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Abstract

We study the stability of current filaments produced by the Weibel, or current filamentation,
instability in weakly magnetized counter-streaming plasmas. It is shown that a resonance exists
between the current-carrying ions and a longitudinal drift-kink mode that strongly deforms and
eventually breaks the current filaments. Analytical estimates of the wavelength, growth rate and
saturation level of the resonant mode are derived and validated by three-dimensional particle-in-cell
simulations. Furthermore, self-consistent simulations of counter-streaming plasmas indicate that
this drift-kink mode is dominant in the slow down of the flows and in the isotropization of the

magnetic field, playing an important role in the formation of collisionless shocks.
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Collisionless shocks are ubiquitous in astrophysical plasmas and are known to be effi-
cient particle accelerators [1, 2]. Non-thermal acceleration requires the generation of waves
and magnetic turbulence in the vicinity of the shock, which can efficiently scatter parti-
cles between the upstream and downstream regions, leading to a first order Fermi-type
process [1, 3-5]. Collective plasma phenomena play an important role in the slow down
of the flows and in determining the nature of the field structure at the shock [6, 7]. The
dominant plasma processes depend on both the flow and ambient medium conditions, and
are not yet fully understood. Particle-in-cell (PIC) simulations have significantly increased
our ability to study the kinetic processes associated with shock formation and particle ac-
celeration [8-13]. In particular, for initially weakly magnetized environments, it has been
shown that the interpenetration of counter-streaming plasmas is mediated by the Weibel, or

current-filamentation, instability (hereafter referred simply as Weibel instability) [14-16].

The Weibel instability is triggered in an anisotropic momentum distribution configu-
ration. In counter-streaming plasmas, it generates strong current filaments and amplifies
magnetic field fluctuations of wavevectors transverse to the flow direction. It is known to
be the fastest electromagnetic process for comparable flow densities and relativistic counter-
streaming velocities, either for electron-ion or pair plasma [17]. Recent experiments [18, 19],
and earlier simulations [8, 20], have also demonstrated that this instability can be dominant
in the non-relativistic regime. While the linear phase of the instability has been widely
studied, the nonlinear phase is not yet completely understood. After saturation, the current
filaments can be unstable to secondary instabilities such as filament merging [21]. Previ-
ous theoretical and numerical studies indicate that during the early nonlinear phase, the
filaments coalesce and lead to the increase of the dominant transverse magnetic wavelength
[22-26]. However, the strong slow down of the ions and the onset of the turbulent — stochas-
tic and nearly isotropic — magnetic fields observed in the vicinity of the shock front remains
unexplained. In particular, it is not yet clear which microscopic process mediates the longi-
tudinal evolution of the current filaments and how that affects the slow down of the flows
and the magnetic field structure of the shock.

In this Letter, we show for the first time that the current filaments produced by the
Weibel instability are unstable due to a resonance between the drifting (current-carrying)
ions and a drift-kink mode. This resonance occurs for a longitudinal wavelength that is

significantly larger than the radius of the filament and the ion skin depth ¢/wy; (c is the
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speed of light and w,; is the ion plasma frequency), and leads to the violent breaking of the
filaments and slow down of the ions. Our analytical estimates for the resonant wavelength,
growth rate, and saturation level of this instability are verified by 3D PIC simulations, both
for a single filament case and for a large number of filaments generated self-consistently in
the interaction of large-scale counter-streaming plasmas. Our simulations further show that
the drift-kink mode is dominant in the isotropization of the magnetic field in these systems
and must be taken into account for accurately describing shock formation and its structure.

In order to study the stability of current filaments produced in counter-streaming plasmas,
we start by considering the current and magnetic field configuration at the saturation of the
ion Weibel instability. At this stage, the current is primarily carried by the cold ions. The
hot electron background provides a screening current and supports the magnetic pressure,
such that Jy = eng(Zv; — v.) = eZngkv; and nokpT, =~ B2/(2u0), where k = ¢/(wpeRo) is
the approximate screening factor [24, 25]. Here, ng, Ry, and By, are the filament plasma
density, radius, and magnetic filed, v.(v;) and —e(eZ) are the electron (ion) velocity and
charge, T, is the electron temperature, and kg and pg are the Boltzmann constant and the
vacuum permeability. The Weibel instability saturates when the bounce frequency of the ions
inside the filaments, wp = (2rZeByv;/(Apm;))*/?, becomes comparable to the growth rate
of the instability 'y >~ (v;/c)wy; [16], where Ag = 4Ry is the transverse wavelength of the
magnetic field. Given that the most unstable wavelength is Ap =~ ¢/w,;, the magnetization
at saturation is o = B2 /(uon;m;v?) ~ 0.025. Thus, at this stage, while the electrons are
well magnetized, the ions remain unmagnetized.

Kinetic theory is needed to evaluate the stability of the filaments with A\g ~ k=% ~ p;
(where p; is the ion gyroradius), but complete analytical solutions are challenging. We
note that similar problems arise in the stability analysis of a current sheet in magnetic
reconnection [27-32]. It is known from magnetohydrodynamics and two-fluid theory that
under such conditions, the current structure can be unstable to kink-type modes [31, 33|,
which propagate with a phase velocity w/k & v; [31]. Furthermore, this can give rise to
resonances between the cold drifting ions and this mode, as noticed in the kinetic study of
the drift-kink instability in current sheets [30], but their impact in these systems has not
been addressed.

We will consider the role of the drift-kink mode and associated resonances in the longi-

tudinal stability of current filaments mediated by the Weibel instability. More specifically,



we will be looking for a resonance of the type w = k,v; + dw, where k, is the wavenumber
along the flow direction, and |dw| < |k,|v;. This resonance can be particularly violent when
w =~ wg. In that case, while bouncing inside the filament, part of the ion longitudinal mo-
mentum is transferred to the transverse direction, creating locally a transverse current (.J ;).

The cold and unmagnetized ions (p; 2 Rp), will then interact via J, x B, leading to bunching

and coherent bouncing motion consistent with the kink deformation. The distance between
ions, 8z, evolves as m;0z ~ J10B/ng, where d B ~ pgJ 0z is the magnetic field induced by
J1 ~ kJ.; (neglecting the displacement current). We then obtain 6z ~ 6z(u.J? /eZngm;),
from which we can estimate the growth rate of the ion modulations 'y, >~ kv wp/c,
where v ; >~ wpRy is the typical ion transverse velocity during the bouncing motion. We

thus expect the resonance between bouncing ions and a drift-kink mode, to lead to strong

deformation of the current filaments, with a wavelength
v; Rowye ¢
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where o = 2/3(1) in cylindrical (slab) geometry. We note that this resonance wavelength
of current filaments produced by the Weibel instability can be significantly larger than the
most unstable wavelength of the drift-kink mode in a current sheet, kyax ~ 1/Ro [32].

In order to validate our model for the deformation of current filaments due to ion res-
onance, we have performed 3D PIC simulations with the code OSIRIS 3.0 [34]. The sim-
ulations follow the evolution of a single current filament in a plasma, corresponding to the
conditions near the saturation of the Weibel instability, as described above. The initial sta-
ble configuration follows the same ideas of the well-studied Harris-type equilibrium [35] and
is obtained in our case by applying conservation of canonical momentum to a quasineutral
plasma with a current profile J, = engrv; = Jy cos|[nr/(2Ry)| for r = \/m < Ry, and
J, = 0 elsewhere. Ions are cold and electron screening is taken into account. The mag-
netic pressure is supported by the electrons and the plasma density is uniform outside the
current filament. The simulations resolve the plasma with a cell size of 0.125¢/w,., a time
step of 0.07 w!, and used 8 particles/cell/species and periodic boundary conditions. A

pe

third order interpolation scheme is used for improved numerical accuracy. The transverse
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and longitudinal sizes of the simulation domain are L, = 64c/wy. and L, = 1024c/w,, for
mi/(Zme) = 100.

Figure 1(a,b) illustrates the evolution the current density for a simulation with Ry =
3¢/wpe (corresponding to A\p = 1.2¢/wy;), Jo = 0.5engc, and T, o = 0.4m.c? at the center of
the filament. The growth of an m = 1 kink-type deformation on a time scale of ~ 100u1p_i1
is clearly visible. The measured unstable wavelength is 7.8¢/w,;, in good agreement with
the prediction from Eq. (1), Akink = 7.3¢/wy;. The growth rate is also well approximated
by our estimate of Eq. (2) [Fig. 1(c)]. We further confirm that this kink perturbation
has phase velocity comparable to the ion velocity, as shown in Fig. 1(d). As the transverse
displacement of the current becomes comparable to the initial filament radius, the distortions
become strongly nonlinear, and the current is disrupted [Fig. 1(b)]. We observe that at this
stage (t ~ 13pr_i1), the growth of the kink modulation saturates and there is an abrupt
decrease of the ion velocity (or current) [Fig. 1(f)]. This indicates that the kink-type
deformation of the current filament is critical for the slow down of the flows.

In order to confirm the importance of the ion resonance, and not simply a fastest growing
mode, we have repeated the simulation only changing the longitudinal box size to L, =
32¢/wpe =~ Agink/2. Figure 1(e) shows that in this case, the filament remains stable up to
the maximum simulation time of 314.9@0];1, indicating that indeed it is critical to capture
the resonance wavelength.

Our estimates for the resonance wavelength and growth rate have been compared with
additional 3D simulations for different Ry, m;/(Zm.), and v;. The results are illustrated in
Fig. 2(a,b), showing good agreement with our model.

The kink-type deformations observed in a single filament should also be present and
play an important role in the current-filamentation triggered self-consistently in counter-
streaming plasmas. In order to confirm this, we have performed 3D simulations of the
interpenetration of two symmetric, uniform, and cold electron-ion plasmas with z-aligned
drift velocities. The counter-streaming flows are initialized with Maxwell-Jittner distribu-
tions with temperature T,; = 1.28 x 10™®m,.c?, drift velocity v.; = £0.7¢, and mass ratio
m;/m. = 128. We note that the high velocity and reduced mass ratio are chosen to optimize
the growth time of the Weibel instability, given the large level of computational resources
required by 3D simulations. We have used a time step At = 0.25/w,. and a mesh size

Az = Ay = Az = 0.5¢/wpe.



Two 3D simulations have been performed in periodic geometry with L, = L, = 512¢/wy,,
one with L, = 512¢/w,., the other with L, = 60c/wp.. For both simulations, the electron-
Weibel instability grows first, saturates and isotropizes the electron population in less than
10w;2-1. After this period, the ion-Weibel instability dominates the system, saturating around
t~ 4pr_i1. At this stage, the transverse wavelength of magnetic field is Ag ~ 3c/wy;. As
discussed in Refs. [22, 25, 26], for the simulation with a smaller longitudinal box, the nonlin-
ear dynamics of the system is then dominated by the merging of filaments, which increases
the dominant transverse magnetic wavelength while, heating the plasma. This is clearly ob-
served in Fig. 3(a) (L, = 60c/wy.), where filaments merge and their transverse wavelength
approaches the system size by t = 400wp_i1. No significant longitudinal perturbations of the
filaments are observed. However, this changes drastically when the longitudinal simulation
size is increased to L, = 512¢/wy. [Fig. 3(b)]. In this case, filament merging competes with
strong longitudinal deformations associated with the drift-kink mode. After ¢ ~ 200wp}1,
the coherent transverse magnetic modes associated with the Weibel instability are no longer
observed.

We have analyzed the evolution of current density, and observe significant growth of its
transverse component, consistent with kink modulations. The effective kink growth rate is
in good agreement with our estimate from Eq. (2), ik ~ 5.7 x 107%w,; [Fig. 4(a)]. The
longitudinal spatial distribution of J7, shows modulations with wavelength ~ 10¢/w,;. This
is in very good agreement with the prediction of the resonance wavelength from Eq. (1),
Akink =~ 12¢/wy;.

The kink-type deformations dominate the evolution of the system for ¢ > 100u1p_i1 and
are responsible for the rapid slow down of the flows [Fig. 4(b)]. For L, < Ak, where
the resonance is not captured, the slow down of the flows associated with filament merging
occurs at a much slower rate. Furthermore, the longitudinal drift-kink mode also plays an
important role in the isotropization of the magnetic field. This is illustrated by comparing
the magnetic power spectrum at the saturation of the Weibel instability (before the growth
of kink-type modulations) and after the saturation of the drift-kink mode [Figs. 4(c,d)].

These results indicate that, in contrast with previous understanding, shock formation in
weakly magnetized plasmas involves the combination of two instabilities. First, the Weibel
instability produces strong current filaments and coherent near-equipartition magnetic fields.

Then, the current filaments are unstable to the drift-kink mode, breaking, and causing



the slow down of the flows and isotropization of the magnetic fields. The wavelength and
growth rate of the kink-type deformation is well predicted by the resonance between the
current-carrying ions and the propagating drift-kink mode. We note that even in scenarios
where the resonance might not be present, e.g. in pair-plasmas, the drift-kink instability is
still expected to develop and play an important role in the nonlinear phase of the Weibel
instability [36].

High-energy-density laser-plasma experimental platforms, which have been recently devel-
oped to study non-relativistic collisionless shocks [18, 19, 37], could probe the microphysics
described in this work, in the near future. For the measured magnetic wavelength associ-
ated with the Weibel instability, Ap ~ c¢/w,; [19], the longitudinal kink-type modulations
would develop with Ay ~ 13.7(A/Z )1/ 2¢/wyi, where A is the atomic mass number of the
ions. The expected time scale for the kink-type deformation of the current filaments is
Tink = Dignie = 93.5(A/Z)*(c/v;)w,;'. For typical flow velocity v; = 1000 km/s, plasma
density ng = 10*° cm ™3, and A/Z = 2, this yields Agnx =~ 0.62 mm and 7y >~ 5 ns, which
could be achieved at the OMEGA, NIF, or LMJ laser facilities.

In summary, we have found that the current filaments produced by the Weibel insta-
bility in counter-streaming plasmas are subject to violent kink-type deformations. This is
associated with a resonance between the drift velocity of the current-carrying ions and a
longitudinal drift-kink mode. Our analytical estimates for the resonance wavelength and
growth rate of the kink perturbations were observed to be in good agreement with 3D PIC
simulations. Furthermore, our simulations indicate that this drift-kink instability domi-
nates the slow down of the flows and the isotropization of magnetic fields, thus mediating
the formation of collisionless shocks. These findings can have important consequences for the

generation of magnetic turbulence and for particle injection in weakly magnetized shocks.
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FIG. 1. Evolution of the current density of a filament in a plasma with m;/m. = 100, Ry = 3¢/wpe,
Jo = 0.5engc, and L, = 1024c/wpe at (a) t = 114.2%;-1 and (b), t = 137.4<,up_2-1 (projections are
shown in grey scale). (c) Comparison of the growth rate of J2 and Eq. (2) (dashed line). (d)
Space-time diagram of the transverse component of the current, averaged over r < Ry. The dashed
black line corresponds to v = 0.4c. (e) Temporal evolution of the maximum ion drift-velocity.

(f) Current density for the same parameters and color scale of (a,b) but with L, = 32¢/wp., at
-1
t = 314901
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FIG. 2. Comparison of the (a) wavelength and (b) normalized growth rate (Iinkx =
Dkink w;il (mi/me)'/?(c/v;)) of the kink deformation of the current density obtained in 3D PIC
simulations with the theoretical estimates of Eqgs. (1) and (2). Red and blue circles corre-
spond to m;/m. = 25 and 100, respectively. The three simulations have initial filaments with
radius and current density (Ro = 3c/wpe, Jo = 0.5engc), (Ry = 3.5¢/wpe, Jo = 0.5engc), and

(Ro = 7.5¢/wpe, Jo = 0.08enqc).
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FIG. 3. 3D simulations of the evolution of the magnetic field in the interaction of initially unmagne-
tized counter-streaming plasmas with vg = 0.7¢ and m; = 128m,, at t = 400w;i1. The longitudinal

box size (along the flow direction) is (a) L, = 60c¢/wpe < Akink and (b) L, = 512¢/wpe > Akink-
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FIG. 4. (a) Temporal evolution of the spatially averaged transverse current for the 3D counter-
streaming plasma simulation of Fig. 3(b) with L, = 512¢/wpe > Axink. The corresponding expo-
nential growth o< exp(2lyinkt) is calculated with Ty given by Eq. (2) and is plotted as the solid
line. (b) Temporal evolution of the ion drift velocity for the simulations of Fig. 3(a) (triangles)
and Fig. 3(b) (circles). Bottom plots show longitudinal (solid) and transverse (dashed) magnetic
power spectrum (c) at saturation of the ion Weibel instability t = 40w;il and (d) after the drift-kink

. .. -1 . . .
instability at ¢ = 220w,,” for the simulation of Fig. 3(b).
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