,L	
� is the initial residual elastic strain at each point, and ���
,L	
� is the measured 

elastic strain tensor in each grain at load 0.   

As shown in [26], the instantiation of eigenstrains using Eq. 6 gives imperfect correlation 

between the calculated average elastic strains in the grains and those measured by HEDM at 

load 0. Therefore, a symmetric adjustment matrix I��, which should be determined from the 

data  by means of the methodology further described in [26], is used to improve the initial 

correlation at load 0, as follows: 

 ���∗,L = I��	M���� − N����������T,L          (no sum over ij) (10) 

 

5. Results 
 

Figure 2(a) shows the macroscopic stress-strain curve calculated by MASSIF using the elastic 

stiffness matrix [33] and calibrated Voce hardening parameters from a different study of Ti-7Al, 

in which the material was deformed beyond the elastoplastic transition into the fully-plastic 

regime [34] given in table 1 and table 2, respectively. The load 1 and load 2 points are on the 

same straight line from the origin whereas load 3 point deviates from linearity, indicating that 

the material had already undergone some degree of plastic deformation. 

As mentioned before, HEDM measures a grain-averaged elastic strain tensor for each grain, 

and consequently a single stress tensor is deduced from the measured elastic tensor in each 

grain using Hooke’s law:  

 ���L = �����! ���
,L   

�����! = )�U��)�'��)����)�V���U'�VW  

(11) 

 

where ���L and ���
,L		 are the stress tensor and the measured elastic strain tensor in each grain, 

expressed in the sample reference frame, respectively. �����!  is the elastic stiffness tensor in the 

sample reference frame, and �U'�VW  is the elastic stiffness tensor in the crystal reference frame 

given in table 1. )�� is the orientation matrix of each grain with respect to the sample reference 

frame. 
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Neither the measured elastic strain nor the deduced stress tensors reflect the local 

intragranular variations in strain and stress in each grain caused by the neighboring grains. 

Therefore, in order to compare the grain-averaged quantities measured by HEDM with the 

model predictions, we took the average value of the calculated stress/strain fields in each grain 

by linear addition of the local stress/strain  tensorial components in each voxel in each grain, 

and divided by the number of voxels in the grain. Figure 2(b) shows the poor correlation 

between the calculated and measured �RR values for the first strain state (load 0) without 

incorporating the residual stresses. As shown in Fig. 2(b), the value of predicted �RR varies from 

0.00018 to 0.00022 while the values of measured �RR vary from 0 to 0.0005, which means that 

the simulation under-predicted �RR at the grain scale. 

To improve the correlation between calculated and measured fields, we imposed 

eigenstrains in each grain calculated with Eq. 10 using the final adjustment factor matrix β 

following the methodogy of Pokharel and Lebensohn [26] (see appendix A for details): 

 

I�� = X 1.11 0.622 1.0590.622 0.85 0.6031.059 0.603 0.925] 
 

In the next two sections, we compare the calculated and measured micromechanical fields 

qualitatively and quantitatively. 

 
5-1 Comparison of Fields Mapped onto 69 Grains Measured by nf-HEDM 

 
Figures 3 and 4 compare the predicted and measured elastic strain and stress fields, 

respectively, at load 0 mapped onto the 69 grains measured by nf-HEDM. The figures show 

that, qualitatively, MASSIF predicted similar patterns of stress and elastic strain at the grain 

scale compared to those measured by HEDM at load 0. As expected, the grains experience the 

highest value of elastic strain/stress in the loading direction (direction 2). The values of the 

elastic strains in the direction 1 are higher than those in the direction 3. This is expected, given 

the observation from Fig. 1(c), that the stiffer crystal c-axis is on average aligned with the 

direction 3 of the sample. The figures illustrate the development of substantial intergranular 

heterogeneities in local stresses – including triaxiality – under the application of simple uniaxial 

loading.  

Figures 5 and 6 show the comparison between elastic strain and stress fields, respectively, 

along the loading direction, measured by HEDM and calculated by MASSIF at the grain scale at 

load 1, load 2, and load 3. The figures show that different patterns appear in the stress/strain 

fields in both the calculated and measured fields at different load levels. For example, some 

grains exhibit hot spots of stress and strain at a lower loading but become cold spots at a higher 

load level. By contrast, some grains show lower values of stress/strain fields in the initial 
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loading, but develop higher values of the fields at another load level. These observations reveal 

the complexity of deformation at the grain scale. 

Beyond the pictorial comparison presented in the previous figures, correlation plots 

between calculated and measured fields in the Ti-7Al HEDM dataset are presented in the next 

section as a means of quantitative comparison. 

 

5-2 Correlation between Fields Measured by HEDM and Calculated by MASSIF 
 

Figures 7 and 8 show correlation plots between each of the six components of the elastic 

strain and stress tensors, respectively, as calculated by MASSIF and measured by HEDM at 

load 0. The typical resolution quoted for the ff-HEDM technique is ±10-4 in strain, which is 

shown as a horizontal bar on each plot; this scatter is comparable to (and smaller than) the 

width of the point cloud in each case, which seems reasonable. Again, note that the ff-HEDM 

measurements are grain-averaged, so the calculated values are also averages over each 

individual grain. In each figure, the points represent 550 grains in the ff-HEDM dataset, with the 

actual linear regression line and the perfect correlation (y=x) line, which are shown in all plots 

in blue and red, respectively. We plotted the prediction interval as the purple dash lines in the 

correlation plots. The interval means the area in which you expect 95 % of all data points to fall. 

The plots suggest that there are meaningful correlations for all six components at load 0, and 

that the initialization of plastic strain with eigenstrain significantly improved the correlations. 

However, there are few grains in the plots having the larger deviation from the center of gravity 

in each correlation plot. For these outlier grains, the predicted and measured components are 

not in a good agreement. To decrease the effect of outliers on the linear regression estimation, 

robust regression is an alternative method [35], which iteratively assigns weight to the outlier 

points to minimize the residual standard error in the fitting. To first order, the weight applied to 

an individual point is decreased if it strongly affects the slope of the fitted line.  As shown in 

Figs. 7 and 8, the (green) robust regression line, is almost the same as linear regression, 

indicating that outlier points (grains) do not significantly influence the linear regression at 

load 0.  

As mentioned earlier, HEDM experiments measured only the elastic strain components, 

which means that the stress values were derived quantities using Eq. (11). Consequently, the 

stress and strain correlation plots are almost the same at load 0, as shown in Figs. 7 and 8. 

Therefore, as a validation of the simulation results, we only compare measured and calculated 

elastic strain at the subsequent load levels. Figure 9 shows correlation plots between the 

diagonal component in the loading direction (�RR� and one shear component (��R� of the elastic 

strain tensor, as measured by HEDM and calculated by MASSIF for load 1 to load 3. As shown in 

the correlation plots, the two regression methods predict the same fitted line, and the 

deviation of the regression line noticeably increases from the y=x line with increasing load. The 
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actual regression lines track very close to the ideal correlation for load 1, at which the grains are 

still overwhelmingly deforming in the elastic regime. However, the increasing deviation at load 

2 to load 3 is likely due to an increasing number of grains deforming plastically. The several 

factors that affect these correlations are discussed in the next section.  

 

 

 

6. Discussion 
 

The α-phase titanium alloy Ti-7Al modeled in this work has a hexagonal close packed crystal 

structure. Residual stresses (at the grain scale) arise during thermomechanical processing 

because of anisotropic thermal expansion, for example [20,36]. In our formulation, eigenstrains 

encompass inelastic strains of different origins, such as thermal strains, misfit strains, previous 

plastic strains or transformation strains. As mentioned in section 4, to consider the initial 

micromechanical state of the material in our calculations, we used an eigenstrain field to 

instantiate the measured residual strains. Although this instantiation significantly improved the 

level of agreement between calculated and measured fields, Fig. 2 shows that the calculated 

macroscopic stress-strain curve is not sensitive to the addition of an initial eigenstrain field. This 

is reasonable because, by definition, eigenstrain is a stress-free strain existing under zero 

applied stress, and the incorporation of eigenstrain does not change the volume average of the 

stress field.  

As described previously, to calculate eigenstrain in each grain, we used an expression 

involving the Eshelby tensor. The calculated eigenstrain values do not give a perfect correlation 

between calculated and measured fields at load 0, so we used an adjustment factor, described 

in [26], to optimize the correlation. The imperfect correlations can be the result of several 

assumptions made in the original Eshelby approximation. According to the latter, eigenstrain 

values are computed for a spherical inclusion embedded in an infinite homogeneous matrix. 

However, the shapes of grains deviate from spherical, which introduces deviations from the 

Eshelby approximation. In addition, our sample is a polycrystalline aggregate, which is neither 

infinite nor homogeneous. Therefore, the nearest neighbor interactions can be different from 

those idealized for grains embedded in a homogenous matrix. Furthermore, the finite matrix 

also can be the source of some adverse effects on the correlations [26]. 

As mentioned earlier, the correlation between experiment and simulation becomes 

gradually weaker, and is weakest at load 3. The slope of the fitted line can be related to the 

number of grains deforming plastically at each load level. The amount of slip at each point x 

strongly depends on the Voce hardening parameters. The adopted initial CRSS’s of each slip 

mode shown in table 2 are in agreement with another study on Ti-7Al [33], which showed that 

prismatic slip is the easiest slip mode, basal slip activates at a higher stress than prismatic slip, 
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and pyramidal <c+a> slip is the hardest slip mode among the three modes. The other hardening 

parameters (%�, 8�, 8�) can only be accurately determined from macroscopic stress-strain 

behavior beyond the incipient plastic strain reached in the present experiment. Therefore, we 

adopted the same hardening parameters as in [32]. However, the comparison of results of 

other experiments/simulations performed on α-phase titanium ([32-34]) show that each slip 

mode can have different hardening parameters. Consequently, to improve the correlations at 

load2, and especially at load3, there is a need to gather more data in the plastic region of the 

macroscopic stress-strain curve for a more accurate calibration of the hardening parameters. In 

addition, Pokharel et al. [1] reviewed the literature on comparisons of experimental 

measurements of texture change at the grain scale with full field crystal plasticity simulations 

and reached the conclusion that there are no examples of good agreement at the local level. 

This suggests that further research will be required to attain good agreement at the grain scale 

and below even when texture development and stress-strain behavior is well matched at the 

sample scale. 

 

7. Conclusion 

 

We performed a set of fully 3-dimensional elasto-viscoplastic micro-mechanical calculations 

with the MASSIF code on a voxelized instantiation of a Ti-7Al specimen, which was 

characterized by far-field and near-field HEDM. The predicted and measured intergranular 

strain fields developed under tensile loading were compared on a per-grain basis. Excellent 

agreement was obtained for all components of elastic strain at the first two load states, thereby 

validating the simulation approach in this regime. Thereafter, the agreement deteriorated as 

plastic yield was approached, most likely because of highly localized plastic activity and the lack 

of an accurate enough constitutive description in this deformation regime. The agreement, 

however, was better for the off-diagonal components of strain than the diagonal components. 

Initial residual stress played a key role in the accuracy of the calculated results. Without 

incorporating residual stress in the calculations via an eigenstrain approach, there was no 

meaningful correlation between the calculated and measured fields at the grain scale, even 

though the MASSIF simulation was calibrated to reproduce the macroscopic stress-strain curve.  

This result in particular highlights the critical need for continued polycrystal plasticity model 

validation using data measured in situ at the intergranular mesoscale.  
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Appendix A  

 

Calculation steps for I�� : 
 

1. In each grain, use the Eshelby approximation (Eq. A.1) to calculate the eigenstrain from 

the measured initial elastic strain. 

 ���∗,L = 	M���� − N����������T,L A.1 

 

Here ���∗,L , ���T,L, M����, and N���� are the eigenstrain, initial residual elastic strain, Eshelby 

tensor, and fourth-rank identity matrix, respectively. 

 

2. Instantiate MASSIF calculation using the eigenstrain calculated with Eq. A.1 

 

���	
� = ���
 	
� + ���� 	
� + ���∗ 	
� = ������� 	
����	
� + ����,�	
� + ����� 	
, ��∆� + ���∗ 	
� A.2 

 

The details of Eq. A.2 are described in the manuscript (Eq. 1 and Eq.6). Figure A.1 shows the 

correlation plots for each of the six elastic strain components calculated by MASSIF, based 

on the Eshelby approximation (Eq. A.1), compared with the values measured by ff-HEDM in 

each grain at load 0. 

 

3. Calculate the I��  
 

As shown in figure A.1 based on the Eshleby approximation (Eq. A.1), the correlation plots 

show deviations of the linear regression (blue lines) from the ideal one-to-one correlation 

(red lines). To bring the calculated strain values closer to the ideal one-to-one correlation 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 14 

lines, i.e., improve the correlation, an adjustment factor I�� is calculated as the inverse of 

the slope of the regression line for each component. Table A.1 lists the values of I�� and 

slope from linear regression for all six components. 

 
Table A.1: Slope and y-intercept values from the linear regression for each elastic strain component at load 0, 

calculated by MASSIF based on the Eshelby approximation (Eq. A.1) and the values measured by ff-HEDM. Each 

adjustment factor I�� is the inverse of slope of the corresponding regression line in figure A.1.  

 ��� ��� �RR �SS ��R ��S �RS 

Slope  �� 0.902 1.177 1.077 1.607 0.944 1.659 

y-intercept −1.58F��_ −1.49F��_ −2.13F��a −6.71F��a −2.51F��c −1.83F��a 

Adjustment factor I�� 1.11 0.85 0.925 0.622 1.059 6.03 

 

4. Calculate adjusted eigenstrain values (Eq. A.3) by using the adjustment factors I�� (Table 

A.1) 

 ���∗,L = I��	M���� − N����������T,L          (no sum over ij) A.3 

 

5. Instantiate the MASSIF calculation by using the new eigenstrain values calculated with 

Eq. A.3. 

 

Figure 7 in the manuscript shows the new correlation plots between calculated and 

measured values at load 0, after adjusting the eigenstrain using Eq. A.3 with the numerical 

values of I�� given in Table A.1. 
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Table 1: Elastic constants used in MASSIF simulation [33]  

 

 ��� ��R ��S �SS �__ �cc 

Values in GPa 162.4 92 69 180.7 46.7 35.2 

 
 
 
 
Table 2: Voce hardening parameters for different slip modes  
 

Slip modes %�(MPa) %�(MPa) 8�(MPa) 8�(Mpa) 
Prismatic 220 5 35 30 

Basal 245 5 35 30 
Pyramidal <c+a> 388 5 35 30 
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Figure captions 

 

Fig. 1. (a) (0001) pole figure for grains based on the far field HEDM measurements. (b) 

Voronoi tessellation for representation of ff-HEDM data containing 550 grains; (c) a set of 69 

grains in the middle plane of Fig. 1b measured by near field HEDM, with color based on the 

grain identification number.  

 

Fig. 2. (a) measured macroscopic stress-strain responses, and stress-strain curves calculated 

by MASSIF under uniaxial tension, (b) correlation at load 0, i.e., the initial load state, between 

the e22 component measured by HEDM and calculated by MASSIF at grain scale for 550 grains 

without eigenstrain calculation of the initial residual stress state. The red line corresponds to a 

one-to-one correlation and the blue line to the result of linear regression, clearly indicating that 

the calculated response does not correspond to the measurements.   

 

Fig. 3. Elastic strain for the set of 69 grains at load 0, comparing values of each leading 

diagonal component measured by HEDM with those calculated by MASSIF. Note that in this and 

all succeeding figures, eigenstrain instantiation of the initial residual stress state was used. 

 

Fig. 4. Stress for the set of 69 grains at load 0, comparing values of each leading diagonal 

component deduced from HEDM measurements with those calculated by MASSIF. 

 

Fig. 5. Elastic strain for the set of 69 grains, comparing values of e22 measured by HEDM and 

those calculated by MASSIF at load 1, load 2, and load 3. 

 

Fig. 6. Stress for the set of 69 grains, comparing values of �22 measured by HEDM and those 

calculated by MASSIF at load 1, load 2, and load 3. 

 

Fig. 7. Correlation plots for all six elastic strain components as calculated by MASSIF versus 

measured by HEDM for 550 grains at load 0. The red line is the desired one-to-one correlation. 

The results of linear and robust regression are both close to one-to-one. The purple dash lines 

represent the prediction interval (PI). The expected 10-4 resolution (in strain) for the ff-HEDM is 

indicated by a dumbbell in the lower left corner of each plot. 

 

Fig. 8. Correlation plots for each stress component as calculated by MASSIF versus deduced 

by HEDM for 550 grains at load 0. The red line is the ideal correlation. The results of linear and 

robust regression are both close to the ideal correlation. The purple dash lines represent the 

prediction interval (PI). 
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Fig. 9. Correlation plots for two elastic strain components as calculated by MASSIF versus 

measured by HEDM for 550 grains at load 1, load 2, and load 3. The strain values in the loading 

direction (2) increase whereas the shear component remains centered on zero. The red line is 

the desired one-to-one correlation; the blue line represents a conventional least squares fit 

whereas the green line represents a robust regression that minimizes the influence of the 

outliers and, in most cases, is close to the (red) one-to-one line. The purple dash lines represent 

the prediction interval (PI). 

 

Fig. A.1 Correlation plots for all six elastic strain components as calculated by MASSIF versus 

measured by HEDM for 550 grains at load 0 based on Eshelby’s approximation (Eq. A.1) 
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● ε11

y=x
linear regression
Robust regression
PI = 0.95
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● ε22
y=x
linear regression
Robust regression
PI = 0.95
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● ε33
y=x
linear regression
Robust regression
PI = 0.95
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● ε12
y=x
linear regression
Robust regression
PI = 0.95
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● ε13
y=x
linear regression
Robust regression
PI = 0.95
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● ε23
y=x
linear regression
Robust regression
PI = 0.95
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● σ11

y=x
linear regression
Robust regression
PI = 0.95
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● σ22
y=x
linear regression
Robust regression
PI = 0.95
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● σ33
y=x
linear regression
Robust regression
PI = 0.95
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● σ12
y=x
linear regression
Robust regression
PI = 0.95
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y=x
linear regression
Robust regression
PI = 0.95
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