Final Technical Report
for

A Unified Data-Driven Approach for Programming
In Situ Analysis and Visualization

DOE Award DE-SC0012426
Period of Performance: 9/1/2014 -8/31/2017
Institution: Stanford University

PI: Prof. Alex Aiken



Executive Summary

The placement and movement of data is becoming the key limiting factor on both
performance and energy efficiency of high performance computations. As systems
generate more data, it is becoming increasingly difficult to actually move that data
elsewhere for post-processing, as the rate of improvements in supporting [/0
infrastructure is not keeping pace. Together, these trends are creating a shift in how
we think about exascale computations, from a viewpoint that focuses on FLOPS to
one that focuses on data and data-centric operations as fundamental to the
reasoning about, and optimization of, scientific workflows on extreme-scale
architectures.

The overarching goal of our effort was the study of a unified data-driven approach
for programming applications and in situ analysis and visualization. Our work was
to understand the interplay between data-centric programming model
requirements at extreme-scale and the overall impact of those requirements on the
design, capabilities, flexibility, and implementation details for both applications and
the supporting in situ infrastructure. In this context, we made many improvements
to the Legion programming system (one of the leading data-centric models today)
and demonstrated in situ analyses on real application codes using these
improvements.

Comparison of Goals and Accomplishments

The project was structured into six tasks, with milestones for the each of the tasks
for each of the three years. The full project was a joint effort between Los Alamos
National Laboratory and Stanford, with the the Stanford team being primarily
responsible for the development of the Legion infrastructure and features required
to support the project’s tasks. The six tasks were (taken from the proposal):

1. Pipeline abstractions: Design and develop the data model for structured and
unstructured meshes and an accompanying push-based data flow execution. An
initial algorithm API will be evaluated via a set of small proxy applications.

2. Execution model: Explore the use of partitions and mappers to couple applications
and algorithms, allowing mesh/grid ghost-cell discrepancies to be automatically
handled.

3. Ray tracing and interactivity: Design and develop a ray tracer using the Legion
programming model. This will require us to explore support for latency-sensitive
operations in Legion as well as the design and implementation of acceleration
structures.



4. Data transformation algorithms: Design and develop topological (merge-tree) and
statistical (principal component analysis) data transformation algorithms in Legion
along with supporting proxy applications.

5. Sublinear algorithms: There are two key features required in Legion to support
the proposed sublinear algorithm topics. First support must be added for
speculative execution, specifically the ability to precompute results that are very
likely, but not guaranteed, to be needed. Secondly, exploration and evaluation of
using Legion as a query-based infrastructure will be design and prototyped using
proxy applications.

6. In situ co-design: Design and develop a set of abstractions for simplifying the
interfaces between MPI and Legion. In preparation for working with full
applications, small proxies will be used to evaluate and refine this interface.

All of the work planned by the Stanford team in support of these goals was
accomplished within the time frame of the project. All of the resulting
implementation work was integrated into the main Legion source code repository
and released as open source. The primary research results were published in
refereed conferences and workshops.

Summary of Research Progress

In this section we summarize the specific tasks that the Stanford team worked on
over the course of the project.

Experiments with in situ analysis in Legion. As part of the ongoing work on S3D, a
major combustion chemistry simulation, we added an in situ analysis to detect the
critical transition points in the reactions. In a typical S3D simulation, the vast
majority of the calculation is spent in a low temperature regime where reactions are
occurring but the energy release is relatively low. These lower temperature
reactions produce species that eventually ignite a high temperature reaction, where
the majority of energy in the entire reaction is released. Detecting the transition to
high energy ignition is important because, typically, the interesting scientific
questions concentrate on analysis of the relatively small part of the simulation spent
in high temperature ignition. Thus, there is significant value in having an in situ
analysis for this purpose, rather than using the more traditional approach of
occasional checkpointing and then rerunning from the last checkpoint once high
temperature ignition is observed.

In the case of S3D, the optimal mapping for the simulation is to put as much
computation as possible on the GPU(s) attached to a node, which leaves the CPUs
available for other purposes. We confirmed that we could add the in situ analysis to
detect high temperature ignition on the CPUs and overlap it with both the GPU



computations and the transfer of the data to be analyzed from the GPU to the CPUs;
that is, the in situ analysis was essentially free (less than 1% cost) in terms of wall
clock time. This is very encouraging, as we expect the same basic framework
(critical path computations on the GPU, followed by offloading in situ analysis to the
CPUs) to apply in many other applications.

Redesign of the mapping interface. We undertook a major overhaul of the Legion
mapping interface. Early experience with the old interface had revealed a number
of limitations, and we felt we had learned enough to design a much better and
longer lasting interface. The implementation of this effort took longer than
anticipated but was completed within the duration of the project and incorporated
into the main line Legion code. Old mappers are still supported through a
reimplementation of the old interface on top of the new interface. We also ported
the S3D mapper to the new mapper APIL.

The major conceptual change in the new mapping API is that it is constraint-based,
meaning that the application now states only what constraints it wants tasks and
region instances to satisfy, and the mapper is then free to satisfy those constraints in
any way it sees fit. This frees the application from specifying anything that is not
performance critical, while also allowing the mapper to incorporate intelligence of
its own for situations in which it may be better positioned to judge what is best than
the application. The application can still have as little or as much control as desired.

Support for speculation. To support the work on sublinear algorithms we need to
allow for speculative execution, where execution of the task graph is allowed to
continue past control flow decision points. Once the control flow decision is known,
if there was misspeculation then that portion of the graph that should not have been
executed can be discarded and execution backed up to the point of the decision and
restarted. Work was finished on support for speculation in Legion programs in
limited circumstances.

Software framework for in situ dataflow. We participated in the design with other
team members of a framework that can handle statically described dataflows
involving per-rank analysis of simulation state followed by a hierarchical reduction
of the data to a root rank as well as a hierarchical broadcast of the global results
back to individual ranks to augment the local data.

New DMA subsystem. A key aspect of the Legion runtime is its ability to move data
efficiently from one part of a large machine to another, including managing the
layout and any layout conversions required en route. This is especially important
for in situ analyses, where decisions are made dynamically about what data to move
where. The number of possible distinct cases for data movement is very large
(being quadratic in the number of different kinds of memories and layout
combinations); in the previous DMA subsystem there were fast paths written by
hand for a number of common cases and then a slow, general code path for



everything else. We designed and implemented a much more aggressive DMA
system that is substantially faster, handles all layout transformations automatically,
and can also plan and execute multi-hop moves (for cases where two memories are
not directly connected by a communication channel but instead require multiple
moves through intermediate points in the machine). This new system is also
designed to interact positively with the new mapping AP], as the ability to plan
moves allows for more intelligent choices in cases where the application has left the
layout or destination of data less than fully constrained. The development of the
new DMA subsystem was completed and integrated into the standard Legion code
base as part of this project.

Prototype Visualization Subsystem. We successfully prototyped a visualization
subsystem that has been used with Soleil-X, a major simulation in Legion being
developed as part of the PSAAP-II project at Stanford. The visualization subsystem
builds on all of the previous features described, using them to implement a stand-
alone visualization library in Legion that can be used with any Legion application.
An interesting outcome of the design is that Legion’s latency tolerance meant that
there was no need to optimize the latency of the visualization, i.e., the Legion
implementation tolerates any amount of delay between when the data is produced
by the simulation and is consumed by the visualization, so long as the visualization
maintains adequate throughput to keep up with the rate at which data is produced.
This greatly simplifies the design and obviates the need for extensive optimization
of the visualization subsystem.

Legion Bootcamps, 2014-16. The first Legion bootcamp was sufficiently popular that
we continued the bootcamps for two additional years. The two day event attracted
over 70 people from the DoE, Stanford and local industry each year. We used the
same model as the first bootcamp, with a day of lectures on new features, future
directions and user experiences, and a second day spent on a hackathon to
introduce people to programming in the Legion model. As of 2017 we have
transitioned to tutorials that we teach elsewhere; e.g., annually at SuperComputing.

Maintenance of Legion system source code github repository. We continue to make
regular updates to the Legion repository. Growth in the number of contributors has
necessitated the addition of more source code processes, including adding a
regression test suite and standards for examples and merges into the main branch.

Legion teaching/consulting. As part of the long-term effort, we spent significant time
teaching people outside the project how to build, program and run Legion
applications. We also helped other members of the team debug their Legion
applications and regularly fixed a number of bugs in the Legion implementation
uncovered by Legion programs written for the project.



Products

The project produced a number of peer-reviewed publications, listed below. In
addition, all of the software developed under this project has been released as open
source at legion.stanford.edu.

1.

Integrating External Resources with a Task-Based Programming Model. Z. Jia,
S. Treichler, G. Shipman, M. Bauer, N. Watkins, C. Maltzahn, P. McCormick and
A. Aiken. Proceedings of the International Conference on High Performance
Computing, Data, and Analytics, December 2017.

In situ Visualization with Task-Based Parallelism, A. Heirich, E. Slaughter,
M. Papadakis, W. Lee, T. Biedert and A. Aiken. Proceedings of the
Workshop on In Situ Infrastructures for Enabling Extreme-scale Analysis
and Visualization, November 2017.

Integrating External Resources with a Task-Based Programming Model. Z.
Jia, S. Treichler, G. Shipman, M. Bauer, N. Watkins, C. Maltzahn, P.
McCormick and A. Aiken. Proceedings of the International Conference on
High Performance Computing, Data, and Analytics, December 2017.
Dependent Partitioning. S. Treichler, M. Bauer, R. Sharma, E. Slaughter
and A. Aiken. Proceedings of the International Conference on Object-
Oriented Programming, Systems, Languages, and Applications,
November 2016.

Towards Asynchornous Many-Task In Situ Data Analysis Using Legion, P.
Pebay, J. Bennett, D. Hollman, S. Treichler, P. McCormick, C. Sweeney,
H. Kolla and A. Aiken. Proceedings of the International Parallel Processing
and Distributed Processing Symposium, May 2016




