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Executive Summary

Two major challenges hinder the e↵ective use and adoption of multiphase computational
fluid dynamics tools by the industry. The first is the need for significant computational
resources, which is inversely proportional to the accuracy of solutions due to computational
intensity of the algorithms. The second barrier is assessing the prediction credibility and
confidence in the simulation results. In this project, a multi-tiered approach has been pro-
posed under four broad activities to overcome these challenges while addressing all of the
objectives outlined in FOA-0001238 through Phases 1 and 2 of the project. The present
report consists of the results for only Phase 1, which was the funded performance period.
From the start the project, all of the objectives outlined in FOA were addressed through four
major activity tasks in an integrated and balanced fashion to improve adoption of MFIX
suite of solvers for industrial use. The first task aimed to improve the performance of MFIX-
DEM specifically targeting to acquire the peak performance on Intel Xeon and Xeon Phi
based systems, which are expected to be one of the primary high performance computing
platforms both a↵ordable and available for the industrial users in the next two to five years.
However, due to a number of changes in course of the project, the scope of the performance
improvements related task was significantly reduced to avoid duplicate work. Hence, more
emphasis was placed on the other three tasks as discussed below.

The second task aimed at physical modeling enhancements through implementation of
polydispersity capability and validation of heat transfer models in MFIX. An extended ver-
ification and validation (V&V) study was performed for the new polydispersity feature im-
plemented in MFIX-DEM both for granular and coupled gas-solid flows. The features of
the polydispersity capability and results for an industrially relevant problem were dissemi-
nated through journal papers (one published and one under review at the time of writing
of the final technical report). As part of the validation e↵orts, another industrially relevant
problem of interest based on rotary drums was studied for several modes of heat transfer
and results were presented in conferences. Third task was aimed towards an important and
unique contribution of the project, which was to develop a unified uncertainty quantification
framework by integrating MFIX-DEM with a graphical user interface (GUI) driven uncer-
tainty quantification (UQ) engine, i.e., MFIX-GUI and PSUADE. The goal was to enable a
user with only modest knowledge of statistics to e↵ectively utilize the UQ framework o↵ered
with MFIX-DEM Phi to perform UQ analysis routinely. For Phase 1, a proof-of-concept
demonstration of the proposed framework was completed and shared. Direct industry in-
volvement was one of the key virtues of this project, which was performed through forth
task. For this purpose, even at the proposal stage, the project team received strong inter-
est in the proposed capabilities from two major corporations, which were further expanded
through out Phase 1 and a new collaboration with another major corporation from chemical
industry was also initiated. The level of interest received and continued collaboration for
the project during Phase 1 clearly shows the relevance and potential impact of the project
for the industrial users.
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Technical Summary

The Subtopic 4B in DE-FOA-0001238 raised two major challenges that hinder the e↵ec-
tive use and adoption of multiphase computational fluid dynamics by industry: (i) the need
for adequate computational resources to obtain solutions of su�cient accuracy, and (ii) the
need for assessing the prediction credibility and confidence in the simulation results.

The proposed project aimed and was designed to address these two challenges in a co-
hesive and technically-sound manner through both Phase 1 and then Phase 2 (if awarded)
when initially proposed, and o↵ered a consequential step-up in the performance and capabil-
ities of MFIX-DEM while integrating it with a unified uncertainty quantification framework
for seamless and intuitive predictive credibility assessment by industrial users. All seven
objectives given in the Subtopic 4B of the FOA (as shown in Figure 1) have been addressed
through our project tasks since the start of Phase 1, as we believed that only an integrated
and comprehensive action plan can o↵er a real developmental breakthrough for these non-
trivial, interdependent challenges.

Overview of Funding Opportunity Announcement (FOA 0001238) Objectives

FOA Objectives
(1) Enhancements to DEM, MP-PIC, or hybrid method

(2) Handle particle-size distributions, heat transfer, chemical reactions

(3) Publish peer reviewed publications on obtained advances 

(4) Run on parallel computers likely to be available in the next five years

(5) Method of quantifying the uncertainty in the enhanced version 

(6) Solve industrial scale problems, influence design

(7) Demonstrate the new capabilities with at least one industrially 
relevant problem

Task 2

Task 5

Task 3

Task 4

Figure 1. Overview of the Funding Opportunity Announce-
ment (FOA 0001238) objectives and associated subtasks im-
plemented in the project to address these objectives

Figure 2 illustrates a general overview of the planned contributions of the project through
performance and accuracy improvements expected for MFIX, i.e., time-to-solution is reduced
substantially while model inaccuracies are reduced through enhanced physical modeling ca-
pabilities such as polydispersity implementation or heat transfer model validation. Initially
we targeted to achieve between 5X to 20X improvement in performance through various code
modernization tasks for e↵ective memory management, good vectorization, and algorithmic

15



enhancements such as dynamic load balancing, computation/communication overlap, and
hardware advances in the targeted HPC systems. However, in course of the project to
avoid duplicate work the emphasis on performance improvements were significantly reduced
and more emphasis was placed on physical modeling enhancement and remaining other two
tasks such as the proof-of-concept demonstration of the integrated UQ framework to enable
predictive credibility assessment, which is a critical feature that is currently lacking.

Overview of MFIX DEM Phi Project Outcomes:
(at end of the project Phases 1 & 2) 

Time-to-Solution

M
od

el
 

U
nc

er
ta

in
ty

Shows the targeted change in MFIX suite of solver features at the end of Phase 2 project (if awarded)

Objective:
Reduce time-to-solution 
significantly by exploiting the 
massive parallelism offered 
with next generation Intel® 
Xeon Phi™  based HPC 
systems while enhancing the 
physical modeling capabilities 
to make it usable by industry 
on a daily basis for design 
with seamlessly integrated 
GUI driven uncertainty 
quantification framework for 
predictive credibility 
assessment

Figure 2. Schematic depiction of the contributions pro-
posed in this project, original illustration adapted from
Musser et al. [23]

Figure 3 shows the overall view of the subtasks incorporated at the beginning to achieve
the objectives of the project to span both Phase 1, and Phase 2 (if awarded).

MFIX-DEM Phi: Performance and Capability Improvements Towards Industrial 
Grade Open-source DEM Framework with Integrated Uncertainty Quantification

Task 2 Aim:

Task 3 Aim:

Task 4 Aims:

Develop accurate physics w.r.t. 
the targeted application

Increase speed to reduce 
time-to-solution by 
optimizing for modern 
computing platforms

• Ensure the results of 
the code are accurate

• Increase usability by 
reducing complexity

Task 5 Aim:
Demonstrate usability for 
industrial scale problems 
and collaboration for 
industrial adoption.

Figure 3. Listing of the Funding Opportunity Announce-
ment (FOA 0001238) objectives and associated subtasks im-
plemented to address these objectives
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Although an integrated comprehensive plan was developed aiming the span of both
phases, current report presents the contributions and results obtained only for Phase 1
of the project activities, which reflects the originally funded performance period between
09/09/15 to 02/28/17.
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Task 1 - Project Management and Planning
The project team included researchers from di↵erent disciplines to address the listed FOA

objectives. Dr. A. Gel from School of Computing, Informatics, Decisions Systems Engineer-
ing (SCIDSE) at Ira A. Fulton Schools of Engineering was the principal investigator for
the entire duration of the project and worked in collaboration with co-PIs, Dr. Yang Jiao
from Materials Sciences program of School of Matter, Transport and Energy Engineering
(SEMTE) and Dr. Heather Emady from Chemical Engineering program of SEMTE. Also
the project had two external co-PIs, Dr. Charles Tong from Lawrence Livermore National
Laboratory and Dr. Jonathan Hu from Sandia National Laboratories both in Livermore,
CA. Hence, various project management and planning processes were implemented by con-
sidering the interdisciplinary nature of the participants to improve the communication and
e↵ectiveness of the collaboration among the various team members.

Three subteams, one for capability improvements for a general radiation heat transfer
framework implementation (Task 2), one for verification, validation and uncertainty quan-
tification for credibility assessment (Task 3), and one for performance improvements (Task
4) were organized. The co-PIs in each subteam held frequent meetings on the specific as-
signed tasks ranging from weekly meetings at ASU to monthly or quarterly visits/meetings
to federal laboratories to work close with the resident co-PI at the site.

The weekly progress update meetings at ASU involved various presentations by the team
members and the students to provide education on various technical points and plans for the
enhancements to the code. At each meeting, presentation slides were compiled and store to
keep track on the status of the relevant milestones, so that progress toward these milestones
can be reported accurately in the required project progress reports to the program managers
at the U.S. Department of Energy.

In addition to the kick-o↵ and closure presentations, a close contact was maintained
with the technical team members at NETL through Webex based progress update meetings
initially scheduled bi-weekly and then monthly after first year. Also ASU team attended
in-person the annual Multiphase Flow Science Workshop organized by NETL in August
2016 to present the ongoing research activities to Multiphase Flow community and also par-
ticipate in the poster sessions. The whole project team were enabled access to file storage
portal Dropbox and Git repository that was hosted at Bitbucket for e↵ective version control
and sharing of research results and developments. In order to improve collaboration and
feedback from NETL team members, access to the Git repository was provided to the in-
terested members of NETL’s Multiphase Flow Science group for testing the polydispersity
implemented version of MFIX-DEM. This repository is expected to be merged with the main
MFIX GitLab repository at NETL for e↵ective integration of the project outcomes. As part
of the ongoing, PI Gel led the e↵orts to compile competitive proposals for acquiring access to
Department of Energy’s high performance computing program at NERSC and National Sci-
ence Foundations’s XSEDE program at Texas Advanced Computing Center and San Diego
Supercomputing Center. The team also has acquired two Intel Xeon Phi based HPC nodes
for local development work, which will be available for these project activities. Hence, the
project team members were able to utilize state-of-the-art HPC facilities from the first day
without delays for any preparations due to extensive experience at these HPC sites.
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Task 2 - Performance Improvements in MFIX-DEM
An important component of the proposed project was performance improvements aiming

the high performance computing platforms that will be most likely commonly available in
the next 3-5 years for the industrial users. For this purpose, Intel R� Many Integrated Core
(MIC) architecture based HPC systems, in particular Xeon R� and second generation Xeon
PhiTM(a.k.a. Knights Landing or KNL) were considered for the target computing platforms
as we expected these to be the most commonly available and a↵ordable HPC platforms
in the near future based on the current trends and major planned deployments at various
U.S. Department of Energy and National Science Foundation High Performance Computing
centers. Intel MIC was chosen as they also o↵er a unique feature, i.e., all of the programming
can be achieved with familiar languages such as C/Fortran and MPI/OpenMP libraries
without the need for another language (e.g., CUDA in the case of NVIDIA R� GPUs) or
libraries (e.g., OpenACC). This feature provided an important advantage for developing and
maintaining open-source codes like MFIX-DEM. Performance portability is another benefit
that ensures the investments can be extended further.

MFIX o↵ers a unified framework from a single code base for a diverse range of multiphase
flows through several modes of operations, such as Two Fluid Method (TFM), Continuum
Discrete Method (CDM) and Discrete Element Method (DEM) [5],[13].

As previously discussed, Figure 2 illustrates a general overview of the originally planned
contributions of the project through performance and accuracy improvements expected for
the code, i.e., time-to-solution is reduced substantially while model inaccuracies are reduced
through enhanced physical modeling capabilities. For this purpose, the project aimed to ad-
dress performance issues that arise in CDM (a.k.a. coupled CFD and DEM) and DEMmodes
for a balanced approach. Hence, the subtask was divided into performance improvement for
two major solution processes o↵ered by MFIX-DEM: (i) Dispersed Phase (Lagrangian) So-
lution Process, i.e., the DEM Solver, and (ii) Continuum Phase (Eulerian) Solution Process,
i.e., the CFD Solver. As the problem size increases towards industrial scale, both (i) and (ii)
a↵ect time-to-solution in CDM mode, whereas the pure DEM mode is a↵ected by (i) only.

In order to achieve the reduction in time-to-solution as illustrated in the orange colored
shift shown in Figure 2, there is a need to address both performance bottlenecks in a bal-
anced approach. The proposed improvements have been split into two separate subtasks,
which were initiated in Phase 1 and proposed to be carried out extensively in Phase 2.
However, during the course of the project the work scope for this subtask was significantly
reduced with the approval of DOE/NETL to avoid duplicate e↵ort with another institution
who was awarded to work on performance improvement topics for a longer duration. Also
DOE/NETL decided to terminate a particular subaward/subtask on performance improve-
ments in December 2017.

Hence, as part of the updated project management plan which reflected the significantly
reduced scope in Task 2, we first present some of the preliminary performance profiling results
prior to this change to document the observed bottlenecks in single core code performance
at that time without the polydispersity implementation. Then the performance profiling
results for runs conducted on single core using the same tool (i.e., Intel Advisor XE) are
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presented for the new version of the MFIX-DEM to better illustrate whether polydispersity
implementation, which was developed as part of this project towards physical modeling
enhancements subtask has introduced any new bottlenecks in DEM solution process.

Prior Performance Profiling Results Without Polydispersity
Several representative benchmark problems were identified in consultation with our in-

dustrial collaborators and also NETL team members at the beginning of the project to
conduct performance profiling and use the results to establish the baseline performance for
documenting improvements. In order to achieve consistent performance profiling, the bench-
mark problems were prepared to reach a certain time level in simulation and profilings were
always conducted from the same initial restart conditions generated as a result of these
preparation activities. For example, the rectangular 3D riser problem was simulated till 5
seconds to let the transients pass and then always restarted from 5.0 seconds to run for 0.1
seconds.

The performance profiling was performed with a recent tool developed by IntelR�, i.e.,
Advisor (also known as ”Advisor XE”, ”Vectorization Advisor” or ”Threading Advisor”)
[10]. This performance profiling tool appears to aim the developers for code modernization
by deeply analyzing application software to find answers to the questions like “Are the loops
that display bottleneck performance vectorized? If not then what is the constraint? If
yes then is it using the optimal instruction set targeted for the architecture (e.g. AVX512
for Intel Knights Landing processors)?” Although such information could also be obtained
through other performance profiling tools that was employed in the project (i.e., Intel R�

VTuneTM Amplifier XE [11] or TAU from University of Oregon [15, 2]), what made Advisor
preferable over other tools was the customized recommendations generated at the end of
the analysis to improve the vectorization capability of the code for the targeted hardware
architecture. Considering the substantial SIMD instruction capability o↵ered with modern
Intel Xeon and Xeon Phi based architectures, achieving peak vectorization performance is one
of the essential and sometimes lowest hanging fruit for performance improvements. Hence,
due to our collaboration with Intel engineers and lead developer of Advisor, opportunity to
become one of the beta testers for the new tool to test the features o↵ered at the early stage
of the project o↵ered a unique benefit as our project specifically targeted Intel R� Xeon and
Xeon Phi architectures.

Although the scope of the current subtask was significantly reduced with DOE/NETL
approval due to the changes mentioned earlier, some of the preliminary results from Intel
Advisor profilings acquired prior to this change is presented in this section for illustration
purposes on what level of information can be acquired from these types of tools and how
they can improve the productivity in code modernization. Figures 4 to 9 show the Intel
Advisor profiling results for the Benchmark Case # 1, which is the 3D rectangular riser where
initially TFM solver dominates but then DEM solver is predominant and demonstrates some
bottlenecks. Figure 4 shows that non-vectorized scalar code dominates 66% of the overall
time spent by the loops during the execution of the code for this problem and only 34% of
the time spent was in the vectorized loops. Even the latter loops, which were vectorized
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to take advantage of the SIMD hardware, the vectorization e�ciency wasn’t good. This
situation most likely indicates the proper vectorization instructions (e.g., AVX2 for Xeon
or AVX512 for Xeon Phi processors) are not being utilized. Figure 5 is the continuation
of the previous figure where at the bottom the top time-consuming loops are specifically
outlined, and recommendations for performance improvement by targeting specific loops are
displayed. For example, as expected calc force dem subroutine was determined to be the
subroutine having at least one loop that consumes most of the time among all other loops
during the execution in spite of the low trip count. When compared to the VTune Amplifier
XE profiling results (as presented in 2016 Q3 quarterly report), same top two subroutines
were listed as the primary bottleneck but VTune required further analysis to understand the
root cause whereas Advisor was able to point the potential root causes at the loop level if
they are due to poor vectorization.

Figure 4. Dashboard screen showing the performance pro-
filing of Benchmark Case 1 on Intel Xeon Haswell (HSW)
with the new Intel Advisor tool to identify the vectorization
related bottlenecks.

Figure 5. Intel Advisor tool based performance profiling of
Benchmark Case 1 on Intel Xeon Haswell (HSW) showing the
top loops that consume most of the time during the execution
session.
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Figure 6 shows the location of the loop listed as top-time consuming with the source
code and some measured metrics. For example, cycling the loop due to the condition being
satisfied has taken substantial portion of the execution of this loop due to scalar execution.
Most likely the conditional branching has caused the compiler not vectorize the loop and
force scalar execution. This situation can be verified by reviewing the compiler optimization
report, which could be easily generated with the compiler level flags such as -qopt-report=5
during compilation.

Figure 6. Intel Advisor screen displaying the location of the
top bottleneck loop in the source code with some execution
metrics such as loop time.

Figure 7. Display of the second top time-consuming loop
during the execution of Benchmark Case 1 on Intel Xeon
Haswell (HSW)

Figure 7 shows the second top time-consuming loop, which appears to be in DES-
GRID NEIGH BUILD, and same subroutine was also listed in VTune Amplifier analysis earlier.
In the Advisor screen the explanation for the poor performance in this particular loop is
associated with vector dependency, which is most likely due to a variable defined with in the
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loop and relying on another array triggering the dependency. Although loop appears to be
vectorized up to a certain extent the assessed dependency causes a scalar loop instruction
to be generated as it is shown in the breakdown list in Figure 8

For more advanced users, Advisor also o↵ers the option to analyze the hot-spot location
(i.e., the loop identified as bottleneck during execution) in compiler generated assembly
languages as shown in Figure 8. This capability is very useful for those who are familiar with
the instruction set of the targeted architecture and can immediately diagnose the problem
through to the instructions generated by the compiler. More detailed text based assessment
of the loop vectorization and associated suggestions for improvement can be obtained in text
mode as shown in Figure 9, which clearly shows scalar loop causing the ine�ciency with
the rest of the vectorization. One of the solutions is to remove the dependency by explicitly
declaring a variable locally and setting to the arrays at beginning of the subroutine so the
compiler can determine the values of the array to be known while the loop is executing.

Figure 8. Compiler generated assembly language view of
the second top time-consuming loop determined by Intel Ad-
visor.

Figure 9. Performance profiling of Benchmark Case 1 on
Intel Xeon Haswell (HSW) with the new Intel Advisor tool
to identify the vectorization related bottlenecks.
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Benchmark Case # 2 Hopper Discharge: The second representative benchmark case
selected was the hopper discharge, where we have created an initial configuration of hopper
filled with granular material, which was settled to make sure most of the kinetic energy is
dissipated. For the performance profiling the bottom of the hopper was opened to let the dis-
charge begin and profiling was performed for certain duration to capture the typical behavior
of granular flow. For the initial profiling, we performed the simulation till the hopper is dis-
charged to establish a baseline and compare against shorter wall-clock runs to make sure the
hot-spot characteristics observed do not change based on the duration of the simulation. In
contrast to the first benchmark case, this problem only utilized the DEM solver in MFIX as
only granular material flow is simulated by employing the Lagrangian framework based dis-
crete element method solution. First performance profiling was performed with Intel VTune
on single core to get an overview of the bottlenecks at the processor level. Hence, Figure
10 shows the preliminary performance profiling results. This time DESGRID NEIGH BUILD
appears to be the top time-consuming subroutine whereas CALC FORCE DEM is the second
ranked.

Figure 10. Summary display for performance profiling of
Benchmark Case 2 on Intel Xeon Haswell (HSW) with the
Intel VTune tool to analyze general performance bottlenecks.

Figures 11 to 12 show the detailed view provided by VTune Amplifier on the location
of the top time-consuming bottleneck in DESGRID NEIGH BUILD, which appears to coincide
with the same loop as highlighted in Case #1 with Intel Advisor reports (as shown in Fig.
7).
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Figure 11. Performance profiling of Benchmark Case 2 on
Intel Xeon Haswell (HSW) with the Intel VTune Amplifier
tool showing the most time consuming subroutines.

Figure 12. Detailed view of the hot-spots in the top time-
consuming subroutine DESGRID NEIGH BUILD for Benchmark
Case 2 as identified by Intel VTune Amplifier.

Same set of simulations were profiled with Intel Advisor also to better isolate the per-
formance hot-spots that are directly associated with poor vectorization. Figures 13 and 14
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show the Advisor reports and findings for the same benchmark case. As opposed to the Case
#1 Advisor report (shown in Fig. 4), Case # 2 appears to spend nearly half of its time in
vectorized loops but still half of the code is running in scalar loops. This situation inevitably
implies leaving substantial performance on the table as we are not taking advantage of what
the hardware has to o↵er if properly vectorized.

Figure 13. Summary report for performance profiling of
Benchmark Case 2 on Intel Xeon Haswell (HSW) with the
new Intel Advisor tool to identify the vectorization related
bottlenecks.

Figure 14. Detailed view of the top time-consuming loops
determined during performance profiling of Benchmark Case
2 with Intel Advisor.
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Most Recent Performance Profiling Results With Polydispersity

Figure 15. Revised benchmark problem

Figures 16 and 17 show the performance pro-
filing results for one of the industrially relevant
problem, i.e., benchmark case # 2, which was
initially proposed by our industrial collaborator,
Procter & Gamble and then extended for the par-
ticle height classification problem proposed by
ExxonMobil collaborator. The revised bench-
mark problem is a hopper discharge configura-
tion with binary spherical region as shown in
Figure 15. Two types of particles are consid-
ered with a density ratio 3.0 between spherical
region and the rest of the hopper. Total particle
count was 200,000 particles where approximately
50,000 were in the spherical region with a uniform
distribution of particle size with D in [0.05, 0.15]
cm for both the spherical region and the rest.

Figure 16. Intel Advisor Profiling of Polydispersity imple-
mented 2016-1 version of MFIX-DEM
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Figure 17. Detail view of Intel Advisor Profiling of Poly-
dispersity implemented 2016-1 version of MFIX-DEM

As seen in Figure 16, most of the computational time is in CALC FORCE DEM and DES-
GRID NEIGH BUILD routines, which were the same set of routines without polydispersity fea-
ture. However, this time CALC FORCE DEM appears to be top subroutine, which is possibly due
to the fact the duration of execution for data collection were di↵erent for both benchmarks
as it can be seen from Self Time column in Figures 14 and 17. No additional performance
profiling results or implementation of the suggested improvements are presented due to the
DOE/NETL approved change in work scope for this subtask.
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Task 3 - Physical Modeling Capability Enhancements in
MFIX-DEM

In order to address the FOA objectives addressed earlier in Figure 1, a standalone task
was adopted to enhance the physical modeling capabilities of the computational models for
more accurate solution of the real engineering problems encountered by the industry. For
Phase 1, the capability enhancements task were divided into two major subtasks. The first
subtask aimed to improve the capability MFIX-DEM in handling particle size polydispersity
to allow multiple solid phases, each possessing a distinct arbitrary particle-size distribution
for e�cient and realistic multiphase flow simulations. The second subtask was aimed to
validate the existing heat transfer models in MFIX-DEM since these models have not been
previously tested with more than two particles and a published study existed at the beginning
of the project as September 2015. The following sections present the results of these subtasks.

Subtask 3.1 - Enhance the Capability for Handling Particle Size
Distributions

The objective of this subtask is to significantly improve MFIX-DEM’s physical modeling
capability for handling particle size polydispersity. This objective has been successfully
achieved by implementing new data structures and sub-routines in MFIX source codes. The
new features have been extensively verified and validated using hopper bin discharge studies
[8]. The enhanced MFIX-DEM codes with the new polydispersity-handling features have
been utilized in a particle height classification problem in collaboration with our industrial
partner at ExxonMobil [7].

3.1.1 - Implementation of Polydispersity Features in MFIX-DEM

Our implementation for polydispersity aimed to minimize the invasive structural changes
in the algorithm and the original MFIX-DEM code. In the latest release of MFIX-DEM (i.e.,
2016-1), each distinct solid phase is only allowed to possess a unique particle size, which is
saved in the array D P0, whose size is the maximum number of solid phases in the system.
Each solid particle is assigned a unique phase index based on its diameter, which helps in
phase-specific physical properties of the particles (e.g., material density, Young’s modulus,
coe�cient of friction, coe�cient of restitution, etc.) to be retrieved and employed in the
subsequent computation of particle contact forces.

The basic idea of our new implementation is to separately save the particle geometrical
parameters (i.e., diameters), which are particle-specific and the phase-specific physical pa-
rameters. In particular, we modified the array D P0 such that it saves the diameter of each
particle in the system, thus possessing a size of the total particle number N . For example,
D P0(i) now gives the diameter of particle i, instead of the diameter of particles for phase
i. Accordingly, the phase index of each particle is not assigned according to its diameter,
but assigned based on its physical properties, e.g., material density. The change of data
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structure for saving and retrieving individual particle diameter (or radius) a↵ects a number
of subroutines which utilize D P0(i) as input for subsequent calculations. The modified sub-
routines include those for particle force/torque calculation (calc force dem.f), solid-gas
momentum transfer calculation (calc drag des.f), grid cell locator (desgrid mod.f) and
neighbor locator (neighbour.f). We note the modifications do not a↵ect any of the un-
derlying governing equations for the system nor specific contact force models to be utilized.
Also as shown as part of the Task 2 results, the modifications haven’t adversely a↵ected the
performance characteristics of MFIX-DEM by creating new performance bottlenecks.

The new implementation o↵ers three types of built-in probability distribution functions
(PDF) for size, including normal, log-normal and uniform distributions. However, the addi-
tion of new distributions can be easily done through the DES/RANDOMNO mode.F subroutine.
For a user-specified distribution, the particle diameter information is provided in the restart
files (*.RES) and is read in during the initialization stage. In addition, users can specify the
particle size distribution for both the initial condition (IC) and mass-in-flow (MIF) bound-
ary conditions (BC). This allows the simulation of complex multiphase flow processes during
which additional solids are injected into the system. This implementation is achieved by
introducing two sets of new keywords, respectively, for ICs and MIF BCs. The new poly-
dispersity feature is expected be available in the next release version of MFIX with detailed
documentation and tutorial cases.

When utilizing the polydispersity features, it is recommended that the ratio between the
largest and smallest particle diameter is smaller than 5, i.e., Dmax/Dmin  5. First, the
computational cell grid size L is determined by Dmax via L = �Dmax (where � = 1.1 by
default). A very large value of particle size ratio would lead to a large computational cell
with too many smaller particles, which in turn decreases the computational e�ciency. In
addition, for larger size ratios, the e↵ects of small particles on a large particles can be very
well described by the continuum approach and by treating the small particles as a continuous
fluid phase.

3.1.2 - Verification and Validation (V&V) Using Hopper Bin Discharge Studies

(a) Verification of the polydispersity implementation:

As part of our preliminary V&V e↵ort, we first verified the new implementation by
simulating particle discharge from a 3D hopper with equal-sized spherical beads. The 2016-
1 release version of MFIX is also used to simulate the same system for comparison. The
hopper contains a cylinder part of height 5 cm and diameter 6 cm, connected to a cone
part with height 5 cm and angle of 30 degrees. The bottom of the hopper cone is further
connected to a short cylinder tube of height 0.2 cm and diameter 0.5 cm. The monodisperse
beads possess a diameter of 0.068 cm, spring constant of 2.5⇥ 105g/s2, friction coe�cient of
0.01 and coe�cient of restitution of 0.5.

The initial configuration for the discharge simulation is obtained by first filling the hopper
with 15540 beads from the top (through the mass-in-flow boundary condition), while the
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bottom is kept closed (through the no-flow boundary condition). The resulting packing is
allowed to settle completely, to dissipate the kinetic energy. The stable packing at the end
of settling is used as the initial configuration for the discharge simulation until the hopper
is fully discharged.

Table 1. Verification simulation details for the discharge
hopper with monodisperse spherical beads.

Domain Decomposition Total Number CPU
Configuration of Particles hours

MFIX-DEM 2016-1 2⇥ 2⇥ 2 15544 5.45
Our implementation 2⇥ 2⇥ 2 15540 5.44
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Figure 18. Discharge dynamics for a 3D hopper with equal-
sized spherical beads. The discharged mass vs. discharge
time curves obtained from both the 2016-1 MFIX and our
new implementation agree well with one another.

Tab. 1 summarizes the simulation details, including the number of particles, domain
decomposition configuration and total CPU hours required for full discharge. Fig. 18 shows
the discharged mass vs. time for the monodisperse system, obtained using the 2016-1 MFIX-
DEM release and our new polydisperse implementation derived from the 2016-1 release. It
can be seen that in both cases, the initial discharge rates are relatively small and stabi-
lize within ⇠ 2 seconds after discharge starts. The discharged mass fractions for the two
cases slightly deviate from one another due to uncertainty in the initial packing configu-
rations. The overall discharge dynamics agree very well with one another. Also, the total
computational cost in terms of wall-clock CPU hours for the simulations are also compa-
rable in the two cases. Hence, these results verify the correctness of our new implementation.
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(b) Hopper Discharge Experiments:

In the next step of our V&V e↵ort, to validate our polydispersity implementation hopper
discharge experiments were carried out using two types of polydisperse particles with varying
initial packing configurations. Detailed discharge dynamics were obtained for both types of
particles for comparison with simulation results. The hopper used in the experiments (shown
in Fig. 19) is 3D printed using a Stratasys Dimension 1200es SST (Stratasys Ltd. MN, USA),
with ABSplus thermoplastic. It contains a cylinder of 12.5 cm height and 12.5 cm diameter,
connected to a cone with a height of 3.5 cm and 55� cone angle. The bottom of the hopper
cone is further connected to a short cylinder of height 1.3 cm and diameter 2.5 cm. The
hopper is leveled and clamped to a support stand. A glass slide gate is used to close and
open the hopper outlet, to fill and discharge, respectively.

Figure 19. Experimental setup of hopper: Clamped 3D
printed hopper with a beaker, for collecting discharged par-
ticles, placed on an analytical balance to measure the mass
of discharged particles for sampling.
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The granular materials used in the experiments are silica beads (soda-lime silica glass).
The silica beads are purchased from Potters Industries, PA, USA; with particle density
2.5 g/cm

3 in di↵erent sizes. The particles are further sieved to narrow the particle size
distribution (PSD). The sieved particles are analyzed using a Malvern Morphologi G3SE
(Malvern Instruments Ltd, UK), and two distinct sized polydisperse silica beads with a bi-
modal size distribution (shown in Fig. 20) are used for the experiments. Specifically, the
system can be considered to contain two phases of solid particles, each possessing a distinct
normal size distribution, with the same physical properties. The fine particles possess a
normal distribution with a mean of 1.5 mm and standard deviation of 0.3 mm, and the coarse
particles possess a normal distribution with a mean of 2.9 mm and standard deviation of 0.1
mm (see Fig. 21).

While the particles discharge through the hopper, they become tribocharged and tend to
stick to the walls of the hopper. To remove any charging of the particles during discharge,
the particles are treated with an anti-static solution. The anti-static solution is prepared
by dissolving 1 ml of ASA antistatic agent (Electrolube, UK) into 100 ml of ethanol. No
change in the discharge dynamics and segregation is observed before and after the particles
are coated with the anti-static solution.

The masses of the fine and coarse particles used in the experiments are 580 g and 420
g, respectively. Two initial packing configurations are prepared using the fine and coarse
particles. In the first configuration, the fine and coarse particles are well mixed. For this,
both the fine and coarse particles are divided into 10 equal portions. One portion of fine
particles is mixed with one portion of coarse particles using a Turbula T2F Shaker-Mixer
(Glen Mills Inc., NJ, USA). The same procedure is repeated with the remaining 9 portions
to produce 10 equal portions of well mixed fine and coarse particles. The hopper outlet is
closed, and each portion is loaded slowly into the hopper, to minimize segregation due to
free fall. The particle bed is leveled after each portion is loaded. In the second configuration,
the coarse particles are first packed at the bottom of the hopper (with the outlet closed).
Then the fine particles are loaded on top of the coarse particles to form a layered packing.
Each layer is leveled after loading into the hopper. We note that these configurations were
also used by Ketterhagen et al., (2007) [21].

The discharge experiment is carried out using a discontinuous sampling method. The
outlet of the hopper is opened, and samples of equal mass are collected using the discontin-
uous sampling method. The initial and final arrangement of particles, for both mixed and
layered configurations, are shown in Fig. 22. The collected samples are sieved and weighed
to determine the mass of fine and coarse particles. Then the discharged mass fraction of
both the fine and the coarse particles are determined, and the segregation data is plotted
as the normalized mass fraction of fines (�N

f ) and the overall discharged fractional mass (�̄),
using Equations [2.1 and 2.2].

�
N
f = �

discharge
f /�

0
f (2.1)

�̄ = m
discharge

/m
0 (2.2)
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Figure 20. A bi-modal particle size distribution (i.e., num-
ber frequency vs. particle sizes) was employed, which in-
cludes two normal distributions for fine and coarse silica bead
particles.
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Figure 21. Silica beads: Normal distribution of the fine
particles with mean of 1.5 mm and standard deviation of 0.3
mm, colored in red; and the coarse particles with a mean of
2.9 mm and standard deviation of 0.1 mm, colored in green.
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Well-Mixed Configuration

Layered Configuration

Figure 22. Particle arrangement: (a) First discharged sam-
ple from the well-mixed configuration. An approximately
equal number of fine and coarse particles are discharged. (b)
Last discharged sample from the well-mixed configuration. A
majority of fine particles are discharged. (c) First discharged
sample from the layered configuration. Only coarse particles
are discharged. (d) Last discharged sample from the layered
configuration. A mixture of both fine and coarse particles are
discharged.
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where, �N
f is the normalized fine mass fraction of the discharged particles, �discharge

f is the fine
mass fraction of the discharged particles, �0

f is the fine mass fraction in the initial packing
configuration, �̄ is the overall discharged mass fraction, mdischarge is the total discharged
mass and m

0 is the mass of the initial particle packing. During the experiments with the
well-mixed configuration, segregation occurs while loading. Therefore, each experiment is
replicated five times to minimize the e↵ects of any non-homogeneous regions on discharge
segregation results, for both well mixed and layered configurations. The experimental results
are reported in the subsequent section to validate our polydispersity implementation.

(c) Comparison of Experiment and Simulation Results:

In this section, we present the validation of our newly implemented polydispersity feature
by replicating the experimental setup in discussed later under Sec. (b). For the simulations,
we consider that the glass beads possess model properties consistent with the previous stud-
ies [21]. As discussed earlier, in order to handle size distribution more e�ciently in the
simulation, a maximum value and a minimum value are specified for each size distribution.
The fine-to-coarse particle mass ratio is 0.58:0.42, corresponding to a fine-to-coarse number
ratio of 8: 1. The parameters for the particle phases used in our simulations are summarized
in Tab. 2. We note that for both solid phases, we specify an upper and lower bound for
the particle size PDF, to avoid generating non-realistic large/small particles. In our subse-
quent simulations, the initial packings are generated using the mass-in-flow (MIF) boundary
condition (i.e., the particles are filled into the hopper from the top). In the current imple-
mentation, the MIF boundary condition does not allow one to precisely control the number
of particles for each solid phase to be filled in the hopper. Therefore, the mass ratio is first
determined in the hopper discharge simulation and then reproduced in the experiments, in
which the mass for each phase can be controlled more precisely. The simulations are car-
ried out on Stampede at the Texas Advanced Computing Center (TACC), which consists of
64-bit Xeon E5-2680 2.7GHz (turbo, 3.5) cores. The code is compiled with mvapich2/2.1.

Table 2. Geometrical parameters, masses of the two solid
particle phases and global parameters used in validation sim-
ulations.

Sample Fine Coarse
Mean Dia. 0.15 cm 0.29 cm
Max Dia. 0.17 cm 0.31 cm
Min Dia. 0.13 cm 0.27 cm
Std. Dev. 0.03 cm 0.01 cm
Total Mass 580 g 420 g

Spring Constant 2.5⇥ 105g/s2 2.5⇥ 105g/s2

Friction Coe�cient 0.5 0.5
Coe�cient of Restitution 0.9 0.9

(d) Discharge hopper with polydisperse particles in well-mixed configuration:
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Figure 23. Initial configuration of the discharge hopper
containing a well-mixed packing of spherical beads with a bi-
modal size distribution. The unit of the particle diameter is
centimeter.

We first consider the well-mixed configuration (see Fig. 23). The initial configuration
for the discharge simulation is obtained by filling the hopper with both fine and coarse
beads together from the top through the mass-in-flow boundary condition, while keeping
the bottom closed with a no-flow boundary condition. The injection velocities of the fine
and coarse beads through the top are 16 cm/s, with a volume fraction of 0.0145 for coarse
beads and 0.0165 for fine beads. The resulting packing is allowed to settle to completely
dissipate the kinetic energy, and the resulting well-mixed stable packing is used as the initial
configuration for the discharge simulation until the hopper is fully discharged. The number
of computational grids used in this simulation is 30 by 30 by 40 respectively along the two
lateral directions and the axial direction of the hopper. We note although the grid resolution
needs to be specified for MFIX logistics, the actual fidelity is determined by the number of
particles employed for the simulation when running MFIX-DEM in granular-flow-only mode.
The domain decomposition configuration is 4 by 4 by 4 with 64 cores, and the total CPU
hours for the discharge simulation are 6.73 hours.

Fig. 24 shows the snapshots of the discharge simulations at several di↵erent times.
The discharge dynamics are quantified using the normalized fine mass fraction, �N

f , of the
discharged particles vs. the overall discharged mass fraction, �̄, which are calculated by
using Equations [2.1 and 2.2].

In the ideal case that during the entire discharge process, the packing configuration stays
well mixed, the resulting �

N
f � �̄ curve would be a simple constant function with value 1.

However, due to segregation e↵ects, the fine particles cluster at the hopper bottom towards
the end of the discharge, leading to an increase of �N

f towards the end of discharge (see
Fig. 25). As can been seen from the figure, our simulated �

N
f � �̄ curve agrees very well

quantitatively with our experimental data.
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Figure 24. Snapshots of the discharge simulation of the
well-mixed configuration at 6 s, 9 s, 11 s and 12 s, respectively,
from left to right. The upper panels show the top view and
the lower panels show the side view.

Figure 25. Discharge dynamics are quantified using the
normalized fine mass fraction �

N
f of the discharged particles

vs. the overall discharged mass fraction �̄ for the well-mixed
configuration.The experimental results are represented as a
box plot.

39



Nonetheless, it can be seen that the experimental data tends to deviate more from the
ideally mixed case (i.e., the constant function), indicating a stronger segregation e↵ect during
the discharge. We note that in an “ideally mixed case”, there will be no aggregation of
particles of similar sizes during the entire discharge process. This situation is not possible
in practice, as the particles during a discharge process always gain kinetic energy and thus,
inevitably form aggregations of di↵erent sizes. The observed discrepancy is possibly because
of the existence of locally segregated regions in the experimentally prepared initial packing
configuration due to particle size dispersity, which is inevitable even though very careful
mixing was conducted in the experiment. On the other hand, the particle mixing in the
initial configuration can be much better controlled in the simulation through mass-in-flow
boundary conditions. Therefore, the segregation in the simulated system is mainly due
discharge and become significant toward the end of the discharge process.

(e) Discharge hopper with polydisperse particles in a layered configuration:

Figure 26. Initial configuration of the hopper discharge
containing a layered packing of spherical beads with a bi-
modal size distribution. The unit of the particle diameter is
centimeter.

For the second validation case, we consider the discharge hopper with a layered config-
uration (see Fig. 26). The initial configuration for the discharge simulation is obtained by
first filling the hopper with coarse beads from the top through the mass-in-flow boundary
condition, while the bottom is kept closed through the no-flow boundary condition, and then
continuing to fill the hopper with fine beads, which pack on top of the coarse beads (see Fig.
26). The injection velocities of the fine and coarse beads through the top are 16 cm/s, with
a volume fraction of 0.02 for each layer. The resulting packing is allowed to settle to com-
pletely dissipate the kinetic energy, and the resulting layered stable packing is used as the
initial start for the discharge simulation until the hopper is fully discharged. The number
of computational grids used in this simulation is 30 by 30 by 40 respectively along the two
lateral directions and the axial direction of the hopper. The domain decomposition configu-
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ration is 4 by 4 by 4 with 64 cores and the total CPU hours for the discharge simulation are
6.81 hours.

Figure 27. Snapshots of the discharge simulation of the
layered configuration at 6 s, 9 s, 11 s and 12 s, respectively,
from left to right. The upper panels show the top view and
the lower panels show the side view.

Fig. 27 shows the snapshots of the discharge simulations. The discharge dynamics as
quantified via �

N
f � �̄ are shown in Fig. 28. As seen in Fig. 27, in this case, the coarse

particles packed at the hopper bottom discharge first, which opens up a channel for the fine
particles on the top. Therefore, the resulting �

N
f remains zero for a while (before a channel

is opened up), and is monotonically increasing as the discharge proceeds after the channel
is open. Towards the end of discharge, since most of the fine particles in the hopper are
gone, �N

f begins to decrease and finally starts to fluctuate due to a very small number of
fine particles remaining in the hopper. Again, our simulated �

N
f � �̄ curve agrees very well

quantitatively with the experimental data, as shown in Fig. 28.

Our simulation also reveals how the channel for fine particles is opened up during the
discharge. Due to the geometry of the hopper, the particles in the central region corre-
sponding to a virtual extension of the cylinder-shaped outlet at the hopper bottom always
discharge first, regardless of the initial packing configurations in the hopper. The fast flow
of discharging particles in this central region generates a pressure on the remaining particles
and pushes them against the container wall. In the layered configuration, the coarse particles
are packed at the bottom of the hopper and fine particles are then stacked on top. Thus,
once the discharge process starts, the coarse particles in the central region discharge first,
which e�ciently open up a channel for the fine particles that were originally packed on top
of the coarse ones.

Again, it can be seen that the experimental data tends to deviate more from the ideally
mixed case (i.e., unity) compared to the simulation results. Although in this layered config-
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Figure 28. Discharge dynamics are quantified using the
normalized fine mass fraction �

N
f of the discharged particles

vs. the overall discharged mass fraction �̄ for the layered
configuration. The experimental results are represented as a
box plot.

uration, the coarse and fine particles are separately packed in their own layers, within each
layer the locally segregated regions still exist (due to the polydispersity of particles within
the same solid phase) in the experimentally prepared initial configurations. This leads to
the observed stronger segregation e↵ects during the discharge process. For better controlled
initial configurations in the simulations, the segregation is better suppressed and thus, the
deviation of the simulated results from the ideally mixed case is less significant.

3.1.3 - Particle Height Classification Problem

(a) Background and motivation:

In many industrial applications involving chemical reaction, the final distribution of solid
particles with di↵erent chemical composition after the reaction can contain important in-
formation related to the reaction e�ciency etc. However, the full 3D packing configuration
of particles after reaction is typically not available as these particles are stored in closed
containers such as a hopper. After the reaction, the particles are discharged and typically
collected in a train of buckets. By analyzing the discharged particles in each individual
buckets, one can get estimates on certain discharge dynamics, e.g. the resistance time of the
particles, as well as the particle characteristics such as size and density. It is then of great
interest and importance if one could inversely reconstruct the particle packing configuration
from such limited information on discharge dynamics.

Motivated by the needs in reaction design and optimization, we develop here an inverse
reconstruction procedure that enables one to obtain the particle height information in the
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Figure 29. Schematic illustration of Convolutional Neural
Network (CNN) model used for particle height classification.

initial packing configuration in the hopper bin from limited discharge dynamics data and
particle characteristics. Our procedure is based on convolutional neural network (CNN)
models, which take experimentally measurable particle resistance time, radius and density
as input, and provide a classification of particle height in the initial packing as output. Using
MFIX-DEM simulations with enhanced physical modeling capabilities, we generate extensive
discharge data for hoppers containing two distinct solid phase particles with four distinct
classes of initial packing geometries. The CNN reconstruction models are subsequently
trained and tested using the discharge data.

(b) Formulation of the inverse particle height classification problem:

In our problem, we pre-partition the hopper into Nb bins with uniform width s and
index ↵ = 1, . . . , Nb. In this way, the particle height reconstruction problem is reduced to a
classification problem, in which a particle is assigned a bin number ↵ based on its resident
time tr, diameter Dp and density ⇢. We note that in this work we only utilize particle
height information to quantify its original position in the hopper. This is due to symmetry
of initial packing configurations of interest to us, e.g., a layered configuration with multiple
solid phases. In principle, one can also include radial information besides particle height
for more complex initial packings. However, this would additional input data and a more
sophisticated reconstruction model, which is out of the scope of the current work.

We now present our Convolutional Neural Network (CNN) model for this reconstruction
(height classification) problem. We employ CNN method instead of other techniques mainly
because of its proven superior performance for handling very rough optimization landscape,
which is the case for our problem due to the large dispersion in the resident time (see the
section below). The CNN reconstruction model contains 4 layers, including an input layer, 2
hidden layers, and an output layer. The number of neurons in each layer is respectively 500,
500, 500, and 15 neurons in each layer respectively. The input data includes the set (tr, Dp,
⇢) for each particle, extracted from the discharge simulation data. The output information
is the index ↵ of the bin that the particle falls into. A dropout rate of 0.3 is used in case of
over-fitting. The activation functions for each layer used are respectively: relu, relu, relu, and
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softmax. The CNN network is developed and implemented based on the TensorFlow and
Keras packages employing python scripting language, which are both open-source software
[3, 4, 9]. We have also experimented with our network set-ups by varying the number of
hidden layers and the number of neurons in each layer. The current set-ups result in the
best reconstruction accuracy for the initial packings that we investigate.

In order to quantify the goodness of the reconstruction (height classification), we intro-
duce an accuracy metric M . Specifically, once a bin classification ↵ 2 [1, . . . , Nb] is obtained,
the height of the particle i can be estimated as

hi = (↵� 0.5)⇥ s, (2.3)

where i is the bin index and s is bin width. We then define the success function I, i.e.,

Ii =

(
1 |hi � h

⇤
i |  �,

0 |hi � h
⇤
i | > �,

(2.4)

where h⇤
i is the actual height of particle i, and � is the tolerance value. The accuracy metric

M is then defined as the average of success function values for all testing particles, i.e.,

M =
1

Nt

NtX

i=1

Ii. (2.5)

In the subsection below, we will present the reconstruction accuracy for the CNN models for
a wide spectrum of distinct hopper packings.

(c) Results of the height classification study:

We present the discharge simulation data for hoppers containing two distinct solid phases
with distinct initial packing geometries. Both solid phases consist of particles with a uniform
size distribution, i.e., Dp 2 [0.05, 0.15] cm, where Dp is the diameter of particles. However,
the two phases possess di↵erent densities with ⇢1 = 2.5g/cm3 and ⇢2 = 7.5g/cm3. The initial
packing configurations are generated by first filling the hopper with N = 200,000 particles
of solid phase # 1 using mass-in-flow boundary conditions. Then a sub-region of this initial
packing with a specific geometrical shape is selected and all of the particles within this sub-
region are designated as phase # 2 with ⇢2. The newly constructed two-phase initial packing
is then mechanically equilibrated for 10s before the discharge simulation.

In this work, we consider four classes of initial packing geometries, in which the denser
particles of phase # 2 are respectively packed in a spherical region with radius R, a cuboidal
region with height H and square edge length L, an upward cone region with height H and
basal radius R, and a downward cone region with height H and basal radius R. Figure 30
schematically illustrates these four distinct packing geometries. For the sphere geometries,
we consider R = 3.5, 4.0, 4.5 and 5.0 cm. For the cuboid geometries, we fix the height
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Figure 30. Schematic illustration of four distinct initial
packing geometries for two solid phases in a hopper bin. The
blue region represents the denser phase (i.e., phase # 2) and
the gray region represents phase # 1.

Figure 31. Scatter plots of resident time vs. particle height
in hopper bin for the sphere geometries. The radii of the
spherical region containing phase # 2 particles are respec-
tively R = 3.5, 4.0, 4.5 and 5.0 cm.
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Figure 32. Scatter plots of resident time vs. particle height
in hopper bin for the cuboid geometries. The edge lengths
of the square basal plane of cuboid containing phase # 2
particles are respectively L = 3.0, 4.0, 5.0 and 6.0 cm. The
height of the cuboidal region is fixed with H = 12.0 cm.
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Figure 33. Scatter plots of resident time vs. particle height
in hopper bin for the upward cone geometries. The radii of
the basal plane of cone containing phase # 2 particles are
respectively R = 1.0, 2.0, 3.0 and 4.0 cm. The height of the
cuboidal region is fixed with H = 10.0 cm.
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Figure 34. Scatter plots of resident time vs. particle height
in hopper bin for the downward cone geometries. The radii
of the basal plane of cone containing phase # 2 particles are
respectively R = 1.0, 2.0, 3.0 and 4.0 cm. The height of the
cuboidal region is fixed with H = 10.0 cm.
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H = 12.0 cm and consider L = 3.0, 4.0, 5.0 and 6.0 cm. For both upward and downward
cone geometries, we fix the height H = 10.0 cm and consider R = 1.0, 2.0, 3.0 and 4.0 cm.

Figures 31-34 respectively show the scatter plots of the resident time tr (i.e., the total
time that a particle stays in the hopper) vs. particle height for the four classes of initial
packing geometries. It can be seen that for all cases, a specific particle height is generally
associated with a range of resident time and vice versa. This implies that in general it is not
possible to exactly locate the original particle height from the associated resident time alone.
As we will show below, the accuracy of the inverse reconstruction (height classification) is
a↵ected by the degree of dispersion of the resident time for a given particle height. The
above discharge data, together with the particle characteristics including the diameter and
density, will be subsequently used as input data to train the CNN reconstruction models.

For the two-phase hopper configurations we consider, resolving the initial packing of
one phase is su�cient to determine the overall packing configuration. Therefore, in the
subsequent discussion, we will focus only on phase # 2 (i.e., the denser particles) and use
CNN models to estimate the height of these particles in the initial packing.

The discharge simulation data are employed to train three types of CNN reconstruction
models, including hopper-specific models, geometry-specific models and a generic model. For
the hopper specific models, we only use the discharge data for a specific hopper configuration
to train the CNN model. In particular, the resident time data associated with 70% randomly
selected phase-2 particles are used as training data for establishing the CNN model, and the
data for the remaining 30% phase-2 particles are used as testing data. A geometry-specific
CNN model is trained using discharge data for hoppers with the same class of initial packing
geometry. For each geometry, the data for one of the four cases are reserved as the testing
data and the data associated with the remaining three cases are used to train the CNN
model. For each training case, resident time data associated with all of the phase-2 particles
are used. The generic CNN model is trained using discharge data for all four di↵erent classes
of geometries. For each class of geometry, three cases are used for training and the remaining
case is used for testing.

Figures 35 to 38 respectively show the reconstruction (height classification) accuracy
metric M (see Eq. (2.5) for definition) for the hopper-specific models for the di↵erent four
classes of initial packing geometries. For each case, M is plotted as a function of the tolerance
�. In each figure three M -� curves associated with di↵erent bin width values s are shown.
For all cases shown, it can be clearly seen that the accuracy M monotonically increases with
increasing �, which is well expected. We emphasize that even the largest tolerance � = 1 cm
considered here is still relatively small compared to the overall hopper height (17.5 cm). In
addition, it can be seen that the reconstruction accuracy is not very sensitive to the choice
of bin width s.

We now examine each class of packing geometry in detail. For the sphere packing ge-
ometry, as the sphere radius increases, the reconstruction accuracy decreases. The highest
accuracy M = 68% is achieved for R = 3.5 cm and the lowest accuracy M = 46% is achieved
for R = 5.0 cm. This result is not surprising. As briefly discussed in Sec. 3.1., the recon-
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Figure 35. Upper panels: Snapshots of the initial packing
configuration for the sphere geometry. The radii of the spher-
ical region are respectively R = 3.5, 4.0, 4.5 and 5.0 cm from
left to right. Lower panels: The reconstruction accuracy M

as a function of the tolerance � (in cm) for di↵erent bin width
s for the hopper-specific CNN models.

Figure 36. Upper panels: Snapshots of the initial packing
configuration for the cuboid geometry. The edge lengths of
the square basal plane are respectively L = 3.0, 4.0, 5.0 and
6.0 cm from left to right. The height of the cuboidal region
is fixed with H = 12.0 cm. Lower panels: The reconstruc-
tion accuracy M as a function of the tolerance � (in cm) for
di↵erent bin width s for the hopper-specific CNN models.
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Figure 37. Upper panels: Snapshots of the initial packing
configuration for the upward cone geometry. The radii of the
basal plane are respectively R = 1.0, 2.0, 3.0 and 4.0 cm from
left to right. The height of the cone is fixed withH = 10.0 cm.
Lower panels: The reconstruction accuracy M as a function
of the tolerance � (in cm) for di↵erent bin width s for the
hopper-specific CNN models.
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Figure 38. Upper panels: Snapshots of the initial packing
configuration for the downward cone geometry. The radii
of the basal plane are respectively R = 1.0, 2.0, 3.0 and 4.0
cm from left to right. The height of the cone is fixed with
H = 10.0 cm. Lower panels: The reconstruction accuracy
M as a function of the tolerance � (in cm) for di↵erent bin
width s for the hopper-specific CNN models.
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Figure 39. The reconstruction accuracy M as a function
of the tolerance � for di↵erent bin width s for the geometry-
specific (GS) models and the generic model (GE), compared
to the corresponding hopper-specific (HS) models. One pack-
ing configuration not used for training the models is chosen
from each geometry class. The results shown respectively cor-
respond to the sphere, cuboid, upward cone and downward
cone geometries.

struction accuracy is a↵ected by the degree of the dispersion of the resident time tr for a
given particle height. For sphere regions with larger R, a specific particle height can be
associated with a wide range of tr, which leads to worse reconstructions. For the cuboid
and upward cone geometries, the trends are very similar to that in the sphere case, i.e., the
accuracy decreases as the basal plane size increases. For the cuboid geometry, the highest
M = 89% is achieved for L = 3.0 cm. For the upward cone geometry, the highest M = 88%
is achieved for R = 1.0 cm. Interestingly, for the downward cone geometry, increasing the
basal plane radius R leads to an increase of M , with the highest M = 80% is achieved for
R = 4.0 cm. This is because the downward cone shape corresponds very well to the flow
pattern during discharge, which results in small dispersion in tr for a specific particle height.
Since very specific discharge data are used to train the CNN models, it can be expected the
obtained accuracy from these hopper-specific reconstructions can serve as benchmarks (e.g.,
upper bounds) for subsequent models.

Figure 39 shows the reconstruction accuracy of the geometry-specific models and the
generic model, compared to that of the hopper-specific models. We choose one packing
configuration from each geometry class, which has not been used for training the models.
The resident time data as well as the particle characteristics are then used as input for the
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Figure 40. Snapshot of the initial packing configuration
for the four-phase system in a layered configuration. The
particles for phases #1, 2, 3 and 4 are respectively shown
with dark blue, light blue, green and red colors.

CNN models for particle height reconstruction. From Fig. 39, it can be clearly seen that
both the geometry-specific models and the generic model generally yield less accurate height
classification results than the hopper-specific models, which is expected. For the sphere
and downward cone packings, the geometry-specific models are significantly better than the
generic model, and can lead to a M comparable to that of the hopper-specific models. For
the cuboid and upward cone packings, the geometry-specific models and the generic model
result in similar accuracy values. We note that these results are not dependent on the specific
choice of training and testing cases.

We now apply the same procedure to reconstruct the particle height information for a
hopper bin with four distinct solid phases to further demonstrate its utility. Di↵erent from
the two-phase hopper systems, in this case the four solid phases possess the same density
⇢ = 2.5g/cm3. However, each phase possesses a distinct normal distribution of particle sizes,
with the average particle diameter D̄p = 0.05 cm, 0.08 cm, 0.10 cm and 0.19 cm respectively
for phases # 1, 2, 3 and 4 and a standard deviation of 0.03 cm for all phases. The number
of particles for phases # 1, 2, 3 and 4 is respectively 80,000, 60,000, 40,000 and 20,000. The
initial packing of the particles possesses a layered geometry, see Fig. 40. This configuration
is obtained as follows: the bottom outlet of the hopper is closed and the particles of phase
# 1 are filled into the hopper via mass-in-flow (MIF) boundary condition and are packed
at the bottom of the hopper. When a mechanically stable packing of phase # 1 particles is
achieved, we begin to inject phase # 2 particles using MIF. Following the same procedure,
we fill phase # 3 particles and phase # 4 particles.

Once the initial packing configuration is constructed, we perform the MFIX-DEM simula-
tion to obtain the required discharge data (i.e., the resident time tr for each particle). Figure
41 shows the scatter plots of resident time vs. particle height for all four phases. It can be
seen that due to the layered geometry, the dispersion of tr for all phases is relatively small
compared to the two-phase hopper cases. Similar to the hopper-specific models discussed

54



Figure 41. Scatter plots of resident time vs. particle height
for each phases in the four-phase system. The data for phases
#1, 2, 3 and 4 are respectively shown with dark blue, light
blue, green and red colors.

in Sec. 3.2., for the four-phase system, the discharge data associated with 70% randomly
selected particles for each phase together with the particle diameters and density are used
to train the CNN model and the data for the remaining 30% particles are used as testing
data.

Figure 42 shows the accuracy metric M as a function of � for di↵erent bin width values
s for all four phases. Consistent with the results for the hopper-specific models for the two-
phase systems, it can be clearly seen that M is a monotonically increasing function of � and
is not sensitive to the choice of bin width s. Remarkably, a very high accuracy M = 95% can
be achieved for phase #3 with a � = 0.8 cm. This is again due to the very strong correlation
between tr and the initial particle height for this phase. The reconstruction accuracy for
phases #2 and #3 is also relative high, i.e., larger than 90%. For #1, the accuracy is about
75%, which is due to the large dispersion in tr associated with a specific particle height.
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Figure 42. The reconstruction accuracy M as a function
of the tolerance � for di↵erent bin width s for each phase in
the four-phase system. The results for phases #1, 2, 3 and 4
are respectively shown.
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Subtask 3.2 - Validation of Heat Transfer Models

The objective of this subtask is to validate the existing heat transfer models in MFIX-
DEM since these models had not been previously tested with more than two particles based
on the available published literature information at the beginning of the project. Thus, we
used a rotary drum filled with particles as our benchmark problem configuration to test
heat transfer process, which is a widely used configuration in many industries. We tested
all heat transfer modes (conduction, convection, and radiation) in MFIX-DEM using this
configuration. Also, we have validated the conduction heat transfer model implemented in
MFIX-DEM with our own simulations and EDEM simulations, as well as literature simu-
lations and experimental data. We have also constructed a lab-scale instrument for local
experimental capabilities and performed preliminary conduction experiments in support of
the validation activities.

3.2.1 - MFIX-DEM Heat Transfer Verification and Validation

(a) Testing All Heat Transfer Modes:

MFIX-DEM has models implemented for all forms of heat transfer that can occur in a
multiphase medium, including conduction, convection, and radiation. For this and all of
our simulation studies, we used a rotary drum geometry filled with particles, which is a
common equipment setup in many industries. In our setup, an aluminum drum of 15.24 cm
diameter and 1.5 cm axial length is half-filled with monodispersed alumina particles of 0.2
cm diameter. A total of 20,000 particles are generated and allowed to fall under gravity while
the drum is rotating. All of the particles are initially given a temperature of 298 K. Once the
particles inside the drum reach mechanical equilibrium, the wall is instantaneously heated
and maintained at a temperature of 398 K, and the drum is rotated at 20 rpm. The heated
wall of the drum has the no-slip condition, and the front and back walls of the domain are
free-slip adiabatic boundaries. The geometry is held fixed in time, and the rotation of the
drum is generated by modifying the gravity vector. As the drum is rotated, the particles
move due to friction between the wall and particles. At the same time, heat is transferred
from the higher temperature wall to the lower temperature particles, and from the higher
temperature particles to the lower temperature particles.

The results for the average temperature profile over time for each of the di↵erent heat
transfer modes in the rotary drum is given in Fig. 43. Here, it can be seen that the heat
transfer models appear to be functional, except no di↵erence is seen with the radiation model,
which may indicate the need to improve this mathematical model to better represent the
phenomena.
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Figure 43. Temperature distribution of monodispersed alu-
mina obtained from MFIX-DEM simulations at (a) 1 s, (b)
5 s, (c) 10 s, and (d) 20 s.

(b) Conduction Verification: Further investigation was done for conduction to fully test
this model under a variety of conditions. Table 3 summarizes the simulation parameters
used for this investigation.

Figure 44 shows the temperature profile of the alumina bed at di↵erent time intervals.
As time progresses, the near-wall particles heat up due to particle-wall contact, and these
particles are transported to the freeboard as the drum rotates. The heat penetrates the solid
bed to include more heated particles with subsequent rotations, thereby increasing the ther-
mal boundary. Moreover, heated particles from near the wall transmit heat to surrounding
particles as they move toward the freeboard region. This is seen after 10 s of simulation, see
Fig. 44(c), where a thick layer of particles is heated along the boundaries of the solid bed.
As time progresses towards 20 s, see Fig. 44(d), more particles are heated, forming a cool
inner core and a warmer outer layer in the solid bed. However, a section of particles in the
lower right side have a comparatively higher temperature than the surrounding particles,
thereby creating a stagnant zone.

The average temperature is scaled with the wall temperature and the initial temperature
of the particle bed to calculate the nondimensional temperature. Fig. 45 shows the evolution
of temperature with respect to time obtained from the MFIX-DEM simulation compared
with the DEM simulation published by Chaudhuri et al. [6]. The commercial DEM software,
EDEM was used in their simulations, and they have validated their conduction heat transfer
model using experiments. Both their simulation and experiment have predicted the same
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Figure 44. Temperature distribution of monodispersed alu-
mina obtained from MFIX-DEM simulations at (a) 1 s, (b)
5 s, (c) 10 s, and (d) 20 s.

heat transfer profile, validating the model. Based on the credibility of the results presented,
the current MFIX-DEM results were compared against their DEM results.

Figure 45. The evolution of average bed temperature for
the MFIX-DEM simulation and Chaudhuri et al. (2010)
DEM simulation.
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For a better quantification of thermal behavior between the results, the thermal time
constant is calculated using the slope in Fig. 46. The value of thermal time constant
for 161.2 s is obtained from the literature simulation and 185.1 s from the MFIX-DEM
simulation, which gives a percent di↵erence of 13.7 %. This reflects the di↵erence between
two DEM simulation codes for mostly similar conditions as input, and more detailed research
is required to understand the discrepancy. Therefore, in the subsequent sections, we will
carry out a systematic parametric study to understand the sources of the discrepancies and
their quantitative assessment. However, the average bed temperatures for both cases follow
nearly an identical upward trend, with a maximum discrepancy of 13.7 % in the thermal
time constant, indicating that the MFIX-DEM results agree fairly well with the DEM results
presented by [6].

Figure 46. Logarithmic variation of scaled temperature dif-
ference with time for the MFIX-DEM simulation and Chaud-
huri et al. [6] DEM simulation.

(c) Conduction Validation: The validation case is based on the experimental work per-
formed by Chaudhuri et al. [6], which has similar conditions to their simulations (see Tab.
3), but with a 7.62 cm long drum. Fig. 47 shows the evolution of the scaled average bed
temperature for both the MFIX-DEM simulation and experimental data available from the
literature. The MFIX-DEM result shows the same increasing trend in the temperature as
the literature experiment. To better quantify the accuracy of MFIX-DEM, the thermal time
constant, is calculated using Fig. 48. The value of thermal time constant is 175.4 s for the
literature experiment and 185.2 s for the MFIX-DEM simulation.

There are a few possible reasons for the 5.4 % discrepancy observed between the MFIX-
DEM simulation and literature experiment. A sudden elevation in the temperature is ob-
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Figure 47. The evolution of the scaled average bed tem-
perature for the MFIX-DEM simulation and Chaudhuri et al.
[6] experiment.

Figure 48. Logarithmic variation of scaled temperature dif-
ference with time for the MFIX-DEM simulation and Chaud-
huri et al. [6] experiment.
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served at 6 s in the experiments, which was not explained by Chaudhuri et al.[6]. Due to
the lack of confidence data in the experimental results reported, it is di�cult to provide
the exact reason for this discrepancy. For calculating the average temperature in experi-
ments, the drum is stopped at 30 s intervals, then the thermocouples are inserted into the
ten ports arranged radially along one of the side walls, and the average bed temperature is
estimated as the mean of the readings of the ten thermocouples. When the drum is stopped
for thermal measurements, it is likely that the temperature recorded by each thermocouple
is an average measure of the interstitial fluid and particle temperatures. In such cases, the
average temperature of the fluid- particle might read a greater value than the actual particle
temperature, and result in a subsequent rise in the recorded temperature. Also, when the
drum is stopped for recording the temperatures, the contact time between the solid bed
and the wall increases, and simultaneously heat can be transferred to the particles, which
might elevate the solid bed temperature. Another reason for the discrepancy can be due to
particle size variations. Chaudhuri et al. [6] reported that the solid phase is monodispersed
with 0.2 cm diameter alumina particles, and based on this, the current simulations are per-
formed with single-phase monodispersed particles. But in reality, the experimental particles
are most likely not perfectly monodispersed. Also, MFIX-DEM does not have the rolling
friction capability implemented. In the literature, the rolling friction coe�cient has been
found to significantly a↵ect the internal friction angle of dense granular processes. There-
fore, it is important to investigate its e↵ect on the hydrodynamic and thermal behavior of
the particles in a rotary drum. In spite of the above discussed discrepancies, the MFIX-DEM
conduction heat transfer model predicts the Chaudhuri et al. [6] experimental results with a
discrepancy of 5.4 % in the thermal time constant. To better understand the reasons for the
discrepancy, additional studies are performed to investigate the e↵ects of model parameters
on the contact heat transfer.

(d) E↵ects of Operating Parameters: After the initial literature experiment based vali-
dation of the conduction heat model, a parametric study is conducted by varying the rotation
speed, particle size distribution, and rolling friction to better understand the e↵ects of these
operating parameters on the heat transfer model implemented in MFIX-DEM. A steel drum
of 15 cm diameter and 2 cm axial length, filled with 0.11 kg of polydispersed alumina parti-
cles with 0.4 cm mean diameter and 0.33 relative standard deviation is used. All the particles
are initially given a temperature of 298 K, and the drum wall is maintained at a temperature
of 578 K. All the drum operating conditions and the simulation parameters are adopted from
the DEM simulations performed by Emady et al.[12] (see Tab. 3), which employed the same
conduction heat transfer model that was previously validated by Chaudhuri et al. (2010).
The work published by Emady et al.[12] used polydispersed alumina particles as the solid
phase for studying the conduction heat transfer in a rotary drum. Since one of our param-
eters of interest is particle size distribution, we have chosen to adopt the model parameters
from this work.
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Table 3. Simulation parameters used for verifying the e↵ect
of rotation speed on the contact conduction model in MFIX-
DEM with polydispersed alumina particles.

   Variable Value 

Global Coefficient of restitution 0.2 
 Time step 1.0 x 10-6 s 

Particles Material Alumina 

 Density 3890 kg/m3 

 Poisson's ratio 0.21 
 Shear modulus 1.0 x 106 Pa 
 Heat capacity, Cp 880 J/kgK 
 Thermal conductivity, k 3000 W/mK 

 Initial temperature, Tso 298 K 

 Total particle mass 0.11 kg 
 Particle radius, µ 0.2 cm 
 Particle size distribution, σ/µ Normal, 0.33 

Drum Material Steel 
 Poisson's ratio 0.3 
 Shear modulus 7.93 x 107 Pa 

 Wall temperature, Tw 578 K 

 Diameter 15 cm 
 Length 2 cm 
 Average fill level 13 % 

  Rotation speed, ω 5, 10, 20, 30 rpm 
 

(e) E↵ect of Rotation Speed: Polydispersed alumina particles are heated at varying
rotation speeds of 5, 10, 20, and 30 rpm. The e↵ect of rotation speed, on the overall heat
transfer coe�cient,↵ for the alumina is shown in Fig. 49. An increase in ↵ when rotation
speed increased from 5 to 10 rpm, and a decrease from 10 to 30 rpm is observed. Fig. 50 shows
the temperature profile of the solid bed for all rotation speeds, at ⌧/2. It is expected that
as the rotational speed increases, the contact time between the covered drum wall surface
and solid bed decreases, thereby decreasing the heat penetration resistance. Also, higher
rotation speeds promote better mixing, which results in a more homogeneous distribution of
heat flux between the drum wall and solid bed. Thus, with low penetration resistance and
better heat distribution at high rotation speeds, a greater overall heat transfer is expected.
However, from Fig. 49, it is seen that the rotation rate does not seem to play a significant
role on the contact heat transfer. A similar e↵ect was observed by Emady et al. (2016),
in their EDEM simulations (see Fig. 49). However, Emady et al. (2016) considered rolling
friction in their studies, which might be one of the root causes of the discrepancy observed.

(f) E↵ect of Particle Size Distribution (PSD): MFIX-DEM randomly generates par-
ticles using the user defined mean (µ), maximum, minimum and standard deviation (�).
Three series of normal distributions (batch 1, batch 2, and batch 3) are generated using 0.33
cm as the minimum, 0.46 cm as the maximum, 0.4 cm as the mean, and 0.035 cm as the
standard deviation of the diameter. The PSDs generated in the three series are shown in
Fig. 51, with a total of 867 particles each. The particles are given the properties of alumina
(see Tab. 3) and the simulations are conducted at rotation speeds of 5, 10, 20, and 30 rpm.
Fig. 52 shows the e↵ect of rotation speed, !, on the overall heat transfer coe�cient, ↵ for
the three batches. As observed in the previous section, rotation speed has no significant
e↵ect on the contact heat transfer. At lower rotation speeds, an increase in heat transfer is
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Figure 49. The sensitivity of the overall heat transfer coef-
ficient to rotation speed for the MFIX-DEM simulations and
Emady et al. (2016) DEM simulations.

Figure 50. Temperature distribution of polydispersed alu-
mina, obtained from MFIX-DEM simulations at t=/2 for ro-
tation speeds of (a) 5 rpm, (b) 10 rpm, (c) 20 rpm, and (d)
30 rpm.

observed along with rotation rate, whereas at higher rotation speeds, as the rate increases a
decrease in heat transfer is observed.

The overall heat transfer coe�cient, ↵, varied with a standard deviation of 267.1, 431.4,
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Figure 51. Particle size distributions with µ = 0.4 cm and
�= 0.035 cm.

Figure 52. The sensitivity of the overall heat transfer co-
e�cient to rotation speed for three PSDs with µ = 0.4 cm
and � = 0.035 cm.

247.9, and 213.9 W/m2K at rotation speeds of 5, 10, 20, and 30 rpm, respectively, which
contributes up to approximately 2 % of the observed values. Therefore, while performing
validation studies using polydispersed particles, a certain percentage of discrepancy observed
between the results might be caused by the failure to replicate the particle size distribution
in the experiments. Hence, the 5.4 % discrepancy observed while validating the contact heat
transfer model in MFIX-DEM might have a certain percentage contributed by the di↵erence
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in PSD. Thus, additional simulations are performed to study the e↵ect of distribution range.
Three simulations are performed using di↵erent types of distributions, namely, homogeneous,
narrow, and broad. Fig. 53 shows the particle distribution obtained from MFIX-DEM for
the three distributions. All three distributions have a mean diameter value of 0.4 cm. The
narrow and broad distributions have a range from 0.34 to 0.47 cm and 0.21 to 0.6 cm,
respectively (see Tab. 4). These values have been chosen to keep the di↵erence in PSD
minimal and observe its e↵ect. An overall heat transfer coe�cient of 52, 50, and 48 kW/m2K
is found for the homogeneous, narrow, and broad distributions, respectively (see Tab. 4).
A percentage di↵erence of 4 % is observed between the homogeneous and narrow, and 9 %
between the homogeneous and broad distributions. It can be observed that the case with a
broad distribution had a lower heat transfer rate, and the homogeneous distribution case had
a higher heat transfer rate. Since polydispersed particles exhibit segregation, the conduction
heat transfer is inhibited.

Table 4. Particle size distribution information used for the
narrow, homogeneous, and broad distributions.

Table 3. Particle size distribution information used for the narrow, homogeneous, and broad 

distributions. 

Type of 
distribution 

Diameter, cm  Number of 
particles 

α, 
kW/m2K Minimum Maximum STDEV Mean 

Homogeneous - - - 0.4 396 52 
Narrow 0.34 0.47 0.03 0.4 400 50 
Broad 0.21 0.6 0.07 0.4 398 48 

 

 

Figure 53. Particle size distributions obtained from MFIX-
DEM simulations at t=⌧/2 for (a) homogeneous, (b) narrow,
and (c) broad distributions.

(g) E↵ect of Rolling Friction: Since MFIX-DEM does not have a rolling friction model
implemented, to assess the e↵ect of this feature, we performed additional simulations with
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the commercial code EDEM, which has rolling friction, and compared the results using both
codes for the same problems and configurations. The force models and heat transfer models
used in these simulations are listed in Emady et al.[12]. Simulations are performed using
rolling frictions of 0, 0.005. 0.01, and 0.1. These values are selected based on previous DEM
rotary drum simulation works. Based on our knowledge, most researchers have been using
a rolling friction value of less than 0.1 in their studies. Specifically, while studying spherical
particles, where the surface is considered to be smooth, a lower value of rolling friction is
expected to yield more realistic behavior. Therefore, we have varied the rolling friction value
from 0.005 to 0.1. Fig. 54 shows the e↵ect of rolling friction on the overall heat transfer
coe�cient, ↵ , at rotation speeds of 5, 10, 20, and 30 rpm. It can be seen that with increasing
rolling friction, the heat transfer rate decreases. Comparing with the no rolling case at 5,
10, 20, and 30 rpm, a percentage change in the overall heat transfer coe�cient of 2 %, 3 %,
1 %, and -4 % is observed for 0.005 rolling friction; 8 %, 5 %, 1 %, and -2 % is observed
for 0.01 rolling friction; and 32 %, 42 %, 26 %, and 28 % is observed for 0.1 rolling friction
, respectively. For instance, at 10 rpm, a higher heat transfer rate is observed for the no
rolling case, and a lower heat transfer rate is observed at a rolling friction of 0.1. From 0 to
0.1, there is a 200 % change in rolling friction, and the change in heat transfer coe�cient is
42 %, which shows that rolling friction has an e↵ect on the heat transfer between the drum
walls and the process material. At lower values of rolling friction, particle circulation in the
bed is enhanced and therefore a better heat transfer is achieved.

Figure 54. The sensitivity of the overall heat transfer co-
e�cient to rotation speed at rolling frictions of 0, 0.005, 0.01,
and 0.1.

(h) Heat Transfer Local Experiments: We constructed a local experimental setup for
rotary drum heat transfer. The goal was to validate the MFIX-DEM simulations with our
own experiments (see Fig. 55). However, the construction of the drum took longer than
anticipated, but we were still able to carry out a few experiments as part of the Phase 1
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project activities. Here, a design of experiments was performed where the fill level was varied
at 4 %, 7 %, and 10 %, and the rotation rate was varied at 1, 5, and 9 rpm. The average bed
temperature after an hour of experiment was measured for each run. Our results showed
that fill level has a significant e↵ect on the heat transfer rate, where heat transfer increases
at lower fill levels. Also, rotation rate was found to have a minimal e↵ect, which is consistent
with our MFIX-DEM simulation findings.

Figure 55. Local experimental capabilities for rotary drum
heat transfer for MFIX-DEM validation.

Conclusions and Recommendations for MFIX-DEM Heat Transfer:
Conduction heat transfer has been validated with literature data, and the e↵ects of operating
parameters were studied with simulations and experiments. The main findings were that:
(1) Rotation rate has no significant e↵ect, and (2) PSD and rolling friction have significant
e↵ects. It is recommended that MFIX implement rolling friction. The next step for heat
transfer is to validate the models for convection and radiation.
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Task 4 - Ascertain Predictive Credibility in MFIX-DEM

With major advances in mathematical modeling and high performance computing, si-
mulation-based engineering has become one of the three pillars (the other two are theory
and experiments) in modern scientific discovery and engineering system analysis. The trans-
lation from physical reality to a set of mathematical equations and finally to simulation codes,
however, introduces many errors and uncertainties, which adversely a↵ect the credibility of
simulation predictions. To mitigate these di�culties, model Verification, Validation and Un-
certainty Quantification (UQ) have become indispensable in assessing predictive credibility.
Here, model validation is defined as the process of authenticating the agreement between
physical processes (typically obtained through experimentation) and the associated math-
ematical models. UQ is defined as ‘the process of quantifying and managing uncertainties
associated with model calculations of true, physical quantities of interest, with the goals of
accounting for all sources of uncertainty.’

Validation and UQ are critical for MFIX simulations because of the intricate interactions
between the di↵erent physics in modeling a complex phenomenon (e.g., carbon capture, gasi-
fication). Errors and uncertainties first arise in formulating a set of governing equations for
the physical process, including uncertainties in some model parameters in individual equa-
tions, uncertainties in the form of the equations (e.g., large eddy versus Reynold-averaged
equations), and uncertainties in the coupling terms between di↵erent governing equations.
More errors and uncertainties (e.g., discretization, algorithmic errors) are introduced in
translating these equations into computer codes. These computer models are then validated
with a set of experimental data. However, in practice, experimental data are scarce and
they often involve noisy measurements. In addition, the computer models may need to be
tuned to agree better with experiments. Finally, the validated computer models may be used
to predict performance of a ’virtual’ system that is an extrapolation from current systems
where experimental data have been collected.

All these errors and uncertainties will undoubtedly call the predictive credibility of these
models into question. As such, the overall process in establishing predictive credibility can
become an insurmountable task. The project proposed to develop a unified framework
to enable users with an average level of statistics knowledge to assess the credibility of
MFIX-DEM simulation results by employing various UQ analysis methods through a tightly
integrated UQ engine (i.e., PSUADE [24]) and Graphical User Interface (i.e., MFIX-GUI
[1]). This e↵ort aimed to yield a completely new and unique capability desirable by both
industrial users and other institutional researchers. The proposed integrated uncertainty
quantification framework relied on a graphical user interface (GUI) that interfaces with
MFIX-DEM and provides a number of uncertainty quantification related tasks as depicted
in Figure 56.

For Phase 1 of the project, a proof-of-concept prototype was targeted for development
as part of the proposed framework to towards the goal of achieving an integrated, intuitive,
graphical user interface based framework to facilitate ease of use and lower the barrier for
adopting uncertainty quantification analysis workflows for modeling & simulation as shown
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in Figure 56.
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Figure 56. Depiction of an overview of the UQ capabili-
ties and workflow embedded behind the GUI for MFIX-DEM
(adapted from Gel et al.[14])

Figure 57 shows the proposed UQ workflow in a more detailed way and highlighted
features that have been implemented for proof-of-concept prototype demonstration for Phase
1. The current proof-of-concept version is basically built upon an initial implementation
using MFIX-GUI at the time of development (v17.1) and then utilizing the Nodeworks
library which was originally developed by MFIX GUI team at NETL as part of the MFIX-
GUI but then spun o↵ as separate library.
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Figure 57. Illustration of the workflow proposed for UQ
framework and proof-of-concept prototype implementation
for Phase 1.

The fundamental idea of the proposed UQ framework was based on question driven and
guided UQ analysis for the user who don’t have the expertise in utilizing UQ analysis tools
manually. Figures 58 to 62 show the operation of the current proof-of-concept version. As
shown in Figure 58, once the user selects the UQ icon in the top bar, the user is posed
with several questions that the answer is being sought as part of the UQ analysis. Although
the questions have been compiled in layman terms, the appropriate UQ terminology for
the analysis type is displayed in parenthesis to let the user become aware of the proper
terminology used. For Phase 1 proof-of-concept demonstration only first question has been
implemented, which is also shown in the rest of the figures. Once the user selects the
question, a workflow consisting of multiple nodes that are relevant to the targeted function
are automatically populated in the workbench as shown in Figure 59. Next, the user is asked
to complete few entries for the nodes such as the variables to be considered and their range
in the Variables and Correlations node, the total number of samples and sampling method
for Sampling Design node as shown on Figure 60. After providing the necessary input for
the UQ workflow for the selected question, the user triggers the analysis by clicking the play
button. This initiates the process of compiling the input necessary for running PSUADE UQ
toolkit from the GUI and interact with PSUADE behind the scenes by eliminating or at least
minimizing the user’s manual interaction with PSUADE. For the specific example, PSUADE
generates a sample set based on the user selection (Figure 61) and then creates the input
files to enable the user to manually launch the MFIX-DEM simulations. The current proof-
of-concept was demonstrated for a simple case of hopper discharge problem with two input
parameters corresponding to particle to particle and particle to wall coe�cient of friction
parameters and the user has asked for 12 samples as shown in Figure 62.
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1 After clicking UQ button the user is presented 
several options for UQ analysis in layman’s terms 
(only first option implemented for Phase 1)

Figure 58. Illustration of the operation of the proof-of-
concept prototype implemented for Phase 1: Step 1 user se-
lects the UQ question that the answer is being sought

2
Based on the selection a customized workflow is 
created in which the user needs to enter few 
information to proceed

Figure 59. Step 2: UQ GUI sets up the nodes necessary to
complete the UQ analysis automatically within Nodeworks
framework based on the UQ question selected
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3
User enters/[selects] the MFIX-DEM variables to 
be considered as uncertain, and associated data.

Figure 60. Step 3: User enters few required information
such as the variables to be considered as uncertain, the lower
and upper bounds, number of sampling simulations that can
be a↵orded, etc.

4
User initiates the workflow sequence, which 
generates the samples and then work directories.

Figure 61. Step 4: User triggers the workflow by clicking
the play button to run UQ GUI workflow, which in return
interacts with PSUADE UQ toolbox behind the scenes.
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5

Work directories for MFIX-DEM 
runs are created in the user 
prescribed work directory

Figure 62. Step 5: Work directories to run independent
MFIX-DEM job for this specific case is generated by creating
12 sampling runs where coe�cient of friction for particle to
particle and particle to wall are varied using Monte Carlo
simulation.

A progress update presentation was provided to the MFIX GUI team at NETL on Novem-
ber 28th, 2017. The rest of the UQ workflow wouldn’t be implemented as the demonstra-
tion of the proof-of-concept concludes the requirements for Phase 1. The proof-of-concept
demonstration was later extended into Nodeworks as the workflow features originally em-
ployed within MFIX-GUI was abstracted and o↵ered as standalone package in addition to
MFIX-GUI. Nodeworks is a new workflow construction based graphical programming lan-
guage being developed at NETL. The extension was carried out by incorporating the UQ
wizard infrastructure and UQ nodes developed in the current project into Nodeworks. This
environment o↵ers a unique graphical user interface platform for the users and the goal is to
lower the barrier for performing UQ analysis and capabilities for any type of modeling ap-
plication by hiding complexity and interface with PSUADE within Nodeworks. Preliminary
overview of this extension is provided in Figures 63 to 65.

Figure 63 shows the new UQ wizard concept which is called directly from the top left icons
and poses several UQ analysis tasks for the user to choose (similar to the feature presented in
Figure 58). Once the user decides and selects the task, the workflow area is populated with
several nodes that are relevant to the UQ analysis task to be achieved as shown in Figure
64. Although the scope of Phase 1 proof-of-concept demonstration aimed very limited few
tasks, as shown in Figure 65 many additional tasks such as Morris one at a time screening
analysis, response surface construction were also included before the end of project. All of
these new features were made with the support of lead Nodeworks developer and stored in
a separate branch of Nodeworks git repository at NETL, which is automatically accessible
to NETL participants.
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Figure 63. Illustration of the UQ wizard within Nodeworks
with PSUADE integration.

Figure 64. Illustration of the nodes populated within
the workspace based on the user’s selection from UQ wizard
within Nodeworks with PSUADE integration.
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Figure 65. Illustration of the new UQ nodes added by port-
ing from the original proof-of-concept demonstration within
MFIX-GUI into Nodeworks with PSUADE integration.
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Task 5 - Perform Industry Outreach and Development
of Industry Cases

An essential component of this project was the direct collaboration with industry from
day one in order to lower the barrier for the use of MFIX-DEM Phi by the industry for
trouble shooting or scale-up analysis. In Phase 1, we have established active industrial col-
laborations with ExxonMobil, which is a world-leading oil company and Procter & Gamble,
which is a major global consumer goods company at the beginning of the project and con-
tinued the collaboration through webex meetings and site visits including presentations on
our project. Additionally, we were successful in initiating a new industrial collaboration
with BASF Corporation during Phase 1. As part of these collaborations, industrial-relevant
small-scale representative problems have been identified (i.e., hopper bin discharge and ro-
tary drum with heat transfer) and extensively used as the prototype problems for initial
testing, verification and validation of the implemented capability improvements, including
handling particle polydispersity and validating heat transfer models. Valuable feedback on
the design of lab-scale experiments at ASU for validation MFIX-DEM for the benchmark
problems and UQ design documents have also been acquired. Additional capability im-
provements in MFIX-DEM crucial to industrial applications have been identified through
a survey conducted among our industrial collaborators. A summary of findings from the
survey results were shared with our NETL colleagues during progress update meetings. As
part of our interactions with the industrial collaboration several site visits were organized,
which gave us the opportunity to make general overview presentations to wider audience at
each site to introduce MFIX suite of solvers in addition to the technical work scope related
presentations.

In the last several quarters of the project, another interesting problem was presented
by our ExxonMobil collaborator, which was based on an existing issue and we proposed to
explore with a proof-of-concept demonstration of modeling and simulation tools to address
the problem. Details of the problem and our findings can be found under “Particle Height
Classification Problem” in Subtask 3.1. The findings from this e↵ort were collaboratively
compiled in a manuscript titled “Classification of particle height in a hopper bin from limited
discharge data using convolutional neural network models” [7] with our industrial collabo-
rator as one of the co-authors. The manuscript which was submitted to Powder Technology
journal, is under peer review at the time of writing this report.
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Conclusions & Future Work
Recommendations

The project aimed to address the two major challenges that hinder the e↵ective use
and adoption of multiphase computational fluid dynamics by industry in a cohesive and
technically-sound manner. Hence, all seven objectives given in the Subtopic 4B of the FOA
(as shown in Figure 1) have been addressed through our project tasks since the start of
Phase 1, as we believed that only an integrated and comprehensive action plan can o↵er a
real developmental breakthrough for these non-trivial, interdependent challenges.

The results and outcomes of the Phase 1 activities are summarized with future work recom-
mendations as follows.

A new feature for e�ciently handling particle size polydispersity has been implemented
in MFIX-DEM and has been systematically verified and validated via hopper bin discharge
simulations. The improved MFIX-DEM codes have been utilized to generate training data
for a novel particle height classification problem using CNN models, in collaboration with
ExxonMobil. The next step for physical modeling capability enhancement is to implement
non-spherical particle models (e.g., the family of superellipsoids). All of the industrial collab-
orators strongly urged the computationally e�cient non-spherical particle model implemen-
tation in MFIX, which was the primary research task proposed for Phase 2 with a detailed
plan based on analytical shape representations using superellipsoid family. The proposed ap-
proach was based on the prior extensive experience for modeling non-spherical (frictionless)
granular systems using a variety of particle shape models [16, 17, 25, 18, 19, 20, 22].

As part of physical modeling enhancements, heat transfer models were reviewed and
validated. In particular, for Phase 1 conduction heat transfer model was extensively validated
with literature data, and the e↵ects of operating parameters were studied with simulations
and experiments. While rotation rate was determined to have no significant e↵ect, particle
size distribution and rolling friction had some e↵ects based on the limited set of study
performed. Hence, it is recommended to have a rolling friction model to be implemented
and validated. Also it is recommended to perform extensive validation study for remaining
heat transfer models, i.e., convection and radiation.

Several observations and recommendations based on industrial collaborator in-
teractions:

• MFIX draw a lot of attention due to the unified framework for o↵ering both CFD and
DEM as opposed to externally coupling of two codes like OpenFOAM and LIGGGHTS,
which most of the industrial collaborators had to use and complain about number of
ine�ciencies and problems. In spite of the unique advantage, it was observed that
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MFIX was not adequately known by the industrial users. In many occasions they have
either heard about it but didn’t fully explore due to di�culties in installation or steep
learning curve when someone attempted to try it in the past. The current simplified
anaconda based installation method has lowered the barrier dramatically.

• The graphical user interface was another major contributor to get the attention of
all these industrial collaborators. Hence, Mr. Justin Weber’s willingness to help us
demonstrate the earlier versions of it at the beginning of project was significant support.

• During recent site visit an engineer at P&G was so enthusiastic about his experience
in being able to construct a two-phase flow model in couple hours and see meaningful
results during his Christmas break, he did advertising for us to his managers and peers.

• More industrially relevant demonstration cases, which are simple enough to avoid in-
tellectual property related complexities but easily extendable has substantial e↵ect in
getting the engineers of industrial collaborators to explore and test MFIX suite and
report to their managers for use in their day to day operation.

Publications from the project (incl. under review or working papers):

• S. Chen, M. Adepu, H. Emady, Y. Jiao, A. Gel,“Enhancing the physical model-
ing capability of open-source MFIX-DEM software for handling particle size poly-
dispersity: Implementation and validation“, Powder Technology, 2017, 317:117-125,
(https://doi.org/10.1016/j.powtec.2017.04.055)

• S. Chen, L. A. Baumes, A. Gel, M. Adepu, H. Emady, Y. Jiao, “Classification of
particle height in a hopper bin from limited discharge data using convolutional neural
network models“, Powder Technology (Under review with id POWTEC-D-18-00754)

• M. Adepu, S. Chen, Y. Jiao, H. Emady, A. Gel, “Verification and Validation of the
Conduction Heat Transfer Model in the Open-Source MFIX-DEM Code using a Rotary
Drum“ (working paper)

Conference Presentations & Poster Sessions:

• Y. Jiao, A. Gel, H. Emady, S. Chen, M. Adepu, C. Tong, O. Mor, J. Hu, N. Elling-
wood, “MFIX-DEM Phi: Performance and Capability Improvements Towards Indus-
trial Grade Open-source DEM Framework with Integrated Uncertainty Quantifica-
tion“, 2016 NETL Multiphase Flow Science Workshop, August 9, 2016, Morgantown
WV

• M. Adepu, S. Chen, Y. Jiao, A. Gel, and H. Emady. “Quantitative Validation and
Analysis of Heat Transfer in a Rotary Drum Using Experiments and Simulations“.
American Institute of Chemical Engineers (AIChE) Annual Conference Oral Presenta-
tion, 2017. URL https://aiche.confex.com/aiche/2017/meetingapp.cgi/Paper/501016.
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• M. Adepu, S. Chen, Y. Jiao, A. Gel, and H. Emady. “Multilayer Granular Segrega-
tion in Discharging Cylindrical Hoppers“. American Institute of Chemical Engineers
(AIChE) Annual Conference Oral Presentation, 2017. URL
https://aiche.confex.com/aiche/2017/meetingapp.cgi/Paper/501041.

Presentations at the annual portfolio meeting organized by NETL are not included in the
above list.

Products/Tools from the project:

• Polydispersity implemented version of MFIX-DEM, which was based on 2015-1 release
of MFIX initially then first upgraded to 2016-1 and more recently 2017 release although
full repeat of V&V tests couldn’t be perform due to time constraints. The source code
tree for 2017 release update has been provided to Dr. J. Dietiker for his review and
incorporation with the most recent version of MFIX. Initial implementation was beta
tested by NETL technical team (i.e., Dr. J. Dietiker, Dr. T. Li and Dr. Y. Xu in
December 2016). More recently a senior sta↵ member at LLNL is evaluating the new
version for use in two separate HPC for Advanced Manufacturing projects at Lawrence
Livermore National Laboratory (LLNL).

• Some of the capabilities with the polydispersity feature developed are being incorpo-
rated into MFIX-Exa project supported by Department of Energy‘s Exascale Comput-
ing Project (ECP).

• Uncertainty Quantification GUI prototype developed as part of Phase 1 has been
adopted into another project at NETL as part of FWP for current fiscal year to of-
fer Nodeworks (graphical programming framework and toolbox) with advanced UQ
capabilities through PSUADE integration.

Industry Outreach and Collaboration:

• After the project start, we conducted site visits to ExxonMobil Research in New Jersey
and Procter & Gamble in Ohio and Newcastle, UK to give presentations both to
introduce MFIX suite solvers and also our proposed project activities.

• Survey completed by industrial collaborators

• Initiated a new collaboration with BASF Chemicals in the course of the project, which
they contributed to several activities such as industry survey, discussion of the bench-
mark problem results, and suggestions for other cases.

• Periodic webex meetings with industrial collaborators for updates and to seek their
feedback

• Submitted a jointly co-authored manuscript with ExxonMobil Chemicals collaborator
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Students trained through the funded research e↵ort: Two graduate students in doc-
torate programs were trained and acquired unique skills such as using remote HPC systems at
national supercomputing centers, experimentation, application of machine learning libraries
for computational science problems:

• Dr. S. Chen - Ph.D. student in Materials Science (who graduated from ASU in May
2018)

• Ms. M. Adepu - Ph.D. student in Chemical Engineering

Also the following undergraduate student worked during summer internship at LLNL for
UQ GUI development and acquired skills in python programming, uncertainty quantifica-
tion workflows:
Mr. O. Mor - Barrett Honors senior in Computer Science (now in Ph.D. program at Univer-
sity of Illinois at Urbana-Champaign)

External High Performance Computing Resources Acquired Through Peer-Review
based Competitive Proposal Process without Any Cost to DOE/NETL: Table 5
shows the external compulational resources acquired in Phase 1 performance period through
competitive peer reviewed proposal submission process at the U.S. Department of Energy’s
NERSC and National Science Foundation’s (NSF) XSEDE program. The NSF provided
estimated value of the awarded XSEDE program HPC resources for 2017 & 2018 were 9, 127
and 5, 305, respectively for an approximate total of 14.4K.

Table 5. External HPC Resources Acquired Throughout
Phase 1

DOE/NERSC NSF/XSEDE* 
(SDSC)

NSF/XSEDE* 
(TACC)

Year 1
(2016)

219,000 MPP 
Hrs (Edison/Cori-1)

50,000 SU
(Startup)

50,000 SU
(Startup)

Year 2
(2017)

464,000 MPP 
Hrs (Edison/Cori-2)

250,000 SU 
(Stampede)

Year 3
(2018)

200,000 MPP 
Hrs (Edison/Cori-2)

115,000 SU
(Comet)

3312 SU
(Stampede2)
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