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Abstract

We study the stability of current filaments produced by the Weibel, or current filamentation,

instability in weakly magnetized counter-streaming plasmas. It is shown that a resonance exists

between the current-carrying ions and a longitudinal drift-kink mode that strongly deforms and

eventually breaks the current filaments. Analytical estimates of the wavelength, growth rate and

saturation level of the resonant mode are derived and validated by three-dimensional particle-in-cell

simulations. Furthermore, self-consistent simulations of counter-streaming plasmas indicate that

this drift-kink mode is dominant in the slow down of the flows and in the isotropization of the

magnetic field, playing an important role in the formation of collisionless shocks.
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Collisionless shocks are ubiquitous in astrophysical plasmas and are known to be effi-

cient particle accelerators [1, 2]. Non-thermal acceleration requires the generation of waves

and magnetic turbulence in the vicinity of the shock, which can efficiently scatter parti-

cles between the upstream and downstream regions, leading to a first order Fermi-type

process [1, 3–5]. Collective plasma phenomena play an important role in the slow down

of the flows and in determining the nature of the field structure at the shock [6, 7]. The

dominant plasma processes depend on both the flow and ambient medium conditions, and

are not yet fully understood. Particle-in-cell (PIC) simulations have significantly increased

our ability to study the kinetic processes associated with shock formation and particle ac-

celeration [8–13]. In particular, for initially weakly magnetized environments, it has been

shown that the interpenetration of counter-streaming plasmas is mediated by the Weibel, or

current-filamentation, instability (hereafter referred simply as Weibel instability) [14–16].

The Weibel instability is triggered in an anisotropic momentum distribution configu-

ration. In counter-streaming plasmas, it generates strong current filaments and amplifies

magnetic field fluctuations of wavevectors transverse to the flow direction. It is known to

be the fastest electromagnetic process for comparable flow densities and relativistic counter-

streaming velocities, either for electron-ion or pair plasma [17]. Recent experiments [18, 19],

and earlier simulations [8, 20], have also demonstrated that this instability can be dominant

in the non-relativistic regime. While the linear phase of the instability has been widely

studied, the nonlinear phase is not yet completely understood. After saturation, the current

filaments can be unstable to secondary instabilities such as filament merging [21]. Previ-

ous theoretical and numerical studies indicate that during the early nonlinear phase, the

filaments coalesce and lead to the increase of the dominant transverse magnetic wavelength

[22–26]. However, the strong slow down of the ions and the onset of the turbulent — stochas-

tic and nearly isotropic — magnetic fields observed in the vicinity of the shock front remains

unexplained. In particular, it is not yet clear which microscopic process mediates the longi-

tudinal evolution of the current filaments and how that affects the slow down of the flows

and the magnetic field structure of the shock.

In this Letter, we show for the first time that the current filaments produced by the

Weibel instability are unstable due to a resonance between the drifting (current-carrying)

ions and a drift-kink mode. This resonance occurs for a longitudinal wavelength that is

significantly larger than the radius of the filament and the ion skin depth c/ωpi (c is the
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speed of light and ωpi is the ion plasma frequency), and leads to the violent breaking of the

filaments and slow down of the ions. Our analytical estimates for the resonant wavelength,

growth rate, and saturation level of this instability are verified by 3D PIC simulations, both

for a single filament case and for a large number of filaments generated self-consistently in

the interaction of large-scale counter-streaming plasmas. Our simulations further show that

the drift-kink mode is dominant in the isotropization of the magnetic field in these systems

and must be taken into account for accurately describing shock formation and its structure.

In order to study the stability of current filaments produced in counter-streaming plasmas,

we start by considering the current and magnetic field configuration at the saturation of the

ion Weibel instability. At this stage, the current is primarily carried by the cold ions. The

hot electron background provides a screening current and supports the magnetic pressure,

such that J0 = en0(Zvi − ve) = eZn0κvi and n0kBTe ≈ B2
0/(2µ0), where κ = c/(ωpeR0) is

the approximate screening factor [24, 25]. Here, n0, R0, and B0, are the filament plasma

density, radius, and magnetic filed, ve(vi) and −e(eZ) are the electron (ion) velocity and

charge, Te is the electron temperature, and kB and µ0 are the Boltzmann constant and the

vacuum permeability. The Weibel instability saturates when the bounce frequency of the ions

inside the filaments, ωB = (2πZeB0vi/(λBmi))
1/2, becomes comparable to the growth rate

of the instability ΓW ' (vi/c)ωpi [16], where λB ≡ 4R0 is the transverse wavelength of the

magnetic field. Given that the most unstable wavelength is λB ' c/ωpi, the magnetization

at saturation is σ = B2
0/(µ0nimiv

2
i ) ≈ 0.025. Thus, at this stage, while the electrons are

well magnetized, the ions remain unmagnetized.

Kinetic theory is needed to evaluate the stability of the filaments with λB ∼ k−1 ∼ ρi

(where ρi is the ion gyroradius), but complete analytical solutions are challenging. We

note that similar problems arise in the stability analysis of a current sheet in magnetic

reconnection [27–32]. It is known from magnetohydrodynamics and two-fluid theory that

under such conditions, the current structure can be unstable to kink-type modes [31, 33],

which propagate with a phase velocity ω/k ≈ vi [31]. Furthermore, this can give rise to

resonances between the cold drifting ions and this mode, as noticed in the kinetic study of

the drift-kink instability in current sheets [30], but their impact in these systems has not

been addressed.

We will consider the role of the drift-kink mode and associated resonances in the longi-

tudinal stability of current filaments mediated by the Weibel instability. More specifically,
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we will be looking for a resonance of the type ω = kzvi ± δω, where kz is the wavenumber

along the flow direction, and |δω| � |kz|vi. This resonance can be particularly violent when

ω ≈ ωB. In that case, while bouncing inside the filament, part of the ion longitudinal mo-

mentum is transferred to the transverse direction, creating locally a transverse current (J⊥,i).

The cold and unmagnetized ions (ρi & R0), will then interact via J⊥×B, leading to bunching

and coherent bouncing motion consistent with the kink deformation. The distance between

ions, δz, evolves as miδ̈z ' J⊥δB/n0, where δB ' µ0J⊥δz is the magnetic field induced by

J⊥ ' κJ⊥,i (neglecting the displacement current). We then obtain δ̈z ' δz(µ0J
2
⊥/eZn0mi),

from which we can estimate the growth rate of the ion modulations Γkink ' κv⊥,iωpi/c,

where v⊥,i ' ωBR0 is the typical ion transverse velocity during the bouncing motion. We

thus expect the resonance between bouncing ions and a drift-kink mode, to lead to strong

deformation of the current filaments, with a wavelength

λkink ' 2π
vi
ωB

' 2πα

√
R0ωpe

c

c

ωpi

, (1)

which has a growth rate

Γkink '
1

α

vi
c

√
meZ

mi

c

R0ωpe

ωpi, (2)

where α = 2/3(1) in cylindrical (slab) geometry. We note that this resonance wavelength

of current filaments produced by the Weibel instability can be significantly larger than the

most unstable wavelength of the drift-kink mode in a current sheet, kmax ∼ 1/R0 [32].

In order to validate our model for the deformation of current filaments due to ion res-

onance, we have performed 3D PIC simulations with the code OSIRIS 3.0 [34]. The sim-

ulations follow the evolution of a single current filament in a plasma, corresponding to the

conditions near the saturation of the Weibel instability, as described above. The initial sta-

ble configuration follows the same ideas of the well-studied Harris-type equilibrium [35] and

is obtained in our case by applying conservation of canonical momentum to a quasineutral

plasma with a current profile Jz = en0κvi = J0 cos[πr/(2R0)] for r =
√
x2 + y2 < R0, and

Jz = 0 elsewhere. Ions are cold and electron screening is taken into account. The mag-

netic pressure is supported by the electrons and the plasma density is uniform outside the

current filament. The simulations resolve the plasma with a cell size of 0.125c/ωpe, a time

step of 0.07 ω−1pe , and used 8 particles/cell/species and periodic boundary conditions. A

third order interpolation scheme is used for improved numerical accuracy. The transverse
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and longitudinal sizes of the simulation domain are L⊥ = 64c/ωpe and Lz = 1024c/ωpe for

mi/(Zme) = 100.

Figure 1(a,b) illustrates the evolution the current density for a simulation with R0 =

3c/ωpe (corresponding to λB = 1.2c/ωpi), J0 = 0.5en0c, and Te,0 = 0.4mec
2 at the center of

the filament. The growth of an m = 1 kink-type deformation on a time scale of ∼ 100ω−1pi

is clearly visible. The measured unstable wavelength is 7.8c/ωpi, in good agreement with

the prediction from Eq. (1), λkink = 7.3c/ωpi. The growth rate is also well approximated

by our estimate of Eq. (2) [Fig. 1(c)]. We further confirm that this kink perturbation

has phase velocity comparable to the ion velocity, as shown in Fig. 1(d). As the transverse

displacement of the current becomes comparable to the initial filament radius, the distortions

become strongly nonlinear, and the current is disrupted [Fig. 1(b)]. We observe that at this

stage (t ∼ 130ω−1pi ), the growth of the kink modulation saturates and there is an abrupt

decrease of the ion velocity (or current) [Fig. 1(f)]. This indicates that the kink-type

deformation of the current filament is critical for the slow down of the flows.

In order to confirm the importance of the ion resonance, and not simply a fastest growing

mode, we have repeated the simulation only changing the longitudinal box size to Lz =

32c/ωpe ' λkink/2. Figure 1(e) shows that in this case, the filament remains stable up to

the maximum simulation time of 314.9ω−1pi , indicating that indeed it is critical to capture

the resonance wavelength.

Our estimates for the resonance wavelength and growth rate have been compared with

additional 3D simulations for different R0, mi/(Zme), and vi. The results are illustrated in

Fig. 2(a,b), showing good agreement with our model.

The kink-type deformations observed in a single filament should also be present and

play an important role in the current-filamentation triggered self-consistently in counter-

streaming plasmas. In order to confirm this, we have performed 3D simulations of the

interpenetration of two symmetric, uniform, and cold electron-ion plasmas with z-aligned

drift velocities. The counter-streaming flows are initialized with Maxwell-Jüttner distribu-

tions with temperature Te,i = 1.28 × 10−8mec
2, drift velocity ve,i = ±0.7c, and mass ratio

mi/me = 128. We note that the high velocity and reduced mass ratio are chosen to optimize

the growth time of the Weibel instability, given the large level of computational resources

required by 3D simulations. We have used a time step ∆t = 0.25/ωpe and a mesh size

∆x = ∆y = ∆z = 0.5c/ωpe.
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Two 3D simulations have been performed in periodic geometry with Lx = Ly = 512c/ωpe,

one with Lz = 512c/ωpe, the other with Lz = 60c/ωpe. For both simulations, the electron-

Weibel instability grows first, saturates and isotropizes the electron population in less than

10ω−1pi . After this period, the ion-Weibel instability dominates the system, saturating around

t ' 40ω−1pi . At this stage, the transverse wavelength of magnetic field is λB ' 3c/ωpi. As

discussed in Refs. [22, 25, 26], for the simulation with a smaller longitudinal box, the nonlin-

ear dynamics of the system is then dominated by the merging of filaments, which increases

the dominant transverse magnetic wavelength while, heating the plasma. This is clearly ob-

served in Fig. 3(a) (Lz = 60c/ωpe), where filaments merge and their transverse wavelength

approaches the system size by t = 400ω−1pi . No significant longitudinal perturbations of the

filaments are observed. However, this changes drastically when the longitudinal simulation

size is increased to Lz = 512c/ωpe [Fig. 3(b)]. In this case, filament merging competes with

strong longitudinal deformations associated with the drift-kink mode. After t ' 200ω−1pi ,

the coherent transverse magnetic modes associated with the Weibel instability are no longer

observed.

We have analyzed the evolution of current density, and observe significant growth of its

transverse component, consistent with kink modulations. The effective kink growth rate is

in good agreement with our estimate from Eq. (2), Γkink ∼ 5.7 × 10−2ωpi [Fig. 4(a)]. The

longitudinal spatial distribution of J2
⊥, shows modulations with wavelength ' 10c/ωpi. This

is in very good agreement with the prediction of the resonance wavelength from Eq. (1),

λkink ' 12c/ωpi.

The kink-type deformations dominate the evolution of the system for t > 100ω−1pi and

are responsible for the rapid slow down of the flows [Fig. 4(b)]. For Lz < λkink, where

the resonance is not captured, the slow down of the flows associated with filament merging

occurs at a much slower rate. Furthermore, the longitudinal drift-kink mode also plays an

important role in the isotropization of the magnetic field. This is illustrated by comparing

the magnetic power spectrum at the saturation of the Weibel instability (before the growth

of kink-type modulations) and after the saturation of the drift-kink mode [Figs. 4(c,d)].

These results indicate that, in contrast with previous understanding, shock formation in

weakly magnetized plasmas involves the combination of two instabilities. First, the Weibel

instability produces strong current filaments and coherent near-equipartition magnetic fields.

Then, the current filaments are unstable to the drift-kink mode, breaking, and causing
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the slow down of the flows and isotropization of the magnetic fields. The wavelength and

growth rate of the kink-type deformation is well predicted by the resonance between the

current-carrying ions and the propagating drift-kink mode. We note that even in scenarios

where the resonance might not be present, e.g. in pair-plasmas, the drift-kink instability is

still expected to develop and play an important role in the nonlinear phase of the Weibel

instability [36].

High-energy-density laser-plasma experimental platforms, which have been recently devel-

oped to study non-relativistic collisionless shocks [18, 19, 37], could probe the microphysics

described in this work, in the near future. For the measured magnetic wavelength associ-

ated with the Weibel instability, λB ' c/ωpi [19], the longitudinal kink-type modulations

would develop with λkink ' 13.7(A/Z)1/2c/ωpi, where A is the atomic mass number of the

ions. The expected time scale for the kink-type deformation of the current filaments is

τkink = Γ−1kink ' 93.5(A/Z)3/4(c/vi)ω
−1
pi . For typical flow velocity vi = 1000 km/s, plasma

density n0 = 1020 cm−3, and A/Z = 2, this yields λkink ' 0.62 mm and τkink ' 5 ns, which

could be achieved at the OMEGA, NIF, or LMJ laser facilities.

In summary, we have found that the current filaments produced by the Weibel insta-

bility in counter-streaming plasmas are subject to violent kink-type deformations. This is

associated with a resonance between the drift velocity of the current-carrying ions and a

longitudinal drift-kink mode. Our analytical estimates for the resonance wavelength and

growth rate of the kink perturbations were observed to be in good agreement with 3D PIC

simulations. Furthermore, our simulations indicate that this drift-kink instability domi-

nates the slow down of the flows and the isotropization of magnetic fields, thus mediating

the formation of collisionless shocks. These findings can have important consequences for the

generation of magnetic turbulence and for particle injection in weakly magnetized shocks.
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FIG. 1. Evolution of the current density of a filament in a plasma with mi/me = 100, R0 = 3c/ωpe,

J0 = 0.5en0c, and Lz = 1024c/ωpe at (a) t = 114.2ω−1pi and (b), t = 137.4ω−1pi (projections are

shown in grey scale). (c) Comparison of the growth rate of J2
⊥ and Eq. (2) (dashed line). (d)

Space-time diagram of the transverse component of the current, averaged over r < R0. The dashed

black line corresponds to v = 0.4c. (e) Temporal evolution of the maximum ion drift-velocity.

(f) Current density for the same parameters and color scale of (a,b) but with Lz = 32c/ωpe, at

t = 314.9ω−1pi .
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FIG. 2. Comparison of the (a) wavelength and (b) normalized growth rate (Γ̄kink =

Γkink ω
−1
pi (mi/me)

1/2(c/vi)) of the kink deformation of the current density obtained in 3D PIC

simulations with the theoretical estimates of Eqs. (1) and (2). Red and blue circles corre-

spond to mi/me = 25 and 100, respectively. The three simulations have initial filaments with

radius and current density (R0 = 3c/ωpe, J0 = 0.5en0c), (R0 = 3.5c/ωpe, J0 = 0.5en0c), and

(R0 = 7.5c/ωpe, J0 = 0.08en0c).
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FIG. 3. 3D simulations of the evolution of the magnetic field in the interaction of initially unmagne-

tized counter-streaming plasmas with v0 = 0.7c and mi = 128me, at t = 400ω−1pi . The longitudinal

box size (along the flow direction) is (a) Lz = 60c/ωpe < λkink and (b) Lz = 512c/ωpe > λkink.
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FIG. 4. (a) Temporal evolution of the spatially averaged transverse current for the 3D counter-

streaming plasma simulation of Fig. 3(b) with Lz = 512c/ωpe > λkink. The corresponding expo-

nential growth ∝ exp(2Γkinkt) is calculated with Γkink given by Eq. (2) and is plotted as the solid

line. (b) Temporal evolution of the ion drift velocity for the simulations of Fig. 3(a) (triangles)

and Fig. 3(b) (circles). Bottom plots show longitudinal (solid) and transverse (dashed) magnetic

power spectrum (c) at saturation of the ion Weibel instability t = 40ω−1pi and (d) after the drift-kink

instability at t = 220ω−1pi for the simulation of Fig. 3(b).
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