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feedback in RHIC

C. Liu, R. Hulsart, K. Mernick, R. Michnoff, M. Minty
Brookhaven National Laboratory, Upton, NY, U.S.A.

Abstract

To combat beam oscillations induced by triplet vibrations at the Relativistic
Heavy Ion Collider (RHIC), a global orbit feedback system was developed and
applied at injection and top energy in 2011, and during beam acceleration in
2012. Singular Value Decomposition (SVD) was employed to determine the
strengths and currents of the applied corrections. The feedback algorithm was
optimized for different magnetic configurations (lattices) at fixed beam energies
and during beam acceleration. While the orbit feedback performed well since its
inception, corrector current transients and feedback-induced beam oscillations
were observed during the polarized proton program in 2015. In this report, we
present the feedback algorithm, the optimization of the algorithm for various
lattices and the solution adopted to mitigate the observed current transients
during beam acceleration.

Keywords: orbit correction, orbit feedback, triplet vibration, singular value

decomposition (SVD), eigenvalue, Tikhonov regularization

1. Introduction

RHIC (Fig. 1) comprises two circular counter-rotating superconducting ac-
celerators in a common horizontal plane, which are oriented to intersect one
another at six interaction points (IPs) with two colliding beam experiments
(STAR and PHENIX) [1]. Each accelerator consists of three inner arcs and
three outer arcs with six insertions joining them. A dipole magnet (DX mag-

net) on each side of each IP brings the beams together for head-on collisions for
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experiments. The DX magnets are the only common bending magnets for the
two rings. The triplets (Q1, Q2 and Q3 quadrupole magnets) focus the beam
to small beam sizes at the IPs. The triplets and DO dipole magnets of both
accelerators are installed in a common cryostat.

Fluctuations of the horizontal orbits with a frequency of about 10 Hz were ob-
served during early RHIC commissioning in both rings [2]. Measurements using
accelerometers mounted on the triplet magnets revealed dominant frequencies
around 10 Hz [2]. Mechanical modeling of the triplet quadrupole supports also
showed eigenfrequencies near 10 Hz [3, 4]. Oscillations in the Helium pressure
around 10 Hz were measured and identified as the cause of triplet vibrations
[3, 5]. The beam parameters and machine performance were affected by orbit
variations [6]. Over the years several methods were considered to mitigate the
orbit variations [7, 4].

A global orbit feedback system [8] was adopted and used successfully to mit-
igate the beam oscillations for many years. However, in 2015 due to a different
lattice design, non-optimal performance, namely unexpected transients in the
corrector response, was observed during beam acceleration. The feedback algo-
rithm was then modified to mitigate the current transients. The algorithm used
before 2015 and the necessitated changes will be reviewed in this article.

The orbit feedback algorithm will be presented in section 2. The numerical
simulations and experimental confirmation of feedback optimization at fixed
energies are presented in section 3, and during beam acceleration in section 4.
The additional measures to mitigate corrector current transients observed in
later years of operation will be presented in section 5. A summary will be given

in section 6.

2. Orbit feedback algorithm

The algorithm is a least square fit to compensate the orbit oscillations using
fast correctors [8, 9]. The corrector magnet currents ), needed to compensate

the oscillations, are given by Eq. 1, where < = >; is the average position and



P12

)I/Pgl 0 1P2
/ \

s PHENIX | Pl m
o LI 1} e
IP6 STAR
O, -

[ dipecle corrector

Figure 1: The schematic layout of RHIC with an expanded view of the STAR experimental
area. The feedback system [8] in each accelerator consists of two BPMs in the triplet cryostat
near the Q1 and Q3 magnets on each side of all six IPs, two BPMs in each arc and one dipole

corrector at each triplet.

ss  x; 1S the measured position at the ith BPM, the m x n matrix R denotes the
sz response of the beam positions to correctors, where m represents the number of

ss  beam position monitors and n the number of correctors,

<z > -1 Ry Rz -+ Ran th
< T >9 —T2 Ry1 Ry -+ Rap 02
AX = . = . o . S @
<T>m —Tm le Rm2 T Rmn gn
59 Using Singular Value Decomposition (SVD) [10], the response matrix is
R=USVT, (2)
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where U is an m X m unitary matrix, V' is an n X n unitary matrix, and S is
an m X n rectangular diagonal matrix with eigenvalues A on the diagonal in
descending order A\; > -+ > X\; > Ajy1 > -+ > Apin > 0. The inverse of the
matrix R is

R'=vs tut. (3)

The solution to Eq. 1 is
0=R"'AX. (4)

The minimum norm solution which minimizes ||Rf — AX|? is

6= (5)

n
1=

ul A X
Tviv
where v and v are the vectors of the matrices U and V respectively.

Since small eigenvalues ()\;) lead to large corrector currents and since small
perturbations in the measured beam positions can lead to large errors if even
one eigenvalue is small, truncated SVD [11] may be implemented to avoid this
by setting small eigenvalues to zero.

Tikhonov regularization [11, 12], which minimizes ||R0 — AX]||? + al|6]?,
where a is the regularization parameter, may also be used to avoid amplification
of errors. Tikhonov regularization is implemented by modifying the eigenvalues
using [12]

No= N +a? /. (6)

With a sufficiently large regularization parameter, the effective weighting of
small eigenvalues is increased therefore limiting the required corrector currents.
Large eigenvalues are only slightly modified by the regularization, so distortion
to the original linear least square problem is minor. The general guidance [12]

for initial estimates of the regularization parameter is Apqz > a > Apin.

3. Optimization of feedback at fixed energies

The feedback system was first tested in 2010 with 2 correctors and 4 BPMs

in each of the two experimental areas [8]. The full feedback system, with 36
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BPMs and 12 correctors implemented in 2011 [8], was determined to perform
well with only the 24 BPMs near the triplets indicating the absence of additional
perturbation sources outside of the regions of the triplets. The eigenvalues for
the orbit response matrix at injection energy are shown in Fig. 2. The damping
of beam oscillation with feedback at injection energy is shown in Fig. 3 with six
small eigenvalues discarded as discussed in the following two subsections. The
RMS oscillation amplitude measured at the shown location was reduced from
513um to 100um. The RMS oscillation amplitude averaged over all BPMs was

reduced by a factor of ~ 4 at injection energy.
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Figure 2: The eigenvalue magnitude versus eigenvalue number for the feedback response
matrix at injection energy. The number of eigenvalues is equal to the number of correctors.

The eigenvalues are listed in descending order as the diagonal of matrix S (Eq. 2).

In the following two subsections, the simulation approach will be presented
followed by experimental observations. It will be shown that the optimal number
of eigenvalues to retain obtained in simulation agrees with the experimental

results.
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Figure 3: Measured beam position oscillation before and after the 10 Hz global orbit feedback

system was engaged at the black vertical line.

8.1. Numerical simulation to determine the optimal number of eigenvalues

The optimal number of eigenvalues to retain in the algorithm was deter-
mined by simulation including the effect of errors using as input the measured
beam positions shown in Fig. 4. The simulated errors included those in the
orbit response matrix (ORM, R matrix in Eq. 1) elements and errors in the
corrector power supply currents. The relative ORM errors were uniformly dis-
tributed in the range of +20% based on beam-based measurement of the ORM
[9]. The errors in corrector currents were uniformly distributed in the range of
[-0.03, 0.03]A based on the observed fluctuations in the measured power supply
currents.

The simulation was executed as follows. First, the ORM was decomposed
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using SVD as a function of the number of retained eigenvalues. The required
corrector currents were obtained using Eq. 4. The corrector current errors were
then added to the derived values and the ORM errors were added to the model
ORM. Then the ORM with errors was used together with the corrector currents
to calculate the correction of the orbit. The estimated residual orbit is given
by the sum of the original orbit and the correction of the orbit. The standard

deviation of the residual beam oscillations at the ith BPM is

Ogi = Z(wi)j— <z >i)2/(N — 1), (7)

where NN is the number of measurements of the beam position, < x >; is the
average position and x; ; is the jth sample of the measured beam position at

the ith BPM. These standard deviations were normalized by the square root of
the B-functions and averaged over m BPMs. The result, y = % Zom/\/ﬁi,

where f; is the [-function at the ith BPM, is defined as the ﬁglie of merit
(FOM) of the feedback performance. For each selected number of eigenvalues,
200 simulations were performed with random seeds of errors. The average of
the FOMs (< y >) is shown along with the average of the maximum corrector
currents (< I, >). The error bars show the statistical errors (dy, dI,,) from
these simulations.

Without errors in the ORM and corrector currents, the dependence of the
residual orbit oscillation amplitude and corrector current on the number of
retained eigenvalues is shown in Fig. 5. As more eigenvalues are retained, the
normalized oscillation amplitude is reduced and larger corrector currents are
required to damp beam oscillation.

With errors in the ORM and corrector currents, the simulated residual orbit
oscillation amplitude and corrector current are shown in Fig. 6. An optimum of
the simulated feedback performance was obtained by retaining 6 eigenvalues.

To investigate the sensitivity of the system’s response to errors in the ORM,
the feedback performance was also simulated with the relative ORM error in the

range of £90%. The feedback damps beam oscillations in simulation even with
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Figure 4: Beam position oscillation measured at a 1 kHz rate over a 2 s time period by one of
the BPMs in the feedback system at injection energy with feedback off. Peak-to-peak beam
position oscillations at other BPM locations varied between 300 to 3000 um without feedback.

large relative ORM errors. This result is consistent with the fact that the feed-
back worked as well in the earlier years with peak-to-peak relative S—function
errors on the order of ~ £80% [13, 14, 15]. The simulations also showed that
the larger the relative ORM error, the fewer the number of eigenvalues that
should be retained for optimal performance.

Simulations were also performed at top energy. These showed that the op-
timal performance was achieved when retaining 6 eigenvalues. When retaining
11 or 12 eigenvalues, the simulation also showed that the corrector currents

exceeded the upper current limit mainly due to the higher beam rigidity.

8.2. Experimental study to determine the optimal number of eigenvalues

The simulation results were then validated by experiment. The damping

of beam oscillations was evaluated as a function of the number of retained
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Figure 5: The simulated residual orbit oscillation amplitude and corrector current as a func-
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response matrix or corrector currents.

eigenvalues. The best performance was confirmed to result when retaining 6 or
7 eigenvalues. The amplitudes of the beam spectrum (the peak amplitude of
the Fourier spectrum of beam position measurements acquired at a 1 kHz rate
over 2 8) at all BPMs are shown for different number of retained eigenvalues in
Fig. 7. The performance for the cases of retaining 6 and 7 eigenvalues is seen

to be nearly indiscernible.

4. Optimization of feedback during acceleration

At RHIC, the implementation of global orbit feedback during acceleration
is complicated by the lowering of the beta functions at the interaction points
during acceleration. The S—functions at the IPs, the beam rigidity and its
time-derivative during beam acceleration are shown in Fig. 8 for the 100 GeV

polarized proton physics program in 2015. The S—functions at IP6 and IP8
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Figure 6: The simulated residual orbit oscillation amplitude and corrector current as a function
of the number of retained eigenvalues taking into account errors in the orbit response matrix

and corrector currents.

were squeezed from 10 to 2 m, then down to 0.7 m. The 3—functions at other
IPs were held constant at 10 m during acceleration.

The configuration of the feedback system during acceleration is different in
several aspects with respect to that for fixed energies. Because of the changing
beam rigidity, ~ 200 response matrices were updated at a 1 Hz rate through the
200 s acceleration cycle. The strength-to-current coefficients for the correctors,
which scale with the beam rigidity, were updated at a 1 Hz rate likewise. Since
earlier studies at injection and store energies showed that retaining 6 eigenvalues
was optimal, the same configuration was applied to all matrices during acceler-
ation. Around transition energy, the global orbit feedback was turned off for 10
seconds.

Shown in Fig. 9 are the recorded beam positions at one BPM both with and

without feedback during acceleration [8]. The current of one of the correctors,

10
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Figure 7: The measured amplitudes of beam spectrum at BPM locations while retaining 5, 6,

7 and 8 eigenvalues.

which increases with beam rigidity during acceleration, is shown in Fig. 10. The
amplitudes of the damped beam oscillations and corrector currents are different
at different IRs. The damped oscillation amplitudes around IP6 and 8 were
measured to be higher than around the other IPs by ~ 50% due to the larger
B—functions at the locations of the beam position monitors. The least-damped
oscillation was found around IP10 due to the large distance (~10 m, 1-2 m
at others IPs) between the corrector and the triplet. The corrector current
is proportional to K//B, assuming the vibration amplitudes of all triplets are
equal, where K is the normalized strength of the triplet and § is the S—function
at the corrector. Therefore, the currents of the correctors around IP6 and 8 were
comparable to those around other IPs with the exception of around IP10. At
IP10 higher currents were observed on the correctors around IP10 because the

correctors are further away from one of the sources of vibration nearby, the IP10

11
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15 5. Measures to mitigate corrector current transients

187 While the feedback system successfully damped the beam oscillations dur-
s ing acceleration for years, large amplitude oscillations (upper plot in Fig. 11)
o and corrector current transients (lower plot in Fig. 11) were observed during

wo acceleration in the polarized proton program of 2015.

w 5.1. Identifying the cause of current transients

192 To understand the cause of these current transients during beam accelera-
193 tion, the eigenvalues were examined first. Due to the changing optics, the eigen-

s values vary during acceleration. As shown in Fig. 12, there are sharp peaks of

13
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Figure 10: The current of one corrector during beam acceleration with feedback engaged.

the eigenvalues which is the consequence of changes of the orbit response matrix.

The elements of the inverted matrix R~! were examined as well. The first
row of the inverted matrix, which consists of 24 matrix elements, was calculated
when retaining 6 eigenvalues. The evolution of these matrix elements during
acceleration for the polarized proton lattice is shown in Fig. 13. Transients of
the corrector currents were observed to be correlated with the step changes of
matrix elements during acceleration, which also coincide with the transients of
the eigenvalues in Fig. 12. The truncated SVD method [11] can only alleviate
the transients to some extent since the method regulates only the selected eigen-
values. Therefore Tikhonov regularization [12], which regulates all eigenvalues

and therefore all elements of the inverted matrix, was adopted.

14
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Figure 11: Excitation of beam oscillations (upper plot) and corrector currents (lower plot)

during acceleration with polarized proton lattice in 2015 with global orbit feedback engaged.

5.2. Matriz smoothing using Tikhonov reqularization

Matrix smoothing using Tikhonov regularization was studied numerically.
Tikhonov regularization (Eq. 6) with a constant regularization parameter, a,
was applied to all matrices during acceleration. Shown in Figs. 14 and 15 are
the same group of matrix elements (as in Fig. 13) with a = 40 and a = 100
respectively. Compared with Fig. 13, the evolution of the matrix elements is
observed to be more smooth while the sensitivity to the exact choice of regular-

ization parameter is weak.

5.8. Implementation of High-pass filter

In addition to matrix smoothing using Tikhonov regularization, a digital

high-pass filter was introduced to subtract the average measured beam position

15
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at each BPM. With the high-pass filter, the difference between each new beam
position value and the running average is corrected. For each corrector, the

required correction strength with the high-pass filter is
m
0]‘ = Z Rj_ll * (< T >; —xi), (8)
i=1

using the same notations as in Eq. 1. Without the high-pass filter, the correc-
tions were calculated without subtracting the average position < = >;. The

required correction strength for each corrector without the high-pass filter is
m
-1
0; = ZRji * (=) 9)
i=1

Therefore, the step changes in matrix elements (Fig. 13) were amplified by the
average orbit component < x >; in position measurements x; in the calculation

of corrector currents.

5.4. Experimental results

The corrector current transients during acceleration were eliminated by smooth-

ing the matrix with Tikhonov regularization parameter a = 100 and imple-

mentation of the high-pass filter. To study the relative contribution of matrix

17
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Figure 14: The calculated evolution of selected matrix elements during acceleration with

Tikhonov regularization for the inverted matrix with a regularization parameter of 40.

smoothing and the high-pass filter, the matrix smoothing was reverted while
maintaining the high-pass filter in a later experiment. The current transients
were still observed although less during beam acceleration. Beam studies with
only matrix smoothing but without the high-pass filter were not performed due
to time constraints. Therefore, it was not determined if matrix smoothing using
Tikhonov regularization alone could have eliminated the current transients. A
beam study with only matrix smoothing is possible in the future. Meanwhile,
simulations to understand the relative contribution of matrix smoothing and

the high-pass filter will be performed.

6. Summary

In this report, we presented the numerical and experimental optimization of
the 10 Hz feedback system and demonstrated that the numerical optimization
of feedback performance at fixed beam energies was validated by experimental
results. Numerical simulation of orbit feedback with measured beam positions

including estimated errors revealed that optimal performance of the feedback
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Figure 15: The calculated evolution of selected matrix elements during acceleration with

Tikhonov regularization for the inverted matrix with a regularization parameter of 100.

was achieved while retaining 6 eigenvalues in the SVD matrix. The simulation
results were confirmed by experimental study. The numerical simulation of or-
bit feedback, which can be applied for feedback systems at other facilities, was
described in this report. The feedback algorithm was first optimized at fixed en-
ergies. The configuration for the feedback system during beam acceleration was
determined based on the experimentally optimized configurations at injection
and top energy.

The corrector current transients encountered during acceleration were elim-
inated by application of Tikhonov regularization and addition of a high-pass
filter. These transients observed with the polarized proton lattice were found to
be related to the step changes of the matrix elements and the peaks of eigenvalue
evolution during acceleration. Tikhonov regularization was applied to smooth
the matrix elements during acceleration. In addition, a digital high-pass filter
was implemented to exclude the contributions from static beam offsets. With
application of both matrix smoothing and the high-pass filter, the corrector

current transients during acceleration were eliminated.
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