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Abstract. Algebraic Multigrid (AMG) is used to speed up linear system solves in a wide variety4
of applications. This paper concentrates on expanding AMG’s applicability to important new classes5
of problems through algorithms that automatically construct advanced smoothing techniques when6
needed. In particular, we apply AMG to solve Maxwell’s equations. These AMG relaxation methods7
have their roots in smoothing methods used for geometric multigrid methods. Arnold, Falk and8
Winther developed an overlapping Schwarz smoother for geometric multigrid and Hiptmair developed9
a distributive relaxation approach. We use this knowledge to construct new smoothing procedures10
for AMG. We develop adapted overlapping Schwarz smoothers and distributive relaxation for AMG.11
We use Nédélec’s H(curl,Ω)-conforming finite elements to discretize the problem. We present first12
results regarding the smoothing quality of the developed smoother for AMG.13

Key words. AMG, Maxwell’s equations, Nédélec elements, overlapping Schwarz smoother,14
distributive relaxation15

1. Introduction. Algebraic Multigrid (AMG) methods [3] are a central tool in16

the numerical solution of linear and nonlinear systems that arise from the discretiza-17

tion of partial differential equations (PDEs). In this paper, AMG is applied to solve18

the 2D definite Maxwell equation,19

∇×∇× u+ βu = f, in Ω,(1)2021

where β > 0 is the spatially varying electrical conductivity, u is the unknown electric22

field to be computed and f is the known right-hand side. The domain, Ω, is an open,23

bounded and connected Lipschitz domain in R2, and we impose Dirichlet boundary24

conditions. Note that Equation (1) involves two 2D-curl operators, the 2D-curl of a25

vector-valued function, w = (w1, w2)T : Ω→ R2, and the 2D-curl of a scalar function26

v : Ω→ R, defined as27

curl v :=

(
∂2v
−∂1v

)
, curl w := ∂1w2 − ∂2w1,28

respectively.29

The curl operators give rise to the standard Sobolev space,30

H(curl,Ω) := {v ∈ L2
(
Ω,R2

)
| curl v ∈ L2 (Ω)},3132

where L2 denotes the space of square Lesbesque integrable functions. We therefore33

discretize our model problem using Nédélec’s H(curl,Ω)-conforming finite elements34

[7]. The resulting linear system is denoted by35

Au = f,(2)3637
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with A = N + P , and where N is the discrete approximation of the weak form of the38

curl-curl term in (1), and where P is the discrete approximation to the weak form of39

the β term in (1). The difficulty of using AMG to solve Maxwell’s equations results40

from the kernel of the curl operator. Using the identity41

∇× (∇Φ) = 0,(3)4243

we see that gradients of scalar functions, Φ, lie within the kernel of the curl operator.44

Thus, the kernel includes the gradients of all differentiable scalar functions Φ. Since45

the gradient of a smooth function is smooth and the gradient of an oscillatory func-46

tion is oscillatory, it is obvious that the kernel contains both smooth and oscillatory47

functions. For further details, consult [6]. The discrete null-space analogue of (3) is48

FG = Θ,(4)4950

where the matrix G is a discrete gradient operator and Θ denotes the zero matrix. The51

matrix G is trivial to construct. In particular, each row contains at most two nonzeros52

(with value ±1) and corresponds to an edge between two nodes of the associated nodal53

mesh.54

The classical AMG method fixes the relaxation method, usually, a pointwise55

smoother, and enforces an efficient interplay with the coarse-grid correction. This56

procedure is not sufficient for Maxwell’s equations, since Maxwell’s equations have a57

large near null space and, therefore, contain high frequency components in the near58

null space (see Fig. 1 and [6] for details). In order to smooth these oscillatory com-59

ponents and approximate them appropriately on coarser grids, a different relaxation60

scheme than a simple pointwise smoother is necessary. Efficient relaxation methods61

for geometric multigrid methods for Maxwell’s equations are proposed in [2, 5]. In62

this paper, we construct AMG smoothing methods based on these relaxation schemes.63
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Fig. 1: High frequency component in the near null space for the 2D definite Maxwell
equation on a quadrilateral grid.

This paper is structured as follows: Section 2 provides the definition of Nédélec65

element discretization and we introduce the general idea of smoothing procedures for66

Maxwell’s equations. In Section 3, we describe two AMG smoothing methods for the67

2D definite Maxwell equation. Numerical results are presented in Section 4. The68

paper closes with a conclusion.69
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2. Discretization and geometric multigrid for Maxwell’s equations. We70

discretize the definite Maxwell equation (1) by linear Nédélec elements. Assuming71

that Ω is discretized by a quadrilateral mesh, T , in 2D, Nédélec elements represent72

basis functions in H(curl, T ) spaces. We demonstrate the general approach to obtain73

the system matrix A on the reference element, depicted in Figure 2.74

75
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Fig. 2: The four degrees of freedom of 2D Nédélec elements in a reference configuration
on a quadrilateral grid.

Let η denote the global edge basis functions and let x = (x1, x2)T ∈ Ω be a point.76

The degrees of freedom (dofs), u, are related to the edges of the elements,77 {
αi(u) =

∫
ei

ti · u ds, i ∈ {1, 2, ...}
}

78

79

for every edge, ei, in the reference element. There is one dof related to each edge,80

therefore there are four dofs related to each element. The vector ti is the tangential81

unit vector of the edge ei. One has to choose which direction for the unit tangential82

vectors to use. Our choice is illustated in Figure 2. The reference basis functions of83

the Nédélec elements are given by the requirement αi(ηj) = δij [1, 7, 9],84

η0(x) =

(
1− x2

0

)
, η1(x) =

(
0
x1

)
, η2(x) =

(
x2

0

)
, η3(x) =

(
0

1− x1

)
.85

8687

The global Nédélec basis functions are nonzero only in the two elements who88

share the edge that is related to the basis function. A more detailed treatment can89

be found in [7, 8].90

2.1. Geometric Multigrid smoothers. Geometric multigrid with the overlap-91

ping Schwarz smoother by Arnold, Falk and Winther (AFW) [2] or with distributive92

relaxation proposed by Hiptmair [4, 5], is an efficient solver for Maxwell’s equations.93

We therefore construct two AMG smoothers based on these relaxation methods. The94

goal of both smoothers is to treat the kernel with a special procedure to eliminate95

the high frequency components. First, we review the idea of the geometric relaxation96

procedures.97

98

The geometric overlapping Schwarz smoother for Maxwell’s equation is a block99

smoother. The edge points are clustered into small overlapping blocks, Ωi, (see Fig-100

ure 3) and we solve the systems Aiui = fi, where i indicates the number of the101
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current block, fi is some right-hand side, ui is a subvector which contains all un-102

known edges/dofs of block Ωi, and Ai is a submatrix of the Maxwell matrix A that103

belongs to block Ωi. The number of blocks corresponds to the number of nodal points104

in the grid. The blocks contain all geometric nearest neighbor edges of the nodal105

points, depicted in Figure 3.106

107

Fig. 3: Geometric idea of grid separation on quadrilateral grids.

Geometric distributive relaxation for Maxwell’s equations uses a gradient matrix,108

G, that is constructed such that each row corresponds to an edge between two nodes109

in the associated nodal mesh. Equivalently, the matrix G can be constructed such110

that it uses the same blocks, Ωi, as the overlapping Schwarz smoother. As described111

above, each block Ωi, defines a submatrix, Ai, of the Maxwell matrix, A. The eigen-112

vectors corresponding to the smallest eigenvalue of each submatrix, Ai, define the113

columns of the gradient matrix, G. Therefore, the number of columns of the matrix,114

G, equals the number of blocks, Ωi. The gradient matrix G is applied as a projector115

for the Maxwell matrix, A, defining a new matrix, M = GTAG, and a Gauß-Seidel116

smoother (GS) is applied to this new matrix M .117

118

3. AMG smoothers. In contrast to the geometric multigrid method, the geo-119

metric structure of the dofs is unknown in the AMG setting. Instead, the dependen-120

cies of the dofs are given by the matrix. Therefore, geometric smoothers need to be121

adapted for AMG. Based on the geometric relaxation methods by AFW [2] and Hipt-122

mair [4, 5], described in Section 2.1, we construct an overlapping Schwarz smoother123

and a distributive relaxation for AMG.124

3.1. Overlapping Schwarz smoother for AMG. The idea of the overlapping125

Schwarz smoother is to seperate the degrees of freedom into overlapping subsets, Ωi,126

and solve the corresponding systems, Aiui = fi, as described in Section 2.1. Note127

that the AMG setting influences the choice of the overlapping subsets, Ωi. We will128

see that Maxwell’s equations require the solution of all systems that contain a near129

null space component and that correspond to subsets with a diameter smaller than130

(or equal to) the coarsening factor, m. In this paper, the coarsening factor is chosen131

to be two. The coarse grid handles the larger subdomains and near null space vectors.132

After smoothing on all of these systems, GS is applied to the system defined by the133

remaining points, Ωpoint.134

A simple strategy for choosing the overlapping subsets Ωi, can be described as135

follows:136
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Algorithm 1 Select Ωi

Set S := ∅, Ωi := {i}, Ωpoint = Ω
for all Ωi do

Ωi := Ωi ∪ {distance 1 neighbors of i}
Ai = A(Ωi,Ωi)
if Ai is nearly singular then

S ← S ∪ {Ωi}
Ωpoint ← Ωpoint − Ωi

end if
end for

For each i, starting with a predefined set, Ωi (in the above pseudocode, Ωi is137

chosen such that it contains one edge dof), certain edge dofs are added to the sets,138

Ωi, (for example the distance 1 neighbors of the initial edges). Submatrices are139

constructed from the system matrix, A, by restricting it to the colums and rows that140

belong to the edge dofs in set Ωi. The last step during the loop is to check if the141

submatrix includes a near null space component and at the end keep all sets for which142

the submatrix includes a near null space component.143

Remark: The above algorithm only illustrates the general idea for choosing sub-144

sets, Ωi. In particular, considering only distance 1 neighbors is not sufficient to obtain145

efficient AMG smoothers. An explanation for this is given in Section 3.3 along with146

a different strategy that does produce good results.147

After selecting the sets, Ωi, we apply the overlapping Schwarz algorithm:148

Algorithm 2 Overlapping Schwarz algorithm

for k = 1, 2, ... do
for Ωi ∈ S do

rk ← f −Auk

uk ← uk + IΩiA
−1
i ITΩi

rk
end for
rk ← f −Auk

uk+1 = uk + IΩpointA
∼1
pointI

T
Ωpoint

rk
end for

Here, A,Ai, f and u are defined as introduced in Section 1 and Section 2.1. The149

injection matrix with regard to a subdomain, d, is indicated by Id and d = Ωpoint refers150

to the set of remaining points, which are not included in one of the near null space sets151

Ωi. The term A∼1
point denotes the approximate solution of the system Apointupoint =152

ITΩpoint
rk by the application of the Gauß-Seidel relaxation method. We use a forward153

iteration loop for the presmoother and a backward iteration loop for the postsmoother154

to obtain a symmetric algorithm.155

3.2. Distributive relaxation smoother for AMG. The distributive relax-156

ation smoother uses the subsets, Ωi, to construct a matrix, G, that is equivalent to157

the discrete gradient matrix used in the geometric Hiptmair smoother described in158

Section 2.1. The Gauß-Seidel relaxation method is used to relax all dofs and after-159

wards the Galerkin matrix, GTAG, is used to relax the near null space components160

with fine scale support.161
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Algorithm 3 Distributive Relaxation algorithm

for Ωi ∈ S do
Compute smallest eigenvector vi of Ai

Add vi to columns of G
end for

for k = 1, 2, ... do
rk ← f −Auk

uk ← uk + A∼1rk
rk ← f −Auk

uk+1 = uk + G(GTAG)∼1GT rk
end for

Here, A,Ai, G, f and u are defined as introduced in Section 1 and Section 2.1. The162

terms (GTAG)∼1 and A∼1 denote the approximate solution by the application of the163

symmetric Gauß-Seidel relaxation method.164

3.3. Subdomain decision. The general idea of the AMG smoothers is to elim-165

inate the near null space components that cannot be represented on the coarse grid.166

This can be done in the following way:167

168

S = ∅169

K = all sets with diameter ≤ m170

for J ∈ K do171

for all J that include near null space components do172

S ← S ∪ {J}173

end for174

end for175

Since in this paper, we use a coarsening factor of m = 2, we inspect all sets with176

diameter m = 2 and check for near null space components. Then, we use one of the177

two relaxation methods, overlapping Schwarz relaxation or distributive relaxation.178

179

Sufficient subsets are necessary to eliminate near null space components. As180

already mentioned in Section 3.1, the distance 1 neighbor sets are not sufficient for181

AMG. In the context of geometric multigrid, nearest neighbors are closest edge dofs to182

a nodal point in a geometrical sense (see Fig. 3). In the AMG context, we do not know183

the location of nodal points and edge dofs. Instead, distance 1 neighbors in terms of184

AMG are the closest edge dof to another edge dof (see Fig. 4). Closest edges to edge i185

in the AMG context are all edge dofs that have a corresponding matrix entry in row i.186

187

Fig. 4: Examples of distance 1 neighbors in AMG context on quadrilateral grids.



AMG SMOOTHERS FOR MAXWELL’S EQUATIONS 7

The distance 1 neighbor sets in AMG are not sufficient as block smoothing sets188

Ωi, since they do not account for all diameter 2 subdomains. We need to establish189

sets that cover all diameter 2 subdomains which include a near null space component.190

Accordingly, we construct different sets that inspect all diameter m = 2 subdomains191

and includes near null space components. The algorithm looks as follows and is192

explained below.193

Algorithm 4 Select Ωi

Set S := ∅, Ωpoint = Ω
for i = 1 : #dof do

T ={all distance 2 neighbors of i}
for j ∈ T do

Ωi,j = {i, j}∪ {common distance 1 neighbors of i and j}
Ai,j = A(Ωi,j ,Ωi,j)
if Ai,j is nearly singular and Ωi,j /∈ S then

S ← S ∪ {Ωi,j}
Ωpoint ← Ωpoint − Ωi,j

end if
end for

end for

In the special case of quadrilateral elements (see Fig. 5), the algorithm above194

generates the same sets as AFW and Hiptmair in the geometric case. For all degrees195

of freedom, first the algorithm constructs a set that includes all distance m = 2196

neighbors (illustrated by crosses in Figure 5). Thereafter, a set, Ωi,j , is constructed197

that includes the initial dof, i, (red rectangle in Fig. 5), a distance 2 neighbor, j and198

all common distance 1 neighbors of i and j. All matrices are checked if they include199

a near null space and we keep just the sets that include a near null space. So far, we200

did not find a way to compute these sets in a more efficient way.201

Fig. 5: Example of an AMG subdomain, Ωij , constructed with Alg. 4. The red box
indicates a given initial dof, i, crosses indicate distance 2 points of i, and dots indicate
distance 1 points of i.

4. Numerical Results. The numerical results in this section show the efficiency202

of the AMG overlapping Schwarz smoothing method (OSS) and the AMG distributive203

relaxation method (DR) for the definite Maxwell equation.204
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4.1. Cost comparison. The algorithms in Section 3.1 and Section 3.2 both205

have a setup phase to create the sets Ωi. In addition, DR generates the matrix G out206

of the sets Ωi. OSS applies a block inverse for each near null space component, so it is207

a bit more expensive in the solve phase. In contrast DR uses the Gauß-Seidel method208

to solve the transformed system. OSS has the potential to be cheaper in the setup209

phase because the actual near null space components do not need to be computed.210

For example, a few iterations of a pointwise smoother can determine slow convergence211

and hence the presence of a near null space.212

4.2. Performance. First, we show numerical results of the smoother by itself213

without an underlying multigrid method. For this purpose, we apply a Fourier mode214

smoothing study for OSS and DR as described in Section 3.215

The Fourier mode study can be described as follows: The homogenous system216

Au = 0 is iteratively solved with different initial guesses. The system matrix A is217

generated by using β = 0.1. The initial guesses, sin(kπx1) sin(lπx2), with l = k =218

1, ..., n−2 are the Fourier modes. Here x1, x2 denote the coordinates of the unknowns219

in the grid and n indicates the number of nodal gridpoints in one direction. We set220

l = k to obtain 2D results.221

The results of the Fourier mode study for both smoothers are presented in Fig-222

ure 6. We indicate results for the 33x33 grid with 2112 dofs. We plot the number of223

iterations needed to reduce the infinity norm of the the error by 0.001 for every mode224

k. The number of iterations in Figure 6 is between 7 and 338 for DR and between 5225

and 663 for OSS.226

The initial guesses sin(kπx1) sin(lπx2) with small k indicate smooth functions,227

whereas these initial guesses with large k indicate oscillatory functions. Good228

smoothers should reduce oscillatory components efficiently.229
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Fig. 6: Number of iterations for different Fourier modes with DR (left) and OSS
(right).

In the following, we show numerical results of an AMG two-grid method using the231

AMG overlapping Schwarz smoothing method and the AMG distributive relaxation232

method as described in Section 3. The numerical results in this section demonstrate233

the efficiency of the AMG smoothers for the definite Maxwell equation and we compare234

both smoothers.235

We consider the following model problem: take Ω = [0, 1]2, β = 0.1 and the right-236

hand-side is set to zero. We use a random initial guess u0(x, y). The model problem is237

solved with one pre- and one post smoothing step (V (1, 1)). Since it is not the concern238

of this paper to find an appropriate AMG coarsening, we construct the coarse grid239
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according to the geometric multigrid, see Figure 7. The coarse grid points are new240

points on the grid and not a subset of the fine grid points. We use a restriction with241

the weighting,242 
1
4

1
4

1
2 •

1
2

1
4

1
4

 ,
 1

4
1
2

1
4

•
1
4

1
2

1
4

 ,243

where • denotes the resulting coarse grid point. The left stencil denotes the restriction244

of an x-edge coarse point and the right stencil of a y-edge coarse point. The interpo-245

lation matrix is the transpose of the restriction matrix and we use the Galerkin coarse246

grid operator.247

Fig. 7: The coarse grid (black) and the corresponding coarse grid points ××× resulting
from the fine grid (red) and the fine grid points •.

The convergence rate of the AMG two-grid method for different grid sizes and248

both smoothers is shown in the following. We show the results of three different grid249

sizes, 17x17 grid with 544 degrees of freedom, 33x33 grid with 2112 dofs and 65x65250

grid with 8320 dofs. We use the 2-norm to measure the convergence.251

The asymptotic convergence factors of the two-level AMG method with OSS and252

DR are indicated in Table 1. These results present an asymptotic convergence factor253

of 0.19 for the two-level method with OSS and an asymptotic convergence factor of254

0.14 for the two-level method with DR. We observe h-independent convergence rates.255

Comparable results can also be found in [6].256

#dofs OSS DR

544 0.19 0.13
2112 0.19 0.13
8320 0.19 0.14

Table 1: Convergence factors, ||rk||2/||rk−1||2, k → ∞, of the two-level AMG with
OSS and DR.

The results of the AMG method with DR look more promising. However, the DR257

uses an expensive symmetric GS method for the entire system Au = f , whereas the258

OSS is symmetrized by forward pre-relaxation and backward post-relaxation. Using259

this approach for DR yields an asymptotic convergence rate of 0.37.260
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5. Conclusion. We developed AMG based smoothers for the definite Maxwell261

equation, the overlapping Schwarz smoother and distributive relaxation. The results262

of the two-grid methods with OSS and DR for the definite Maxwell equation are263

comparable with results of already known methods for geometric multigrid which can264

be found in the literature, cf. [6]. Analyzing the smoothers on more general problems265

is future work.266
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