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ABSTRACT

Cisplatin is highly toxic, but moderately effective in most cancers. Concurrent inhibition of
cyclooxygenase-2 (COX-2) and soluble epoxide hydrolase (SEH) results in anti-tumor activity
and has organ protective effects. The goal of this study was to determine the anti-tumor activity,
toxicity and the underlying mechanisms of action of combination treatment with cisplatin and
PTUPB, an orally available COX-2/sEH dual inhibitor. Immunodeficient NSG mice bearing
bladder cancer patient-derived xenografts were treated with vehicle, PTUPB, cisplatin, or a
combination. Median progression-free survival was 60.9 days in the PTUPB-cisplatin
combination group, was highly significant compared to 31.3 days (p<0.0001) in the vehicle only
control, 39.4 days (p=0.007) with single agent PTUPB and 47.0 days (p=0.02) with single agent
cisplatin. Combination therapy was no more toxic than cisplatin only treatment as assessed by
body weight, histochemical staining of major organs, blood counts and chemistry. Compared to
controls, the combination increased apoptosis and decreased phosphorylation in the MAPK/ERK
and PI3K/AKT/mTOR pathways. PTUPB treatment did not increase platinum-DNA adduct
formation, which is the most critical step in platinum-induced cell death. The combination index

method showed synergy between PTUPB and platinum agents in cell culture. In conclusion,



PTUPB potentiated the anti-tumor activity of cisplatin without increasing the toxicity in vivo,

and has potential for further development as a combination chemotherapy partner.



INTRODUCTION

Cisplatin is the most commonly used chemotherapeutic agent in cancer treatment. However,
it is only moderately effective in most cancer types and highly toxic (1). Cisplatin-based first-
line combination therapy is associated with a response rate of approximately 50% for metastatic
bladder cancer, and induces complete remission in less than 40% in the neoadjuvant setting for
this disease (2). In advanced non-small cell lung cancer, the response rate of platinum-based
combination therapy is less than 30% (3). Therefore, there is a great unmet need to develop novel
therapies to potentiate efficacy and mitigate the toxicity of cisplatin (4).

One potential strategy to improve cisplatin therapy involves modulation of the arachidonic
acid (ARA) pathway. This pathway plays numerous roles in inflammation and tumorigenesis.
Eicosanoids are lipid mediators derived from ARA by cyclooxygenases (COXs), lipoxygenases
(LOXs) and cytochrome P450s (CYPs). Among them, a COX-2 mediated metabolite,
prostaglandin E2 (PGEz), is pro-inflammatory and pro-angiogenic (5). COX inhibitors, both
nonsteroidal anti-inflammatory drugs (NSAIDs) and COX-2 selective inhibitors (coxibs), have
been widely used to treat inflammation and pain. Separately, epoxyeicosatrienoic acids (EETS),
derived from the metabolism of ARA by CYP epoxygenases, have potent anti-inflammatory,
analgesic, antihypertensive, cardio-protective, and organ-protective properties (6-9). However,
EETs are rapidly metabolized to inactive diols by soluble epoxide hydrolase (sEH) (10). sEH
inhibitors (sEHI) maintain the level of EETs in vivo, and are now studied in clinical trials for
various diseases. In preclinical studies as well as in clinical trials, a SEHI has displayed an
excellent safety profile (11,12).

In addition, EETs transcriptionally inhibit the expression of COX-2 and thus decrease the

production of PGE2 (13). Interestingly, COX-2 overexpression in tumor or stromal cells leads to



tumor angiogenesis (14) and coxibs block the production of angiogenic factors, leading to
inhibition of proliferation, migration, and vascular tube formation. However, targeting this single
component of the ARA pathway with coxibs has failed in human clinical trials for several
cancers (15-17). Furthermore, sEHIs synergize the analgesic and anti-inflammatory effects of
coxibs (18,19), prevent the gastrointestinal erosion (20), and alter PGIl2 and TBX: ratios
associated with blood clotting (18). Therefore, it is desirable to inhibit both COX-2 and sEH in
order to maximize antitumor activity and reduce toxic effects of selective COX-2 inhibition.
This dual COX-2/sEH inhibition strategy also may have the potential to protect normal tissues
from cisplatin toxicity.

We recently demonstrated that combination treatment of celecoxib and an sEH inhibitor t-
AUCB has synergistic effects on blocking angiogenesis and tumorigenesis in two mouse models
of cancer (21-24). Based on these findings, we developed single compound that concurrently
inhibits both COX-2 and sEH called (4-(5-phenyl-3-{3-[3-(4-trifluoromethyl-phenyl)-ureido]-
propyl}-pyrazol-1-yl)-benzenesulfonamide; PTUPB) (Figure S1) (25). This compound is more
effective at inhibiting primary tumor growth and metastasis compared to inhibitors selective to
either pathway, either as single agents or in combination. PTUPB acts, in part, by suppressing
tumor angiogenesis via selective inhibition of endothelial cell proliferation, without any obvious
cytotoxic effects (26).

Here we report interaction of cisplatin with PTUPB. We hypothesized that combination
of PTUPB and cisplatin achieved synergistic anti-tumor activity without increasing cisplatin
toxicity. Here we extended our work to include immunodeficient nod scid gamma (NSG) mice
carrying patient-derived xenograft (PDX) model of bladder cancer, and conducted additional

mechanistic studies (27). We observed that in vivo PTUPB potentiated cisplatin efficacy without



increasing toxicity. Platinum-DNA adducts were not modulated by PTUPB exposure, indicating
a completely independent mechanism of action. However, PTUPB enhances apoptosis and

downregulates proliferation signaling.

MATERIALS AND METHODS
Materials and Supplies

A bladder cancer patient-derived xenograft (PDX) model was provided by The Jackson
Laboratory (JAX, Bar Harbor, ME). PDX was developed through subcutaneous implantation
from clinical tumor tissues into immunodeficient NOD.Cg-Prkdcs® 112rg™Wi/SzJ (NSG; JAX
strain #5557) female mice, followed by serial in vivo passaging as we previously described (27).
All experiments utilized PDX models within the first five passages. Cisplatin was purchased
from (EMD Biosciences, Inc., San Diego, CA). [**C]carboplatin was purchased from GE
Healthcare (Waukesha, WI) and was prepared as described (28). PTUPB was synthesized as
previously described (25). The bladder cancer cell line 5637 was purchased from American Type
Culture Collection (ATCC, Manassas, VA) and was cultured with the RPMI-1640 medium
supplemented with 10% fetal bovine serum (Gibco, Grand Island, NY) and 1% penicillin-

streptomycin (Gibco, Grand Island, NY) and incubated at 37°C under 5% CO2.

PDX bladder cancer

All NSG PDX studies were performed at the University of California Davis with IACUC
approval (Protocol # 17794). Experiments were carried out in 6 to 9 week old female NSG mice
bearing bladder cancer PDX (ID# BL0293; JAX Model # TM00016).When the tumors achieved

volumes of 150~200 mm?, mice were randomized to four groups (n = 8 mice per group) as



follows: a vehicle group (PEG 400, 10ml/kg, oral), a PTUPB group, a cisplatin group, and a
combination of PTUPB and cisplatin group. PTUPB (30 mg/kg in PEG 400) was daily
administered once per day by oral gavage. Cisplatin (1 mg) was diluted in 1 mL of 0.9 % saline
and administered at a dose of 2 mg/kg (1V, tail vein, once per day) on days 1, 2, 3, 14, 15 and 16.
Animal weight and tumor size were measured twice per week. The tumor volume was calculated
with the following formula: length (mm) x width (mm) x width (mm) x 0.5. The percentage of

tumor growth inhibition (TGI) was calculated as follows;

100% x (1 — [(V' final day)- V€@ initial day))/ (VO final day)- VO™ initial day))]),

where V is tumor volume.

On days 6 and 20, two mice from each group were sacrificed; complete blood count (CBC),
blood urea nitrogen (BUN), aspartate aminotransferase (AST), creatinine and potassium in blood
samples collected from those mice were analyzed at the Veterinary Medicine Comparative
Pathology Laboratory of University of California Davis. The tumor, heart, liver, spleen, lung and
kidney were harvested 1 hr after the final treatment and the tissue samples were fixed in formalin
or were frozen at -80°C. Tumor sections were stained with hematoxylin and eosin (H&E) or
were used for immunohistochemistry analysis. A board-certified pathologist provided detailed
interpretation of tumor histomorphology and scoring of immunohistochemical staining. Some of
the tumor sections were lysed and chromatographed using SDS-PAGE followed by transfer onto
a PVDF membrane. The membranes were blocked in 5% nonfat dry milk for 1 h at room
temperature, and probed with p-AKT(S473) and p-ERK(Thr202/Tyr204) antibodies (Cell

Signaling Technology, Beverly, MA) and rabbit monoclonal anti-GAPDH antibody (Cell



Signaling Technology, Beverly, MA). The membranes were then probed with horseradish
peroxidase (HRP) tagged secondary antibodies. The secondary antibodies on the blot were
detected by an ECL Plus Western Blotting Detection Reagent (GE Healthcare, Piscataway, NJ).
Apoptosis was detected with anti-cleaved caspase-3 antibody (Cell Signaling, Danvers, MA)

according to the manufacturer’s protocol.

Accelerator mass spectrometry to determine platinum-DNA adduct formation

The ATCC 5637 bladder cancer cell line and NSG-PDX mice were used to assess the
impact of PTUPB on *4C-labeled carboplatin-DNA adduct formation.

Carboplatin-DNA adduct formation in vitro. For cell culture studies, 60-mm dishes of
5637 cell cultures were either pretreated with 10 uM PTUPB for 5 hr followed by 100 uM
[*4C]carboplatin (36,000 dpm/mL), or simultaneously dosed with PTUPB and [**C]carboplatin.
Four hours after carboplatin was added, the cells were washed with PBS. The 4 hr incubation
time was chosen due to the in vivo carboplatin half-life (1.3-6 hr) in patients. Cells were
harvested at the 4 hr time point in one group of dishes and another group was washed and further
incubated for 20hr with fresh drug-free medium before cell harvest in order to determine DNA
repair. Cell pellets were stored at -80°C until DNA extraction.

Carboplatin-DNA adduct formation in vivo. NSG PDX mice were dosed with 10 uL/g of
37.5 mg/kg [*C]carboplatin (50,000 dpm/g) via IV bolus injection. PTUPB (30 mg/kg in PEG
400) was administered via oral gavage lhr or 16 hr before carboplatin dosing. Mice were
sacrificed and tumor tissues harvested 24 hours after carboplatin dosing. DNA was extracted

using a Promega Wizard genomic DNA purification kit according to manufacturer’s instructions.



Ten micrograms of DNA per sample was submitted to Lawrence Livermore National Laboratory

(LLNL) for AMS analysis as previously reported (29).

Median effect analysis to determine in vitro drug-drug interaction

The method puplished by Chou and Talalay was used to determine the extent and nature
(synergism, additivity and antagonism) of PTUPB and cisplatin interaction (30,31). The drugs
were combined in various concentration ratios, given to cultured 5637 cells followed by cell

survival determination. The resulting data were used to calculate a combination index (ClI).

Statistics

Data are presented as mean + standard error of the mean (SEM). Group comparisons
were carried out using one-way analysis of variance or Student's t test. Survival analysis was
performed using the Kaplan-Meier method. A p value of less than 0.05 was considered

statistically significant.

RESULTS
Co-administration of PTUPB potentiated the anti-tumor activity of cisplatin

We previously showed PTUPB had anti-tumor activity in mouse Lewis lung cancer (LLC)
and NDL (Her2*, Ki67*, ER/PR negative) breast carcinoma models. Here, we determined
whether PTUPB possessed any anti-tumor activity in human bladder cancer cells and tumors,
and synergized with cisplatin treatment. We used the bladder cancer patient-derived xenograft
(PDX) model BL0293, a tumor type that, like most bladder cancers in clinic, is only moderately

sensitive to cisplatin (27). Treatment with single agent PTUPB or cisplatin exhibited moderate
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anti-tumor activity in mice bearing BL0293 tumors (Figure 1). The time required to reach a 7.5
fold increase in tumor volume was used as a reasonably attainable endpoint for this study. Since
treatment was started when the PDX tumor volume reached 100-200 mm?3, a 7.5 fold increase
represented a final tumor volume of no more than 1.5 cm?, a humane endpoint. Vehicle only
control had a median time to a 7.5-fold increase in tumor volume of 20.0 days, whereas the
endpoint was achieved in 24.4 days (p = 0.085) and 35.8 days (p = 0.0003) for the PTUPB and
cisplatin monotherapy groups, respectively. The median time to endpoint in the cisplatin-
PTUPB combination group was significantly longer (60.9 days) than that of either PTUPB (p =
0.007) or cisplatin (p = 0.02) group (Figures 1A). Analysis of the median survival showed that
single agent PTUPB did not significantly increase survival time compared to control (39.4 days
vs. 31.3 days, p = 0.201), whereas single agent cisplatin treatment extended survival to 47.0 days
(p = 0.004). The survival time could be further significantly increased by co-treatment of mice
with PTUPB and cisplatin to 60.9 days, which was longer than that of either the PTUPB (p =
0.007) or cisplatin (p = 0.02) monotherapy groups (Figures 1B).

Even though PTUPB potentiated the anti-tumor efficacy of cisplatin, we did not observe
any significant increase in toxicity. Comparing to vehicle control, PTUPB monotherapy slightly
decreased body weight (p = 0.086 at day 23; p = 0.118 at day 30) while cisplatin treatment led to
significant weight loss (p=0.00009 at day 23; p = 0.008 at day 30).The addition of PTUPB to
cisplatin therapy did not further increase the weight loss (Figure S2). We also determined
complete blood cell count (CBC) and chemistry panels at day 6 and 20 of treatment (Figure S3-
4). No significant difference in blood panel data was observed among all treatment groups
compared to the controls. Histology examination of major organs at day 20 revealed cisplatin

and combination treatment induced swollen distal tubule cells in kidneys, and cytoplasmic
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vacuolization (microvesicular steatosis) in the hepatocytes. Although these changes were
consistent with cisplatin toxicity, they were modest and could be due to normal variations in
tissue morphology. However, no such morphology changes were observed in the control and
PTUPB monotherapy groups, suggesting that they might be caused by cisplatin. No other

histological changes were observed in other organs (Figure S5).

Combination treatment of cisplatin and PTUPB inhibited proliferation and induces
apoptosis in bladder cancer xenografts

Ki-67 is a nuclear non-histone protein that is expressed among dividing but not in resting
cells, and is frequently used to assess the proliferation state of tissues. The determination of
cleaved caspase 3 is commonly used as an indicator of apoptosis. The combination of cisplatin
with PTUPB treatment led to a significant decrease of Ki-67 expression and substantial increase
of cleaved caspase-3 in stained tumor tissues when compared to single treatment with PTUPB or
cisplatin (Figure 2 and Figure S6). These data demonstrate that the anti-tumor activity of the
combination treatment with PTUPB and cisplatin was, at least in part, due to decreased cell

proliferation and increased apoptosis.

Combination treatment of cisplatin and PTUPB significantly reduced signaling pathways
essential for cell growth

The MAPK/ERK and PI3K/AKT/mTOR signaling pathways are shared by many receptor
tyrosine kinases and often essential for tumor growth and survival. To determine how the
different treatments affected these two signaling pathways, tumor tissues were collected at day 3

after treatment started, and at day 17 when tumors started to regrow in the PTUPB and cisplatin
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groups or were stabilized as in the combination group. While treatment with either PTUPB alone
or cisplatin alone did not significantly diminish levels of either phosphorylated activated ERK
(p-ERK) or AKT (p-AKT), the combination treatment of PTUPB and cisplatin substantially
decreased levels of both p-ERK and p-AKT at day 3. On Day 17, increased levels of p-ERK and
p-AKT were observed in the PTUPB and cisplatin combination group (Figure 3). The p-Erk and
p-Akt levels were increased by 2.45 (1.20/0.49) and 78.5 (1.57/0.02) times, respectively.These
data confirmed that combined therapy suppressed bladder cancer growth, at least in part, through
these two pathways, while pathway reactivation was associated with tumor adaptation and re-

growth.

PTUPB did not alter platinum-DNA adduct formation

As alkylating agents, platinum-based drugs (including cisplatin and carboplatin) Kkill
cancer cells through formation of covalent drug-DNA adducts. Hence we determined whether
PTUPB potentiated the anti-tumor activity of cisplatin agents via increasing DNA adducts by
using [**C]carboplatin-DNA adducts as a surrogate marker that is amenable to AMS analysis.
AMS s ultrasensitive for quantification of “C in biological sample, and was used to measure
carboplatin-DNA adduct formation under physiologically relevant drug concentrations (32).
Since cisplatin does not have any carbon atoms in the molecule, it cannot be labeled with *C.
Since both cisplatin and carboplatin form the same therapeutically relevant drug-DNA diadducts
and share a similar resistance spectrum (33), we used [**C]carboplatin for this part of the study.

First, we determined the effect of PTUPB on carboplatin-DNA adduct formation in cell
culture with the ATCC 5637 bladder cancer cell line (34). Cultures of 5637 cells were treated

with either carboplatin (100 pM) alone or a combination of carboplatin (100 uM) and PTUPB
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(10 uM). The 100 uM concentration of carboplatin was used based on its maximum blood
concentration in patients after chemotherapy and the treatment duration of 4 hours was chosen to
simulate carboplatin plasma half-life of 1.5-6.0 hours in patients. PTUPB exposure did not
significantly alter platinum-DNA adduct formation after 4h (528 + 41 adducts per 102 nt with the
carboplatin alone versus 593 + 282 adducts per 108 nt with the combination treatment, p = 0.713)
(Figure 4A). Similarly, pretreatment of cells with 10 uM PTUPB for 5 hours followed by the
addition of carboplatin did not alter the carboplatin induced DNA adduct formation (706 +/- 26
adducts per 108 nt with the carboplatin alone versus 606 +/- 66 adducts per 108 nt with the
PTUPB pretreatment (p= 0.071) (Figure 4B). Clearly, PTUPB did not impact drug-target
binding and metabolism of carboplatin in cell culture.

We next determined whether PTUPB affected the repair of carboplatin-DNA adducts
since increased DNA repair is one of the major mechanisms of cellular resistance to platinum-
based cancer therapy. To perform this experiment, 5637 cell cultures were treated with
carboplatin alone or with PTUPB plus carboplatin combination for 4 hours followed by removal
of both drugs, washing and additional culture with drug-free medium for 20 hours. At 24 hours,
the platinum-DNA adduct levels were not significantly different in the two treatment groups,
suggesting no difference of DNA repair between two treatments.

We also determined whether PTUPB influenced carboplatin-DNA adduct levels in vivo
(Figure 4C). PTUPB was administered either 16 hours or 1 hour before carboplatin injection
and tumors were collected 24 hours after carboplatin treatment. Carboplatin-DNA adduct levels
from isolated tumor DNA showed no significant difference between tumors that were treated
with carboplatin alone, 16 hours of PTUPB (p = 0.856) or 1 hour PTUPB (p = 0.362) pre-

treatment (1070 + 317 adducts per 108 nt, 1019 + 434 adducts per 108 nt, and 1334 + 384 adducts
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per 108 nt, respectively). The in vivo data are fully consistent with the cell line data, and support
PTUPB having a fully orthogonal mechanism of action compared to carboplatin and likely

cisplatin.

PTUPB and the platinum drug cisplatin showed synergistic drug-drug interaction

Since we showed PTUPB potentiated the anti-tumor effect of cisplatin in vivo in a
bladder PDX model, we wanted to further study the mechanism of the combination effect of
these two drugs in vitro. To address this question, the combination index (CI) method (31) was
used to determine the drug-drug interaction of PTUPB and cisplatin. First, we determined the
effect of single drug treatment on 5637 bladder cancer cells (Figure 5A). Cultures of 5637 cells
were treated with increasing concentrations of PTUPB or cisplatin (0, 0.01, 0.1, 1, 2, 5, 10, 20,
50, 100 uM). The ICso of cisplatin and PTUPB on 5637 cells are 4.1 uM and 90.4 uM,
respectively. Next, we determined the combination drug effect of PTUPB and cisplatin (Figure
5B). 5637 cells were treated with different concentrations of cisplatin (0, 0.01 0.1, 0.5, 1, 2, 5,
10, 100 puM) in combination with different concentrations of PTUPB (1, 2, 5, 10 uM). The CI
values of cisplatin and PTUPB are shown in Table 1. PTUPB at concentrations of 1, 2, 5 and 10

uM showed significant synergistic effects in combination with cisplatin.

DISCUSSION
Based on our findings of improved analgesic, anti-inflammatory and anti-cancer efficacy of the

co-inhibition of sEH and COX-2, we developed the COX-2/sEH dual inhibitor PTUPB (SI-1) (9).
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We demonstrated kidney protection and blood pressure attenuation by PTUPB in 8-week study
in type 2 diabetic Zucker Diabetic Fatty (ZDF) rats (35). In addition, we previously
demonstrated that PTUPB suppressed primary breast tumor growth and metastasis (26). The
previous work was focused on PTUPB as a single agent. Here we showed that PTUPB
potentiated the in vivo anti-tumor activity of cisplatin, possibly via a synergistic interaction. All
of these attributes make PTUPB an attractive candidate for further development as a combination
chemotherapy partner.

PTUPB potentiated the anti-tumor activity of cisplatin without increasing the toxicity in
mice carrying bladder cancer PDXs. The use of PDX mouse models enables the study of
potential drug candidates in a model system that more closely resembles the clinical patient
setting as compare to establishing xenografts from cultured cancer cells or cell lines. PDX are
developed from unselected and uncultured human clinical cancer tissues. They maintain tumor
morphology and 92-97% genetic fidelity of their parental cancers (27). In contrast to frequent
discordant of drug sensitivity between cell lines and clinical cancer response (36-38), there is
high concordance of cancer response between PDXs and patients (39). Therefore, the findings in
this study can likely to be translated into clinical applications.

NSAIDs are often used to reduce pain in cancer patients. It has been observed that the
combination of SEH inhibitors with coxibs displays significant synergistic anti-inflammatory and
analgesic effects in inflammatory animal models (18). Furthermore, stabilization of EET levels
by sEHI indirectly inhibits COX-2 (40) and suppresses COX-2 transcription (18). Previously our
work showed that co-administration of celecoxib and a sEH inhibitor synergistically inhibited
tumor growth in primary Lewis lung carcinoma (LLC) and spontaneous lung metastasis in mice

(26). Moreover, systemic co-administration of a sEH inhibitor with a lower dose of coxibs
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resulted in significant reduction in the adverse side effects of NSAIDs and coxibs on
gastrointestinal erosion, the cardiovascular system and kidneys, while maintaining efficacy in
reducing pain and inflammation (20).

Here we not only show that PTUPB enhanced cisplatin efficacy, but also explored the
underlying mechanisms of potentiation. The increased efficacy was not due to increased drug-
DNA adduct formation. We gathered evidence that the potentiation is possibly due to in vivo
factors, such as angiogenesis, and reduced activation of proliferation including the AKT and
ERK signaling pathways. Treatment of cisplatin and PTUPB decreased the levels of both p-
ERK and p-AKT in tumor xenografts, suggesting that these two major signaling pathways were
down regulated. We previously reported the evidence of anti angiogenic properties of PTUPB
(26).

PTUPB could be a breakthrough for improving platinum-based chemotherapy. Even though
targeted therapy and immunotherapy have emerged as promising therapeutic modalities,
cytotoxic chemotherapy will still be the mainstay in the foreseeable future. For example, targeted
and immunotherapies benefit only a minority of patients with non-small cell lung and bladder
cancers. The response rate of immunotherapy in both cancers is less than 20% (41,42). In
conclusion, the COX2/sEH dual inhibitor PTUPB potentiates and possibly synergizes cisplatin in
bladder cancer PDXs in vivo without increasing toxicity.

In conclusion, the COX2/sEH dual inhibitor PTUPB synergizes cisplatin in targeting bladder
cancer PDXs in vivo without increasing toxicity. PTUPB and cisplatin treatment increases
apoptosis and decreases the activity of the AKT and ERK pathways, but does not increase the

formation of platinum-DNA adducts, the most critical step of platinum-induced cell death.
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Figure Legends

Figure 1: Potentiation of cisplatin anti-tumor activity by PTUPB. A). Tumor growth in the
NSG-PDX bladder cancer mouse model. When the volume of the tumor xenografts reached
approximately 0.1~0.2 cm?3, mice were treated with PEG 400 control, single agent cisplatin
(2 mg/kg, i.v.,, Day 1, 2, 3, 14, 15, and 16, red arrows), single agent PUTUPB (30 mg/kg,
orally, once daily), and cisplatin (2 mg/kg) plus PUTUB (30 mg/kg) combination. The
tumor dimensions were measured every 3~4 days. The tumor volume was calculated using
the formula: 0.5 x length x width? (mm?3). Mice were euthanized when the tumor volume
reached 1.5~2 cm? (~7.5 times the baseline volume or 7.5x BL). The median time of the
tumor growth to 7.5% BL (blue dotted line ) was 20 days for the control and 24.4 days in the
PTUPB group (p=0.085) and 35.8 days in the cisplatin group (p=0.0003). The median time
to endpoint in the cisplatin and PTUPB combination group was significantly increased to
47.8 days compared to PTUPB (p<0.0001) or cisplatin (p=0.002) monotherapy groups. B).
Median survival with statistical analysis. Median survival of the combination treatment
group was 60.9 days, significantly longer than that of either PTUPB (39.4 days, p=0.007) or

cisplatin (47 days, p=0.02) monotherapy groups.

Figure 2: Ki-67 and caspase-3 expression as determined by immunohistochemical (IHC)
analysis. Formalin-fixed paraffin-embedded xenograft sections were stained for H&E, Ki-
67 and caspase-3. Left panel: Hematoxylin and eosin stain (H & E stain). Middle panel: Ki-
67 staining. More Ki-67 positive cells were observed in the control group, but significantly

decreased in the combination group. Right Panel: cleaved Caspase-3. Compared with the
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control group, increasing numbers of cells stained positive for active caspase-3 in the
PTUPB plus Cisplatin combination group.

Figure 3: Effect of PTUPB and cisplatin on cell signaling pathways. A). Western blot
analysis of protein expression of indicated phospho-proteins and loading control GAPDH.
Protein was extracted at indicated times from PDX BL0293 tumors treated with cisplatin,
PTUPB or cisplatin-PTUPB combination therapy. The numbers indicate the ratio of band
density relative to its control after normalization with GAPDH.

B). Hlustration of signaling pathways.

Figure 4: PTUPB did not alter carboplatin-DNA adduct formation. A). Cultures of the
ATCC bladder cancer cell line 5637 were incubated with 100 uM [**C]carboplatin in the
presence (gray bar) or absence (white bar) of 10 uM PTUPB for 4h or 4h then washed and
further incubated 20hr with fresh drug-free culture medium. B). 5637 cells were pretreated
(grey bar) with 10 uM PTUPB for 5h before cells were exposed to 100 uM [**C]carboplatin
for indicated amount of time. C). NSG mice carrying BL0293 tumors were treated with
37.5 mg/kg (therapeutic dose) carboplatin (50,000 dpm/g) via IV bolus and tissue was
harvested after 24hr. PTUPB (30 mg/kg in PEG400) was administered via oral gavage 16hr

(grey bar) or 1hr (black bar) before carboplatin dosing.

Figure 5: Effect of PTUPB and cisplatin on bladder cancer cells. Dose-response curves of
5637 cells treated with cisplatin and PTUPB at different concentrations as determined in a
72hr cell viability assay. A). Single dug treatment. Cultures of 5637 cells were treated with

different concentrations of PTUPB or cisplatin (0, 0.01, 0.1, 1, 2, 5, 10, 20, 50, 100 uM). B).
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Combination drugs treatment. 5637 cells were treated with different concentrations of
cisplatin (0, 0.01 0.1, 0.5, 1, 2, 5, 10, 100 uM) in combination with different concentrations

of PTUPB (1, 2, 5, 10 pM).

Table 1. Drug-drug interaction between PTUPB and Cisplatin. Combination index values

at different concentrations of PTUPB and cisplatin in 5637 bladder cancer cells.
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Figure S1. The chemical structure of a COX-2/sEH dual inhibitor, 4-(5-phenyl-3-{3-[3-(4-

trifluoromethyl-phenyl)-ureido]-propyl}-pyrazol-1-yl)-benzenesulfonamide (PTUPB).

Figure S2. Body weight change during PDX bladder cancer mice experiment. Compared to
the control group, PTUPB slightly decreased body weight while cisplatin treatment led to
more weight loss. Addition of PTUPB did not further increase the weight loss. No
significant behavioral abnormality was observed among any of these groups. N=8 mice per

group.

Figure S3. Blood counts, Hemoglobin and Platelets determination. Blood specimens were
collected 6 d and 20 d after the first dose of treatment. No significant changes in the blood
counts were observed between treatment groups. At Day 6, compared to the control group
of white blood cell (WBC) count of 7.19k/ul, the WBC count of PTUPB, cisplatin and the
combination treatment were 7.94k/pl (p = 0.889), 3.69k/ul (p = 0.426) and 3.23k/ul (p =
0.376), respectively. At day 20, compared to the control group of white blood cell (WBC)
count of 28.57k/ul, the WBC count of PTUPB, cisplatin and the combination treatment
were 12.96 k/ul (p = 0.337), 3.25k/ul (p = 0.394) and 2.63k/ul (p = 0.387) . Because of large
individual variations, we did not see any statistical significance. As an alkylating agent,
cisplatin seemed to decrease WBC count, but addition of PTUPB to cisplatin did not
further decrease WBC count. We did not observe any statistically significant difference of

hemoglobin and platelet count among these four groups.
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Figure S4. Biochemistry panel. Blood specimens were collected 6 d and 20 d after the first
dose of treatment. No significant damage to liver and kidney in any of these groups as
demonstrated in the liver function of aspartate transaminase (AST) and total bilirubin, and
in the kidney function of blood urea nitrogen (BUN) and creatinine. AST: aspartate

transaminase; BUN: alanine transaminase.

Figure S5. Histopathological evaluation of major organs (H&E staining). Cisplatin
treatment induced old hemorrhage in the spleen red pulp characterized with focal
hemosiderin deposit. The control and PTUPB treatment show no overt histological
changes in the spleen red pulp and white pulp architecture. Cisplatin or combined
treatment induced cytoplasmic vacuolization (microvesicular steatosis) in the hepatocytes
that could be due to normal variations. There is minimal steatosis, mild portal, and lobular
inflammation. No overt liver histologic changes were observed. No overt histological
damage in the kidney tissue was detected in the control and PTUPB treatment groups.
Cisplatin induced distal tubule cells swollen in the combined treatment. No overt
histological damage in the heart tissues was caused by cisplatin treatment. These data
demonstrated the safety application of COX-2/sEH dual inhibitor PTUPB plus cisplatin

therapy in bladder cancer treatment.

Figure S6. IHC staining of bladder PDX tumor tissues (BL0293). Left panel: Comparison
of morphology between the control and PTUPB groups in BL0293 PDX model.
Hematoxylin and eosin stain (H & E stain) showed that more tumor cells in control group

compared to the PTUPB plus Cisplatin-treated mice. Similarly, more Ki67 positive cells
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were observed in the control group (middle panel), suggesting more cells were in cell
proliferation. Right Panel: Staining of Cleaved Caspase 3. Compared with the control
group, increasing numbers of cells stained positive for active caspase-3 in the PTUPB plus

Cisplatin group indicating the progression of apoptosis across the cell population.
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Figure 3
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Figure 4
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Figure 5
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Cl for Cisplatin+PTUPB
Cis(uM) PTUPB(uM)  Effect Cl

5 1 0.33 0.94747
10 1 0.13 0.14292
5 2 0.30 0.79177
10 2 0.14 0.18015
5 5 0.27 0.76141
10 5 0.11 0.11442
5 10 0.21 0.50985
10 10 0.06 0.03263

Table 1. Drug-drug interaction between PTUPB and Cisplatin. Combination index
values at different concentrations of PTUPB and cisplatin in 5637 bladder cancer cells.
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SI-Figure S2
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