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AMG SMOOTHERS FOR MAXWELL’S EQUATIONS *

L. CLAUS f

In collaboration with: R. Falgout, M. Bolten,

Abstract. Algebraic Multigrid (AMG) is used to speed up linear system solves in a wide variety
of applications. This paper concentrates on expanding AMG’s applicability to important new classes
of problems through algorithms that automatically construct advanced smoothing techniques when
needed. In particular, we apply AMG to solve Maxwell’s equations. These AMG relaxation methods
have their roots in smoothing methods used for geometric multigrid methods. Arnold, Falk and
Winther developed an overlapping Schwarz smoother for geometric multigrid and Hiptmair developed
a distributive relaxation approach. We use this knowledge to construct new smoothing procedures
for AMG. We develop adapted overlapping Schwarz smoothers and distributive relaxation for AMG.
We use Nédélec’s H(curl,2)-conforming finite elements to discretize the problem. We present first
results regarding the smoothing quality of the developed smoother for AMG.

Key words. AMG, Maxwell’s equations, Nédélec elements, overlapping Schwarz smoother,
distributive relaxation

1. Introduction. Algebraic Multigrid (AMG) methods [3] are a central tool in
the numerical solution of linear and nonlinear systems that arise from the discretiza-
tion of partial differential equations (PDEs). In this paper, AMG is applied to solve
the 2D definite Maxwell equation,

(1) VXV xu+pfu=f, in Q,

where 8 > 0 is the spatially varying electrical conductivity, u is the unknown electric
field to be computed and f is the known right-hand side. The domain, €2, is an open,
bounded and connected Lipschitz domain in R?, and we impose Dirichlet boundary
conditions. Note that Equation (1) involves two 2D-curl operators, the 2D-curl of a
vector-valued function, w = (wy,ws)? : @ — R?, and the 2D-curl of a scalar function
v:Q — R, defined as

curl v := (%fv) , curl w := 01wy — Qowy,
respectively.
The curl operators give rise to the standard Sobolev space,

H(curl,Q) := {v € L* (0, R?) |curlv € L* (Q)},

where L? denotes the space of square Lesbesque integrable functions. We therefore
discretize our model problem using Nédélec’s H (curl, Q)-conforming finite elements
[7]. The resulting linear system is denoted by

(2) Au = f,
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2 L. CLAUS

with A = N + P, and where N is the discrete approximation of the weak form of the
curl-curl term in (1), and where P is the discrete approximation to the weak form of
the 8 term in (1). The difficulty of using AMG to solve Maxwell’s equations results
from the kernel of the curl operator. Using the identity

(3) V x (V) =0,

we see that gradients of scalar functions, ®, lie within the kernel of the curl operator.
Thus, the kernel includes the gradients of all differentiable scalar functions ®. Since
the gradient of a smooth function is smooth and the gradient of an oscillatory func-
tion is oscillatory, it is obvious that the kernel contains both smooth and oscillatory
functions. For further details, consult [6]. The discrete null-space analogue of (3) is

(4) FG = 0,

where the matrix G is a discrete gradient operator and © denotes the zero matrix. The
matrix G is trivial to construct. In particular, each row contains at most two nonzeros
(with value 1) and corresponds to an edge between two nodes of the associated nodal
mesh.

The classical AMG method fixes the relaxation method, usually, a pointwise
smoother, and enforces an efficient interplay with the coarse-grid correction. This
procedure is not sufficient for Maxwell’s equations, since Maxwell’s equations have a
large near null space and, therefore, contain high frequency components in the near
null space (see Fig. 1 and [6] for details). In order to smooth these oscillatory com-
ponents and approximate them appropriately on coarser grids, a different relaxation
scheme than a simple pointwise smoother is necessary. Efficient relaxation methods
for geometric multigrid methods for Maxwell’s equations are proposed in [2, 5]. In
this paper, we construct AMG smoothing methods based on these relaxation schemes.

Fig. 1: High frequency component in the near null space for the 2D definite Maxwell
equation on a quadrilateral grid.

This paper is structured as follows: Section 2 provides the definition of Nédélec
element discretization and we introduce the general idea of smoothing procedures for
Maxwell’s equations. In Section 3, we describe two AMG smoothing methods for the
2D definite Maxwell equation. Numerical results are presented in Section 4. The
paper closes with a conclusion.
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AMG SMOOTHERS FOR MAXWELL’S EQUATIONS 3

2. Discretization and geometric multigrid for Maxwell’s equations. We
discretize the definite Maxwell equation (1) by linear Nédélec elements. Assuming
that € is discretized by a quadrilateral mesh, 7, in 2D, Nédélec elements represent
basis functions in H (curl, 7) spaces. We demonstrate the general approach to obtain
the system matrix A on the reference element, depicted in Figure 2.

0 "
Fig. 2: The four degrees of freedom of 2D Nédélec elements in a reference configuration
on a quadrilateral grid.

Let 1 denote the global edge basis functions and let x = (z1,22)7 €  be a point.
The degrees of freedom (dofs), u, are related to the edges of the elements,

{ai(u) - / bouds, ie{1,2, }}

for every edge, e;, in the reference element. There is one dof related to each edge,
therefore there are four dofs related to each element. The vector ¢; is the tangential
unit vector of the edge e;. One has to choose which direction for the unit tangential
vectors to use. Our choice is illustated in Figure 2. The reference basis functions of
the Nédélec elements are given by the requirement o;(n;) = d;; [1, 7, 9],

= (157 ) mo=( ) o= (7). me@=( 0, ).

The global Nédélec basis functions are nonzero only in the two elements who
share the edge that is related to the basis function. A more detailed treatment can
be found in [7, 8].

2.1. Geometric Multigrid smoothers. Geometric multigrid with the overlap-
ping Schwarz smoother by Arnold, Falk and Winther (AFW) [2] or with distributive
relaxation proposed by Hiptmair [4, 5], is an efficient solver for Maxwell’s equations.
We therefore construct two AMG smoothers based on these relaxation methods. The
goal of both smoothers is to treat the kernel with a special procedure to eliminate
the high frequency components. First, we review the idea of the geometric relaxation
procedures.

The geometric overlapping Schwarz smoother for Maxwell’s equation is a block
smoother. The edge points are clustered into small overlapping blocks, ;, (see Fig-
ure 3) and we solve the systems A;u; = f;, where ¢ indicates the number of the
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4 L. CLAUS

current block, f; is some right-hand side, u; is a subvector which contains all un-
known edges/dofs of block Q;, and A; is a submatrix of the Maxwell matrix A that
belongs to block ;. The number of blocks corresponds to the number of nodal points
in the grid. The blocks contain all geometric nearest neighbor edges of the nodal
points, depicted in Figure 3.

Fig. 3: Geometric idea of grid separation on quadrilateral grids.

Geometric distributive relaxation for Maxwell’s equations uses a gradient matrix,
G, that is constructed such that each row corresponds to an edge between two nodes
in the associated nodal mesh. Equivalently, the matrix G can be constructed such
that it uses the same blocks, €);, as the overlapping Schwarz smoother. As described
above, each block ;, defines a submatrix, A;, of the Maxwell matrix, A. The eigen-
vectors corresponding to the smallest eigenvalue of each submatrix, A;, define the
columns of the gradient matrix, G. Therefore, the number of columns of the matrix,
G, equals the number of blocks, 2;. The gradient matrix G is applied as a projector
for the Maxwell matrix, A, defining a new matrix, M = GTAG, and a GauB-Seidel
smoother (GS) is applied to this new matrix M.

3. AMG smoothers. In contrast to the geometric multigrid method, the geo-
metric structure of the dofs is unknown in the AMG setting. Instead, the dependen-
cies of the dofs are given by the matrix. Therefore, geometric smoothers need to be
adapted for AMG. Based on the geometric relaxation methods by AFW [2] and Hipt-
mair [4, 5], described in Section 2.1, we construct an overlapping Schwarz smoother
and a distributive relaxation for AMG.

3.1. Overlapping Schwarz smoother for AMG. The idea of the overlapping
Schwarz smoother is to seperate the degrees of freedom into overlapping subsets, €2;,
and solve the corresponding systems, A;u; = f;, as described in Section 2.1. Note
that the AMG setting influences the choice of the overlapping subsets, ;. We will
see that Maxwell’s equations require the solution of all systems that contain a near
null space component and that correspond to subsets with a diameter smaller than
(or equal to) the coarsening factor, m. In this paper, the coarsening factor is chosen
to be two. The coarse grid handles the larger subdomains and near null space vectors.
After smoothing on all of these systems, GS is applied to the system defined by the
remaining points, Qpoint-

A simple strategy for choosing the overlapping subsets €2;, can be described as
follows:
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AMG SMOOTHERS FOR MAXWELL’S EQUATIONS 5

Algorithm 1 Select €;
Set S := @, QfL = {Z}, onint =Q
for all 2; do
Q; := Q; U {distance 1 neighbors of ¢}

Ai = A(24,94)
if A; is nearly singular then
S+ SuU{Q}
onint <~ onint - Qz
end if
end for

For each i, starting with a predefined set, €2; (in the above pseudocode, ; is
chosen such that it contains one edge dof), certain edge dofs are added to the sets,
Q;, (for example the distance 1 neighbors of the initial edges). Submatrices are
constructed from the system matrix, A, by restricting it to the colums and rows that
belong to the edge dofs in set 2;. The last step during the loop is to check if the
submatrix includes a near null space component and at the end keep all sets for which
the submatrix includes a near null space component.

Remark: The above algorithm only illustrates the general idea for choosing sub-
sets, ;. In particular, considering only distance 1 neighbors is not sufficient to obtain
efficient AMG smoothers. An explanation for this is given in Section 3.3 along with
a different strategy that does produce good results.

After selecting the sets, €;, we apply the overlapping Schwarz algorithm:

Algorithm 2 Overlapping Schwarz algorithm

for k=1,2,...do
for Q; € S do
T < f — Auk
Ug — Uk + ]Ql.Ai_lfg;iT‘k
end for
Tk < f — Auk
k1 = Uk + Ty Aoint Ly i, Tk
end for

Here, A, A;, f and u are defined as introduced in Section 1 and Section 2.1. The
injection matrix with regard to a subdomain, d, is indicated by I and d = Qpint refers
to the set of remaining points, which are not included in one of the near null space sets
Q;. The term A;olint denotes the approximate solution of the system ApointUpoint =
Igpoimrk by the application of the Gauf3-Seidel relaxation method. We use a forward

iteration loop for the presmoother and a backward iteration loop for the postsmoother
to obtain a symmetric algorithm.

3.2. Distributive relaxation smoother for AMG. The distributive relax-
ation smoother uses the subsets, 2;, to construct a matrix, GG, that is equivalent to
the discrete gradient matrix used in the geometric Hiptmair smoother described in
Section 2.1. The Gauf-Seidel relaxation method is used to relax all dofs and after-
wards the Galerkin matrix, GT AG, is used to relax the near null space components
with fine scale support.
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6 L. CLAUS

Algorithm 3 Distributive Relaxation algorithm
for Q; € S do
Compute smallest eigenvector v; of A;
Add v; to columns of G
end for
for k=1,2,...do
Tk < f — Auk
Ur < Uk + ANlTk
Tk < f — Auk
U1 = uk + G(GTAG) ' Gry,
end for

Here, A, A;,G, f and u are defined as introduced in Section 1 and Section 2.1. The
terms (GTAG)~! and A™~! denote the approximate solution by the application of the
symmetric Gauf-Seidel relaxation method.

3.3. Subdomain decision. The general idea of the AMG smoothers is to elim-
inate the near null space components that cannot be represented on the coarse grid.
This can be done in the following way:

S=0
K = all sets with diameter < m
for J € K do
for all J that include near null space components do
S+ SuU{J}
end for
end for

Since in this paper, we use a coarsening factor of m = 2, we inspect all sets with
diameter m = 2 and check for near null space components. Then, we use one of the
two relaxation methods, overlapping Schwarz relaxation or distributive relaxation.

Sufficient subsets are necessary to eliminate near null space components. As
already mentioned in Section 3.1, the distance 1 neighbor sets are not sufficient for
AMG. In the context of geometric multigrid, nearest neighbors are closest edge dofs to
a nodal point in a geometrical sense (see Fig. 3). In the AMG context, we do not know
the location of nodal points and edge dofs. Instead, distance 1 neighbors in terms of
AMG are the closest edge dof to another edge dof (see Fig. 4). Closest edges to edge ¢
in the AMG context are all edge dofs that have a corresponding matrix entry in row .

Fig. 4: Examples of distance 1 neighbors in AMG context on quadrilateral grids.
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The distance 1 neighbor sets in AMG are not sufficient as block smoothing sets
;, since they do not account for all diameter 2 subdomains. We need to establish
sets that cover all diameter 2 subdomains which include a near null space component.
Accordingly, we construct different sets that inspect all diameter m = 2 subdomains
and includes near null space components. The algorithm looks as follows and is
explained below.

Algorithm 4 Select §;
Set S :=0, Qpoint = 2
for ¢+ = 1: #dof do
T ={all distance 2 neighbors of i}
for j €T do
Q;,; = {i,7}U {common distance 1 neighbors of ¢ and j}
Aij = A5, )
if A, ; is nearly singular and Q; ; ¢ S then
S+ Su {Qi,j}
onint — onint - Qi,j
end if
end for
end for

In the special case of quadrilateral elements (see Fig. 5), the algorithm above
generates the same sets as AFW and Hiptmair in the geometric case. For all degrees
of freedom, first the algorithm constructs a set that includes all distance m = 2
neighbors (illustrated by crosses in Figure 5). Thereafter, a set, €; ;, is constructed
that includes the initial dof, 7, (red rectangle in Fig. 5), a distance 2 neighbor, j and
all common distance 1 neighbors of ¢ and j. All matrices are checked if they include
a near null space and we keep just the sets that include a near null space. So far, we
did not find a way to compute these sets in a more efficient way.

%

Fig. 5: Example of an AMG subdomain, §2;;, constructed with Alg. 4. The red box
indicates a given initial dof, 7, crosses indicate distance 2 points of 7, and dots indicate
distance 1 points of 1.

4. Numerical Results. The numerical results in this section show the efficiency
of the AMG overlapping Schwarz smoothing method (OSS) and the AMG distributive
relaxation method (DR) for the definite Maxwell equation.
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4.1. Cost comparison. The algorithms in Section 3.1 and Section 3.2 both
have a setup phase to create the sets (2;. In addition, DR generates the matrix G out
of the sets £2;. OSS applies a block inverse for each near null space component, so it is
a bit more expensive in the solve phase. In contrast DR uses the Gauf3-Seidel method
to solve the transformed system. OSS has the potential to be cheaper in the setup
phase because the actual near null space components do not need to be computed.
For example, a few iterations of a pointwise smoother can determine slow convergence
and hence the presence of a near null space.

4.2. Performance. First, we show numerical results of the smoother by itself
without an underlying multigrid method. For this purpose, we apply a Fourier mode
smoothing study for OSS and DR as described in Section 3.

The Fourier mode study can be described as follows: The homogenous system
Au = 0 is iteratively solved with different initial guesses. The system matrix A is
generated by using S = 0.1. The initial guesses, sin(kwxy)sin(lnzs), with [ = k =
1,...,n—2 are the Fourier modes. Here x1, x5 denote the coordinates of the unknowns
in the grid and n indicates the number of nodal gridpoints in one direction. We set
I = k to obtain 2D results.

The results of the Fourier mode study for both smoothers are presented in Fig-
ure 6. We indicate results for the 33x33 grid with 2112 dofs. We plot the number of
iterations needed to reduce the infinity norm of the the error by 0.001 for every mode
k. The number of iterations in Figure 6 is between 7 and 338 for DR and between 5
and 663 for OSS.

The initial guesses sin(kmwz)sin(lrzs) with small & indicate smooth functions,
whereas these initial guesses with large k indicate oscillatory functions. Good
smoothers should reduce oscillatory components efficiently.

400 800
2 2
S 300 5 600
© ©
£ 200 £ 400
G ©
L 100 2200
€ €
2 2
0 0
0 10 20 30 40 0 10 20 30 40
Fourier Mode k Fourier Mode k

Fig. 6: Number of iterations for different Fourier modes with DR (left) and OSS
(right).

In the following, we show numerical results of an AMG two-grid method using the
AMG overlapping Schwarz smoothing method and the AMG distributive relaxation
method as described in Section 3. The numerical results in this section demonstrate
the efficiency of the AMG smoothers for the definite Maxwell equation and we compare
both smoothers.

We consider the following model problem: take 2 = [0,1]2, 3 = 0.1 and the right-
hand-side is set to zero. We use a random initial guess ug(z,y). The model problem is
solved with one pre- and one post smoothing step (V' (1,1)). Since it is not the concern
of this paper to find an appropriate AMG coarsening, we construct the coarse grid
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according to the geometric multigrid, see Figure 7. The coarse grid points are new
points on the grid and not a subset of the fine grid points. We use a restriction with
the weighting,

Ll S N L
ENE N
= =
N~ @ N
NI NI

where e denotes the resulting coarse grid point. The left stencil denotes the restriction
of an x-edge coarse point and the right stencil of a y-edge coarse point. The interpo-
lation matrix is the transpose of the restriction matrix and we use the Galerkin coarse
grid operator.

X
)

Fig. 7: The coarse grid (black) and the corresponding coarse grid points X resulting
from the fine grid (red) and the fine grid points e.

The convergence rate of the AMG two-grid method for different grid sizes and
both smoothers is shown in the following. We show the results of three different grid
sizes, 17x17 grid with 544 degrees of freedom, 33x33 grid with 2112 dofs and 65x65
grid with 8320 dofs. We use the 2-norm to measure the convergence.

The asymptotic convergence factors of the two-level AMG method with OSS and
DR are indicated in Table 1. These results present an asymptotic convergence factor
of 0.19 for the two-level method with OSS and an asymptotic convergence factor of
0.14 for the two-level method with DR. We observe h-independent convergence rates.
Comparable results can also be found in [6].

[ #dofs [ OSS | DR |
544 | 0.19 | 0.13
2112 | 0.19 | 0.13
8320 | 0.19 | 0.14

Table 1: Convergence factors, ||rg|l2/||rk—1]l2, & — oo, of the two-level AMG with
OSS and DR.

The results of the AMG method with DR look more promising. However, the DR
uses an expensive symmetric GS method for the entire system Au = f, whereas the
OSS is symmetrized by forward pre-relaxation and backward post-relaxation. Using
this approach for DR yields an asymptotic convergence rate of 0.37.
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10 L. CLAUS

5. Conclusion. We developed AMG based smoothers for the definite Maxwell
equation, the overlapping Schwarz smoother and distributive relaxation. The results
of the two-grid methods with OSS and DR for the definite Maxwell equation are
comparable with results of already known methods for geometric multigrid which can
be found in the literature, cf. [6]. Analyzing the smoothers on more general problems
is future work.
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