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1 SUMMARY 
The objective of the Open and Extensible Control and Analytics (openECA) Platform for Phasor Data 
project is to develop an open source software platform that significantly accelerates the production, 
use, and ongoing development of real-time decision support tools, automated control systems, and off-
line planning systems that (1) incorporate high-fidelity synchrophasor data and (2) enhance system 
reliability while enabling the North American Electric Reliability Corporation (NERC) operating functions 
of reliability coordinator, transmission operator, and/or balancing authority to be executed more 
effectively. 
 
The openECA platform will provide a Common Analytics Interface (CAI) for integration of a diverse set of 
platform analytics along with structured integration of platform configuration, display and storage 
systems.  
 
The platform will include an open-source Linear State Estimator (LSE) as a core component of the 
openECA platform to enable the results from the LSE to be easily incorporated into other openECA 
analytical components. The openECA platform will enable the secure, high-performance exchange of 
synchrophasor data with external entities through publish/subscribe protocols and will include a local 
historian to archive openECA performance statistics. The openECA platform will provide an alarming 
engine that can raise alarms based on high and low data set points and will also provide a common set 
of visualization displays optimized for testing and verification of analytic results that can be also used to 
simplify information presentation for decision support.  
 
This project will develop and/or refine to pre-commercial status nine analytic packages (some open 
source and some proprietary) that can be deployed using the openECA platform CAI. These nine analytic 
packages are divided into the three classes of real-time decision support, control, and off-line analytics 
as follows:  
 
Real-Time Analytics 

1. Oscillation Detection Monitor (ODM)  
2. Oscillation Mode Meter (OMM)  
3. Topology Estimation  

Control Analytics  
4. Regional Volt-Ampere-Reactive (VAR) Control 
5. Local VAR Control  
6. Phasor Measurement Unit (PMU) Synchroscope  

• Off-Line Analytics  
7. Dynamic PMU Transducer Calibration (Automated, Periodic Use Case)  
8. Line Parameter Estimation (Ad-Hoc Use Case)  
9. Synchronous Machine Parameter Estimation (Automated, Periodic Use Case)  
10. Acceleration Trend Relay (ATR) Improvement (Research Use Case)  

 
The openECA project completed its Phase 1 Design efforts in 2016.  During the first quarter of calendar 
year 2017, the openECA team conducted bench testing of alpha versions of the openECA platform and 
analytics.   
 
This report presents the results of this testing.  
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2 OPENECA PLATFORM 
The Initial Alpha Release of openECA was issued on Jan 2, 1017.  It included metadata and data structure 
definitions for returning values to the openECA server components and enhanced UI components.   

Major architectural elements of the openECA platform include: 

• Data Integration Services 
• Common Analytics Interface 
• Data Conditioning and Alarming 
• Electric Network Model 
• Shared Platform Services 

OpenECA defines a unified environment for modeling an analytic’s: 

• Configuration 
• Data Structures, and 
• Measurement Mapping, 

The Data Modeling Manager Tool allows the analytic developer to define two classes of data structures: 

• The domain input, called SourceData 
• The analytic product, called ResultData 

The contents of these data structures are under the complete control of the analytic developer. 

Alpha version testing has demonstrated that the openECA platform allows developers to easily create 
new analytics by creating data structures and mapping to streamed data sources.  Developers can select 
a target language for the analytic and then use the tool to create a new analytic project. 

Based on the results of Alpha testing, development of the Beta version of openECA is on schedule for 
completion by the end of May and installation at demonstration sites in June and July. 
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3 LINEAR STATE ESTIMATOR (LSE) 
Progress Overview: 

Given the need for a LSE by a broad set of openECA platform analytics, the Virginia Tech/Dominion-developed LSE 
will be included as a core GSF component and therefore a core component of the openECA platform. The associated 
goals and related progress are outlined as follows: 
 

1. Merging of the LSE code base with GPA’s Project Alpha – this task was completed and tested as part of the 
Alpha Development Phase. However, after use and experimentation with the new openECA features, it was 
decided to rescope how LSE was structured as a standalone component. For Beta and for future releases, 
the LSE will be structured as an openECA Client Analytic to take advantage of all of the advances with the 
openECA platform that would not be available in use with a Project Alpha template. 

2. Compatibility with openECA – The original LSE adapter has been migrated to an openECA Client host and 
tested against both an early Alpha version of openECA as well as an early Beta version of openECA. 

3. Improvements to Modeling and Testing Tools – There have been substantial updates to the modeling and 
testing tools as part of the Apha-Beta Development Phase. These include the merging of the Network 
Model Editor Tool and the Offline Module Tool into a single unified tool. This is helpful for being able to 
test and troubleshoot modeling changes in the LSE in a much more streamlined manner. Additionally, many 
automation features have been added for preparing models from GE/Alstom EMS systems and 
subsequently pruning those models for use with the LSE. These improvements have been implemented and 
tested successfully on EMS data from two companies. 

4. Built-in Sample Data and Sample Model – We have not yet established a sample data and sample model set 
that will be packaged with the LSE. However, through work at Virginia Tech and Dominion, there is plenty 
of material available to put this together. It will be included at a later point in the testing and 
demonstration. 

5. Additional Topology Awareness – In partnership with Virginia Tech, work on a Topology Estimator which 
provides phasor measurement based awareness of substation topology to the LSE has been studied and is 
in development. While scoped as a separate analytic, it will be a native component of the LSE. Therefore, 
during Alpha-Beta development phase, the major updates to the LSE that are required to accommodate 
this new feature have been implemented. They have been tested in isolation with simulated data in the lab 
but have not been tested in concert as part of the overall LSE implementation. This testing will be done at a 
later point in the testing and demonstration. 

6. Updates to the LSE Core – Additional updates have been added to the LSE Core. These included provided 
key performance metrics from inside the LSE as time-series-measurement output to openECA. This new 
feature will help with troubleshooting in real-time. 

7. Ancillary Components – The Measurement Sample Adapter and the Snapshot Manager are simple adapters 
from the older GSF versions of the LSE Library. Given their ease of implementation and low complexity, 
they will not be migrated to openECA analytics until further in the Beta development process. 

 
Updates to Test/Demonstration Configuration: 
 
Dominion determined that the previously scoped test bench setup would not be sufficient for testing all features at 
scale. Therefore, Dominion has procured a phasor domain simulator (OPAL-RT ePHASORSIM) hardware to install in 
the Dominion RTDS lab as well as two servers that will host the Beta and Final Release of the openECA. The 
procurement for the ePHASORSIM is completed and ready to install. Installation and training for employees and the 
Virginia Tech students are scheduled in early June. The procurement of the servers is also scheduled to be 
completed around the same time. Dominion will also utilize its existing PDC Data Architecture as the data source for 
the openECA Servers for testing purposes. 
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Demonstration Procedures: 
1. Dominion will install and configure the hardware for the demonstration environment. This includes the 

ePHASORSIM simulator and the server hardware for hosting openECA + LSE. 
2. Dominion will install and configure the openECA software on the servers. 
3. Dominion will use reduced power system models in the ePHASORSIM to generate real-time phasor domain 

simulations that will produce real-time streaming synchrophasor data. 
4. Dominion will stream synchrophasor data from the ePHASORSIM and from our central PDC system to the 

servers hosting openECA. 
5. Dominion will install the LSE alongside openECA on one of the two servers. 
6. Dominion will use the latest features in the Network Model Editor Tool to create LSE Network Models that 

represent the test system in the ePHASORSIM as well as an LSE Network Model which represents 
Dominion’s EMS Network Model. 

7. Dominion will execute modeling tasks to map measurements from openECA to these two models. 
8. Dominion will test the LSE (and its new topology estimation features) with these two models with data 

from each respective system (simulation and real-time). This will need to be done incrementally by starting 
with a single substation and adding modelling data one substation at a time to make sure the LSE is tuned 
properly. 

9. Demonstration of this will consist of loading the LSE with as many measurements as are either available or 
as many as extends the full capacity of the hardware and displaying the resulting streams on openECA 
Grafana displays.  

10. Two data sources will be demonstrated: 
a. Real-Time Data from the field will be sent to the LSE, processed, and displayed. 
b. Simulated data from ePHASORSIM will be sent to the LSE, processed, and displayed. Multiple 

scenarios will be tested/demonstrated which would exercise the LSE. 
 
Report Deliverables: 
 
Dominion will provide evidence of demonstration in the report in the form of: 

1. Narratives of completed activities and milestones 
2. Screenshots from testing and demonstration 
3. Output data from testing/demonstration scenarios will be presented in appropriate formats in the report. 

 
Major Remaining Milestones: 
 

1. Preparation of Sample Data and Sample Model Package for Installation. 
2. Advanced Testing of Topology Estimator Plumbing in LSE Core. 

a. Testing with Simulator (necessary to fully test features) 
b. Testing with Real-Time Data (a validation step) 

3. Migration of Ancillary Components to openECA Client Analytics. 
4. Deployment and Testing at Scale in Demonstration Environment at Dominion against simulated and real-

time data.  (As described above) 
5. Finalize inclusion in openECA installer. 
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4 OSCILLATION DETECTION MONITOR 
Test Approach 
 
Two types of tests will be executed: “Comparison tests” will be developed to test the accuracy of the analytic’s 
results when exposed to a known data set with known solution. “Unit tests” will be developed to test the 
repeatability of the analytic and to insure consistency of results when the analytic undergoes a future modification 
or upgrade. In addition to the fixed or simulated data sets, applied respectively to the “comparison” and “unit” tests, 
each test case requires parametric metadata for proper functionality. The parameters will be embedded within the 
analytic’s code base for testing purposes. When “settings” facilities become available in openECA beta the test suite 
will be modified accordingly. 
 
Test Environment 
 
The test platform will be 64-bit Windows 7 configured as a workstation running on an Intel i7-3770 with 16Gb of 
memory and 8 cores. The software will be compiled under Visual Studio as “Any CPU” targeting the .NET Framework 
compatible with the openECA client compilation. 
 
Analytics Overview 
 
The OD analytic signal flow diagram is shown below.  As the desired pseudo signal is formed, it is added to a data 
buffer with pre-processing in one-second blocks.  When OD results are requested by the controlling application, 4 
different RMS energies are output; each with a unique frequency band.  The second output for each band is the 
spectrum of the RMS energy band-passed signal. 

 
 
For each RMS energy band, parameters to be passed to the output include: 
1. RMS energy in units of the pseudo signal. 
2. Percent of invalid data used to calculate the RMS energy.  
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Pre-Beta Features to be Tested 
 
The oscillation detector delivers the following outputs. 

Feature 1: RMS energy in each of four frequency bands specified by user settings. 
Feature 2: Percent of the data tested and considered by the analytic’s bad data detector logic to be 

unusable by the analytic. 
Feature 3: An array of frequency/energy pairs from which a partial spectrum of results can be obtained by 

the end user. This “spectrum” feature provides more granularity in the frequency domain than 
is possible by examining the energy content in the four primary frequency bins alone. 

 
Test Configuration 
 
No change to the bench setup described above. 
 
Tests Conducted 
 
Test 1: “Interpolate through invalid data within a one-second block” This test determines whether the analytic 

properly interpolates through invalid data when the invalid data is wholly contained within a one-second 
data block. This will be a unit test. With analytic loaded with valid configuration process a block of input 
signals containing flagged data points. Compare result with known solution. 

 
Implementation: A unit test was created to test this requirement. The unit test instantiates an 

OscillationDetector object with simulated setup parameters. Consecutive blocks of data with varying 
“bad data” conditions are passed to the OD through the Load method.  

 
Status: Complete. Test Passed. 

 
Test 2: “Interpolate through invalid data spanning a one-second block” This test determines whether the analytic 

properly interpolates through invalid data when the invalid data spans two or more one-second blocks. This 
is a unit test. With analytic loaded with valid configuration process a block of input signals containing flagged 
data points at the end of the block followed by another block beginning with bad data. Compare result with 
known solution. 

 
Implementation: A unit test was created to test this requirement. The unit test instantiates an 

OscillationDetector object with simulated setup parameters. Consecutive blocks of data with varying 
“bad data” conditions spanning the block boundaries are passed to the OD through the Load 
method.  

 
Status: Complete. Test Passed. 

 
Test 3: “Time gap less than 30 minutes fed to analytic should fill with invalid data” This test determines if the 

analytic properly handles a small time gap. A gap is caused by a timestamp greater than current time. This is 
a unit test. With analytic loaded with valid configuration process a block of input signals. Then send the next 
data block with a timestamp 60 seconds greater than previous. Analytic’s timestamp should advance one 
minute and results containing bad data percentages should be reported. 

 
Implementation: A unit test is under development. The unit test instantiates an OscillationDetector object 

with simulated setup parameters. The OD is pre-loaded with data, then gaps of durations varying 
from one second to 29 minutes are created.  

 
Status: In process. 
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Test 4: “Time gap greater than 30 minutes fed to analytic should reset all buffers” This test determines if the analytic 
properly handles a large time gap. A gap is caused by a timestamp greater than current time. This is a unit 
test. With analytic loaded with valid configuration process a block of input signals. Then send the next data 
block with a timestamp 60 minutes greater than previous. Analytic’s timestamp should advance one hour, 
no results should be reported. Subsequent data blocks input to the analytic should result in reports showing 
“Buffer not full” flag indicating buffers were emptied. 

 
Implementation: A unit test is under development. The unit test instantiates an OscillationDetector object 

with simulated setup parameters. The OD is pre-loaded with data, then gaps of durations greater 
than 30 minutes are created.  

 
Status: In process. 

 
Test 5: “CurrentTime from analytic should be timestamp of last sample in the input block” This test determines if 

analytic properly updates current time. This is a unit test. With analytic loaded with valid configuration send 
an input data block with valid timestamp. Analytic’s timestamp should be last sample of input timestamp. 

 
Implementation: A unit test is under development. The unit test instantiates an OscillationDetector object 

with simulated setup parameters. The OD is pre-loaded with data. Timestamps of the incoming data 
are recorded. A result is retrieved from the OD, and timestamps are compared.  

 
Status: In process. 

 
Test 6: “OD estimate accurate and consistent” This tests OD accuracy. This is a fixed dataset test. Configure OD with 

setup parameters appropriate for a known solution. Run analytic and compare results to known solution. 
 

Implementation: Create a dataset having a known solution. Inject the known solution dataset into the 
openECA framework as a data channel. Configure the OD analytic to consume the known dataset. 
Run the tests.  

 
Status: In process. The dataset has been created. Efforts are underway to format the dataset in a format 

readable by openECA. 
 
Test 7: “OD estimate for 30 sps derived signal accurate and consistent” This tests the OD downsampling filters. This 

is a fixed dataset test. Form analytic input signals from Test6 dataset at 30 sps sample rate. Compare results 
to known solution. 

 
Implementation: Create a dataset having a known solution with sample rate 30sps. Inject the known 

solution dataset into the openECA framework as a data channel. Configure the OD analytic to 
consume the known dataset. Run the tests.  

 
Status: In process. The dataset has been created. Efforts are underway to format the dataset in a format 

readable by openECA. 
 
Test 8: “OD estimate for 60 sps derived signal accurate and consistent” This tests the OD downsampling filters. This 

is a fixed dataset test. Form analytic input signals from TestCase2 dataset at 60 sps sample rate. Compare 
results to known solution. 

 
Implementation: Create a dataset having a known solution with sample rate 60sps. Inject the known 

solution dataset into the openECA framework as a data channel. Configure the OD analytic to 
consume the known dataset. Run the tests.  
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Status: In process. The dataset has been created. Efforts are underway to format the dataset in a format 
readable by openECA. 

 
 
 

 

5 OSCILLATION MODE METER 
Test Approach 
 
Two types of tests will be executed: “Comparison tests” will be developed to test the accuracy of the analytic’s 
results when exposed to a known data set with known solution. “Unit tests” will be developed to test the 
repeatability of the analytic and to insure consistency of results when the analytic undergoes a future modification 
or upgrade. In addition to the fixed or simulated data sets, applied respectively to the “comparison” and “unit” tests, 
each test case requires parametric metadata for proper functionality. The parameters will be embedded within the 
analytic’s code base for testing purposes. When “settings” facilities become available in openECA beta the test suite 
will be modified accordingly. 
 
Test Environment 
 
The test platform will be 64-bit Windows 7 configured as a workstation running on an Intel i7-3770 with 16Gb of 
memory and 8 cores. The software will be compiled under Visual Studio as “Any CPU” targeting the .NET Framework 
compatible with the openECA client compilation. 
 
Analytics Overview 
 
The signal flow diagram for the MM analytic is shown below.  As pseudo signals are formed, they are added to a 
data buffer with pre-processing in one-second blocks.  When mode estimates are scheduled to be provided to the 
openECA client, modes are estimated using several window sizes (w1, w2, …) and/or different algorithm settings; 
these are termed the Mode Estimation functions.  A Results Selection  function  then analyzes the outputs of the 
parallel Mode Estimation functions to obtain the optimal mode damping and frequency estimation result .  The 
estimated mode and pseudo data are then passed to a Mode Shape Estimation function which estimates the mode 
shape. 
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For each RMS energy band, parameters to be passed to the output include: 
1. RMS energy in units of the pseudo signal. 
2. Percent of invalid data used to calculate the RMS energy.  
 
Pre-Beta Features to be Tested 
 
The mode meter delivers the following outputs. 

Feature 1: An estimate of the frequency of the most lightly damped mode identified in the range specified 
in the configuration. 

Feature 2: An estimate of the damping for the mode identified in Feature 1. 
Feature 3: The rms energy associated with the mode identified in Feature 1. 
Feature 4: A mode shape vector describing the magnitude and angle of the oscillation energy associated 

with mode identified in Feature 1 at each of several buses specified in the configuration. 
Feature 5: The percent of the data tested and considered by the analytic’s bad data detector logic to be 

unusable by the analytic. 
 
Test Configuration 
 
No change to the bench setup described above. 
 
Tests Conducted 
 
Test 1: “Interpolate through invalid data within a one-second block” This test determines whether the analytic 

properly interpolates through invalid data when the invalid data is wholly contained within a one-second 
data block. This will be a unit test. With analytic loaded with valid configuration process a block of input 
signals containing flagged data points. Compare result with known solution. 

 
Implementation: A unit test was created to test this requirement. The unit test instantiates a ModeMeter 

object with simulated setup parameters. Consecutive blocks of data with varying “bad data” 
conditions are passed to the MM through the Load method.  

 
Status: Complete. Test Passed. 

 
Test 2: “Interpolate through invalid data spanning a one-second block” This test determines whether the analytic 

properly interpolates through invalid data when the invalid data spans two or more one-second blocks. This 
is a unit test. With analytic loaded with valid configuration process a block of input signals containing flagged 
data points at the end of the block followed by another block beginning with bad data. Compare result with 
known solution. 

 
Implementation: A unit test was created to test this requirement. The unit test instantiates a ModeMeter 

object with simulated setup parameters. Consecutive blocks of data with varying “bad data” 
conditions spanning the block boundaries are passed to the MM through the Load method.  

 
Status: Complete. Test Passed. 

 
Test 3: “Time gap less than 30 minutes fed to analytic should fill with invalid data” This test determines if the 

analytic properly handles a small time gap. A gap is caused by a timestamp greater than current time. This is 
a unit test. With analytic loaded with valid configuration process a block of input signals. Then send the next 
data block with a timestamp 60 seconds greater than previous. Analytic’s timestamp should advance one 
minute and results containing bad data percentages should be reported. 
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Implementation: A unit test is under development. The unit test instantiates a ModeMeter object with 
simulated setup parameters. The MM is pre-loaded with data, then gaps of durations varying from 
one second to 29 minutes are created.  

 
Status: In process. 

 
Test 4: “Time gap greater than 30 minutes fed to analytic should reset all buffers” This test determines if the analytic 

properly handles a large time gap. A gap is caused by a timestamp greater than current time. This is a unit 
test. With analytic loaded with valid configuration process a block of input signals. Then send the next data 
block with a timestamp 60 minutes greater than previous. Analytic’s timestamp should advance one hour, 
no results should be reported. Subsequent data blocks input to the analytic should result in reports showing 
“Buffer not full” flag indicating buffers were emptied. 

 
Implementation: A unit test is under development. The unit test instantiates a ModeMeter object with 

simulated setup parameters. The MM is pre-loaded with data, then gaps of durations greater than 
30 minutes are created.  

 
Status: In process. 

 
Test 5: “CurrentTime from analytic should be timestamp of last sample in the input block” This test determines if 

analytic properly updates current time. This is a unit test. With analytic loaded with valid configuration send 
an input data block with valid timestamp. Analytic’s timestamp should be last sample of input timestamp. 

 
Implementation: A unit test is under development. The unit test instantiates a ModeMeter object with 

simulated setup parameters. The MM is pre-loaded with data. Timestamps of the incoming data are 
recorded. A result is retrieved from the MM, and timestamps are compared.  

 
Status: In process. 

 
Test 6: “Mode estimate accurate and consistent. This test considers mode meter accuracy. This is a fixed dataset 

test. Monte Carlo tests will be performed outside of the openECA environment. Within the openECA, one 
test on one dataset will be conducted. If the result matches the offline test using the same dataset, and the 
Monte Carlo tests pass the accuracy threshold, then the tests passes. 

 
Implementation: Run the Monte Carlo tests in Matlab. Create a dataset representing one of the Monte Carlo 

test sets. Inject the known solution dataset into the openECA framework as a data channel. 
Configure the MM analytic to consume the known dataset. Run the tests.  

 
Status: In process. The Monte Carlo tests are complete. The ModeMeter analytic passed the accuracy tests 

and met the design parameters. The single dataset, picked from the Monte Carlo test set, has been 
selected. Efforts are underway to format the dataset in a format readable by openECA. 

 
Test 7: “Mode shape accurate and consistent. This test considers mode shape accuracy. This is a fixed dataset test. 

Monte Carlo tests will be performed outside of the openECA environment. Within the openECA, one test on 
one dataset will be conducted. If the result matches the offline test using the same dataset, and the Monte 
Carlo tests pass the accuracy threshold, then the tests passes. 

 
Implementation: Run the Monte Carlo tests in Matlab. Create a dataset representing one of the Monte Carlo 

test sets. Inject the known solution dataset into the openECA framework as a data channel. 
Configure the MM analytic to consume the known dataset. Run the tests.  
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Status: In process. The Monte Carlo tests are complete. The ModeMeter analytic passed the accuracy tests 
and met the design parameters. The single dataset, picked from the Monte Carlo test set, has been 
selected. Efforts are underway to format the dataset in a format readable by openECA. 

 
Test 8: “Mode estimate accurate for ambient data at 30 sps raw rate” This tests the mode meter downsampling 

filters. This is a fixed dataset test. Form analytic input signals from Monte Carlo baseline case at 30 sps 
sample rate. Compare results to known solution. 

 
Implementation: Run the Monte Carlo tests in Matlab. Create a dataset representing one of the Monte Carlo 

test sets at 30sps. Inject the known solution dataset into the openECA framework as a data channel. 
Configure the MM analytic to consume the known dataset. Run the tests.  

 
Status: In process. The Monte Carlo tests are complete. The ModeMeter analytic passed the accuracy tests 

and met the design parameters. The single dataset, picked from the Monte Carlo test set, has been 
selected. Efforts are underway to format the dataset in a format readable by openECA. 

 
Test 9: “Mode estimate accurate for ambient data at 60 sps raw rate” This tests the mode meter downsampling 

filters. This is a fixed dataset test. Form analytic input signals from Monte Carlo baseline case at 60 sps 
sample rate. Compare results to known solution. 

 
Implementation: Run the Monte Carlo tests in Matlab. Create a dataset representing one of the Monte Carlo 

test sets at 30sps. Inject the known solution dataset into the openECA framework as a data channel. 
Configure the MM analytic to consume the known dataset. Run the tests.  

 
Status: In process. The Monte Carlo tests are complete. The ModeMeter analytic passed the accuracy tests 

and met the design parameters. The single dataset, picked from the Monte Carlo test set, has been 
selected. Efforts are underway to format the dataset in a format readable by openECA. 

 
 

6 TOPOLOGY ESTIMATOR 
Program Details and User Manual for Alpha Version Testing 
 
The whole process for implementation of the Topology Estimator algorithm is based upon two modules: 

1. An offline module using PSS/E and Python to calculate the Delta threshold by   running numerous power 
flow simulations based upon different configurations for each substation topology. 

2. An online module which would use the pre calculated Delta Threshold value and use it to actually 
determine the topology of the substations in real time. 

 
For the Alpha testing we had tested our algorithm for a IEEE 118 bus branch model and had run studies to calculate 
the Delta threshold value (for the offline module). (Note: The files and folders have been uploaded in Github 
account earlier.) 
 
Initialization and Running 
 
Note: This program is written in Python 2.5 and compatible with PSS/E version 32 
 
There are several actions that need to be taken before running the program to insure that the program is configured 
properly. 

1. Ensure that the PSS/E .sav file is within the same folder as the python code files 
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2. Rename ‘.sav’ file within the main function to the name of the file you wish to use 

 
3. Change the path name within the name function to the name of the folder containing the python files 

 
4. If PSS/E is installed in a location other than C:\Program Files (x86), modify the variable: pssebindir to direct 

the program to the correct location(the \PTI\PSSE32\\PSSBIN) 

 
 
Once the program has been configured to your system, it can be run. 
 
Note: Depending on the UI used for running python code, after the program has started running it may ask for a 
command simply saying “Yes?”. If this is the case, simply enter a blank command. 
 
The program outputs the list of voltage angle and magnitude lists to a .csv file named “mycsv.csv”. From this data, 
the delta and magnitude threshold can be determined and the percentage error can be seen. An example can be 
seen in the section 4 for the IEEE 118 bus system model. 
 
The following sections detail the algorithm behind each function for the program. 
 
Main Function 
 
The main function inside which we first start the analysis of delta threshold from a particular bus number to the 
desired bus number. At each bus number, we find the number of circuits/elements connected by calling the bus 
connections function and then calculate all the possible configurations of disconnection combinations possible by 
calling the configuration matrix function. Then for each element in the configuration matrix list (i.e. each possible 
combination) we calculate the outage buses and their groupings which is the outage matrix list and then we update 
the network by rearranging the loads/Generators/Lines/2 winding Transformers as required, creating an additional 
fake bus as required. This is achieved by calling the update network function. Finally load flow is rum for each case 
and Difference in angles and V_mag is calculated between the current bus number and the disconnected fake bus, 
thus leading to the study of a suitable Delta threshold which can guarantee minimum number of failed cases based 
on this methodology. 
 
Bus Connections 
 
The purpose of this function is to calculate the number of objects connected to a specific input bus and to 
determine each of those objects. The output will give you a number of connections and a list contained each bus 
connected. Additionally, if the bus has a generator and additional connection of its own bus number is added. If 
there is a load present at the bus, an additional connection with the value of 100000000 is added. 
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For example, when looking at the following bus number 4. 

 
It can be seen that, bus 4 is connect to two other buses, one generator and one load. Therefore, there are 4 
connections for this bus and the list would be [5,11,4,10000000]. 
 
Update Network 
 
This function modifies the current system depending on the current outage scenario given to the function. Outage 
matrix provides the current connection list of the buses surrounding the current bus to the current bus and 
between each other. The network is updates so that each bus within the same outage group is connected to each 
other through a newly created bus. Any bus in outage group 0 is connected to a newly created bus individually. 
Branches connecting the current bus and the buses connected to this bus that are in the outage group are taken out 
of service and new branches are created connecting the outside buses and the newly created buses. 
 
For example, when looking at Bus 11 in the previous figure, if buses 4, 5, and the load are in group two and all other 
buses are in group 0 the new system created will appear like this: 
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Any buses connected to the current bus which are not in the outage matrix remain connected to the current bus. 
 
Truthtable 
 
The purpose of this function is to create a truth table consisting of 0’s and 1’s which will be used in the configuration 
function later. This provides the possible number of configurations based on the variable n in a list format consisting 
of 2^n elements inside the final temp list. 
 
Configuration 
 
The purpose of this function is to create all possible configurations of the disconnected elements or circuits (branch, 
Gen, loads) which were initially attached to our current substation. Now the original configuration list would have 
been simply the list as provided by the truth table function. But as the disconnected (from the substation) circuits or 
elements can be regrouped among each other we have to cater all the possibilities for our study and thus come up 
with a generic yet comprehensive Delta threshold. This function is to generate all those possible configurations 
(much greater than simply 2^contingency). 
 
Demonstration 
 
All the possible configurations (with a maximum disconnection of 6 elements at a particular bus) were analyzed and 
the following distribution of Voltage Angle difference distribution is plotted but based upon a success rate of near 
about 96% of all cases, Delta angle threshold was calculated to be 0.75 degrees (with max V_mag difference of 0.02 
pu). 
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From Alpha to Beta 
 
In the Beta version, the analytic will be running on openECA platform while the input measurements will be 
simulated using real time PMU simulator. This section presents the preliminary results without real time simulator 
and using simulated data as real time phasors from a IEEE 118 nodal test system (Files uploaded in the GitHub 
Folder). 
 
The test system that was used for these results is the IEEE 118-Bus system which has been  converted from a 
bus/branch model to a nodal model. Each bus in the model was transformed into a substation with one of four 
standard topologies: Double Breaker-Double Bus, Ring Bus, Breaker and a Half, and Single Bus. This is a significant 
modification from the Alpha testing as we are catering to actual practical substation topologies in this fashion. The 
original system buses were assigned specific substation topologies sequentially, starting with Double Breaker-
Double Bus continuing sequentially through Ring Bus, Breaker and a Half, and then Single Bus, finally looping back. 
Every connection to the original bus (branches/loads/generators) was connected to a separate node within the 
substation. 
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Different Modules: 
 
CreateConfigFile.py 
To make the analytic more general, many functions make use of a configuration file which provides details of the 
nodes contained within each individual substation and the breakers present connecting the nodes. This can be done 
manually, or if the system was created following the specified format assumed for the remaining functions, the 
function CreateConfigFile.py can be run. The systems were created in PSS/E such that each node in the system is a 
bus, where all nodes within the substation follow the naming convention of SUBSTATIONNAME_ID, where ID is what 
identifies the nodes within the substation. Nodes within the substation are connected with system switches. The 
format of the configuration file is shown below and is stored in ConfigFile_118.csv: 
 

 
 
Where each row details an individual substation. The first column indicates the number of breakers within the 
substation. Each of the following set of 3 columns gives information on the breaker in the form of [From Node, To 
Node, Breaker ID] e.g. the first breaker of the second substation is from Node 7 to Node 8 with ID 1. The second 
breaker is from node 7 to node 9 with ID 1. 
 
VarThreshCalc.py: 
Offline Results for Threshold Benchmarking: 
 
This portion of the analytic is implemented in the VarThreshCalc.py function. The purpose of this function is to 
empirically determine the voltage value difference between nodes at which the nodes can be considered 
disconnected. Every possible breaker on/off configuration was tested for the entire system and the values across 
each disconnected breaker were recorded. In order to obtain an accurate, but still practical threshold value the 
threshold was selected for the case when 95% of the disconnected values were above the threshold. The algorithm 
calculates and outputs in batches as to avoid memory overflows. The batch size can be tuned to fit best fit your 
computer specifications. 
 
The function outputs a file called Outputs_Disc#.csv, where # is the current batch number. 
 

 
 

The first column the contains information about which breaker and substation the data is from. The second column 
details the current breaker status on/off configuration of the substation. The 3rd and 4th column show the voltage 
angle and magnitude variation across the breaker respectively. For the test system, if this data is plotted the results 
can be seen below in the form of a histogram of angle differences and an empirical CDF. 
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The results for the test system indicate an angle threshold of about 1.0 degrees. This result is large enough such that 
most measurement errors will not have significant impacts on the estimation. There are still many cases were 
disconnected breakers will have a variation less than this value, but most cases are captured correctly. 
 
The Core Algorithm for Determining Bus-Branch Topology: 
 
As of now, the algorithm has been implemented in python, but is still being worked upon the conversion of the code 
into C# for use with the openECA platform. The algorithm currently makes use of simulated power flows to check 
the accuracy of the algorithm with the help of following modules in python. 
 
GenerateData.py 
Data is generated through the GenerateData.py function, this function generates many power flow cases with 
separate configurations and applies measurement errors to the data. The outputs of this function are Voltages.csv, 
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Voltages_1.csv, Voltages_3.csv, and gendata_outputs.csv. Voltages contain the true voltage measurements, where 
the 1 and 3 indicates the total vector error percentages applied to the data following a normal distribution to 
emulate real time phasors with errors. gendata_outputs.csv contains system information including the breaker 
information and the system load and which substations configuration was altered. 
 
DetConnec.py 
The core algorithm of this analytic makes use of the threshold previously calculated to determine the topology in 
the system. The functions which determine the connections within a substation are implemented as functions in 
DetConnec.py, which are called in the main function of  
 
TopologyEstimation.py. 
DetConnec.py contains two functions, DetConnec_Real which determines the actual connections in the system and 
DetConnec_Est which is the algorithm that estimates the value. 
The algorithm follows these follow steps: 
 

Step 1: Check if the node is energized or not based on the Voltage at the node 
Step 2: Check for available breaker telemetry and assigned breaker statuses 
Step 3: Use Voltage values to infer missing breaker statuses or to check existing breaker status based on 

threshold previously calculated 
Step 4: Construct bus/branch model from nodes using resultant breaker statuses 

 
The results are output into EmpiricalEstimation.csv. The results are displayed for each row, where a 1 indicates a 
successful estimation and 0 indicates an unsuccessful topology estimation. The accuracies of the algorithm for the 
test system are: 

Standard Accuracy = 0.927620708647 
1% Error Accuracy = 0.918097117679 
3% Error Accuracy = 0.572861208004 

 
The plots for each individual substation’s errors are shown below: 
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7 REGIONAL VOLTAGE CONTROL 
The detailed concept of this analytic is illustrated in Figure 1.  As shown, the analytic is divided into two parts: online 
and offline. The offline adapter is implemented to create/update decision trees based on EMS data snapshot. When 
the tree is created/updated, they are mapped into the online adapter which is running as a module in openECA. 
Synchrophasor measurements will fall into the tree and provide VSA for each control combinations.  
 

 
Figure 1  Regional Voltage Controller Analytic Concept 
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Test 1: Parallel Trees 
 

Base Case and OC Generation 
 
The IEEE 118 bus system is used for case study. The system is divided into 3 areas. Load buses within each area are 
assumed to have the same loading pattern that the load is scaled up and down in the same percentage. The 
generator is re-dispatched the same amount of the load as the load changed within the same area. The base case is 
generated by scaled down 5 percent of the total load. 

 
Figure 2  IEEE 118 bus system 

 

Code 
Under folder Test1\ TrainingCaseCreation 
Run IEEE118_voltage_violation_load_genchange_measurements.py to create 
measurements: databaseMeasurements 
 
Run IEEE118_voltage_violation_load_genchange_LabelsOC_CapbankSwitch.py to 
create labels for all 64 control combinations (index 0 represents there is no control) 
For example: database_OC_PostControl_0.csv 
 
Copy 64 database_OC_PostControl_#.csv files to folder : Test 1\ParallelDecisionTrees 
 
Under Folder: Test 1\ParallelDecisionTrees 
Change  dir for both MATLAB script Main_CreateDatabase.m and 
Main_CrossValidationDecisionTree.m 
Run Main_CreateDatabase.m to create OCs 
Run Main_CrossValidationDecisionTree.m to do crossvalidation 
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Voltage magnitudes at all buses are selected for learning database generation. In this case, the control options are 
fixed capacitor banks only which are located at buses 34, 44, 45, 48, 74, and 105. In the initial condition, all selected 
fixed capacitor banks are switched off. 
 

Table 1 Capacitor Bank Available for Control 
Bus Number Capacity of Capacitor Bank (MVar) 
34 50 
44 50 
45 50 
48 100 
74 100 
105 20 

 
Overall, 25000 OCs are generated by scaling up the loads within 100% - 150% of their base case value for each area. 
The outputs of generators re-dispatch the same amount of load in the same area. VSA is implemented to determine 
the secure and insecure OCs. In this work, it is assumed that the load capacity limit and the secure operation limit 
mentioned in section 2 are overlapping. The unstable OCs are removed from the initial database, since they cannot 
provide useful information about the system condition. For all of these secure/insecure OCs, 60% of them are used 
for training while the rest of them are reserved for periodic update and testing. The initial trees are trained offline. 
For example, in the database for switching cap bank at 44 on, the number of secure and insecure OCs are shown in 
Table 2. 
 

Table 2 Number of secure/insecure OCs 
OC Training Testing and Update 
Secure 9948 6615 
Insecure 2199 1483 

 
Their cross validation accuracies for all 63 control combinations are shown Figure 3. As it can be seen, the low error 
rates of cross validation indicate that the trained tree is able to provide accurate VSA for each control decision.  

 
Figure 3  Cross-validation error rate 



openECA Alpha Test Results 

April 2017  Page 22 

Test 2: Online Boosting 

 

Periodic Update Using Online Boosting 
 
In this section, control decision by switching on capacitor bank at bus 44 is selected for classifier performance 
evaluation. The initial tree is trained based on the offline Adaboost method [9] incorporated with 30 weak learners, 
and the number of selectors is also 30. 
 
Transmission line between bus 15 and 33 is tripped on the test system. New training cases and test cases are 
created using the proposed approach in the previous sections but with a different system topology. 4000 of these 
new cases are used for the periodic update, and another 4000 of them are reserved for online validation. Among 
these new cases, 82% of them are secure OCs while the rest of them are insecure OCs. The performance of online 
boosting approach is evaluated by comparing it with single decision tree training using default MATLAB tree training. 
The computation time and misclassification error rate are recorded and illustrated in Figure .  The online boosting 
scheme turns out to be more accurate than single DT training while the computation time spent by online boosting 

Code 
Under folder Test2\ TrainingCaseCreation 
Run IEEE118_voltage_violation_load_genchange_measurements.py to create 
measurements 
 
Run IEEE118_voltage_violation_load_genchange_LabelsOC_CapbankSwitch.py to 
create labels for all 64 control combinations (index 0 represents there is no control) 
 
Copy the csv files: database_OC_PostControl_16.csv and 
databaseMeasurements_topologyChange.csv to folder: Test2\OnlineBoosting 
 
Copy the .mat files: xtrain.mat, xtest.mat,ytrain.mat,and ytest.mat from folder   
Test1\ParallelDecisionTrees\case_16 to folder Test2\OnlineBoosting 
 
Under folder Test2:OnlineBoosting 
Run  Main_CreateDatabase.m to create post-topology change test and training 
data as  xtest_afterTopologyChange.mat, xtrain_afterTopologyChange.mat,  
ytest_afterTopologyChange.mat, and ytrain_afterTopologyChange.mat 
 
Run Main_initializeTreeStumps.m to create TreeStumps.mat 
Run Main_onlineBoost.m to update the Adaboost trees 
(To shorten the simulation time, the variable in Main_onlineBoost.m: 
NumberofDataforTreeUpdate is set as 1000, The maximum you can set is 4000) 
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for tree update is much less than re-training tree from scratch. The computation is run under the environment of 
MATLAB on a workstation with Intel Core i7-4790 3.6 GHz CPU and 32 GB memory. 

 
Figure 4 (a)  Computation time for tree update 

 

 
Figure 4 (b) Test error rate for online boosting and single DT training 

 
From Alpha to Beta 
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In the Beta version, the Regional Voltage Controller analytic will be running on openECA platform while the input 
measurements will be simulated using real time PMU simulator. This section presents one of the test cases to be 
conducted in the Beta version and the preliminary test result without real time simulator (the real time simulator 
will be available soon). The objectives of this test case is to verify if the controller can identify the insecure voltage 
operating condition and switch ON the minimal capacitor banks to control the system.  
In this test, the regional voltage controller analytic is completely converted into C# code. According to the control 
logic of the analytic, the control decision is generated based on the measurement streamed from the openECA 
platform. Each the control decision for one frame is logged as an *.xml file in the “Log” folder in the main analytics 
solution directory. 
 
Figure 5 (a) – (c) show the result of voltage magnitude on the buses of capacitor banks using PSS/E to simulate the 
regional voltage control under a load-increasing circumstance of the system. All the capacitor banks are switched off 
and are available for further control. For each frame, the regional voltage controller adapter initially assess the 
security status based on the voltage measurement values from all buses. When an insecure voltage status is 
detected, the controller returns a control decision to switch on the necessary capacitor bank; for instance, the 
“CtrlDecisionMessage” shows that the CapBank #6 is switched on at the frame 2 in Figure 5 (a), so on and so forth 
for the following 2 control decisions. 
 

 
Figure 5 (a) Test Case of Regional Voltage Controller – Control Decision I 
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Figure 5 (b) Test Case of Regional Voltage Controller – Control Decision II 

 

 
Figure 5 (c) Test Case of Regional Voltage Controller – Control Decision III 
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8 LOCAL VOLTAGE CONTROL 
 
The demonstration is conducted based on two platforms: PSSE and C# as shown in Figure 2. The PSSE model is 
simulating the power system that provides measurements as input signals for the voltage controller written in C#.  
When the logic is triggered inside the voltage controller, the control signal will be sent back to PSSE and execute the 
control decision.  

 
Figure 2 Cross-Validation 

 
Note:  

1. The python programs are written based on PSSE 34 API. If you are using PSSE 33, please change the PSSE 
settings: import psse34 to import psse.  

2. To test a specific case, please open the C# code and navigate to the main adapter: 
VoltVarControllerAdapter. Change the path name to a specific test folder. The figure below shows the test 
path for Test4.  

 

 
3. Click run, then you are supposed to see the program is continuously generating xml files in the data folder 

and logs folder. The program is designed to run 30 time instance only, so there will be 30 xml files 
generated in total. 
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4. To check the measurements, please open the csv files inside the data folder for a specific test. For example, 
the voltage measurement for 115 kV bus in Farm substation is stored in the 19th column of the 
transformer1.csv with a name called VoltsV. 

 
Transformer Tap Changing 
 
In this section, the simulation is conducted to demonstrate the control logic for the load tap changers. The tap 
position for both transformers are initialized as 0 while the tap limit position is ±16. The low and high voltage limits 
of both transformers is set to 114 kV and 116 kV respectively. 
 
Test 1: Both Transformers’ Voltages Reach Lower Limits 
 
Step 1: Run DVPScaleLoad_CreateBenchMarkModel.py  
 
The script will scale up the load at buses: 314691, 314692, 314693, 314694, 314695 for 350% and thus create a 
benchmark model with voltage at bus 314691 less than 115 kV. 
 

Step 2: Set “TapV” for both transformers in configuration and csv files into 0 
 
If the tap positions are initialized as 0, both transformers are unable to reach the highest tap position settings, which 
is 16. As load increasing continuously, the voltage controller is capable to regulate to a preferable voltage magnitude 
with tap changers’ operations from both transformers. 
 
Step 3: Navigate to the directory of C# scripts of Voltage Controller, run the solution file VoltController4.sln under 
the Microsoft Visual Studio environment.  
 
It generates a series of operation condition frames according to different load settings during the voltage control 
stage.  
 
Comment: From the results in transformer1.csv, plot the voltage magnitudes and the values for tap changer for this 
transformer. Figure 5 indicates the changes of voltage magnitude and tap position. As the load demand kept rising, 
the figure has shown two times of touches of the lower limit 114 kV at time instances 6 and 21, each of which has 
triggered tap changing in both transformers due to the sufficient spare amount to the highest tap position. 

 
Figure 3 (a) Test 1: Both Transformers’ Voltages Reach Lower Limits 
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Figure 5 (b) Test 1: Both Transformers’ Voltages Reach Lower Limits 

 
Test 2: One Transformer’s Tap Reaches the Limit 
 
Step 1: Set “TapV” for transformers in configuration and csv files into 14 and 15 
 
The second transformer is able to reach the highest tap position 16 first, then regulate to a preferable voltage 
magnitude coordinated by both transformers’ tap changers. 
 
Step 2: Navigate to the directory of C# scripts of Voltage Controller, run the solution file VoltController4.sln under 
the Microsoft Visual Studio environment. It generates a series of operation condition frames according to different 
load settings during the voltage control stage.  
 
Comment: From the results in transformer2.csv, plot the voltage magnitudes and the values for tap changer for this 
transformer. Figure 6 indicates the changes of voltage magnitude and tap position. As the load demand kept rising, 
the figure has shown two times of touches of the lower limit 114 kV at time instances 6 and 21, and the second 
transformer changed its tap position at the time instance 6. However, at the time instance 25, even if the voltage 
has dropped below the lower limit, due to insufficient tap changing at this time, the voltage continued to drop, 
which reveals the unavailability of tap changings to maintain the voltage level at a preferable range.  
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Figure 4 (a) Test 2: One Transformer’s Tap Changer Reaches the Limit 

 

 
Figure 6 (b) Test 2: One Transformer’s Tap Changer Reaches the Limit 

 
Capacitor Bank Switching 
 
In this section, the simulation is conducted to demonstrate the control mechanism for two capacitor banks. While 
the load is being increased by 3% in each step, the control decisions of these two capacitor banks are achieved 
when the voltages at their related buses reach the lower limit, which is 113.5kV. 
 
Test 3: Capacitor Bank Switch On when Load Increase 
 
Step 1: Run DVPScaleLoad_CreateBenchMarkModel.py 
 
The script will switch off both capbanks at buses 314521 and 314519. 
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Step 2: Initialize the capacitor bank breaker configuration (CapBkrV) for both capacitor banks as “TRIP” in 
CapBank1.csv and CapBank2.csv files. 
 
Both capacitor banks are currently on standby status. As load increasing continuously, the voltage controller is 
capable to regulate to a preferable voltage magnitude with operations of capacitor banks’ breakers to put capacitor 
banks online. 
 
Step 3: Navigate to the directory of C# scripts of Voltage Controller, run the solution file VoltController4.sln under 
the Microsoft Visual Studio environment. It generates a series of operation condition frames according to different 
load settings during the voltage control stage.  
 
Comment: From the results in CapBank1.csv and CapBank2.csv, plot the voltage magnitudes values for the capacitor 
banks, as shown in Figure 7 (a). In  (b), “1” indicates the capacitor bank’s breaker is closed, and “0” indicates 
otherwise. As the load demand kept rising, the figure has shown that at the time instance 2, due to the high-load 
setting, the voltage at the controlled bus of the capacitor bank 1 has significantly dropped to 111.11kV, then the 
voltage controller decided to close one of the capacitor bank breaker and raised up the voltage at the time instance 
3. Such process occurred again at the time instance 29, the voltage controller closed the capacitor bank 2’s breaker, 
after the voltage at the controlled bus of capacitor bank 2 dropped to 113.49kV (< 113.5kV). In addition, at the time 
instance 6, because the tap-changing operation occurred after a certain amount of time delay, the voltages are 
dropped subtly at both controlled buses. 
 

 
Figure 5 (a) Test 3-Voltage 
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Figure 7 (b) Test 3- Capbank Breaker Status 

 
Test 4: Capacitor Bank Switch Off when Load Decrease 
 
Step 1: Run DVPScaleLoad_CreateBenchMarkModel.py 
 
The script will scale down the load at buses: 314691, 314692, 314693, 314694, 314695 for 10%, such that create a 
benchmark model with voltage at bus 314519 higher than 117 kV. Both capbanks’ breakers are set as closed.  
 
Step 2: Initialize the tap changers configurations for both transformers as 0, the original tap position for LTC in 
transformer1.csv and transformer2.csv files,  
 
Both transformers are unable to reach the highest tap position setting, which is 16. Besides, initialize the capacitor 
bank breaker configuration (CapBkrV) for both capacitor banks as “CLOSE” in CapBank1.csv and CapBank2.csv files. 
As load decreasing continuously, the Voltage Controller is capable to regulate to a preferable voltage magnitude 
with the comprehensive operations of transformers’ tap changing and closing/tripping capacitor banks. 
 
Step 3: Navigate to the directory of C# scripts of Voltage Controller, run the solution file VoltController4.sln under 
the Microsoft Visual Studio environment. It generates a series of operation condition frames according to different 
load settings during the voltage control stage.  
 
Comment: From the results in transformer1.csv, plot the voltage magnitudes and the values for tap changer for this 
transformer. Figure 8 indicates the changes of voltage magnitude, the tap positions, and the status of capacitor 
banks’ breakers. At the beginning, a significant load drop occurred at the time instance 2, which led to a 
considerable voltage increased to 117.4kV, then intermediately triggered the operation of tripping one capacitor 
bank according to the voltage controller mechanism. As the load demand kept dropping, the figure has shown a 
touch of the upper limit 116.1kV at the time instance 5, which has triggered tap changing to a lower position in both 
transformers. 
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Figure 6 (a) Test 4 – Voltage 

 

 
Figure 8 (b) Test 4 – Tap position 
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Figure 9 (c) Test 4 – Capbank Breaker Status 

 
From Alpha to Beta 
 
In the Beta version, the analytic will be running on openECA platform while the input measurements will be 
simulated using real time PMU simulator. This section presents the tests to be conducted in the Beta version and 
the preliminary test results without real time simulator (the real time simulator is arriving soon).  The simulation 
result includes four tests for the Local Voltage Controller, driven by the synchrophasor streams from openECA 
platform. The objectives and the configuration files for these tests are listed in the following table.  
 

Test Objectives 

1 
Verify if the controller can RAISE both transformers' taps when voltages on both buses are 
lower than the limit (VLLIM = 114.5kV) 

2 
Verify if the controller is still able to operate (VLLIM = 114.5kV), when the other 
transformer's tap has reached the highest tap position (16) 

3 
Verify if the controller can switch ON the capacitor bank when the voltage in Pamplin 
substation reach the lower limit (Clov = 113.5kV) 

4 
Verify if the controller can switch OFF the capacitor bank when the voltage in Crewe 
substation reach the higher limit (Chiv = 119.7kV) 

 
According to the control logic of the Local Voltage Controller, the analytics is going to decide based on the 
measurement streamed from the openECA platform. All the control decisions generated by the Local Voltage 
Controller are logged in the “CtrlDecisionLog_***_2017****_ *********.xml” files under the “Logs” folder. To fully 
reveal the process regarding to the control analytics, the program’s main window monitors the tap positions of 
transformers, the breaker status of capacitor banks, and the voltage values on the buses of both transformers and 
capacitor banks. Besides, the Local Voltage Controller’s decisions under the control logic are outputted to the main 
window of OpenECA Client Application. 
 
Test 1: Operation of Load Tap Changers on Both Transformers 
 
In this section, the simulation is conducted to demonstrate the control logic for the load tap changers (LTCs). The 
tap position for both transformers are initially configured as 0 in the Configurations_test1.xml file, while the tap 
limit position is ±16. The lower and higher voltage limits of both transformers are set as 114.5 kV (VLLIM) and 116 kV 
(VHLIM) respectively, under the tab of VoltVarController>>SubstationAlarmDevice in the *.xml file. 
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Test 4 - Capbank Breaker Status
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Scenario A: Both Transformers’ Voltages Reach Lower Limits 

1. There is a low-voltage incident is going to occur on the buses of the Farmville substation. After running the 
program, on the main window of OpenECA Client Application in Fig.1(a), we can see there is a key frame 
(highlighted) that the Local Voltage Controller decides to raise the load tap changers for both transformers 
due to the voltage for the next frame is below the configured lower limit, 114.5kV.  

2. Subsequently, because of the setup delay for the load tap changers, the tap position values maintains at 1 
for three frames. This situation is shown on the main window with the demonstration of “Not enough 
Counts yet = [1/3]”, in which 1 indicates the current count of delay, and 3 indicates the maximum count 
needed to exit the delay.  

3. Finally, after the Local Voltage Controller made a decision to raise the load tap changers’ position on both 
transformers from 5 to 6, there is a mechanism (highlighted with red arrows) prevents the raise of tap 
position since the tap positions are too far apart from the initial position, see Fig.1(b). 

 

 
Fig. 1(a)  Main Window Snapshot in Scenario A 
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Fig. 1(b)  Main Window Snapshot in Scenario A 

 
Scenario B: Operation of Load Tap Changers on Only One Transformer 
 

1. Similarly to Scenario A, a low-voltage incident is going to occur on the buses of the Farmville substation in 
this situation. However, in this case, only one transformer is able to raise the load tap changer since the 
other one has already been raised to the highest tap position. On the main window of OpenECA Client 
Application in Fig.2(a), we can see there is a key frame (highlighted) that the Local Voltage Controller 
decides to raise the load tap changers from 12 to 13 due to the voltage for the next frame is below the 
configured lower limit, 114.5kV.  

2. Subsequently, because of the setup delay for the load tap changers, the tap position values maintains at 1 
for three frames. This situation is shown on the main window with the demonstration of “Not enough 
Counts yet = [1/3]”, in which 1 indicates the current count of delay, and 3 indicates the maximum count 
needed to exit the delay.  

3. After 3 frames of delays (highlighted with blue arrows), both load tap changers have reached the highest 
tap position, 16, in this case, none of further controls could be made to ameliorate such a low-voltage 
situation, see Fig.2(b). 
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Fig. 2(a)  Main Window Snapshot in Scenario B 
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Fig. 2(b)  Main Window Snapshot in Scenario B 

 
 
Test 2: Operation of Capacitor Banks’ Breakers 
 
Scenario A: Switch On the Capacitor Bank’s Breaker due to Low-Voltage  

1. In this situation, there is a low-voltage incident is going to occur on the buses of Farmville substation which 
is near the Pamplin substation. Both the capacitor banks breakers’ values of Pamplin substation and Crewe 
substation are initially set as “0”, indicating the capacitor breakers are open, and the capacitor banks are 
operating offline.  
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2. After running the program, on the main window of OpenECA Client Application in Fig.3, we can see there is 
a key frame (highlighted) that the Local Voltage Controller decides to close the breaker of the capacitor 
banks of Pamplin substation, because the voltage value has decreased to 113.438kV, which is lower to the 
lower limit of 113.5kV for the capacitor bus. 

 

 
Fig. 3  Main Window Snapshot in Scenario C 

 
Scenario B: Switch Off the Capacitor Bank’s Breaker due to High-Voltage  
 

1. In this situation, there is a high-voltage incident is going to occur on the buses of Farmville substation, 
which is near the Crewe substation. Both the capacitor banks breakers’ values of Pamplin substation and 
Crewe substation are initially set as “1”, indicating the capacitor breakers are closed, and the capacitor 
banks are operating online.  

2. After running the program, on the main window of OpenECA Client Application in Fig.4, we can see there is 
a key frame (highlighted) that the Local Voltage Controller decides to trip the capacitor banks of Crewe 
substation, because the voltage value has increased to 119.802kV, which is higher to the higher limit of  
119.7kV for the capacitor bus. 
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Fig. 4  Main Window Snapshot in Scenario D 

 
  



openECA Alpha Test Results 

April 2017  Page 40 

9 PMU SYNCHROSCOPE 
The Goal is to develop a generalized tool to provide synchroscope functionality to a remote location overcoming 
communication (and other) delays by estimating end-to-end delays and predicting closing time through:  

• Manual (computer supervised) controlled close 
• Automatic (computer actuated) controlled close 
• Block control when parameters are out of bounds 

 
In other words, the analytic should be able to connect to a stream of synchrophasor data from the openECA 
platform and send control signals back to the openECA from a remote location. For the Alpha version of the 
Analytic, a mockup application showing measurements and controls had been designed. A constant delay (in 
milliseconds) is introduced. In the future, estimation of this delay along with its distribution will be included along 
with actual data measurements from a simple predefined model. 
 
Synchronizing Method: 
 
To synchronize two separate islands, we need to retrieve voltage phasor measurements and frequency at Bus A and 
B. Cumulative Delays are calculated depending upon network configuration and traffic of the path adopted. (To be 
tested first with constant delays). Following the procedure as stated before, we calculate Advanced Angle of 
operations considering delays and difference in Voltage angles. Depending upon power flow requirements extra 
constraint can be added to the algorithm for fincoming>fReference. Also δlim window for angle would also be 
modified based upon the Adv. Angle. 
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Figure 1: Two islands to be synchronized by closing breaker between Bus A and Bus B 
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Initial Mockup: 
 
The initial Mockup for the Alpha Test was uploaded on Github. A simple Rotating Synchroscope Mockup Application 
(without any stream of Data) is built. Run the VSynchroscope.cs file to open the application and its associated code. 
Once the application is run the following window pops up as shown below. Selection between Auto and Manual 
Mode is provided left to the discretion of the user. Manual Mode of Operation is only shown as of now. Voltage and 
Frequency measurements are displayed at the top for both the Reference phasor and the incoming phasor. The 
breaker command controls are at the bottom of the mockup.  
 
Voltage magnitude and Frequency can be regulated as seen from the output of the program. The size of the Voltage 
phasor would change depending upon the predetermined increment. In this version, one click is set to change 
0.05/3 pu (i.e. 3 clicks changes 0.05 pu of V_mag). Also frequency can be regulated depending upon which the 
voltage phasor may either rotate slowly or even in the opposite direction depending upon whether it is greater than 
or lesser than the Reference frequency (One click changes 0.033 Hz of slip). Depending upon whether Voltage 
magnitude and frequency difference tolerance limits are satisfied, indications are displayed. (Green-Satisfied, Red-
Not satisfied). 
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A constant delay (of 500 milliseconds) has been incorporated in our mockup. Depending upon the slip frequency 
and this delay and using the equation as shown earlier, the Advanced Angle is calculated and displayed and thus the 
modified tolerance window is formed. Any breaker close command within this window will result in the closing of 
the synchronizing breaker within the actual tolerance window subjected to the fact that all other requirements were 
met during breaker close command initiation i.e. breaker close Command can only be initiated when all the criteria 
are met. 
 

 
 
Indication for Successful Synchronization would be reflected in the center (Color Change from Green to Red) 
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In the Alpha Version of the analytic, the functionality of such a remote synchroscope is depicted without any stream 
of data. Ideally the incoming phasor is supposed to run at a greater frequency than the Reference phasor so that 
power would flow from island of incoming phasor to island of Reference phasor. But in our analytic it can be done 
either ways (forward/reverse synchronization). Depending upon requirements, reverse synchronization (counter-
clockwise rotation mode) may be switched off. 
 
From Alpha to Beta 
 
In the Beta version, the analytic will be running on openECA platform while the input measurements will be 
simulated using real time PMU simulator. This section presents the preliminary results without real time simulator 
and using sample data from the openECA platform. 
 
Run the solution file of the C# project VoltageInput_Synch as uploaded. The code for running the synchroscope 
analytic Windows form application with the help of openECA is developed. Sample data representing two buses in 
an electric system is derived from the openECA platform and integrated to our Windows form Application (Files 
uploaded in GitHub Folder).  
 

 
 
As seen from the figure above, sample data for Voltage Magnitude and Angle values from two buses are streaming 
into the application and as per the angular difference and frequency slip between two buses, the incoming phasor 
rotates. 
 
As we are streaming the data as of now, the controls on the voltage magnitude could not be made possible and thus 
additional alarm spaces have been included which mentions by how much the voltage and frequency must be 
changed to bring it back within limits or not. 
 
Also for the sake of proper depiction of the functionality of the analytic, frequency input is a user provided quantity 
which can be changed at user’s will (later it would be the real time frequency from the system) according to which 
the incoming phasor rotates as well as the angular difference between the two buses increases and decreases 
periodically.   
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Auto and manual mode are being implemented. Auto mode will constantly check for the incoming phasor to be 
within the tolerance windows and would initiate the breaker close command once the criteria are fulfilled such that 
synchronization occurs at the 12 o’clock position automatically and switch to manual mode for further actions if 
needed by the user. 
 

 
 
Thus tests that were proposed to be conducted have been complied with and verified. 

Test 1:  Proper Depiction: The analytic would be tested whether it successfully represents the real time 
measurements in the form of phasors along with accurate rotation of incoming phasor proportional to slip 
frequency with regards to reference phasor. 
Test 2: Annunciation Display: It would be verified if Proper alarms are raised for meeting the criteria for 
successful synchronization along with checklist for the same. 
Test 3: Compatibility with openECA. 

 
Work relating to further modifying the analytic representation along with plotting real time values of Voltages and 
frequencies along with error models is in progress and would be completed in the near future. The analytic would 
next be tested with the Opal RT phasor simulator to check its accuracy in the synchronizing process. 
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10 CT/PT CALIBRATION 
In order to realize the analytic of instrument transformers(CT/PT) calibration, we firstly use PSS\E to conduct the 
power flow of the IEEE standard 118-bus system to gather the simulated voltage and current data; then, realize the 
functionality including system topology analysis, single transmission line CT/PT calibration, and whole system 
calibration on Matlab to validate the methodology. The alpha version program is designed to be operating without 
openECA platform. 
 
Program Details (Alpha Version) 
 
Program Process 

1. PSS\E power system operation simulation 
Use PSS\E to conduct power flow based on the IEEE 118-bus power system and the morning load pick-up 
curve to generate the voltages of the 345KV buses and currents flowing though corresponding transmission 
lines. 

 
2. Raw data processing 

Read in CSV file generated by Python and PSS\E. 
 

3. Building error model (For test plan) 
Add CT/PT measurement errors and PMU errors to the raw data of voltages and currents based on the 
derived error model; record the positive sequence errors and the true line impedance and susceptance. 

 
4. System topology analysis 

Analyze the system topology based on the from-bus and to-bus information of the concerned lines; find the 
order of calibration propagation. 

 
5. CT/PT calibration 

Conduct the CT/PT calibration starting from the 345KV bus and corresponding line that equipped with 
revenue transducers; use the injection propagation method aforementioned to calibrate the whole 345KV 
system. 
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Test Results(Alpha Version) 
 
Data Structure 
 
The data structure of the alpha version controller is shown as follows: 

Data Set Single Line Data

From Bus Complex Voltage Set

From Bus Complex Current Set

To Bus Complex Voltage Set

To Bus Complex Current Set

Line Impedance

Line Susceptance
 

System Topology Connection Component

Root Bus

From Bus Number

To Bus Number

Line Number

Parent Bus 1

Parent Bus n

Line_m Info

Line_m Info

...

...
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Data Flow 

PSS\E Simulation

CSV Adapter

CSV File

Raw Data Processing

VI Measurements

System Topology AnalysisLines Data Set

Line Information

Start Estimation Process

System Topology

Accurate Bus
 Information

Accurate Line CT/PT Calibration

Finding All connected Lines

Voltage Propagation

Consecutive Line CT/PT 
Calibration

Output Results
 

 
 
Calibration Test Results 
 
Raw Data Generation 
In this section, the PSS\E simulation is conducted to generate voltage and current data of the concerned power 
system. The PSS\E is accessed through Python. 
 
Step 1: Locate in to the folder maned as Step_1_VI_Acquisition; run the file IEEE_118_data_generation_main.py to 

start generating voltage and current measurements data. 
 
Step 2: The generated voltage and current data can be found in the file named as 

VI_Measurement_All_345KV_Buses_Peak.csv; copy this file and paste it into the Step_2_Error Model folder. 
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Error Model Construction  
 
In this section, the CT/PT and PMU errors are added into the simulated data to construct the error model. 
Step 1: Run Matlab_CSV_adapter_IEEE_118.m through Matlab to acquire the bus information, voltage and current 

simulated data from the CSV file, VI_Measurement_All_345KV_Buses_Peak.csv; the results include  
1) the 345KV bus number set, saved in Bus_number_set_345KV.mat,  
2) the true values of the positive sequence voltages on each 345 KV buses, saved in 

V_true_value_positive_sequence.mat,  
3) the true positive sequence currents flowing through all the lines, two-winding transformers, and three-

winding transformers connected to the 345KV buses, saved in I_true_value_positive_sequence.mat, 
I_true_value_positive_sequence_trn.mat, and I_true_value_positive_sequence_gen.mat respectively,  

4) the from-bus numbers and to-bus numbers of each transmission line, two-winding transformers, and 
three-winding transformers connected to the 345KV buses, saved in line_bus_info_all_lines.mat, 
line_bus_info_trn.mat, line_bus_info_gen.mat. 

Step 2: Run Line_data_generation_IEEE_118.m through Matlab to acquire the power system network information, 
save the true value of the voltages and currents of each line or transformer equivalent line, and construct 
the error model introduced previously; the network information is saved in AC_line_info.mat which is 
formed as 11 column vectors, i.e. [line number, line ID, line type, from bus number, KV1, KI1, to bus number, 
KV2, KI2, Z, y], as well as the bus number information of all the 345KV transmission lines, saved in 
line_bus_info_345KV.mat; each transmission line or transformer equivalent line is assigned a line number, 
and the three-phase true value of the voltages and currents of each line is saved in the files named as 
line_(line number)_true_3_phase.mat; the true positive sequence values are saved in the files named as 
line_(line number)_true_positive_sequence.mat in the format of [from-bus voltages, from-bus currents, to-
bus voltages, to-bus currents]; the positive sequence values added errors are referred to as measured value 
and are saved in the files named as line_(line number)_measured_positive_sequence.mat with the same 
format as true value files; the total line number is 24 in the test case.  

 
Step 3: Run True_impedance_calculation_IEEE_118.m through Matlab to acquire 345KV transmission lines’ 

impedances and susceptances and assign such data to the 10th and 11th column of AC_line_info.mat 
respectively and save the AC_line_info matrix in the file AC_line_info_true_value_Zy.mat. 

 
Step 4: Copy the following files and paste it into the Step_3_CTPT Calibration folder: 

AC_line_info_true_value_Zy.mat,  
Bus_number_set_345KV.mat,  
line_(every linenumber)_measured_positive_sequence.mat, 
line_(every line number)_true_positive_sequence.mat, 
line_(every line number)_true_3_phase.mat (optional), 
line_bus_info_345KV.mat. 

 
CTPT Calibration 
 
In this section, the CT/PT calibration is conducted based on the simulated data throughout the 345KV subsystem 
within the IEEE 118 system. 
 
Step 1: Run CT_PT_calibration_IEEE_118.m through Matlab to start the impedance calibration process; notice that 

only run the following part of the code at the first time of the tests based on the same accurate bus to save 
the original voltage and current data of that bus and corresponding line. 

%----------------------------------------------------------------------------------------------------------------------------------% 
line_name=['line_',num2str(original_accurate_line_number), '_measured_positive_sequence.mat']; 
VI_origin_struct=load(line_name); 
VI_measurement_set = VI_origin_struct.VI_measurement_set; 
line_name=['line_',num2str(original_accurate_line_number),'_measured_positive_sequence_origin.mat']; 
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save(line_name,'VI_measurement_set'); 
%----------------------------------------------------------------------------------------------------------------------------------% 
 
Step 2: The Results are saved in the file named as line_estimation_results.mat in the form of [line number, from bus 
number, KV1_hat, KI1_hat, to bus number, KV2_hat, KI2_hat, Z, y], and the errors of the calibration are shown in the 
command window of Matlab as attached table. 
 
CTPT Calibration Results Analysis 
 
For some of the lines in IEEE 118 bus system, there are generators that connect to the relevant buses directly, which 
is not feasible in real-world power system. There is a good reason to believe that such scenario that generator -> 
line -> bus -> line -> bus connection should has negative influence to the estimation accuracy. That is why the 
estimation results of the Line 7 current correction factors are larger than other lines. Besides, given the propagation 
process, the estimation error of the previous pi-section will surely affect the consecutive ones, i.e. accumulation 
effect of the errors. Therefore, the later the lines are visited, the larger the estimation errors will be. For the further 
versions of the application, the algorithms will be improved to provide more accurate results. 
 

line_number KV1_error KI1_error KV2_error KI2_error 

___________ _______________________ _______________________ _______________________ _______________________ 

10 0+0i 0.00040057+0.00013761i 1.6929e-06+8.4113e-07i -0.00021291+0.0011885i 

9 8.584e-07+6.792e-07i -2.4843e-05+4.6566e-05i 1.3021e-06+5.2792e-07i -5.503e-05-2.2845e-05i 

6 1.0863e-07+5.7767e-07i -0.00033709+0.0012504i -0.00013771+0.00012165i -0.00086444+0.00077404i 

8 5.3731e-07+4.4439e-07i -0.012391-0.0032769i -4.4827e-05-2.9944e-05i -0.01115-0.0046912i 

5 -0.00014586+0.00011735i 0.00028095-0.0003915i -0.0001269+0.00012148i 6.8097e-05-0.00099755i 

7 -4.4232e-05-3.0314e-05i -0.14917+0.037664i -0.00044129+7.6225e-05i -0.14002+0.019552i 

2 -0.00013314+0.00011124i -0.00037344+0.0011114i -0.00015294+0.0001398i 0.00016024+0.0015098i 

4 -0.00012835+0.00011273i -0.0019483-0.00053381i -0.00021409+0.00013982i -0.0019852+0.00025517i 

1 -0.00014735+0.00014621i 0.00025017-6.2754e-05i -0.00013432+0.00013596i 0.00018329-0.00017233i 

3 -0.00013189+0.00014263i -0.0004051-0.0009068i -0.00014682+0.00013647i -0.00071951-0.00069915i 

 
From Alpha to Beta 
 
Application Realization 
 
The alpha version of the application is built on the Matlab platform. The calculation are based on the input data 
from CSV files. 
 
For the beta version, the openECA platform will be integrated into the application. The input data will be formed as 
the standard measurement streams on openECA. C# project will be developed based on the data feeds from the 
openECA. The system configuration will be created and analyzed. The functionality of the CT/PT Calibration will also 
be realized as C# code. 
 
The similar functionality test on Alpha version will be conducted again on the C# project. 
 
User Interface Design and Realization 
 
The user interface will be developed. Such interface will be designed as a universal media of all the three analytics 
including CT/PT Calibration, Transmission Line Impedance Calibration, and Real-time Impedance Calculation. The 
system topology will be demonstrated and the calculation results of different analytics will also be demonstrated. 
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From Alpha to Beta 
 
Application Realization 
 
The alpha version of the application is built on the Matlab platform. The calculation are based on the input data 
from CSV files. 
 
For the beta version, the openECA platform will be integrated into the application. The input data will be formed as 
the standard measurement streams on openECA. C# project will be developed based on the data feeds from the 
openECA. The system configuration will be created and analyzed. The functionality of the CT/PT Calibration will also 
be realized as C# code. 
 
The similar functionality test on Alpha version will be conducted again on the C# project. 
User Interface Design and Realization 
 
The user interface will be developed. Such interface will be designed as a universal media of all the three analytics 
including CT/PT Calibration, Transmission Line Impedance Calibration, and Real-time Impedance Calculation. The 
system topology will be demonstrated and the calculation results of different analytics will also be demonstrated. 
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11 REAL-TIME TRANSMISSION LINE PARAMETER CALCULATOR 
In order to realize the analytic of real-time transmission line parameter calculator we firstly use PSS\E to conduct the 
power flow of the IEEE standard 118-bus system to gather the simulated voltage and current data; then, realize the 
functionality on Matlab to validate the methodology; finally, create measurements on the openECA platform and 
generate C# project to implement the analytic and demonstrate the calculation results on the test harness window. 
 

Test Results(Alpha Version) 
 
Algorithm validation - Matlab 
 
Data Structure 

Data Frame Single Line Data

From_bus_Voltage_Mag

From_bus_Voltage_Ang

From_bus_Current_Mag

From_bus_Current_Ang

All lines

To_bus_Voltage_Mag

To_bus_Voltage_Ang

To_bus_Current_Mag

To_bus_Current_Ang
 

 
Validation Flow Chart 
 

PSS\E Simulation

CSV Adapter

CSV File

Raw Data Processing

VI Measurements

Matlab Algorithm Calculation

Lines Data Set

Output Results
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Calculation Results 
 
The calculation results of the real-time impedance calculator are shown in the following figures. The application use 
the data frames which contain complex voltage phasors and current phasors of both sides of the concerned 
transmission line as the input. The line parameters are calculated every time one data frame is provided and 1800 
times in total. 
 
We can see that the line parameter results are not smooth with respect to time. But the actual error rates are at the 
0.1% level. Such minor fluctuations indicate that the calculation is valid. 
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Application realization - openECA  
 
Application Flow Chart 
 

openECA Platform

C# Application

On-line data stream

Line Parameter Calculation

openECA Platform

Output Results
 

 
The simulated voltage and current measurements are integrated into the openECA platform as shown in the 
following figures. 
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There have been some problems during the integration process. At first, considering the data set scale, we planned 
to create more than 190 measurements in the metadata. But the method of inputting the measurements meanually 
is much time-consuming and easy to cause errors. After communicating with GPA, we were provided the suggestion 
of utilizing MySQL base script to complete the configuration of the openECA platform. Such method does provide an 
efficient way to create and alter large scale of measurements. 
 
The second problem we met is that for the Alpha version, the CSV adapter provided by the platform has some 
restrictive script and raw data file requirements. Most of the restrictions has been identified after the 
communication with GPA. The CSV adapter is still the most reliable and efficient way to upload local database 
 
There is also a problem awaiting fixed. When using the openECA client generating C# projects, we found that not all 
the data channels created in the manager can be found and maaped to the objects defined. We are still seeking the 
inner logic and solution to this issue. 
 
The C# project is generated from the openECA client. Corresponding algorithm is realized in the project and the 
calculation results are shown in the test harness window as following: 
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The calculated line resistance, reactance, and susceptance are physically reasonable, stable, and close to the true 
value. And for future versions, the user interface will be improved. 
 

From Alpha to Beta 
 
Application Realization 
 
The alpha version of the application is only dealing with one transmission line parameters calculation. 
 
For the beta version, the system configuration will be created and analyzed. The computation will be conducted on 
all the transmission lines that have enough voltage and current measurements. 
 
User Interface Design and Realization 
 
The user interface will be developed. Such interface will be designed as a universal media of all the three analytics 
including CT/PT Calibration, Transmission Line Impedance Calibration, and Real-time Impedance Calculation. The 
system topology will be demonstrated and the calculation results of different analytics will also be demonstrated. 
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12 SYNCHRONOUS MACHINE PARAMETER ESTIMATION 
Test Approach 
 
The basic test configuration will be modified for testing of this analytic. The analytic is currently prototyped in 
Matlab and is in the process of being ported to .NET. Testing will be conducted on the Matlab prototype. Testing will 
be repeated within the openECA framework at a later date. Configuration information will be programmatically 
inserted into the analytic. Each test case requires parametric metadata for proper functionality. The parameters will 
be embedded within the analytic’s code base for testing purposes. When “settings” facilities become available in 
openECA beta the test suite will be modified accordingly. 
 
Test Environment 
The test platform will be 64-bit Windows 7 configured as a workstation running on an Intel i7-3770 with 16Gb of 
memory and 8 cores. The software will be compiled under Visual Studio as “Any CPU” targeting the .NET Framework 
compatible with the openECA client compilation. 
 
Analytics Overview 
As with line impedance parameters, improving the quality of synchronous machine model parameters will provide 
benefits both in planning and operations. It has recently been shown that an effective method to identify and 
validate synchronous machine model parameters is to compare and match event signatures captured by PMUs 
against simulated event signatures generated by the machine model under test. This periodic analytic component 
will automate the process of synchronous machine model parameter estimation and validation – a process which is 
currently labor-intensive and which requires expertise from highly skilled personnel. 
 
In the openECA use case, a set of synchronous machine parameters supplied in a user-provided configuration are 
occasionally tested against simulation results. The validation routine runs when the analytic detects a system event 
that sufficiently excites the synchronous machine parameters. It is conceivable, therefore, that this analytic may 
only return a result a few times per year. The ultimate goal for this analytic is to facilitate automated validation for 
the purpose of assisting utilities with NERC MOD027 compliance. MOD027 requires that utilities validate the models 
of major generating units every five years.  
A signal flow diagram of the analytic is shown below. 
 

 
 
Pre-Beta Features to be Tested 
 
The synchronous machine parameter estimation analytic delivers the following outputs. 
Feature 1: Analytic detects discrete power system events suitable to initiate validation routine. 
 
Feature 2: Analytic buffers appropriate amount of data for analysis, and appropriately locks the buffer when an 
event is detected. 
 
Feature 3: Analytic performs the validation routine to acceptable accuracy upon event trigger. 
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Tests Conducted 
 
Test 1: “Analytic properly detects events” This test determines whether the analytic properly detects events of 

sufficient magnitude such that the validation routines can accurately assess the correctness of the model. 
This will be a fixed dataset test. With analytic properly configured a dataset containing simulated events 
with differing energy content will be fed to the event detection routine. Only events with sufficient energy 
content should trigger the detector. 

 
Implementation: Representative data sets from system events have been selected and formatted. These 
representative data sets have been fed to the “front end” of the analytic to test the event trigger logic. The 
representative event must contain sufficient spectral content to excite all states of the model to be 
examined. The test passes if the event detector logic triggers on a robust data set and does not trigger on a 
quiescent data set.  
 
Status: In Process. Initial results indicate promise of success. 

 
Test 2: “Circular buffer functions properly” This test determines whether the circular buffer properly stores pre- and 

post-trigger information for use by the validation routine. This will be a fixed dataset test. With analytic 
properly configured a dataset will be fed to the buffer routine. When the buffer routine is exposed to a 
simulated trigger it should store a snapshot of data with appropriate duration. 

 
Implementation: When an event is detected, e.g. as a result of the functionality tested in Test1, the analytic 
must then perform signal processing on a buffer of data from the previous minute of data. Therefore, the 
analytic must keep a buffer of data in memory. For this test a simple dataset was created and fed through 
the analytic. Upon a triggered event, a snapshot of the buffered data was passed to the analytic’s signal 
processing routine.  
 
Status: In Process. Initial results indicate promise of success. 

 
Test 3: “Analytic accurately assesses model parameters” This test assesses the accuracy of the model validation 

routine. This will be a fixed dataset test. With analytic properly configured, including a synchronous 
machine model appropriate for the dataset(s), a dataset containing simulated events will be fed to the 
analytic. The test passes if the analytic validates the model to an acceptable precision. 

 
Implementation: Actual and simulated data sets will be selected and formatted. These data sets will be 
processed by the analytic’s signal processing engine and checked for accuracy.  
 
Status: In Process. We are working with BPA to obtain a library of robust data. The setup for this step is 
complex because we must have both an accurate model as well as a data set with sufficient bandwidth. 
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13 ACCELERATION TREND RELAY ENHANCEMENTS 
Test Approach 
 
The analytic, as originally proposed, is experimental. It is unclear at this time whether synchrophasor measurements 
delivered with delays of up to 30ms can be used to augment ATR functionality. The ATR currently uses only local 
information at much higher sample rates than can be provided by a remote PMU. Initial results are promising. 
Because this analytic is experimental it is not yet ready for testing within the openECA environment. Tests will be 
conducted in Matlab on data sets produced by simulated and with parameters and configuration information 
provided by Northwestern Energy. 
 
Test Environment 
The test platform will be 64-bit Windows 7 configured as a workstation running on an Intel i7-3770 with 16Gb of 
memory and 8 cores. The software will be compiled under Visual Studio as “Any CPU” targeting the .NET Framework 
compatible with the openECA client compilation. 
 
Analytics Overview 
Most power plants are tightly coupled to a mesh of high-voltage transmission. Some, however, are by necessity 
located at the end of a loosely-coupled and radial transmission line. In the latter case, and particularly when the 
power plant is a thermal unit, a serious risk of catastrophic loss of synchronization exists. The Acceleration Trend 
Relay (ATR) is designed to protect a unit from loss of synchronization if it detects rapid acceleration. ATR 
functionality can be greatly enhanced by augmenting the shaft speed signals with remote phasor measurements. An 
ATR will trip a generation unit when the unit is detected to have a high probability of losing synchronization with the 
grid. This analytic, if validated by offline studies, has the potential to improve the accuracy of an ATR by reducing the 
number of false positives attributed to the ATR.    
 
This module will be used as an important use case to demonstrate the development of specialized openECA 
adapters to conduct issue-specific analysis of phasor data and will serve as a template for subsequent development. 
A signal flow diagram is shown below. 
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Pre-Beta Features to be Tested 
 
The synchronous machine parameter estimation analytic delivers the following outputs. 
Feature 1: Theoretical effectiveness of the proposed analytic. 
 
Tests Conducted 
 
Test 1: “Theoretical effectiveness of incorporating phasor measurements into ATR trip logic” This test determines 

the theoretical effectiveness of the proposed analytic. Initial results are promising, however there is still a 
possibility that remote synchrophasor measurements delivered via network technologies are not fast 
enough to provide substantive benefit. This will be a fixed dataset test. With analytic properly configured a 
dataset containing simulated events will be fed to the analytic. Success will be through a subjective 
determination of whether the incorporation of synchrophasor data improved the performance of the ATR. 

 
Status: In Process. A reduced-order power system model capable of simulating transient stability events 
has been created. A Matlab representation of the ATR as it exists today at the Colstrip power plant hase 
been created. The research question is whether remote information provided by a PMU can enhance and 
improve the existing ATR algorithm thereby improving bulk grid reliability. Hundreds of simulations have 
been conducted on the combined system/ATR model. The project team has found initial results that 
indicate false trips may be avoided by using remote information as a reference input to the ATR. Meetings 
with Northwestern Energy are planned for next quarter. Publication of the results is also planned for 
summer 2017. 
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