
	
	
	
	
	
	
	
	

Final	Technical	Report	
	
for	
	

A	Unified	Data-Driven	Approach	for	Programming	
In	Situ	Analysis	and	Visualization	

	
DOE	Award	DE-SC0012426	

	
Period	of	Performance:	9/1/2014	–	8/31/2017	

	
Institution:	Stanford	University	

	
PI:	Prof.	Alex	Aiken	

	
	
	
	
	

	 	



Executive	Summary	
	
The	placement	and	movement	of	data	is	becoming	the	key	limiting	factor	on	both	
performance	and	energy	efficiency		of	high	performance	computations.		As	systems	
generate	more	data,	it	is	becoming	increasingly	difficult	to	actually	move	that	data	
elsewhere	for	post-processing,	as	the	rate	of	improvements	in	supporting	I/O	
infrastructure	is	not	keeping	pace.		Together,	these	trends	are	creating	a	shift	in	how	
we	think	about	exascale	computations,	from	a	viewpoint	that	focuses	on	FLOPS	to	
one	that	focuses	on	data	and	data-centric	operations	as	fundamental	to	the	
reasoning	about,	and	optimization	of,	scientific	workflows	on	extreme-scale	
architectures.	
	
The	overarching	goal	of	our	effort	was	the	study	of	a	unified	data-driven	approach	
for	programming	applications	and	in	situ	analysis	and	visualization.	Our	work	was	
to	understand	the	interplay	between	data-centric	programming	model	
requirements	at	extreme-scale	and	the	overall	impact	of	those	requirements	on	the	
design,	capabilities,	flexibility,	and	implementation	details	for	both	applications	and	
the	supporting	in	situ	infrastructure.			In	this	context,	we	made	many	improvements	
to	the	Legion	programming	system	(one	of	the	leading	data-centric	models	today)	
and	demonstrated	in	situ	analyses	on	real	application	codes	using	these	
improvements.	
	

Comparison	of	Goals	and	Accomplishments	
	
The	project	was	structured	into	six	tasks,	with	milestones	for	the	each	of	the	tasks	
for	each	of	the	three	years.		The	full	project	was	a	joint	effort	between	Los	Alamos	
National	Laboratory	and	Stanford,	with	the	the	Stanford	team	being	primarily	
responsible	for	the	development	of	the	Legion	infrastructure	and	features	required	
to	support	the	project’s	tasks.		The	six	tasks	were	(taken	from	the	proposal):	
	
1.	Pipeline	abstractions:	Design	and	develop	the	data	model	for	structured	and	
unstructured	meshes	and	an	accompanying	push-based	data	flow	execution.	An	
initial	algorithm	API	will	be	evaluated	via	a	set	of	small	proxy	applications.		
	
2.	Execution	model:	Explore	the	use	of	partitions	and	mappers	to	couple	applications	
and	algorithms,	allowing	mesh/grid	ghost-cell	discrepancies	to	be	automatically	
handled.		
	
3.	Ray	tracing	and	interactivity:	Design	and	develop	a	ray	tracer	using	the	Legion	
programming	model.	This	will	require	us	to	explore	support	for	latency-sensitive	
operations	in	Legion	as	well	as	the	design	and	implementation	of	acceleration	
structures.		
	



4.	Data	transformation	algorithms:	Design	and	develop	topological	(merge-tree)	and	
statistical	(principal	component	analysis)	data	transformation	algorithms	in	Legion	
along	with	supporting	proxy	applications.	
	
5.	Sublinear	algorithms:	There	are	two	key	features	required	in	Legion	to	support	
the	proposed	sublinear	algorithm	topics.	First	support	must	be	added	for	
speculative	execution,	specifically	the	ability	to	precompute	results	that	are	very	
likely,	but	not	guaranteed,	to	be	needed.	Secondly,	exploration	and	evaluation	of	
using	Legion	as	a	query-based	infrastructure	will	be	design	and	prototyped	using	
proxy	applications.	
	
6.	In	situ	co-design:	Design	and	develop	a	set	of	abstractions	for	simplifying	the	
interfaces	between	MPI	and	Legion.	In	preparation	for	working	with	full	
applications,	small	proxies	will	be	used	to	evaluate	and	refine	this	interface.		
	
All	of	the	work	planned	by	the	Stanford	team	in	support	of	these	goals	was	
accomplished	within	the	time	frame	of	the	project.		All	of	the	resulting	
implementation	work	was	integrated	into	the	main	Legion	source	code	repository	
and	released	as	open	source.		The	primary	research	results	were	published	in	
refereed	conferences	and	workshops.	
	

Summary	of	Research	Progress	
	
In	this	section	we	summarize	the	specific	tasks	that	the	Stanford	team	worked	on	
over	the	course	of	the	project.	
	
Experiments	with	in	situ	analysis	in	Legion.			As	part	of	the	ongoing	work	on	S3D,	a	
major	combustion	chemistry	simulation,	we	added	an	in	situ	analysis	to	detect	the	
critical	transition	points	in	the	reactions.		In	a	typical	S3D	simulation,	the	vast	
majority	of	the	calculation	is	spent	in	a	low	temperature	regime	where	reactions	are	
occurring	but	the	energy	release	is	relatively	low.		These	lower	temperature	
reactions	produce	species	that	eventually	ignite	a	high	temperature	reaction,	where	
the	majority	of	energy	in	the	entire	reaction	is	released.		Detecting	the	transition	to	
high	energy	ignition	is	important	because,	typically,	the	interesting	scientific	
questions	concentrate	on	analysis	of	the	relatively	small	part	of	the	simulation	spent	
in	high	temperature	ignition.		Thus,	there	is	significant	value	in	having	an	in	situ	
analysis	for	this	purpose,	rather	than	using	the	more	traditional	approach	of	
occasional	checkpointing	and	then	rerunning	from	the	last	checkpoint	once	high	
temperature	ignition	is	observed.	
	
In	the	case	of	S3D,	the	optimal	mapping	for	the	simulation	is	to	put	as	much	
computation	as	possible	on	the	GPU(s)	attached	to	a	node,	which	leaves	the	CPUs	
available	for	other	purposes.		We	confirmed	that	we	could	add	the	in	situ	analysis	to	
detect	high	temperature	ignition	on	the	CPUs	and	overlap	it	with	both	the	GPU	



computations	and	the	transfer	of	the	data	to	be	analyzed	from	the	GPU	to	the	CPUs;	
that	is,	the	in	situ	analysis	was	essentially	free	(less	than	1%	cost)	in	terms	of	wall	
clock	time.		This	is	very	encouraging,	as	we	expect	the	same	basic	framework	
(critical	path	computations	on	the	GPU,	followed	by	offloading	in	situ	analysis	to	the	
CPUs)	to	apply	in	many	other	applications.		
	
	
Redesign	of	the	mapping	interface.	We	undertook	a	major	overhaul	of	the	Legion	
mapping	interface.		Early	experience	with	the	old	interface	had	revealed	a	number	
of	limitations,	and	we	felt	we	had	learned	enough	to	design	a	much	better	and	
longer	lasting	interface.		The	implementation	of	this	effort	took	longer	than	
anticipated	but	was	completed	within	the	duration	of	the	project	and	incorporated	
into	the	main	line	Legion	code.		Old	mappers	are	still	supported	through	a	
reimplementation	of	the	old	interface	on	top	of	the	new	interface.		We	also	ported	
the	S3D	mapper	to	the	new	mapper	API.	
	
The	major	conceptual	change	in	the	new	mapping	API	is	that	it	is	constraint-based,	
meaning	that	the	application	now	states	only	what	constraints	it	wants	tasks	and	
region	instances	to	satisfy,	and	the	mapper	is	then	free	to	satisfy	those	constraints	in	
any	way	it	sees	fit.		This	frees	the	application	from	specifying	anything	that	is	not	
performance	critical,	while	also	allowing	the	mapper	to	incorporate	intelligence	of	
its	own	for	situations	in	which	it	may	be	better	positioned	to	judge	what	is	best	than	
the	application.		The	application	can	still	have	as	little	or	as	much	control	as	desired.		
	
Support	for	speculation.			To	support	the	work	on	sublinear	algorithms	we	need	to	
allow	for	speculative	execution,	where	execution	of	the	task	graph	is	allowed	to	
continue	past	control	flow	decision	points.		Once	the	control	flow	decision	is	known,	
if	there	was	misspeculation	then	that	portion	of	the	graph	that	should	not	have	been	
executed	can	be	discarded	and	execution	backed	up	to	the	point	of	the	decision	and	
restarted.			Work	was	finished	on	support	for	speculation	in	Legion	programs	in	
limited	circumstances.		
	
Software	framework	for	in	situ	dataflow.		We	participated	in	the	design	with	other	
team	members	of	a	framework	that	can	handle	statically	described	dataflows	
involving	per-rank	analysis	of	simulation	state	followed	by	a	hierarchical	reduction	
of	the	data	to	a	root	rank	as	well	as	a	hierarchical	broadcast	of	the	global	results	
back	to	individual	ranks	to	augment	the	local	data.	
	
New	DMA	subsystem.		A	key	aspect	of	the	Legion	runtime	is	its	ability	to	move	data	
efficiently	from	one	part	of	a	large	machine	to	another,	including	managing	the	
layout	and	any	layout	conversions	required	en	route.		This	is	especially	important	
for	in	situ	analyses,	where	decisions	are	made	dynamically	about	what	data	to	move	
where.			The	number	of	possible	distinct	cases	for	data	movement	is	very	large	
(being	quadratic	in	the	number	of	different	kinds	of	memories	and	layout	
combinations);	in	the	previous	DMA	subsystem	there	were	fast	paths	written	by	
hand	for	a	number	of	common	cases	and	then	a	slow,	general	code	path	for	



everything	else.		We	designed	and	implemented	a	much	more	aggressive	DMA	
system	that	is	substantially	faster,	handles	all	layout	transformations	automatically,	
and	can	also	plan	and	execute	multi-hop	moves	(for	cases	where	two	memories	are	
not	directly	connected	by	a	communication	channel	but	instead	require	multiple	
moves	through	intermediate	points	in	the	machine).		This	new	system	is	also	
designed	to	interact	positively	with	the	new	mapping	API,	as	the	ability	to	plan	
moves	allows	for	more	intelligent	choices	in	cases	where	the	application	has	left	the	
layout	or	destination	of	data	less	than	fully	constrained.		The	development	of	the	
new	DMA	subsystem	was	completed	and	integrated	into	the	standard	Legion	code	
base	as	part	of	this	project.	
	
Prototype	Visualization	Subsystem.		We	successfully	prototyped	a	visualization	
subsystem	that	has	been	used	with	Soleil-X,	a	major	simulation	in	Legion	being	
developed	as	part	of	the	PSAAP-II	project	at	Stanford.		The	visualization	subsystem	
builds	on	all	of	the	previous	features	described,	using	them	to	implement	a	stand-
alone	visualization	library	in	Legion	that	can	be	used	with	any	Legion	application.		
An	interesting	outcome	of	the	design	is	that	Legion’s	latency	tolerance	meant	that	
there	was	no	need	to	optimize	the	latency	of	the	visualization,	i.e.,	the	Legion	
implementation	tolerates	any	amount	of	delay	between	when	the	data	is	produced	
by	the	simulation	and	is	consumed	by	the	visualization,	so	long	as	the	visualization	
maintains	adequate	throughput	to	keep	up	with	the	rate	at	which	data	is	produced.		
This	greatly	simplifies	the	design	and	obviates	the	need	for	extensive	optimization	
of	the	visualization	subsystem.	
	
Legion	Bootcamps,	2014-16.	The	first	Legion	bootcamp	was	sufficiently	popular	that	
we	continued	the	bootcamps	for	two	additional	years.		The	two	day	event	attracted	
over	70	people	from	the	DoE,	Stanford	and	local	industry	each	year.		We	used	the	
same	model	as	the	first	bootcamp,	with	a	day	of	lectures	on	new	features,	future	
directions	and	user	experiences,	and	a	second	day	spent	on	a	hackathon	to	
introduce	people	to	programming	in	the	Legion	model.		As	of	2017	we	have	
transitioned	to	tutorials	that	we	teach	elsewhere;	e.g.,	annually	at	SuperComputing.	
	
Maintenance	of	Legion	system	source	code	github	repository.		We	continue	to	make	
regular	updates	to	the	Legion	repository.		Growth	in	the	number	of	contributors	has	
necessitated	the	addition	of	more	source	code	processes,	including	adding	a	
regression	test	suite	and	standards	for	examples	and	merges	into	the	main	branch.	
	
Legion	teaching/consulting.		As	part	of	the	long-term	effort,	we	spent	significant	time	
teaching	people	outside	the	project	how	to	build,	program	and	run	Legion	
applications.			We	also	helped	other	members	of	the	team	debug	their	Legion	
applications	and	regularly	fixed	a	number	of	bugs	in	the	Legion	implementation	
uncovered	by	Legion	programs	written	for	the	project.	
	 	



	

Products	
	
The	project	produced	a	number	of	peer-reviewed	publications,	listed	below.		In	
addition,	all	of	the	software	developed	under	this	project	has	been	released	as	open	
source	at	legion.stanford.edu.	
	

1. Integrating	External	Resources	with	a	Task-Based	Programming	Model.	Z.	Jia,	
S.	Treichler,	G.	Shipman,	M.	Bauer,	N.	Watkins,	C.	Maltzahn,	P.	McCormick	and	
A.	Aiken.	Proceedings	of	the	International	Conference	on	High	Performance	
Computing,	Data,	and	Analytics,	December	2017.	

2. In situ Visualization with Task-Based Parallelism, A. Heirich, E. Slaughter, 
M. Papadakis, W. Lee, T. Biedert and A. Aiken. Proceedings of the 
Workshop on In Situ Infrastructures for Enabling Extreme-scale Analysis 
and Visualization, November 2017. 

3. Integrating External Resources with a Task-Based Programming Model. Z. 
Jia, S. Treichler, G. Shipman, M. Bauer, N. Watkins, C. Maltzahn, P. 
McCormick and A. Aiken. Proceedings of the International Conference on 
High Performance Computing, Data, and Analytics, December 2017. 

4. Dependent Partitioning. S. Treichler, M. Bauer, R. Sharma, E. Slaughter 
and A. Aiken. Proceedings of the International Conference on Object-
Oriented Programming, Systems, Languages, and Applications, 
November 2016. 

5. Towards Asynchornous Many-Task In Situ Data Analysis Using Legion, P. 
Pebay, J. Bennett, D. Hollman, S. Treichler, P. McCormick, C. Sweeney, 
H. Kolla and A. Aiken. Proceedings of the International Parallel Processing 
and Distributed Processing Symposium, May 2016 

	
	

 

	


