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ABSTRACT

A cognitive radar framework is being developed to dynamically detect changes in the clutter characteristics, and
to adapt to these changes by identifying the new clutter distribution. In our previous work, we have presented a
sparse-recovery based clutter identification technique. In this technique, each column of the dictionary represents
a specific distribution. More specifically, calibration radar clutter data corresponding to a specific distribution is
transformed into a distribution through kernel density estimation. When the new batch of radar data arrives, the
new data is transformed to a distribution through the same kernel density estimation method and its distribution
characteristics is identified through sparse-recovery. In this paper, we extend our previous work to consider
different kernels and kernel parameters for sparse-recovery-based clutter identification and the numerical results
are presented as well. The impact of different kernels and kernel parameters are analyzed by comparing the
identification accuracy of each scenario.

Keywords: Clutter identification, nonstationary clutter, sparse-recovery, batch orthogonal matching pursuit,
kernel density estimation, kernel bandwidth

1. INTRODUCTION

Detecting and tracking targets in the presence of nonstationary clutter, noise, and interference have been the
most pertinent and challenging problems in radar systems. In the practical scenarios, various issues, such as the
terrain and weather conditions, dynamics of the targets, and hostile electronic environments, may fluctuate and
alter the statistical characteristics of the environmental background (clutter) during the radar operation period.!
These nonstationarities of the clutter, if not adaptively coped with, can significantly hinder the performance of
the classical detection and tracking techniques.?® For example, in the target detection problem, the fluctuation
of the clutter distribution parameters may require to readjust the threshold of the detector, and even worse,
a change of the family of the clutter distributions may require to redesign the detector altogether, in order to
maintain the optimal or nearly optimal detection performance.

Traditionally, however, in most of the radar applications, the target detection and tracking techniques have
been developed with a specific clutter distribution, which is assumed to be known a priori and be stationary
throughout the entire processing period. Although the Gaussian distributions are used extensively to represent
the clutter characteristics, it has been shown in the literature that the Gaussian representations suffer from
performance deterioration when the the measured clutter data are heavy-tailed.*® Instead, some compound-
Gaussian distributions, such as K distribution and Student-t distribution, are proposed to accurately model the
received clutter, for example, sea- or foliage-clutter when radars operate in high-resolution and/or low-grazing-
angle modes.510 Weibull and lognormal distributions are other two popular clutter distributions that achieve
great fitness to the real data, and are capable of modeling the spiky nature of the clutter.!!>1? In nonstationary
operating scenarios, however, a prior knowledge of the clutter characteristics represented using a fixed, parametric
distribution does not hold true anymore as the clutter statistics may drastically alter during analysis. Therefore,
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having a capability of determining the clutter distribution on-the-fly would be crucial to maintain, or even to
improve, the radar detection/tracking performance in nonstationary environments.

In order to create such an adaptive framework, recent advances in computational capabilities have allowed
radar system designers to consider the design of more complex and intelligent systems, termed as cognitive radar
systems.!®14 Cognitive radars aim to early detect the changes of the environments (clutter), precisely learn the
new distribution of clutter, and adaptively update the detection/tracking algorithms for maintaining or bettering
the performances achieved by current (nonadaptive) state-of-the-art systems.

In our previous work,! we proposed a data-driven method and used the (extended) CUSUM algorithm
to address the first issue in the cognitive radar framework, i.e., finding out whether the modeled/assumed
clutter distribution has changed or not. For the second issue, we previously developed a sparse-recovery based
clutter identification method,'® 16 that applies the kernel density estimation (KDE) and a batch orthogonal
matching pursuit (BOMP) method to identify the distribution of the received clutter data based on a pre-learned
dictionary of distributions. Earlier, another clutter identification method, namely the Ozturk algorithm,'” 18 was
proposed to identify the received clutter distribution as the nearest neighbor to a dictionary of distributions after
transforming each distribution to a point on two-dimensional plane. However, comparing the performances of the
sparse-recovery based clutter identification approach (i.e., BOMP method) with that of the Ozturk algorithm,
we have shown!® that the BOMP method has (i) improved accuracy in identifying clutter distributions that
have different parameters, but are from the same family; and (ii) robustness in terms of measurements used for
dictionary generation and test distribution identification.

To further explore the potentials of the sparse-recovery based clutter identification method, in the paper, we
investigate the effects of different kernels types and kernel parameters used in KDE on the clutter identification
accuracy, while only the normal kernel with a default parameter was considered in our previous work. With
respect to the four different kernels, namely the normal, triangle, box, and Epanechnikov kernels, we observe
that the BOMP method is robust to the kernel bandwidth selection, and the Epanechnikov kernel is found to be
the most suited kernel for the BOMP algorithm.

The rest of the paper is organized as follows. In Section 2, we describe the sparse-recovery based clutter
identification method and provide the details of the kernel density estimation approach. In Section 3, we
demonstrate various numerical results to objectively compare the effects of different types of kernels and kernel
parameters. Section 4 provides a discussion of the observed results, and Section 5 concludes the paper.

2. CLUTTER IDENTIFICATION METHOD

In this section, we introduce the sparse-recovery based clutter identification method, including the impact of
kernel density estimation, specifically the effects of the kernel-type and kernel-bandwidth on the estimation
procedure.

2.1 BOMP Method

sparse-recovery algorithms aim to estimate a signal by linearly adding columns from a dictionary of predefined
waveforms. Typically, representing the dictionary as a matrix D = {¢,, : w € Q}, whose each member ¢, is
called as atom and coeflicient w is obtained from a index set €2, sparse-recovery techniques solve for « using
D~ = s, where s is the original signal and = is a coefficient vector. In general, the objective is to estimate the

signal with m atoms, where m is much smaller than the size of dictionary N,'%2! and hence it is referred to as
a sparsity-based estimation technique.

In general, dictionaries D are designed to be fat matrices, meaning a single exact solution of « does not
exist. Instead, greedy approaches are used to solve for the signal as an approximation. The most popular
greedy approaches fall under the category of Matching Pursuit (MP) algorithms, one of which is the orthogonal
matching pursuit (OMP) algorithm that reconstructs the input signal with the least number of atoms, implying
the sparsest recovery. For exact-sparse problem, the exact recovery condition (ERC) for OMP method is given
as maxg ||a € span{¢y : A € A;}|| < 1, where the maximum reaches over the atoms that are not be part in

the optimal yef)resentapion of the signal, me_ar'li‘n% that the sparest Si%/r[lal reconstruction is uniqu‘e,20 Starting
with the initial approximation ag = 0 and initial residual rg = s, OMP method at each step tries to find an



atom which correlates most perfectly with the residual; for example, at step j, the atom index J; is calculated
by solving the optimization problem:

. T,
Aj € arggiél%I( i Bw)l
Subsequently, the jth approximation is computed as

a; =argmin||s —al,, subjectto a €span{gy: A€ A;},
a

where A; = {A1,...);} denotes the atom-indexes selected till the jth step. Because the residuals are orthogonal
to the atoms which have already been chosen, OMP never chooses the same atom twice, resulting to a zero
residual after d steps.?? 23

As a variant of OMP algorithm, BOMP still aims to solve the reconstruction problem by finding the local
minimum solution of an undetermined linear system, while reducing the computational complexity by introducing
the Cholesky factorization for residual calculation.?’»24 Denoting o = DTr, a® = DTs, G = DT D, and the
sub-matrix Dp containing the columns indexed by A, we can write a new equation involving the pseudo inverse
as

a=D"(s—Dy(Dy)"s) =a’ — Gx (Gar™'ad)

Therefore, with the pre-calculated G and a?, it only needs to compute « instead of r at each iteration. Also,
the new multiplier G4 a replaces the dictionary D, where G5 A denotes the progressive Cholesky factorization
result.!9 21,24

2.2 Kernel Density Estimation

Kernel density estimation (KDE) is commonly used to estimate the pdf of a random variable, which could be
viewed as an update of histogram, where weight function becomes the kernel function with bandwidth. For
example, given a set of random samples € = {z1,...,z,} from an unknown distribution fx(z), the kernel
density estimator is represented as

For = o ()

where K(-) is a kernel function determining the shape of weight function, and h is the kernel bandwidth de-
termining the amount of smoothing applied in the estimation process.?>>26 The kernel function could be any
symmetric pdf since it meets the following properties: [ K(t)dt =1 and K (t) > 1. Furthermore, given sufficient
number of samples, the kernel density estimator f (z) would asymptotically converge to any density function
fx(x), and therefore KDE is applicable for almost every distribution.?®

Now, it is obvious that the choice of kernel type and bandwidth would critically affect the estimation per-
formance. To evaluate the estimation accuracy, let us define the mean squared error (MSE) as MSE(f(z)) =
E(f(z) — fx(x))? = bias®(f(z)) + var(f(z)). Then, by transforming and expanding with Talyor series, we get

£ ~ 1 412 i 2 _1 .

MSE(f(z)) ~ 7 h' k3 f"(@)* + — o

where ky = [ 2?°K(z)dz and j2 = [ K(z)?dz. Therefore, the global estimation accuracy can be expressed in
terms of the mean integrated square error (MISE) as

1 1
MISE ~ - h*k2 j

4 2 /B(f) ‘I’ 7Th J2,
As MISE is a function of bandwidth h, a simple way to obtain the optimal bandwidth is to take gradient of
MISE and set it to zero, which results in

where ﬁ(f):/f”(x)zdx.

1 v(K)

hops = [; N f)]s . where y(K) = j2k3? .



However, as hopy depends on the pdf which is unknown, its practical computation is not possible.

To select the kernel bandwidth h, one commonly applied method is to assume a reference distribution, mostly
5
the Gaussian, and then to compute the optimal bandwidth as hqpt = (43%: )%, where oy is the sample standard

deviation o5 = \/ n%l > 1(z; —Z). Based on the Gaussian assumption, a better expression of bandwidth is

given as hopy = 07'?—5", where 6 = min (as, 119—312) and IQR is the inter-quartile range, i.e., the difference between

the 75th and 25th percentile points. Another way to estimate the bandwidth is to test a set of bandwidth values,
and select the one with highest accuracy. A more data-driven method is the ‘plug-in’ estimation, by using a
separate smooth trick for f”(z) estimation and calculating the gradient based bandwidth.27-2°

2.3 Clutter Identification

For the clutter identification purpose, we formulate the dictionary based on a data-driven approach using the
KDE paradigm as

D = fi(s) fa(s) -+ fn(9)]

where each column is created for a pre-defined clutter distribution estimated via KDE. Specifically, to create each
dictionary column, S samples are used to calculate an estimated clutter pdf, f,(s), which is then normalized on
a set support of W points. Thus, the final dictionary has dimension W x N. In a similar manner, we create
the test signal as an estimated pdf g(s) by first collecting V; target-free radar measurements and then applying
KDE with the same support W which is used to build the dictionary. Once g(s) has been estimated, the BOMP
method is applied to select the column(s) from the dictionary D that is(are) the best match to the estimated
pdf g(s) of the measured clutter data.!®

3. NUMERICAL RESULTS

In this section, we demonstrate some numerical examples to compare different kernel types as well as the band-
width at a few specific test sample sizes and dictionary sizes while applying the BOMP method. By randomly
choosing the test parameters from a dictionary and creating test samples with KDE, the change of accuracy rate
in different scenarios reveals the impact of the kernel types and bandwidth. The dictionary is predefined with
the following four distributions:3°

1. K-distribution: sg = |/7n|, where sk follows a K-distribution®® when 7 ~ Gamma(k,6) [k is the shape
parameter and 6 is the scale parameter] and n ~ CN(0,02).

2. Weibull distribution: swp; ~ Wbl(a, 8), where swy,) follows a Weibull distribution with the shape parameter
«a and the scale parameter .

3. Log-normal distribution: spn ~ LogN(uLn,ofy), where spn follows a log-normal distribution, implying
that (lnyLN — HLN)/ULN ~ N(O, 1).

4. Student-t distribution: ss; = /7w, where sg; follows a non-standardized Student-t distribution when
1/7 ~ Gamma(v, 1/v) and w ~ N(0,02).

3.1 Effects of Kernel Types

In order to study the impact of different kernels, we compared the accuracy of clutter distribution identification
under four different kernel types and various sample sizes, while keeping a fixed kernel bandwidth calculated by
the rule-of-thumb. Specifically, the details of the four kernels are shown in Table 1; the dictionary sample sizes
are chosen as 500, 1000, and 2500, and the test sample sizes are varied from 300 to 2800. For each sample size,
the accuracy test is computed by 10,000 Monte Carlo trials and the clutter distribution parameters are chosen
as follows:

1. K-distributions with fixed o, =1, fixed 6 =1, and k € {0.1:0.2:3.9} U {4:2:24} U {50 : 25 : 200},
2. Weibull distributions with fixed scale 8 = 1, and shape parameters a € {0.1:0.1:3.9} U {4:2: 20},
3. Log-normal distributions with pyn =0, and orx € {0.05:0.05:1} U {1.1:0.1: 3},



Table 1. Kernel functions

Kernel Name Function
142
Normal K(u) = #e zv
Triangle Ku)=1-|u],|ul <1

Box K(u)=13,|ul<1

)
Epanechnikov K (u) = 2(1 —u?),|u[ <1

4. Student-t distribution with o, =1, and v € {0.1:0.2: 4.9} U{5:5:25} U {50 : 25 : 200}.

The accuracy of clutter identification results are presented in Figure 1(a) to Figure 1(d) respectively for the four
chosen kernels.

3.2 Effects of Kernel Bandwidths
To study the impacts of kernel bandwidth, we compared the accuracy of clutter distribution identification under
two different bandwidth selection methods:

1. Rule-of-thumb: ﬁopt = 090

n

2. Subjective bandwidth set: creating a set as {0.1 : 0.1 : 1.1} * fzopt, while considering the rule-of-thumb
bandwidth as reference.

The other numerical parameters remain the same; for example, the dictionary sample sizes of 500, 1000, and
2500, and the test sample sizes were varied from 300 to 2800. Figure 2(a) to Figure 2(d) show the average
identification accuracy computed for the four chosen kernel functions having bandwidth values varying from 10%
to 110% of the default value.

4. DISCUSSION

In the first group of figures, Figure 1(a) to Figure 1(d), we notice that the average clutter identification accuracy
is higher when dictionary size is larger. With larger dictionary size, each column in the dictionary has more
support points, which helps solving the BOMP optimization problem more accurately. Also, the test sample size
is roughly correlated with the accuracy, while a fall back is detected when test sample are larger than 1500. This
situation is obviously shown in low dictionary size, for which the normal kernel and Epanechnikov kernel are
more robust than the others. When applying larger dictionary size, all kernels perform well and with the increase
of the test sample size, the accuracy rate roughly rises from 78% to 95% at same pace. When the dictionary
has a size of 1000, the accuracy of box kernel is inferior to the others. When dictionary size is doubled from
500 to 1000, the accuracy rate of kernel box increases much slower than the others. Comparing Figure 1(a) and
Figure 1(d), the kernel normal seems to be more robust to discrepancies between the dictionary and test sample
sizes than the Epanechnikov kernel for large dictionary sizes.

In the second group of figures, Figure 2(a) to Figure 2(d), the accuracy rate of clutter distribution iden-
tification changes slightly when bandwidth varies from 10% to 110% of the bandwidth computed through the
rule-of-thumb method. This implies that the BOMP method is robust for the application scenarios with different
bandwidth. We do not observe a direct correlation between the changes in the bandwidth and accuracy of clutter
distribution identification. The rule-of-thumb method, even though it is established for calculation of bandwidth
for normal kernels, performs well for other kernels as well. Therefore, we suggest using the rule-of~thumb method
for the calculation of the kernel bandwidths. Among the four chosen kernels, the triangle kernel still performs
inferior to the others. The normal and Epanechnikov kernels are preferable, as both of them are robust in terms
of bandwidth change. On the other hand, the box kernel requires a large dictionary size to achieve similar clutter
distribution identification accuracies. Also, we note that the Epanechnikov kernel shows good results with small
dictionary size, which is significant for scenarios in which not enough data are available to build the dictionary,
especially when updating dictionary online. In such cases, we suggest to apply the Epanechnikov kernel function.
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Figure 1. Effects of kernel types.

5. CONCLUSIONS

In this work, we presented a sparse-recovery based clutter identification method and analyzed its performance
with respect to two different kernel bandwidth selection methods and for different kernel functions. Based on the
numerical examples, we demonstrated that the sparse-recovery based technique provided (i) robustness in terms
of different kernel types and bandwidths; and (ii) high accuracy in identifying clutter measurements originating
from different families of distributions. Our results further demonstrated that the Epanechnikov kernel performs
the best compared to the other kernels.

In our future work, we plan to adaptively increase and decrease dictionary size of the sparse-recovery based
method; such adaptive change in dictionary size will be crucial in order to characterize measured data that
may not be well-represented by any specific distribution in the dictionary and to control the computational
load. Furthermore, with real measured data, we will incorporate the sparse-recovery based clutter identification
method into the design of a fully cognitive radar system, which will include the statistical tests for estimating
change points in the clutter distribution, methods for identifying the new clutter distribution and adaptation
techniques for detection/tracking algorithms to the newly learned clutter distribution.



100

95

20

85

Accuracy

80

75

Accuracy of different bandwidth
Test sample size 1000
Kernel Normal

—¥— Dictionary Size 500
—©~ Dictionary Size 1000
=¥ Dictionary Size 2500

&85 88 8 35 5 =

kA T N

70

10 20 30 40 50 60 70 80 90 100 110
Bandwidth percentage

(a) Normal kernel accuracy.

Accuracy of different bandwidth
Test sample size 1000
Kernel Triangle

100

95

20

85

Accuracy

80

75

Moo W e W e W W H oy
o——S 6 g © 6 © & ©
—3¥— Dictionary Size 500

—©~ Dictionary Size 1000
=¥ Dictionary Size 2500
I,

This material is based upon the work supported by the Air Force Office of Scientific Research (AFOSR), the
DDDAS Program, under Grant No. FA9550-16-1-0386. The work of Sen was performed at the Oak Ridge Na-
tional Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy, under Contract DE-ACO05-
000R22725. The United States Government retains and the publisher, by accepting the article for publication,
acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license
to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Gov-
ernment purposes. The Department of Energy will provide public access to these results of federally sponsored
research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

1I0 2‘0 3.0 4I0 5‘0 6.0 70 80 90 100 110
Bandwidth percentage

(c) Triangle kernel accuracy.

100

95

90

85

Accu cy

80

75

70

100

95

20

85

Accuracy

80

75

70

Accuracy of different bandwidth
Test sample size 1000
Kernel Box

® 9 g ge W W X

9 ¢ % o =S9 o=

—3¥— Dictionary Size 500
=O~ Dictionary Size 1000
== Dictionary Size 2500
—

1I0 50 3I0 4IO 5I0 GIO 70 80 90 100 110
Bandwidth percentage

(b) Box kernel accuracy.

Accuracy of different bandwidth
Test sample size 1000
Kernel Epanechnikov

- ——E N NN — O

Ladit TEE T I T DR R

—3¥— Dictionary Size 500
—O- Dictionary Size 1000
=¥ Dictionary Size 2500

10 20 30 40 50 60 70 80 90 100 110
Bandwidth percentage

(d) Epanechnikov kernel accuracy.

Figure 2. Effects of kernel bandwidths.

ACKNOWLEDGMENTS

REFERENCES
[1] Akcakaya, M., Sen, S., and Nehorai, A., “A novel data-driven learning method for radar target detection in

nonstationary environments,” IEEE Signal Processing Letters 23, 762-766 (May 2016).
[2] Kay, S., [Fundamentals of Statistical Signal Processing: Detection theory], Prentice-Hall PTR (1998).
[3] Van Trees, H. L., [Detection, Estimation, and Modulation Theory], John Wiley & Sons (2004).




[4] Marier, L. J., “Correlated K-distributed clutter generation for radar detection and track,” IEEFE Transac-
tions on Aerospace and Electronic Systems 31, 568-580 (Apr. 1995).

[6] Palama, R., Greco, M. S.; Stinco, P., and Gini, F., “Statistical analysis of bistatic and monostatic sea
clutter,” IEEE Transactions on Aerospace and Electronic Systems 51, 3036-3054 (Oct. 2015).

[6] Akcakaya, M. and Nehorai, A., “Adaptive MIMO radar design and detection in compound-Gaussian clutter,”
IEEE Transactions on Aerospace and Electronic Systems 47(3), 2200-2207 (2011).

[7] Sammartino, P. F., Baker, C. J., and Griffiths, H. D., “Adaptive MIMO radar system in clutter,” in [Proc.
IEEE Radar Conference], 276-281 (Apr. 2007).

[8] Balleri, A., Nehorai, A., and Wang, J., “Maximum likelihood estimation for compound-Gaussian clutter
with inverse gamma texture,” IEEE Transactions on Aerospace and Electronic Systems 43, 775-779 (Apr.
2007).

[9] Wang, J., Dogandzic, A., and Nehorai, A., “Maximum likelihood estimation of compound-Gaussian clutter
and target parameters,” IEEE Transactions on Signal Processing 54, 3884-3898 (Oct. 2006).

[10] Gini, F., Farina, A., and Lombardini, F., “Effects of foliage on the formation of K-distributed SAR imagery,”
Signal Processing 75(2), 161-171 (1999).

[11] Sekine, M., Musha, T., Tomita, Y., Hagisawa, T., Irabu, T., and Kiuchi, E., “Weibull-distributed sea
clutter,” IEE Proceedings F - Communications, Radar and Signal Processing 130, 476— (Aug. 1983).

[12] Chan, H. C., “Radar sea-clutter at low grazing angles,” IEE Proceedings F' - Radar and Signal Process-
ing 137, 102-112 (Apr. 1990).

[13] Bell, K. L., Baker, C. J., Smith, G. E., Johnson, J. T., and Rangaswamy, M., “Cognitive radar framework
for target detection and tracking,” IEEE Journal of Selected Topics in Signal Processing 9, 1427-1439 (Dec.
2015).

[14] Haykin, S., “Cognitive radar: A way of the future,” IEEE Signal Processing Magazine 23, 3040 (Jan.
2006).

[15] Kelsey, M., Sen, S., Xiang, Y., Nehorai, A., and Akcakaya, M., “Sparse recovery for clutter identification in
radar measurements,” in [Proc. SPIE], 1021106, 1-10 (May 2017).

[16] Xiang, Y., Kelsey, M., Wang, H., Sen, S., Akcakaya, M., and Nehorai, A., “A comparison of cognitive ap-
proaches for clutter-distribution identification in nonstationary environments,” in [IEEE Radar Conference],
(Apr. 2018).

[17] Ozturk, A., “An application of a distribution identification algorithm to signal detection problems,” in
[Proc. 27th Asilomar Conference on Signals, Systems and Computers], 1, 248-252 (1993).

[18] Rangaswamy, M., Weiner, D. D., and Ozturk, A., “Non-Gaussian random vector identification using spher-
ically invariant random processes,” IEEE Transactions on Aerospace and Electronic Systems 29, 111-124
(Jan. 1993).

[19] Tropp, J. A. and Gilbert, A. C., “Signal recovery from random measurements via orthogonal matching
pursuit,” IEEE Transactions on Information Theory 53, 4655-4666 (Dec. 2007).

[20] Tropp, J. A., “Greed is good: Algorithmic results for sparse approximation,” IEEE Transactions on Infor-
mation Theory 50, 2231-2242 (Oct. 2004).

[21] Davis, G., Mallat, S., and Avellaneda, M., “Adaptive greedy approximations,” Constructive Approzima-
tion 13, 57-98 (Mar. 1997).

[22] Haupt, J., Castro, R., Nowak, R., Fudge, G., and Yeh, A., “Compressive sampling for signal classification,”
in [Proc. 40th Asilomar Conference on Signals, Systems and Computers|, 1430-1434 (Oct. 2006).

[23] Wang, H., Vieira, J., Ferreira, P., Jesus, B., and Duarte, I., “Batch algorithms of matching pursuit and
orthogonal matching pursuit with applications to compressed sensing,” in [Proc. International Conference
on Information and Automation], 824-829 (June 2009).

[24] Rubinstein, R., Zibulevsky, M., and Elad, M., “Efficient implementation of the K-SVD algorithm using
batch orthogonal matching pursuit,” tech. rep., Computer Science Department, Technion Israel Institute
of Technology (Aug. 2008).

[25] Elgammal, A., Duraiswami, R., Harwood, D., and Davis, L. S., “Background and foreground modeling using

nonparametric kernel density estimation for visual surveillance,” Proc. of the IEEE 90, 1151-1163 (July
2002).



[26] Comaniciu, D., “An algorithm for data-driven bandwidth selection,” IEEE Transactions on Pattern Analysis
and Machine Intelligence 25, 281-288 (Feb. 2003).

[27] Elgammal, A., Duraiswami, R., and Davis, L. S., “Efficient kernel density estimation using the fast Gauss
transform with applications to color modeling and tracking,” IEEE Transactions on Pattern Analysis and
Machine Intelligence 25, 1499-1504 (Nov. 2003).

[28] Jomnes, M. C., Marron, J. S., and Sheather, S. J., “A brief survey of bandwidth selection for density estima-
tion,” Journal of the American Statistical Association 91(433), 401-407 (1996).

[29] Fan, J., Heckman, N. E., and Wand, M. P., “Local polynomial kernel regression for generalized linear models
and quasi-likelihood functions,” Journal of the American Statistical Association 90(429), 141-150 (1995).

[30] Ward, K. D., Watts, S., and Tough, R. J., [Sea Clutter: Scattering, the K Distribution and Radar Perfor-
mance], IET (2006).



