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Summary of Technical Progress

A number of activities have been carried out in the last three months. A list outlining
these

●

●

●

●

●

efforts is presented below.

The work on modeling hydraulically fractured horizontal wells has moved forward.
A literature review on the subject was done and some of the existing models have
been coded and applied to example problems for evaluation purposes.

Previous work on the effects of heterogeneities on the performance of horizontal
wells was continued by conducting a sensitivity study on various parameters thet
were kept constant in the earlier study. For example, we have studied the effect of
gas cap and aquifer size, well location, fluid viscosity, etc.

The experimental work on using horizontal wells as injectors and producers in a
gas injection gravity drainage process continued. New and repeat experiments were
conducted.

Work on streamline grids was advanced by considering example problems with
highly distorted grids which cannot be directly used for flow simulation. Grid
smoothing and domain mapping techniques were investigated to handle such situ-
ations.

A technique was developed for the computation of well index with consideration
to wellbore pressure drop. A recently developed reservoir/wellbore coupling model
was used for this purpose.

The last activity listed above is the subject of this quarterly report. Only a brief
discussion and some sample results will be shown here. A comprehensive account of the
work will be included in the Annual Report.

Impact of Wellbore Pressure Drop on the Well Index
for Horizontal Wells (Task 1)

Introduction

It is now recognized that pressure drop in a horizontal well can have a significant impact
on its productivity. Frictional and accelerational pressure drops are the two main con-
tributing factors to this wellbore pressure drop. This work investigates the productivity
losses due to frictional and accelerational pressure drops in a horizontal well. Comparison
between a commercial numerical simulator and a semi-analytical solution is made on the
basis of well indices. The results are used to determine correct well indices. We present
several cases which show how the results of numerical simulators can be improved via
this approach.
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Conventional Well Model

ThLestandard well model used in most numerical simulators was introduced by Peaceman
(1978, 1983) with the assumptions of 2D single phase flow for an isolated well under steady
stahe or pseudo-steady state flow conditions.

The basic equations (well model) relating the well pressure pw to the well block
pressure po at a given well flow rate qWare

WI=
2nkh

lnIQ+~

!7W
‘w=pO+WIJ

(1)

(2)

In above equations, Wl is the well index, ~ is the mobility defined as ~. Nomen-
clature contains the definition of other symbols. rO is the equivalent wellblock radius.
Several formulae are available to compute To for different geometries. For the exam-
ples discussed here, we used rectangular grids with block spacing Az, Ay in an isotropic
reservoir for which To is given by

r. = 0.140365~Ax2 + Ayz (3)

Correct Well Model

Recently, a semi-analytical coupling model for flow in the reservoir and in the wellbore
was developed by Penmatcha (1997). This is a transient, three-dimensional model and
considers pressure drop in the well. In this approach, a horizontal well is divided into
many segments. The analytical solution of Babu and Odeh (1989) is used for iach
segment. Solution for the entire well is obtained by superposition in time and space.
For finite conductive wells (with wellbore pressure drop), a momentum equation which
accounts for frictional and accelerational pressure drop is written for each segment. The
effect of inflow is accounted for by using the model proposed in Ouyang et al. (1996).

This coupling model is used to compute the analytical values of well pressure pw

and flow distribution qw for each well segment. Using the same inflow distribution in a
simulator, the wellblock pressures are obtained for the same problem. The correct well
inclex for each block can then be obtained from Equation 2.

Comparative Simulation Study

In this section the results of the semi-analytical model with those obtained from a com-
mercial reservoir simulator (Eclipse, 1996A) are compared.

A single horizontal well was aligned parallel to the y-axis in a block shaped reservoir
(see Table 1 and Figure 1). Effects of pressure drop in the well and other parameters
were studied. A 51 x 100 x 5 grid was used.
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reservoir length a 6,000 ft
reservoir width b 12,000 ft
reservoir height h 50 ft
permeability k. = kV= lcZ 3,000 mD
porosity ~ 0.3
initial reservoir pressure p~n~ 4000 psi
total compressibility G 3“10-5 psi-l
form. volume factor BO 1.05 *
yiscosity y 1 Cp
density at res. cond. p

60 ??Bmax. well rate qmm 10,000 -&-J

min. bottom hole pressure p~~~ 1,200 psi
well location variable
well radius rW 0.1667 ft
skin s o

Table 1: Data of basic reservoir-well model.

Four cases were considered. In thg first case, a 6000 # well was placed at the center of
the reservoir. The only difference in the second case was that the well was much shorter
(1200 fi). In the third and fourth cases, we moved the long well to another location in the
reservoir. For instance in the third case, well was positioned offcentered midway between
the center of the reservoir and its boundary. In the last case, well was located near the
edge of the reservoir, referred to as an edge well. A relative roughness value of 0.0005
was used in all calculations when considering pressure drop in the wellbore. These cases
are summarized in Table 2.

The top plot in Figure 2 shows variation of wellbore pressure along the well length
from analytical and numerical solutions at 1, 2, and 4 days. The light horizontal lines
correspond to the situation when pressure drop in the wellbore is ignored. When pressure
drop is present, pressure at the heel is lower than the toe. At 1 day where flow is in the
transient regime, there is some difference between the analytical and numerical (with
peacernan WI) results. This difference becomes less at day 2 and almost completely
vanishes at day 4, where pseudo-steady state (PSS) haa been reached. This indicates that
for this well configuration, the default Peaceman well model is appropriate when PSS
is reached. Figure 2 also shows that the numerical solution with the correct well index,
obtained as described above, closely reproduces the analytical solution. The bottom plot
in Figure 2 depicts the inflow distribution along the well for the same conditions as in
the top plot at day 4. It shows that with no pressure drop, a symmetric flow distribution
is obtained which has higher inflow at the tips si~ifying spherical flow. With pressure
drop included, the distribution is asymmetric with much larger inflow at the heel than at
the toe. There are no significant differences between the analytical and numerical results
for the case with pressure drop.

Figure 3 shows similar results for case 2 where the only difference is a shorter well.
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Figure 1: Geometry of wells in a block shaped reservoir

Thle top plot shows a larger difference between the analytical and simulation results at
all three times. The differences are especially large for the first day. It also shows that
the corrected WI’s improve the numerical results. The bottom plot illustrates that inflow
distribution along a shorter well is different by comparison with the previous case. The
effect of spherical flow at the end is more pronounced and some differences in’ inflow

distribution between numerical and analytical results are observed for this case.
Results for an offcentered well (case 3) and an edge well (case 4) are presented in

Figures 4 and 5. .While they show similar trends, the difference between numerical and
analytical results in the case of an edge well are larger.

‘case 1(Long Centered) 2 (Short Centered) 3 (Long Offcenter) 4 (Long Edge)—
x~ 3000 3000 1440 120

3000 5400 3000 3000
le~;th 6000 1200 6000 6000

’20 25 25 25 25
.D,ef 4025 4025 4025 4025
segs 50 10 50 50

6 0.0005 0.0005 0.0005 0.0005—
reservoir dimensions: 6000 x 12000 x 50 ft

Table 2: Well location for cases under study (length unit: feet).
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Conclusions

An analysis of well indices for a finite conductivity horizontal well is presented. Correct
val!ues were obtained from a semi-analytical solution. The use of a numerical simulator
with a conventional well model showed the following results:

. Consideration of frictional pressure drop in the well can be very important for
horizontal wells.

● Considerable errors are made by the numericaJ solution during the early time tran-
sient behavior. This is mostly due to violations of the basic assumptions of the
conventional well model;

A method for correcting the well index was presented. The cases investigated show
improved results with corrected well index, especially in the transient flow regime.

Nomenclature
B, B. = formation volume jactor, &
D = pipe diameter, ft
E ==relative pipe roughness
~:= porosity
pW = well perforation pressure, psi
pO= well block pressure, psi
k :=permeability, mD
kr = relative permeability
k., ky, k. = anisotropic k in directions x, y, z
A== mobility
p :=viscosity, cp
rO= equivalent wellblock radius, ft
7-W= well radius, ft
s ==skin factor
WI= well index
A~;, Ay, Az = block length in x, y, z direction, ft
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