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Abstract— The use of radiation detectors as an element in
the so-called “Internet of Things” has recently become viable
with the available of low-cost, mobile radiation sensors capable
of streaming geo-referenced data. New methods for fusing the
data from multiple sensors on such a network is presented.
The traditional simple and ordinary Kriging methods present a
challenge for such a network since the assumption of a constant
mean is not valid in this application. A variety of Kalman filters
are introduced in an attempt to solve the problem associated
with this variable and unknown mean. Results are presented
on a deployed sensor network.

I. INTRODUCTION

Since September 11, 2001 a great deal of research has
been placed into the area of nuclear counterterrorism. A
great problem exists detecting the illicit movement of special
nuclear material (SNM) that could be used in a nuclear
weapon or radioactive materials that could be used in a
radiological disperal device or dirty bomb. This problem
is not dissimilar to a variety of other types of detection
problems in that there are signals emitted from the source
(in this case, ionizing radiation in the form of gamma rays
or neutrons) that may be detected with some probability.
This signal exists within a background noise signal that
determines both the probability of detection of a signal while
also providing a source of potential false alarms. Since some
level of adjudication is required for every alarm, it is clearly
desirable to increase the probability of detection of the signal
while also reducing the probability of false alarms. The
probability of detection and false alarm can be determined
either statistically or measured directly or indirectly.

Early generations of radiation sensor networks that were
explored circa 2005 employed tens of detectors that were
stationary and separated by distances that were much larger
than the source detection range of even substantial masses of
SNM. [1], [2], [3], [4] This was done to minimize cost while
maximizing the coverage area. Further, the computational
complexity requied to handle the data generated by even this
small of a network was impractical at the time.

New generations of radiation sensor networks are coming
online that will eventually employ thousands of mobile
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nodes. [5], [6], [7], [8] These small, mobile detectors can also
be coupled to larger and more efficient stationary detectors
for enhanced detection probability over the entire network.
This paper describes the benefits and complications of
working with large sensor networks for radiation detection,
the added benefits sensor fusion can provide, and suggests
opportunities presented by treating such networks as a data
stream within the so-called Internet of Things.

II. GENERAL CONCEPTS IN RADIATION
DETECTION

A variety of detector types exist for measuring ionizing
radiation. In order to select a radiation detector, the following
characteristics need to be considered in relationship to the
desired application:

1) Type of radiation to be detected: Most radiation de-
tectors are limited to the ability to detect one type of
radiation (e.g. alpha particles, beta particles, gamma
rays, or neutrons). However, some sources of SNM
such as 239Pu emit multiple different types of radiation.
Being able to simultaneously detect and distinguish
among these types offers an excellent advantage in
terms of reducing false alarms. However, the data
fusion problem presented by the use of data from
multiple types of detectors must be considered.

2) Efficiency of the detector: As in other disciplines, it
is desirable to have a detector with a high efficiency.
However, in radiation detection, efficiency is deter-
mined by the detecting material, its density, and its
geometry. Most notably, the larger the detector the
larger its geometric efficiency. Based on the desired
application, for example if the device must be human-
portable, there can be significant limitations to how
large a detector can be.

3) Anticipated distance to the source: If possible and
controllable, it is important to get as close to the source
of radiation as possible. This is because the flux of
radiation decreases based on 1

r2 . So if the distance to
the source is double, the flux decreases by a factor of
four.

4) Presence of intervening shielding materials: The flux
of ionizing radiation is attenuated through well-
understood physical processes. Typically the decrease
in flux follows an exponential relationship is a function
of the thickness of the absorber and the total cross sec-
tion of the absorbing material to the incident radiation.

5) Available integration time: Radioactive decay is a Pois-
sonian process whose distribution is known. As more
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events are collected by the detector, the uncertainty
in the measured quantity decreases. Hence, the longer
that a detector can count a given source, the better the
statistics will be.

In order to create a practical sensor network to detect the
illicit movement of sources, there are some clear require-
ments and implications on the above list. First, SNM like
235U and 239Pu and their associated daughter isotopes emit
many different types of radiation. However, only gamma ray
and neutrons have any appreciable probability to travel any
great distance and are less impacted than the other types by
the presence of shielding. Second, if the nodes in the network
are limited to human-portable devices, it should be expected
that the detectors will be small with limited efficiencies. We
also must assume that the distance to the source is unknown
as is the potential presence and type of intervening shielding
materials. Lastly, the available integration time it typically
short – on the order of seconds to one minute. To integrate
for longer than that is not feasible since it would impact the
movement of people, vehicles, and goods greatly.

One key problem associated with detecting any source
is the presence of natural background. A variety naturally-
occuring radioactive materials (NORM, such as 40K, 238U,
and 232/228Th) are present everywhere in varying quantities.
The presence of NORM isotopes varies with position on the
planet and also with time. It has been well-documented that
fluctuations in weather can increase or decrease the local
radiation background levels. [9], [10]

Therefore, it is necessary to establish a formalism for the
measurement of background. If we assume the measurement
of background radiation occurs at position (x, y) and time t,
then

µ(x, y, t) = µ1(x, y) + µ2(t) (1)

where µ(x, y, t) is the Poissonian parameter representing
the mean value of background radiation, µ1(x, y) represents
the fluctuation in background as a function of position, and
µ2(t) contains the time-varying parameter associated with
the weather. Therefore, µ represents the mean value and,
according to Poissonian statistics, is equal to the variance and
must be greater than zero. Further, there are no requirements
that µ be large. Hence the simplification of the Poissonian
distribution to the Gaussian distribution cannot always be
assumed, although frequently is to provide numeric simpli-
fication. Additionally, µ1 and µ2 are independent variables.

With this understanding of the nature of radiation back-
ground we next assume a measurement to be taken whose
value is given by d(x, y, t). It is then clear that the proba-
bility this measurement comes strictly from the background
radiation distribution is given by

P [d(x, y, t)] =
µd(x,y,t)e−µ

d(x, y, t)!
. (2)

In this application, it is necessary to extract the above
to set of D measurements where d(x, y, t) ∈ D. Then the
probability that all the measurements come from background

is derived from Equation 2 as follows:

P (D) =
∏

d(x,y,t)∈D

P [d(x, y, t)] (3)

=
∏
x∈X

∏
y∈Y

∏
t∈T

P [d(x, y, t)] (4)

=
∏
x∈X

∏
y∈Y

∏
t∈T

µd(x,y,t)e−µ

d(x, y, t)!
. (5)

If the log-likelihood of dataset D is given by

l(D) = log(P (D)), (6)

then it can be shown that

l(D) =
∑
x∈X

∑
y∈Y

∑
t∈T

{d(x, y, t) log(µ1(x, y) + µ2(t))

− µ1(x, y)− µ2(t) = log(d(x, y, t)!).} (7)

Thus it is evident that it is possible to seek a maximum
to the expression of 7, called the Maximum Likelihood
Estimation. [11]

III. RADIATION SENSOR FUSION

The above formalism holds for a single detector making
a series of measurements at different positions and times.
However, when a network of sensors is used, the problem
evolves into a data fusion problem. Even if each sensor
in the network is completely identical (which is usually
not a valid assumption), there is still a problem when it
comes to combining the measurements of each sensor as they
move through space. While the coordinate system of such a
problem can be established through GPS, those coordinates
themselves have error that can be up to several meters.

This sensor fusion problem like most common fusion
problems can be treated in three distinct steps:

1) Align the data spatially in a common coordinate ref-
erence frame

2) Align the data temporally in a common time system
3) Align the sensor measurement values into a common

unit (frequently normalized).
In this section, we shall focus our attention on the first

and third items of the above list, assuming that the temporal
alignment is without error.

A. Geospatial Alignment

One key goal of using a geotagged radiation sensor net-
work is to establish the easiest way to align the coordinates of
each node in the network, whose individual measurement of
position has a potentially large error, into a continuous map.
A common method of doing so is Kriging. [12] Suppose
there are N detectors in the network such that di(x, y, t),
i ∈ {1, 2, ..., N} is measured. Kriging takes the equation:

d(x, y, t) = µ(x, y, t) +
N∑
i=1

wi(di − µ(x, y, t)) (8)

and attempts to solve for the weights, wi to provide the best
unbiased solution. Typically, a variety of simplifications can
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be explored for µ(x, y, t) in Equation 8, such as assuming it
to be a known, constant value (simple Kriging) or even just
an unknown, constant value (ordinary Kriging). In the case
of radiation detection, it is not appropriate to assume that the
mean is constant. As such, universal Kriging likely presents
the most optimal solution to this problem.

If we let d⃗ represent all measurement locations where d⃗ ∈
{d1, ..., dN} then we can treat any measured value y(d⃗) as:

y(d⃗) = µ(d⃗) + Z(d⃗) (9)

where µ(d⃗) is the mean measured value at d⃗ and Z(d⃗)
represents a stationary process with constant mean. [13] It
should be noted that the first time is deterministic while
the second term is probibalistic. In fact, Z can be thought
to represent the Poissonian fluctuation in our measurement
that has zero mean while µ(d⃗) is the mean in radiation
background as a function of position neglecting any time
variation.

In universal Kriging, it can be shown that the expectation
value of any measurement can be treated as the linear combi-
nation of a known function fl(d⃗) with unknown coefficients,
al. In this way, the expectation value of any measurement
y(d⃗) can be found as:

E[y(d⃗)] =

k∑
l=1

alfl(d⃗). (10)

Then for two different points d1 and d2 the expectation value
can be expanded to reveal:

E[(y(d1)−µ(d1))(y(d2)−µ(d2))] ≡ E[Z(d1)Z(d2)] (11)

which is simply the covariance between points d1 and
d2. However, if truly the expectation value between two
measurements is reflected by the product of the expectation
values of two probibalistic functions with zero mean, then
this covariance should be equal to zero. The validity of this
statement will be evaluated in this paper.

B. Sensor Measurement Alignment

Every radiation detector, even of like models, has slight
variability in its total absolute detection efficiency. These
variations can be due to slight variations in detector sizes
and physical properties achieved during the manufacturing
process. These differences in efficiency impact the overall
measured value for each sensor and are a function of energy.
However, in this work we have focused on the overall count
rate measured by each detector and leave the actual measured
energy spectra for future work. Therefore, we will treat these
differences as a constant value in energy from detector to
detector.

It would be ideal to determine the detector-to-detector
variation in efficiency a priori using a calibrated measure,
but in practice for a large sensor network this is not prac-
tical. Therefore, a method must be derived to evaluate the
measured detector response from the collected data itself.
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Fig. 1. Measured count rate distributions for three different detectors
collected at the same time and location.

One possible way to do this is through the alignment of
the measured mean in background. However, in order to do
such an alignment, each detector must at the same location
at the same time so that fluctations in position and weather
are common among them. Depending on the sensor network
density, this may not be practical either. But as the density
of the network increases, the likelihood of two detectors
being located within a similar region and a similar time
also increases. These spatial and temporal overlaps should
be sought among the data.

More important is the need to treat this alignment with
robust statistics. It is possible and tempting to attempt to
set a mean based on the assumption of Gaussian statistics.
However, in an unknown data set, this is ill-advised due
to the possible presence of outliers in the measured value.
For example, data is presented in Figure 1 illustrating the
measured background on a given day by three different
detectors. As can be seen from the figure, the skew and
kurtosis illustrate distributions that are far from Gaussian.
To avoid potential issus created by the impact of outlier
measurements, when the skew and kurtosis are high the mean
should be calculated using a Winsorized and/or trimmed
approach. [14], [15], [16]

IV. EXPERIMENT AND RESULTS

A series of 23 Kromek D3s detectors [17] were deployed
in an urban environment for a period spanning approximately
5 months. These detectors were operated nearly continu-
ously during that time and were hand-carried by a team
of volunteers everywhere they went during this time. This
included measurements of normal background, enhanced
background locations, and measurements in the presence of
true radioactive sources. The detectors collected gamma-ray
count rates and spectra as well as neutron count rates once
per second. Utilizing a bluetooh connection to a smartphone
and the phone’s on-board GPS, the location and measurement
was transmitted wirelessly to a server. The resulting data set
comprises over 37 million measurements and was archived
in an S3 bucket on Amazon Web Services (AWS) and is
nearly 40 GB in size.
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Esri, HERE, DeLorme, MapmyIndia, '  OpenStreetMap contributors, and the GIS user community

Fig. 2. Detector 1, day 1

While this data set is modest in size, it exceeds the
memory capabilities of the current average PC and will
grow as the network grows and more data is collected. To
address the anticipated growth in network size (a 1000-node
network would be expected to generate approximately 200
GB of data per day) and need for real-time analyis of such
data, algorithms were written using Apache Spark 1.6 and
SparkSQL and deployed on a small Elastic Map-Reduce
(EMR) cluster on AWS.

Prior to any analysis and, in particular, studies on spatial
alignment, it was necessary to apply a Kalman filter to
the geocoordinate data. [12] It was observed that the GPS
data had many positional discontinuties ranging up to nearly
150 m in 1 second. Additionally, occasionally the GPS
coordinates failed to be recorded. Thus a Kalman filter
was applied to smooth out these discontinuties prior to any
analysis performed.

It was first necessary in the spatial alignment to evaluate
the assumption that the covariance in position of the mea-
sured background was zero. Using the aforementioned data
set, it was necessary to select data in a geographic region
known to have no enhanced background where more than
one detector measured the same region at reasonably the
same time. It was assumed that the measurements associated
within a single day would be sufficient so long as there was
no precipitation on that day.

Appropriate data was selected from within the data set and
the covariance in measured gamma-ray counts as a function
of position was calculated. It was found that the covariance
was very small, ranging from 10−4 to 10−5, which supports
the assertion surrounding Equation 11.

Once this was assertained, ArcGIS was used on selected
data from the above for universal Kriging. Data was selected
by multiple detectors being located in th same geographic
bounding box within the same day without a source beyond
background being present. Examples of the results of these
calculations are presented in Figures 2 – 5 for two different
days and two different detectors. As can be seen, there
are visibly noticable differences between the Kriged data of
identical background measurements. This is likely due to the
detector-to-detector efficiency variations since there was no
normalization applied to this data.

Esri, HERE, DeLorme, MapmyIndia, '  OpenStreetMap contributors, and the GIS user community

Fig. 3. Detector 1, day 2

Esri, HERE, DeLorme, MapmyIndia, '  OpenStreetMap contributors, and the GIS user community

Fig. 4. Detector 2, day 1

Esri, HERE, DeLorme, MapmyIndia, '  OpenStreetMap contributors, and the GIS user community

Fig. 5. Detector 2, day 2

As an example of the impact of sensor measurement
alignment, the difference in measured data within the sample
shown in Figures 2 – 5 is illustrated through their measured
mean count rate and standard deviation in Table I. Given a
difference in average count rate of nearly 40%, it is clear
that some method of aligning the sensor measurements is
required.

The data were rescaled by their differences in mean back-
ground count rate for the day and then passed through the
universal Kriging algorithm again. Despite the multiplicative
factor difference in the count rate data, the overall structure
of the resulting map was observed to be the same, as shown
in Figure 6.
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TABLE I
SUMMARY STATISTICS OF THE SELECT MEASUREMENTS WITHOUT A

SOURCE PRESENT

µ σ No. of Points
Detector 1 26.394 5.382 14209
Detector 2 36.505 7.685 1180

Esri, HERE, DeLorme, MapmyIndia, '  OpenStreetMap contributors, and the GIS user community

Fig. 6. Kriged map showing data of Figure 2 scaled by a constant. The
shading is in arbitrary units.

V. CONCLUSIONS AND FUTURE WORK

The first results to fuse the measurements of a radiation
sensor network have been presented. Geospatial alignment
was demonstrated using univeral Kriging. However, the
results of the fusion were limited due to problems in the
alignment of the sensor measurements. The model that was
used was a renormalization of the count rate data based on
a direct scaling of the mean background measurements. It
is clear from the results presented that a more sophisticated
approach needs to be developed. Ideally such an approach
would work utilizing the data collected by the detector in
the field rather than a detailed measurement of the efficiency
curves of the thousands of detectors expected to be deployed
in the next few years. A series of methods that could poten-
tially solve this problem and will be evaluated in the future
include unsupervised or semi-supervised machine learning
techniques to create an adaptive sensor normalization. A va-
riety of machine learning methods exist that could classify a
sensor’s measurement as background versus background with
a source, including stochastic gradient descent classification,
support vector machines, and k-nearest neighbor analysis.

Additionally, as more data is collected, the overall under-
standing of the background fluctuations in an environment
both with position and with time (as the result of weather
fluctuations) can be quantified. Once an appropriate sensor
normalization model has been identified, it is possible that
the entire dataset could be Kriged to generate a normalized
map of background for the network. This would have the
benefit of opening the network more easily to Bayesian
classification based on the use of a well-characterized prior
distribution.
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