
LLNL-TR-747137

MODAL FREQUENCY TRACKING:
Performance Analysis on Noisy
Experimental Ground Test Data

J. V. Candy, L. M. Stoops, S. N. Franco, M. C.
Emmons

March 2, 2018



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 

 
 

 

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore 
National Laboratory under Contract DE-AC52-07NA27344. 
 



1

MODAL FREQUENCY TRACKING:

Performance Analysis

on

Noisy Experimental Ground Test Data

J. V. Candy, L. M. Stoops, S. N. Franco, M. C. Emmons

Executive Summary
Mechanical devices operating in an environment contaminated by noise, un-

certainties, and extraneous disturbances lead to low signal-to-noise-ratios creating
an extremely challenging signal processing problem—especially for on-line, real-
time, in-flight application. In this report, we discuss a model-based approach to
incorporate physical device features into a dynamic structure that can be used
to perform on-line tracking of modal frequencies. The approach we take, after
pre-processing the raw measurement data, is to obtain a representation of the
structural device under test that captures its underlying response to a suite of
excitations and operating conditions. One approach is to apply modern system
identification techniques based on stochastic subspace methods capable of both:
(1) identifying the underlying black-box structure enabling the extraction of struc-
tural modes that can be used for analysis; and (2) modal tracking under continued
vibrational excitation as in a real-time, in-flight like environment. The vibrational
signature of the structural device is measured directly using a suite of tri-axial
accelerometers characterizing a multiple input/multiple output (MIMO) dynamic
system. In this analysis, we have 15 tri-axial accelerometer measurements or 45
total output channels along with a single excitation also measured with a tri-axial
accelerometer providing a 3-input system for processing.

We initially describe the experiment and then briefly develop the necessary
background in stochastic subspace realization, discuss the algorithm and apply it
to the isolated structural device, first, characterized by the set of noisy MIMO
accelerometer measurements extracting the modal model from the data (subspace
identification), extract the unique modal frequencies (modal coordinate transfor-
mation), track their evolution (real-time tracker) to evaluate the overall perfor-
mance of the processor. Next we evaluate processor performance when the struc-
tural device is incorporated into a flight vehicle for further performance analysis.
We summarize the results and predict performance.
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1.0 INTRODUCTION

Existing flight data does not provide an accurate definition of the shock
and vibration environments of critical components of the mechanical device
assembly. A set of experimental ground tests were performed to characterize
the shock and vibration response in the flight vehicle to support validation of
a Finite Element Modal (FEM) developed by this Dynamic Characterization
study. This study was designed to develop a combined flight vehicle and
device finite element dynamic model. The model was validated with data
from ground testing at a Test Facility (TF). The data is similar to that
conducted for Extension and Safety programs with even more enhancements
implemented.

Various test phases were accomplished during these experiments:

Phase 1: examined shell and bending modes and stress wave propaga-
tion using just the aeroshell itself; and

Phase 2: tests include the populated aeroshell with a specially instru-
mented guidance and surrogate, instrumented payload package assem-
bled into a Ground Test Unit (GTU).

The Phase 2 tests were identical to those of Phase 1 except with the
addition of the guidance and payload. Here we concentrate on the Phase 2
data which was used for FEM model validation (see [1] for details).

The system tests were performed with sophisticated dynamic simulators
coupling test inputs calibrated to produce the flight measured response at
critical locations. The test conducted at the vehicular level provides the in-
formation required to validate the structural dynamic finite element models;
therefore, the measurement data is ideal to evaluate the performance of our
on-line tracking algorithms. The evaluation and performance analysis of the
MIMO identification and modal tracking based on experimental GTU test
data for the flight vehicle tests incorporating a structural device payload is
performed for the following test sets.

The test sets that we have considered for processor evaluations are:

• GTU Device Tests at LLNL–isolated payload tests — best modal in-
formation about payload;

• Flight Vehicle Free-Free Tests at TF–isolated flight vehicle tests— best
flight vehicle information without payload
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• Powered Flight Tests at TF—combined overall system test incorporat-
ing, flight vehicle, GTU and guidance package.

Device test data enables us to extract the dominant vibrational modes
under the most ideal measurement system conditions. Knowledge of these
underlying modal frequencies enables more effective signal pre-processing for
modal frequency extraction. With this a-priori information available, we can
test the processor design on the free-free flight vehicle tests enabling the
effect on the device modal frequencies when coupled within the flight vehicle
structure. Clearly processing this coupled system enables us to comprehend
the vibrational effects and observe the modified modal frequencies. Finally,
perhaps the most important data set is the powered-flight tests in which the
complete flight system, flight vehicle aeroshell, device and guidance package
are subjected to a variety G-force loads indicating the coupling effect of
random excitations on the entire system. Here we observe the performance
of the processor in actual (as close as possible) in-flight conditions enabling
us to evaluate its overall performance.

Initially, the data were pre-processed based on the expected range of
the modal frequencies for the GTU. The raw measurements were sampled
at 25.6 kHz and then down-sampled to modal frequency ranges with the
maximum frequency of less than 1 kHz. Bandpass filters were designed to
minimize the uncertainties created by the noise from the instrumentation
and the background environment. With this processing completed, multi-
ple input/multiple output (MIMO) subspace realization algorithms [2] were
applied to the tri-axial accelerometer measurements. Finally, the extracted
modal frequencies were enhanced and smoothed with an optimal frequency
tracker.

For tracking runs, we windowed the data sets with no overlapping win-
dows and estimated the modal frequencies for each test case—the results are
shown for each along with the estimates and summarized in the “tracking”
tables to quantify processor performance. The pre-processed data were pro-
cessed over the variety of buffer windows, the length of which depended on the
number of modes selected for the identification which determined the individ-
ual section lengths as well as the number of sections available for processing.
After each pre-processed section was extracted, the identifier was executed
and the model obtained. The modal frequencies were then extracted from
the model by performing an eigen-decomposition of the system matrix and
transformed to modal space. Finally, the modal frequencies were extracted
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and tracked using a frequency tracker. The ensemble statistics for each of
the targeted modal frequency estimates were calculated also and presented
in the subsequent tables.

The model-based modal tracking scheme for device diagnostics is illus-
trated conceptually in Fig. 1. Here in (a) the vibrational signature of the
structural device is measured and provided as a noisy input to a modal iden-
tifier that is used to track modal frequency evolution in-flight. The detailed
model-based approach for modal tracking and prediction is shown in Fig.
1 (b). After pre-processing the raw data available in a data window, the
basic concept is to extract the vibrational system under consideration using
system identification techniques [3], [4] in order to “fit” a state-space model
to the data. Once identified, the “black-box” state model is transformed
to modal coordinates where the modal frequencies are extracted through an
eigen-decomposition technique [3]. Next an optimal frequency tracker using
a Kalman filter is applied to the estimated modal frequencies to enhance and
smooth these estimates producing a frequency track at each data window as
they become available enabling the desired real-time track [3].

In this report, we briefly develop the necessary background in stochastic
subspace realization, discuss the algorithm and apply it to the structural
devices in each experimental test case and evaluate its overall performance.
Our goal is to analyze processor performance to estimate its ability to provide
a real-time technique for in-flight processing.

2.0 Model-Based Modal Tracking

Most structures or equivalently vibrational systems are multiple input/multiple
output systems that are easily captured within the state-space framework.
For instance, a linear, time-invariant mechanical system can be expressed as
a second order vector-matrix, differential equation given by

M d̈(τ) + Cdḋ(τ) + Kd(τ) = Bpp(τ) (1)

where d is the Nd × 1 displacement vector, p is the Np × 1 excitation force,
and M , Cd, K, are the Nd×Nd lumped mass, damping, and spring constant
matrices characterizing the vibrational process model, respectively.

Defining the 2Nd-state vector in terms of the displacement and its deriva-
tive as x(τ) :=

[
d(τ) | ḋ(τ)

]
, then the continuous-time state-space repre-

sentation of this process can be expressed as
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Figure 1: Processing scheme: (a) Vibration measurement/processing system,
modal identifier (subspace realization), modal tracker. (b) Signal processing
experimental data and performance analysis.

ẋ(τ) =

 0 | I
−−− | − −−
−M−1K | −M−1Cd


︸ ︷︷ ︸

A

x(τ) +

 0
−−−
M−1Bp


︸ ︷︷ ︸

B

p(t) (2)

The corresponding measurement or output vector relation can be charac-
terized by

y(τ) = Cad̈(τ) + Cvḋ(τ) + Cdd(τ) (3)

where the constant matrices: Ca,Cv,Cd are the respective acceleration, ve-
locity and displacement weighting matrices of appropriate dimension.

In terms of the state vector relations of Eq. 2, we can express the accel-
eration vector as:

d̈(τ) = −M−1Kd(τ)−M−1Cdḋ(τ) + M−1Bpp(τ) (4)

Substituting for the acceleration term in Eq. 3, we have
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y(τ) =
[
Cd −CaM

−1K | Cv −CaM
−1C d

]
︸ ︷︷ ︸

C

 d(τ)
−−−
ḋ(τ

 + CaM
−1Bp︸ ︷︷ ︸

D

p(τ)

(5)
to yield the vibrational measurement as:

y(τ) = Cx(τ) + Du(τ) (6)

where the output or measurement vector is y ∈ RNy×1 completing the mul-
tiple input/multiple output (MIMO) vibrational model.

2.0.1 Modal System Representation

One of the most expository representations of a mechanical system is its
modal representation [5], [6], where the modes and mode shapes expose its
internal structure and its response to various excitations. The modal rep-
resentation of a system can easily be found from state-space systems by
transforming the coordinates of the representation to modal space which
is accomplished through an eigen-decomposition in the form of a similarity
transformation such that the system matrices Σ := {A, B, C,D} are trans-
formed to modal coordinates by the transformation matrix TM constructed
of the eigenvectors of the underlying system [7]-[9]. That is,

{
A, B, C,D

}
−→

{
AM , BM , CM , DM

}
:=

{
TMAT−1

M , TMB, CT−1
M , D

}
that yields an “equivalent” system from an input/output perspective, that
is, the transfer functions and impulse responses are identical.

In this coordinate system, the modal state solution is given by the com-
plex modal state-space system:

ẋ(τ) = AMx(τ) + BMu(τ)

y(τ) = CMx(τ) + DMu(τ) (7)

where the system matrices become
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AM =


AM1 0 · · · 0

0 AM2 · · · 0
...

...
. . . 0

0 0 · · · AMNx


and

AMi
= Λi =

[
σi ωi

−ωi σi

]
with

BM =


BM1

...
BMNx

 ; CM =
[
CM1 | · · · | CMNx

]
; DM = D

Since we sample the continuous-time system, we will employ a discrete
state-space representation and then transform the results back to the continuous-
time domain. The generic linear, time invariant state-space model is defined
by its system matrix A, input transmission matrix B, output or measurement
matrix C and direct input feed-through matrix D for discrete-time systems
as

x(t + 1) = Ax(t) + Bu(t) [State]

y(t) = Cx(t) + Du(t) [Output] (8)

for the state x ∈ RNx×1, input u ∈ RNu×1, and output y ∈ RNy×1 with t an
integer.

Corresponding to this representation is its sequence of impulse response
matrices or Markov parameters given by

H(t) = CAt−1B + Dδ(t) (9)

for δ the Kronecker delta function and the equivalent discrete matrix transfer
function in terms of the Z-transform

H(z) = C(zI − A)−1B + D (10)
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Expanding these discrete state equations, we can show that for k-data
samples (k > Nx), block (Hankel) matrices can be created to give both
vector input-output (state) relations such that

yk(t) = Okx(t) + Tku(t) (11)

with the corresponding matrix input-output (state) equation as

Yk|2k−1 = OkXk + TkUk|2k−1 (12)

and the initial states given by

Y0|k−1 = OkX0 + TkU0|k−1 (13)

where U0|k−1, Y0|k−1 are the past inputs and outputs, while Uk|2k−1, Yk|2k−1

are the future inputs and outputs which are all block Hankel matrices [16]-
[20].

2.0.2 Subspace Identification

Next we define the augmented (input-output) data matrixD ∈ Rk(Nu+Ny)×k(Nu+Ny)

as

D0|k−1 :=

 U0|k−1

−−−
Y0|k−1

 =

 I | 0
− −
Tk | Ok


 U0|k−1

−−
X0


(14)

Performing an orthogonal LQ-decomposition (dual QR-decomposition:
L = R′, Q = Q′) on the data matrix, we obtain

D = L×Q with L lower block triangular and Q orthogonal (15)

That is,

L =

 L11 | 0
− − −
L21 | L22

 and Q =

 Q′
1

−−
Q′

2

 for Q′Q = I

with the L11 ∈ RkNu×1, L21 ∈ Rk(Nu+Ny)×1, and L22 ∈ Rk(Nu+Ny)×k(Nu+Ny)

and Q ∈ RNu×Ny .
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Therefore, we have the LQ-decomposed data matrix as:

D0|k−1 =

 I | 0
− −
Tk | Ok


 U0|k−1

−−
X0

 =

 L11 | 0
− −
L21 | L22


 Q′

1

−−
Q′

2

 (16)

These expressions enable the orthogonal decomposition of Y0|k−1; there-
fore, it follows from Eq. 16 that

Y0|k−1 = OkX0 + TkU0|k−1 = OkX0 + Tk(L11Q
′
1) = L21Q

′
1 + L22Q

′
2 (17)

and post-multiplying this expression by Q2 with the ortho-normality/orthogonality
conditions of the LQ-decomposition imposed as: Q′

2×Q2 = I and Q′
1×Q2 = 0

gives

Y0|k−1Q2 = OkX0Q2 + TkL11 Q′
1Q2︸ ︷︷ ︸
0

= L21 Q′
1Q2︸ ︷︷ ︸
0

+L22 Q′
2Q2︸ ︷︷ ︸
I

= L22

or simply

Ok ×X0 ×Q2 = L22 (18)

implying that the rank ρ(L22) = Nx.
Therefore, performing the SVD of L22, that is,

L22 =
[
U1 | U2

]  Σ1 | 0
− − −
0 | 0


 V ′

1

−−
V ′

2

 (19)

yields

OkX0Q2 = U1 × Σ1 × V ′
1 = (U1Σ

1/2
1 )︸ ︷︷ ︸

Ok

× (Σ
T/2
1 V ′

1)︸ ︷︷ ︸
Ck

(20)

and therefore, the system matrices are A, B, C,D can be extracted by:

A = O#
Nx−1 ×O

↑
Nx

; C = O(1 : Ny, 1 : Nx) (21)

for O#
Nx−1 the pseudo-inverse and O↑

Nx
the shifted observability matrix (see

[2] for details).
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The input transmission an direct feedthrough matrices B and D can be
obtained by solving a set of overdetermined linear equations (least-squares)
from the following relations

L ×

 D̂
−−
B̂

 = U ′
2L21L

−1
11 (22)

where L is a block coefficient matrix (see [16]-[21] for the details).

Therefore, we have the Multivariable Output Error State-SPace (MOESP)
algorithm given by:

• Compute the LQ-decomposition of D of Eq. 16;

• Perform the SVD of L22 in Eq. 19 to extract Ok;

• Obtain A and C from Eq. 21; and

• Solve the least-squares problem to obtain B and D from Eq. 22.

2.0.3 Modal Frequency Tracker

The overall approach to modal-frequency tracking is based on the devel-
opment of robust subspace identification techniques that can be applied to
solve this problem—in real-time. The main idea is to pre-process a section
or window of digitized data and perform a system (vibrational) identification
followed by an extraction of the underlying modes from the identified model
producing raw estimates of the corresponding modal frequencies and mode
shapes. Once the “raw” modal frequencies in each window are extracted an
optimal sequential tracking algorithm (Kalman filter) is applied to “smooth”
the estimates.

The modal frequency tracker design is a model-based processor (Kalman
filter) that has been applied successfully in wide variety of applications [3],
[26], [27]. The underlying frequency estimator/tracker is based on the as-
sumption that the frequency change is constant over the sampling interval
(ḟ(tk+1) ≈ ḟ(tk)) and the model uncertainty can be characterized by Gaus-
sian process noise leads to the following set of discrete-time, Gauss-Markov
stochastic equations
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f(tk+1) = f(tk) +4tkḟ(tk) + w1(tk) [Frequency]

ḟ(tk+1) = ḟ(tk) + w2(tk) [Rate] (23)

where w is zero-mean, Gaussian with w ∼ N (0, Rww). The corresponding
measurement is also contaminated with instrumentation noise represented
by zero-mean, Gaussian uncertainties as

y(tk) = f(tk) + v(tk) [Measurement]

such that v ∼ N (0, Rvv).
A combination of both process and measurement systems can be placed in

a discrete-time (tk → t), state-space framework by defining the state vector
as f(t) := [f(t) | ḟ(t)]′ giving the corresponding Modal-Frequency Gauss-
Markov model of Eq. 23.

Now with this underlying frequency model established, we know that the
optimal solution to the state estimation or frequency tracking problem is
provided by the Kalman filter [3], that is,

f̂(t + 1|t + 1) = f̂(t + 1|t) + K(t + 1)e(t + 1)

or component-wise (states), we have

f̂(t + 1|t + 1) = f̂(t + 1|t) + K1(t + 1)e(t + 1)

ˆ̇f(t + 1|t + 1) = ˆ̇f(t + 1|t) + K2(t + 1)e(t + 1)

ŷ(t + 1|t) = f̂(t + 1|t)
e(t + 1) = y(t + 1)− ŷ(t + 1|t) (24)

where e(t) is the innovations/residual sequence and K(t) are the gains or
weights. This notation is defined by the conditional mean, f̂(t + 1|t) :=
E {f(t + 1)|y(t), · · · , y(0)}, that is, the estimate of f(t + 1) based on all of
the available data up to time t.

Since we are primarily interested in a real-time application, we restrict the
processor to reach steady-state in Eq. 24, that is, the Kalman gain (K(t) →
Kss) becomes a constant (steady-state) that can pre-calculated directly from
the discrete Riccati equation to give the frequency tracker relations [3], [26],
[27].
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3.0 GTU Device Test Results

The GTU test was performed at the Lawrence Livermore National Labora-
tory (LLNL) in conjunction with the other test sets required for the FEM
model validation. The LLNL tests consisted primarily of subjecting the GTU
to random excitations by placing a stinger or motor-driven rod perpendicu-
lar to the base of the structure. A suite of 15-tri-axial accelerometers were
positioned strategically about the device surface as well as a single tri-axial
sensor allocated to measure the excitation time series. In total, an array
of 45-accelerometer channels acquired a set of data at a 25.6 kHz sampling
frequency. The data were subsequently down-sampled to 0.4 kHz in order to
focus on the targeted modal frequencies (< 400Hz). From the state-space
perspective, we have a targeted system of up to a maximum of 14-modes or
28-states with an array of 45 channels of time series measurements and 1-
channel of an excitation measurement as illustrated in Fig. 2. In this section
we will discuss the processing and analysis of two data sets: GTU Data Set
No. 5 and GTU Data Set No. 1.

3.0.1 GTU: Data Set No. 5

Data set No. 5 consisted of 13-tri-axial sensors placed at various locations on
the surface of the device resulting in 39 (3×13 channels) time series channels
along with a random excitation measured by 1 tri-axial (3-input channels)
establishing a multiple input/multiple output (MIMO) system.

For Data set No. 5 the 13-tri-axial measurement channels along with a
random force input channel were combined to produce a data set of noisy
powered-flight measurements resulting in 3-input channels/39 output chan-
nels that were pre-processed by:

1. Down-sampling the measured data from 25.6 kHz to 0.4 kHz because
the highest modal frequencies of interest were less than 400 Hz.

2. Bandpass filtering the down-sampled data to a frequency band of 150−
385 Hz using a 1024-weight finite impulse response (FIR) filter designed
with the optimal Remez exchange algorithm available in MATLAB.

3. MIMO identification performing the multivariable output error state-
space algorithm (MOESP) subspace identification approach.
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Figure 3: Raw GTU No. 5 Data: 39-channels or 13-tri-axial accelerometers.

The raw MIMO measurement is shown in Fig. 3 where we see the 39-time
series channels indicating a successful measurement array. The power spec-
tral density function of this data ensemble (green) was estimated using the
average periodogram (Welch) method [3] resulting in the noisy spectra shown
in Fig. 4 over the entire frequency range of the data, but only illustrating
up to 6.25 kHz. The thick (red) plot is the average spectrum. Our frequency
range of high interest is between 150− 385Hz indicated in the figure.

After pre-processing the GTU device data and performing the identifica-
tion for various modal model sets ranging from 7−15 modes (14−30 states)
the results for the Data Set No. 5 10-mode (20-state) model is shown in Fig.
5 comparing the average “identified” model spectrum (red) to the average
down-sampled (blue) and the average filtered (green) spectra. The identified
spectra were developed from the MIMO state-space model with the modal
frequencies extracted (eigenvalues of the system matrix). These model fre-
quency estimates are shown in the figure as the red-filled squares. Note how
they align with the spectral peaks. Since we have identified a MIMO model
from the data, all of the internal coupling has been incorporated through
the identification process (weak as well as strong modal frequencies). Since
it is a multi-channel problem, the model provides 39-impulse responses (or
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Figure 4: Raw GTU No. 5 Power Spectra 39-channels or 13-tri-axial ac-
celerometers. Ensemble spectra (green), average spectrum (red).

frequency responses) — one for each measurement channel. An ensemble of
these 39-frequency response power spectral estimates obtained directly from
the identified model (9-mode) are shown in Fig. 6. The ensemble of spectral
estimates is shown in green, while its average spectrum is red. Note how
smooth the spectra have become primarily because the model is noise free
and also how repeatable the spectra appear attesting to the advantage of
using this model-based approach.

The results of the identification for various model orders are shown in
Table 1. The trade-off is that increasing the order enables more extraneous
modes to be identified along with the true-targeted (expected) modal fre-
quencies being sought. Here we used the long data sets (time series) available
(> 25K samples) to perform the modal frequency identification/extraction
enabling more accurate precision then that would be available from the real-
time, short, buffered data windows.

We calculated the percentage relative error using

Rε :=
True Modal Frequency − Estimated Modal Frequency

True Modal Frequency
× 100 (25)
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Estimated Frequency (Hz) is: 377.351 
Estimated Frequency (Hz) is: 376.34 
Estimated Frequency (Hz) is: 348.29 
Estimated Frequency (Hz) is: 331.704 
Estimated Frequency (Hz) is:318.338 
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Estimated Frequency (Hz) is: 241.025 
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trum (blue), filtered/down-sampled spectrum (green) and identified 10-mode
spectrum (red) with modal frequency estimates (squares) from identified
model.
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From the table we see the relative error for each modal frequency (red
parentheses) with the average relative error for each model order indicated
in the last row of the table. The 15-mode model identification (30-states)
yields reasonable estimates of the target modal frequencies at the cost of a
larger number of extraneous frequency estimates, but provides the smallest
average relative error of 0.85% identifying all of the target frequencies. The
lower order estimates are reasonable, but fail to capture the modal frequency
at 276 Hz. It is also interesting to note that all of the averages as well as
individual errors are less than 5% (except for one individual) again attesting
to a reliable model-based modal identification process.

Next, we processed the data in order to evaluate the performance of the
subspace identifier on a set of buffered data window data, similar to what
would be expected in-flight and in real-time. We pre-processed the data first
as mentioned above by decimating and bandpass filtering, then we selected
the 10-mode model (20-states) for subspace identification and provided the
buffer windows to the be processed.

After the state-space model was identified and transformed to “modal
space”, the eigen-frequencies were estimated and each modal frequency was
extracted to produce the “tracks”. For the GTU Data Set No. 5, the track-
ing results are shown in Fig. 7 where we see each of the estimated modal
frequencies and their corresponding ±1σ-confidence limits in (a) along with
their corresponding histogram in (b). We note how tight the frequency es-
timates are bound by the confidence limits indicating a consistent estimate
with few outliers in (a). The modal frequency histogram is also a good indi-
cator of consistency, since there is little spreading of the peaks indicating a
high peak (modal frequency) probability. Finally, the output of the frequency
tracker of Eq. 24 shows remarkably consistent tracks after the initialization
period has elapsed. To quantify the performance of the tracker we present
the results in Table 2 below. In the this table we see that the frequency
estimates are precise with an average standard deviation of ±0.22Hz and
a relative error of 1.7% indicating an operational tracker with outstanding
performance capability.

3.0.2 GTU: Data Set No. 1

We pre-processed GTU Data Set No. 1 as before for Data Set No. 5 again
concentrating on the targeted modal frequencies. The idea was to investi-
gate the processor performance on a different data set employing different
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Peaks        Frequencies 
3.0339e-10   1.8534e+02
1.2113e-10   2.0411e+02
3.7992e-11   2.2209e+02
1.3113e-10   2.4242e+02
1.9264e-11   3.2219e+02
1.1025e-11   3.3470e+02
1.0206e-10   3.7771e+02

Figure 6: Identified (9-mode Model) GTU No. 5 Power Spectra: Ensemble
(39-channels or 13-tri-axial accelerometers).
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tracks.
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accelerometer locations than those for Data set No. 5 still employing ran-
dom excitations. Data set No. 1 consisted of 9-tri-axial sensors placed at
various locations on the surface of the device resulting in 27 (3× 9 channels)
time series channels along with the single radial axis (stinger) random force
input establishing a multiple input/multiple output measurement system as
before. We limited the model order to 7 − 10 modes, since we are consid-
ering a real-time application. The results are shown for the 10-mode model
(20-states) average spectra in Fig. 8 and we observe similar performance of
the identifier. Table 3 indicates the performance of the processor. Both the
8-mode and 10-mode identifications provide the smallest average percentage
relative errors of 1.85%, but neither was able to identify a targeted mode at
276 Hz. For the real-time scenario, the 8-mode model identifier would be the
choice because of its simplicity and relative processing time — the larger the
number of modes, the longer the identification period. Tracking performance
of the processor on this data set was also outstanding as indicated by the
precise modal frequency estimates (tight confidence limits) in Fig. 9 along
with “smooth” frequency tracks. The quantified results are shown in Table 4
where we see an average deviation of ±0.22Hz and a slightly larger relative
error of 1.9% again indicating outstanding tracker performance.

Next, we investigate the flight vehicle free-free flight measurements.
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Table 1. GTU Data: Test Set No. 5–Modal Frequency Estimates

MODAL Frequency Estimates (Relative Error(%Rε))
Frequency 7 mode(%ε) 8 mode(%ε) 9 mode(%ε) 10 mode(%ε) 15 mode(%ε)

179 Hz 188.1 (5.1) 186.0 (3.9) 185.4 (3.6) 185.2 (3.4) 179.0 (0.0)
204 Hz 208.3 (2.1) 205.7 (0.9) 203.8 (0.1) 203.7 (0.6) 206.5 (1.4)
218 Hz 226.3 (3.8) 224.8 (3.1) 221.8 (1.8) 221.8 (1.7) 219.2 (0.7)
247 Hz 247.5 (0.2) 245.2 (0.7) 241.9 (2.1) 250.4 (1.4) 250.2 (1.3)
276 Hz - - - - 277.7(0.6)
367 Hz 370.4 (1.0) 374.4 (2.0) 377.3 (2.8) 376.3 (2.5) 363.1 (1.1)

Avg %Rε 2.44% 1.60% 2.08% 1.42% 0.85%

Table 2. GTU Data: Test Set No. 5–Modal Frequency Tracking
Results for 10-mode model.

MODAL Frequency Tracking (Confidence/Relative Error(±σ/%Rε))
Frequency 10 modes± σ(%Rε)

179 Hz 186.7± 0.24 (4.3)
204 Hz 204.2± 0.27 (0.1)
218 Hz 220.9± 0.13 (1.3)
247 Hz 254.5± 0.45 (3.0)
276 Hz 285.5± 0.17 (3.4)
367 Hz 373.2± 0.08 (1.7)

Avg ±σ(%Rε) ±0.22 (1.7%)
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Estimated Frequency (Hz) is: 367.771
Estimated Frequency (Hz) is: 352.989 
Estimated Frequency (Hz) is: 338.519 
Estimated Frequency (Hz) is: 325.571 
Estimated Frequency (Hz) is: 313.333 
Estimated Frequency (Hz) is: 243.21
Estimated Frequency (Hz) is: 227.937 
Estimated Frequency (Hz) is: 209.237 
Estimated Frequency (Hz) is: 192.677 
Estimated Frequency (Hz) is: 179.506

Figure 8: Estimated Average GTU No. 1 Spectra: Raw down-sampled spec-
trum (blue), filtered/down-sampled spectrum (green) and identified 10-mode
spectrum (red) with modal frequency estimates (squares) from identified
model.

Table 3. GTU Data: Test Set No. 1–Modal Frequency Estimates

MODAL Frequency Estimates (Relative Error(%Rε))
Frequency 7 mode(%ε) 8 mode(%ε) 9 mode(%ε) 10 mode(%ε)

179 Hz 186.0 (3.9) 184.6 (3.1) 185.0 (3.4) 179.5 (0.3)
204 Hz 205.9 (0.9) 202.0 (1.0) 200.4 (1.7) 209.2 (2.6)
218 Hz 230.8 (5.9) 225.8 (3.6) 222.5 (2.0) 227.9 (4.6)
247 Hz 247.9 (0.4) 244.1 (1.2) 242.8 (1.7) 243.2 (1.5)
276 Hz - - - -
367 Hz 359.7 (2.0) 362.4 (1.25) 363.3 (1.0) 367.8 (0.3)

Avg %Rε 2.62% 1.86% 2.26% 1.86%
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Figure 9: GTU No. 1 Modal Frequency Tracking Results: (a) Modal fre-
quency estimates. (b) Frequency Histogram. (c) 10-mode model frequency
tracks.

Table 4. GTU Data: Test Set No. 1–Modal Frequency Tracking
Results for 10-mode model.

MODAL Frequency Tracking (Confidence/Relative Error(±σ/%Rε))
Frequency 10 modes± σ(%Rε)

179 Hz 187.6± 0.24 (4.8)
204 Hz 207.6± 0.17 (1.8)
218 Hz 223.2± 0.18 (2.4)
247 Hz 246.8± 0.45 (0.08)
276 Hz -±- (-)
367 Hz 366.2± 0.08 (0.22)

Avg ±σ(%Rε) ±0.22 (1.9%)
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4.0 Flight Vehicle Free-Free Data: Test Re-

sults

The 15-tri-axial measurement channels along with the random stinger (force)
input channel were combined to produce a data set of noisy flight vehicle free-
free measurements resulting in 3 input channels/45 output channels that were
pre-processed by:

1. Down-sampling the measured data from 25.6 kHz to 0.45 kHz because
the highest modal frequencies of interest were less than 425 Hz.

2. Bandpass filtering the down-sampled data to a frequency band of 150−
425 Hz using a 1024-weight finite impulse response (FIR) filter designed
with the optimal Remez exchange algorithm in MATLAB.

3. MIMO identification was performed using the multi-variable output
error state-space.

After pre-processing, the MIMO identifier estimated the modal frequen-
cies and the average results are shown in Fig. 10 as before for the other
tests. The results of these runs for various model orders (2× no. modes)
along with their relative errors are shown in Table 5. Here we see the true
(best estimated) modal frequencies (green) along with the estimates for each
based on the number of identified mode specified in the MOESP algorithm.
The percentage relative errors for each estimated modal frequency is shown
in red along with the corresponding average percentage (relative) error for
the number of modes selected. Identifications of modal models ranging from
6− 10 modes. None of the modal identifiers were able to estimate the modal
frequencies at 187 Hz (except for the 8-mode case) and 193 Hz while 5 of the
7 targeted frequencies were identified in most cases. The best performance
was achieved using the 10-mode model with a percentage relative error of
2.38%. All of the identifiers were not able to obtain good estimates of the
215 Hz modal frequency with most errors exceeding 10% overestimating the
value. An examination of the power spectra in Fig. 10 and Fig. 11 reveal a
notch at that frequency in the measured data (blue). The ensemble spectra
(green) in Fig. 11 reveals a reasonably consistent model estimator.

The frequency tracker performed well on the flight vehicle free-free data
set as indicated in Fig. 12 with tight standard deviations in (a) a good
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Estimated Frequency (Hz) is: 410.323 
Estimated Frequency (Hz) is: 393.241 
Estimated Frequency (Hz) is: 377.911 
Estimated Frequency (Hz) is 355.724 
Estimated Frequency (Hz) is: 299.658 
Estimated Frequency (Hz) is: 257.075 
Estimated Frequency (Hz) is: 238.216 
Estimated Frequency (Hz) is: 185.646 
Estimated Frequency (Hz) is: 178.655 
Estimated Frequency (Hz) is: 168.419 
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Figure 10: Estimated Average FREE-FREE Spectra: Raw down-sampled
spectrum (blue), filtered/down-sampled spectrum (green) and identified 10-
mode spectrum (red) with modal frequency estimates (squares) from identi-
fied model

histogram indicating distinct modal frequency estimates in (b) and smooth
tracks in (c). Quantitatively from Table 6, the tracking precision of ±0.17
indicates an outstanding tracker with a 3.8% relative error—not quite as good
as the GTU results but still reasonable for this data set. Next we investigate
the powered-flight data and the performance of the subspace identifier.
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Peaks         Frequency 
1.2346e-08   1.6842e+02
5.3530e-11   1.7796e+02
1.6377e-10   1.8488e+02
1.5530e-11   2.3826e+02
1.7520e-12   2.4875e+02
7.8317e-12   2.5698e+02
8.1240e-10   2.9965e+02
7.3954e-12   3.9315e+02
1.0080e-11   4.1031e+02

Figure 11: Estimated Ensemble Average FREE-FREE Spectra: Ensemble
(45-Channel) identified 10-mode spectra (green) and average spectrum (red)
with peak frequency estimates (insert).

Table 5. Flight Vehicle Data: Flight flight vehicle Free-Free–Modal
Frequency Est.

MODAL Frequency Estimates (Relative Error(%Rε))
Frequency 6 mode(%ε) 7 mode(%ε) 8 mode(%ε) 9 mode(%ε) 10 mode(%ε)

179 Hz 172.6 (3.6) 171.7 (4.1) 170.0 (5.0) 178.7 (0.2) 178.7 (0.2)
186 Hz - 185.8 (0.1) 184.2 (1.0) 187.0 (0.4) 185.7 (0.2)
187 Hz - - 190.3 (1.8) - -
193 Hz - - - - -
215 Hz 232.9 (8.3) 237.6 (10.5) 239.8 (11.6) 239.8 (11.6) 238.2 (10.8)
296 Hz 252.9 (14.6) 255.2 (13.8) 259.1 (12.5) 300.4 (1.5) 299.7 (1.3)
413 Hz 403.9 (2.2) 404.2 (2.1) 404.6 (2.0) 405.0 (1.9) 410.3 (0.7)

Avg %Rε 7.18% 6.12% 5.19% 3.12% 2.38%
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Figure 12: Flight Vehicle FREE-FREE Modal Frequency Tracking Results:
(a) Modal frequency estimates. (b) Frequency Histogram. (c) 10-mode model
frequency tracks.

Table 6. Flight Vehicle Free-Free Data: Modal Frequency Tracking for
10-modes

MODAL Frequency Tracking (Confidence/Relative Error(±σ/%Rε))
Frequency 10 modes± σ(%Rε)

179 Hz 179.7± 0.24 (0.4)
186 Hz -± - (-)
187 Hz -± - (-)
193 Hz 200.7± 0.09 (4.0)
215 Hz 236.7± 0.12 (10.1)
296 Hz 286.4± 0.32 (3.2)
413 Hz 407.3± 0.08 (1.4)

Avg ±σ(%Rε) ±0.17 (3.8%)
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5.0 Powered Flight Test Results

The 15-tri-axial measurement channels along with the random force (stinger)
input channel were combined to produce a data set of noisy powered-flight
measurements resulting in 1-input channels/45 output channels that were
pre-processed by:

1. Bandpass filtering the down-sampled data to a frequency band of 20−
250 Hz using a 1024-weight finite impulse response (FIR) filter designed
with the optimal Remez exchange algorithm in MATLAB.

2. Due to the strong 60 Hz interference that was present during these tests
a 40− 80 Hz, 1024-weight, FIR bandstop filter was also applied to the
data making it available for the identification algorithm.

3. MIMO identification was performed using the multivariable output er-
ror state-space algorithm (MOESP) subspace identification approach.

The results of these runs for various model orders (2× no. modes) along
with their relative errors are shown in Table 7. Here we see the true (best
estimated) modal frequencies (green) along with the estimates for each based
on the number of identified mode specified in the MOESP algorithm. The
percentage relative errors for each estimated modal frequency is shown in
red along with the corresponding average percentage (relative) error for the
number of modes selected.
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Estimated Frequency (Hz) is: 205.901 
Estimated Frequency (Hz) is: 190.658 
Estimated Frequency (Hz) is: 180.027 
Estimated Frequency (Hz) is: 137.066 
Estimated Frequency (Hz) is: 119.993 
Estimated Frequency (Hz) is: 108.831 
Estimated Frequency (Hz) is: 103.622 
Estimated Frequency (Hz) is: 30.2278 
Estimated Frequency (Hz) is: 29.9199 
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Figure 13: Estimated Average POWERED-FLIGHT Spectra: Raw down-
sampled spectrum (blue), filtered/down-sampled spectrum (green) and iden-
tified 10-mode spectrum (red) with modal frequency estimates (squares) from
identified model.
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Peaks   and    Frequencies:
9.7131e-03   2.2458e+01
6.1447e+01   3.0158e+01
2.0573e-02   1.0844e+02
4.1056e+03   1.8030e+02
1.1332e-03   1.8287e+02
1.1830e-04   2.0597e+02
1.8255e-04   2.4126e+02
4.6654e-02   3.1698e+02

Figure 14: Estimated Ensemble Average POWERED-FLIGHT Spectra: En-
semble (45-Channel) identified 10-mode spectra (green) and average spec-
trum (red) with peak frequency estimates (insert).

Table 7. FLIGHT VEHICLE+GUIDANCE+PAYLOAD Data: Pow-
ered Flight–Frequency Est.

MODAL Frequency Estimates (Relative Error(%Rε))
Frequency 6 mode(%ε) 7 mode(%ε) 8 mode(%ε) 9 mode(%ε) 10 mode(%ε)

31 Hz 29.9 (3.6) 31.2 (0.7) 29.9 (3.6) 29.9 (3.6) 30.2 (2.5)
103 Hz 108.1 (4.7) 108.3 (5.1) 107.5 (4.4) 108.1 (4.7) 103.6 (0.6)
114 Hz 116.2 (1.9) 118.5 (3.9) 108.5 (4.8) 108.8 (4.6) 120.0 (5.3)
142 Hz - 167.7 (18.1) 128.2 (9.6) 128.3 (9.6) 137.1 (3.5)
181 Hz 180.0 (0.6) 180.0 (0.6) 180.0 (0.6) 180.0 (0.6) 180.0 (0.6)
221 Hz 209.1 (5.4) 251.0 (13.6) 204.9 (7.3) 205.8 (6.9) 205.9 (6.8)

Avg %Rε 2.17% 5.05% 5.05% 5.00% 3.22%
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Figure 15: Flight Vehicle POWERED-FLIGHT Modal Frequency Tracking
Results: (a) Modal frequency estimates. (b) Frequency Histogram. (c) 10-
mode model frequency tracks.

Table 8. FLIGHT VEHICLE+GUIDANCE+PAYLOAD Data: Pow-
ered Flight–Modal Frequency Tracking for 10-mode model.

MODAL Frequency Tracking (Confidence/Relative Error(±σ/%Rε))
Frequency 10 modes± σ(%Rε)

31 Hz 29.7± 0.05 (3.2)
103 Hz 97.1± 0.13 (5.7)
114 Hz 108.3± 0.07 (5.0)
142 Hz 121.0± 1.67 (14.8)
181 Hz 179.2± 0.41 (1.0)
221 Hz 206.3± 0.21 (6.7)

Avg ±σ(%Rε) ±0.42 (6.1%)



31

For the powered flight data set, the identified model with smallest relative
error is the 6-mode model, but it was not able to identify the mode at 221
Hz, while the 10-mode model with a higher relative error provided reasonable
estimates of each of the predicted modal frequencies with an average relative
error of 3.22%. The average identification results for the 10-mode model are
shown in Fig. 13 where we see the raw down-sampled spectral data (blue), the
pre-processed data (green) and the average power spectrum estimated over
all 45-output channels. All of the estimated modal frequencies are shown
in the inset along with their spectral locations annotated by the filled red-
squares on the plot. As a glimpse of the consistency of the power spectra each
of the output channel estimated impulse response power spectra from the
identified model are depicted in Fig. 14 with the overlapped (green) ensemble
spectra and the corresponding average spectrum shown in red. The tracking
performance was not as good as the previous test cases but on the whole
reasonable for these short data records. All of the performance metrics shown
in Fig. 15 indicate a “good” tracker with tight deviations, distinct modal
frequency histogram and smooth tracks; however, the quantitative results
shown in Table 8 reveal some inconsistencies, especially in precise estimation
of the model frequencies. These results differ from those presented in Table
7 when the long data records were used. The tracker average deviation was
still reasonable at ±0.42Hz, but higher than those of the previous test cases.
However, the relative error was much larger at 6.1% than even the worst case
(flight vehicle free-free) at ≈ 4%. An examination of the individual tracks
reveal that three of the targeted modal frequency tracks were at 5% relative
error or higher and one track was completely missed at ≈ 15% error for the
targeted modal frequency at 142Hz. Investigating the processor results for
other modal orders reveals that all of them showed large relative errors at this
modal frequency. That is none of them were capable of adequately tracking
this mode.

6.0 Summary

This report summarizes the development of a model-based modal tracking
scheme capable of the on-line processing of structural responses applying both
system identification methods to extract a modal model and state estimation
techniques to track the modal frequencies.

Background information on state-space vibrational systems was devel-
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oped in Sec. 2 evolving directly to a multiple input/multiple output (MIMO)
structural formulation. From this representation the modal state-space model
was introduced through an eigenvalue-eigenvector formulation leading to the
required similarity transformation and complex modes. Next the discrete
state-space system was developed that provided the basis for the system iden-
tification methods to follow. Powerful MIMO subspace identification methods
were discussed leading to the extraction of a modal state-space model from
noisy vibrational measurements. This model provides the essential data re-
quired as input to the model-based tracking scheme.

The model-based identifier/tracker was applied to evaluate test data evolv-
ing from a vibrating system consisting of approximately 10-modes with a va-
riety of directional tri-axial (X,Y ,Z) accelerometer measurements for a total
ranging from 27 − 45-channels of noisy data. Each of the steps in develop-
ing the approach from pre-processing the raw data to subspace identification
to model-based tracking were discussed in detail leading to the performance
analysis of the tracking techniques completing this effort.

The results indicate that the modal frequency tracker had little difficulty
in providing outstanding modal frequency tracks for the individual test cases
(device, flight vehicle free-free); however, its performance for the powered
flight data which included the flight vehicle, guidance and device, even though
reasonable, was not as high as the previous cases. More processing of powered
flight data should be performed to evaluate the processor even further.
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A APPENDIX:

Deterministic Subspace Identification

In this appendix, we develop the fundamental subspace realization approach
to identifying the state-space representation from input-output data extend-
ing the realization from impulse response to input/output data—still as-
sumed deterministic. In order to comprehend just how the deterministic
realization problem can be solved when input/output sequences rather than
impulse response sequences evolve, it is important to understand that most
subspace realization techniques require the extraction of the extended ob-
servability matrix directly from gathered data first, followed by the system
model extraction, second. The existing methods differ in the manner in which
the observability matrix is estimated and its methodology for extracting the
system model ΣABCD. Perhaps, the major “link” between classical realiza-
tion theory employing impulse response sequences and the Hankel matrix
factorization and subspace realization theory from input/output sequences
lies within the inherent system theoretic “rank condition” defining the min-
imal dimension of the state-space, while subspace realization theory relies
primarily on the concept of the persistent excitation of the input sequences
as well as the minimal state-space dimension for solution [19], that is, the
observability matrix spans the Nx-dimensional state-space that contains that
part of the output due to the states exclusive of the inputs. In order to see
this, we first construct input/output data matrices.

he discrete LTI solution of Eq. 8 given by

x(t) = Atx(0) +
t−1∑
`=0

At−`−1Bu(`− 1); t = 0, 1, · · · , K (26)

with the measurement or output system given by

y(t) = CAtx(0) +
t−1∑
`=0

CAt−`−1Bu(`− 1) + Dδ(t) (27)

Expanding this relation further over k-samples and collecting terms, we
obtain
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y(k − 1)

 =


C

CA
...

CAt−k−1


︸ ︷︷ ︸

Ok

x(0)+


D · · · 0

CB D · · · 0
...

...
...

...
CAk−1B · · · CB D


︸ ︷︷ ︸

Tk


u(0)
u(1)

...
u(k − 1)


(28)

where Ok ∈ RkNy×Nx is the observability matrix and Tk ∈ RkNy×kNu is im-
pulse response matrix—a Toeplitz matrix [3].

Shifting these relations in time (0 → t) yields
y(t)

y(t + 1)
...

y(t + k − 1)

 = Okx(t) + Tk


u(t)

u(t + 1)
...

u(t + k − 1)

 (29)

leads to the vector input/output relation

yk(t) = Okx(t) + Tkuk(t) (30)

where y ∈ RkNy×1, x ∈ RNx×1 and u ∈ RkNu×1.

We catenate these vectors to create batch data (block Hankel) matrices to
obtain the subsequent “data equation”. That is, defining the block output
data matrix (Y0|k−1) and block input data matrix (U0|k−1)

1 over K-samples
are:

Y0|k−1 :=


y(0) y(1) · · · y(K − 1)
y(1) y(2) · · · y(K)

...
...

...
...

y(k − 1) y(k) · · · y(K + k − 2)

 (31)

and

U0|k−1 :=


u(0) u(1) · · · u(K − 1)
u(1) u(2) · · · u(K)

...
...

...
...

uk − 1) u(k) · · · u(K + k − 2)

 (32)

1The notation “0|k − 1” defines the first and last column element of the data matrix.
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or more compactly

Y0|k−1 =
[
yk(0) · · · yk(K − 1)

]
∈ RkNy×K

U0|k−1 =
[
uk(t) · · · uk(K − 1)

]
∈ RkNu×K

(33)

with the corresponding state vector defined by

X0|k−1 :=
[
x(0) x(1) · · · x(K − 1)

]
∈ RNx×K (34)

Therefore, we have the vector-matrix input/output equation or the data equa-
tion that relates the system model to the data (input, state and output ma-
trices)

Y0|k−1 = OkX0|k−1 + TkU0|k−1 (35)

Similarly, defining the data matrices for the samples ranging from k-to-
(2k − 1), we have

Yk|2k−1 :=


y(k) y(k + 1) · · · y(K + k − 1)

y(k + 1) y(k + 2) · · · y(K + k)
...

...
...

...
y(2k − 1) y(2k) · · · y(K + 2k − 2)

 (36)

and

Uk|2k−1 :=


u(k) u(k + 1) · · · u(K + k − 1)

u(k + 1) u(k + 2) · · · u(K + k)
...

...
...

...
u(2k − 1) u(2k) · · · u(K + 2k − 2)

 (37)

Again leading to the corresponding data equation given by

Yk|2k−1 = OkXk|2k−1 + TkUk|2k−1 (38)

where the block (Hankel) matrices are defined as before to give

Uk|2k−1 =
[
uk(k) uk(k + 1) · · · uk(K + k − 1)

]
∈ RkNu×K

Yk|2k−1 =
[
yk(k) uk(k + 1) · · · yk(K + k − 1)

]
∈ RkNy×K
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Xk|2k−1 =
[
x(k) x(k + 1) · · · x(K + k − 1)

]
∈ RNx×K

Here U0|k−1, Y0|k−1 are defined as the past inputs and outputs (Up,Yp), while
Uk|2k−1, Yk|2k−1 are the future inputs and outputs(Uf ,Yf ) which are all block
Hankel matrices.14−16

With the data equation of Eq. 38 available, we can develop the “rank
condition” for input/output sequences from a least-squares viewpoint [3].
The idea is to develop a projection operator that is orthogonal to the input
space U such that < U ,P >= 0.

To accomplish this, we minimize the cost function J with respect to Tk,
then the problem becomes

J = min
Tk

‖ Yk|2k−1 − TkUk|2k−1 ‖ (39)

which can be achieved by setting the gradient operator to zero (∇T J = 0)

and solving for T̂k leading to the well-known least-squares solution assuming
Uk|2k−1 is full rank (ρ(U) = kNu). Therefore, the orthogonal (compliment)
projection operator (P⊥) operating on the data space Y projects the data
matrix Yk|2k−1 onto the null space of U . The orthogonal compliment operator
is given by

P⊥
U = I−PU := I−T̂k×Uk|2k−1 = I−U ′

k|2k−1

(
Uk|2k−1U ′

k|2k−1

)−1
Uk|2k−1 (40)

where the least-squares estimate is defined as

T̂k := U ′
k|2k−1

(
Uk|2k−1U ′

k|2k−1

)−1
(41)

and therefore

Yk|2k−1 × P⊥
U = Yk|2k−1 ×

(
I− T̂k Uk|2k−1

)
= Yk|2k−1 − T̂kUk|2k−1 (42)

Further from projection theory (orthogonal compliment), we have the or-
thogonality condition that

< U ,P > =⇒ Uk|2k−1 × P⊥
U = 0 (43)

Applying the projection operator to the data equation of Eq. 38 gives
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Yk|2k−1 × P⊥
U = OkXk|2k−1 × P⊥

U + Tk Uk|2k−1 P⊥
U︸ ︷︷ ︸

0

= OkXk|2k−1 P⊥
U (44)

and since

ρ
(
Xk|2k−1 P⊥

U

)
= Nx

Taking the SVD of Eq. 44 decomposes the output space into the signal
subspace and the noise subspace to give:

Yk|2k−1P⊥
U = [US | UN ]

 ΛS | 0
− − −
0 | ΛN


 V ′

S

−−
V ′

N

 = USΛSV ′
S︸ ︷︷ ︸

Signal Subspace

+ UNΛNV ′
N︸ ︷︷ ︸

Noise Subspace

(45)

From a balanced realization choice (see [2]), the observability matrix can be
extracted directly through this decomposition as

OkXk|2k−1 P⊥
U =

(
USΛ

1/2
S

)
︸ ︷︷ ︸

Ok

×
(
(Λ′

S)1/2V ′
S

)
(46)

assuming the noise subspace is negligible (ΛN(i, i) << 0 ∀ i).

Even though theoretically this result is pleasing, it is not numerically
efficient leading us to the linear algebraic solution to this state-space identi-
fication problem.

A.1 Multivariable Output Error State-Space (MOESP)
Algorithm

From the data equation of Eq. 35, we can construct the augmented (input-
output) data matrix, D ∈ Rk(Nu+Ny)×K , as

D0|k−1 :=

 U0|k−1

−−−
Y0|k−1

 =

 IkNu | 0
− −
Tk | Ok


 U0|k−1

−−
X0


(47)

Performing an orthogonal LQ-decomposition (dual QR-decomposition:
L = R′, Q = Q′) on the data matrix, we obtain
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D = L×Q with L lower block triangular; and Q orthogonal (48)

and L ∈ Rk(Nu+Ny)×(kNu+Nx); and Q ∈ R(kNu+Nx)×K with the decomposition
in sub-matrices as

L =

 L11 | 0
− − −
L21 | L22

 and Q =

 Q′
1

−−
Q′

2

 for Q′Q = I

with the L11 ∈ RkNu×kNu , L21 ∈ RkNy×kNu , L22 ∈ RkNy×Nx ; Q′
1 ∈ RkNu×K

and Q′
2 ∈ RNx×Nx .

Therefore, we have the LQ-decomposed data matrix as:

D0|k−1 =

 IkNu | 0
− −
Tk | Ok


 U0|k−1

−−
X0

 =

 L11 | 0
− −
L21 | L22


 Q′

1

−−
Q′

2


(49)

These expressions enable the orthogonal decomposition of Y0|k−1; there-
fore, multiplying the sub-matrices, it follows from Eq. 49 that

Y0|k−1 = OkX0 + TkU0|k−1 = OkX0 + Tk(L11Q
′
1) = L21Q

′
1 + L22Q

′
2 (50)

Post-multiplying this expression by Q2 and imposing the ortho-normality/orthogonality
conditions of the LQ-decomposition as: Q′

2 ×Q2 = I and Q′
1 ×Q2 = 0 gives

Y0|k−1Q2 = OkX0Q2 + TkL11 Q′
1Q2︸ ︷︷ ︸
0

= L21 Q′
1Q2︸ ︷︷ ︸
0

+L22 Q′
2Q2︸ ︷︷ ︸
I

= L22

or simply

OkX0Q2 = L22 (51)

which implies that the rank ρ(L22) = Nx.

Therefore, performing the SVD of L22, that is,

L22 =
[
U1 | U2

]  Σ1 | 0
− − −
0 | 0


 V ′

1

−−
V ′

2

 (52)
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yields

OkX0Q2 = U1 × Σ1 × V ′
1 = (U1Σ

1/2
1 )︸ ︷︷ ︸

Ok

×(Σ
T/2
1 V ′

1) (53)

The system matrices A, B, C,D can be extracted by:

A = O#
Nx−1 ×O

↑
Nx

; C = O(1 : Ny, 1 : Nx) (54)

with B and D obtained by solving a least-squares problem directly, since
pre-multiplying Eq. ?? by U ′

2 gives

U ′
2OkX0 + U ′

2TkU0|k−1 = U ′
2L21Q

′
1 + U ′

2L22Q
′
2

but after substituting for U0|k−1 and applying the orthogonality conditions
U ′

2Ok = 0 and U ′
2L22 = 0, we have

U ′
2Tk(L11Q

′
1) = U ′

2L21Q
′
1

post-multiply by Q1 and using its orthonormal property (Q′
1Q1 = I) gives

U ′
2Tk = U ′

2L21 × L−1
11 (55)

leading to an overdetermined set of linear equations and a least-squares so-
lution

L ×

 D̂
−−
B̂

 = U ′
2L21L

−1
11 (56)

where L is a block coefficient matrix (see Refr. 15 for the details).

Therefore, we have the Multivariable Output Error State-SPace (MOESP)
algorithm given by:

• Compute the LQ-decomposition of D of Eq. 49;

• Perform the SVD of L22 in Eq. 52 to extract Ok;

• Obtain A and C from Eq. 54; and

• Solve the least-squares problem to obtain B and D from Eq. 56.




