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Artificial Intelligence: Machines Tuning Themselves
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Motivation

LCLS Accelerator

Bunch Bunch
Compressor Compressor

R = 1y,
e i

~ Undulators

AMO )
S Near Experimental Hall

X-ray Transport Tunnel

Far Experimental Hall
B AMO: Atomic, Molecular and Optical Science

B SXR: Soft X-ray Research

W XPP: X-ray Pump Probe

M XCS: X-ray Correlation Spectroscopy

Bl MFX: Macromolecular Femtosecond Crystallography

B CXI: Coherent X-ray Imaging
MEC: Matter in Extreme Conditions



Atomic, Molecular & Optical Science

Soft X-rays for intense ultra short pulses.
Gaseous targets of atoms, molecules, and
nanoscale objects: protein crystals or viruses.

Photon energy: 0.48 — 2 keV

Pulse duration: 35 — 300 fs

Low charge mode pulse duration: No
Pulse energy: 1 —20 mJ @ 266 - 800 nm

Max energy adjustment factor: 4.2
Low charge mode: No



Atomic, Molecular & Optical Science

Soft X-rays for intense ultra short pulses.
Gaseous targets of atoms, molecules, and
nanoscale objects: protein crystals or viruses.

Photon energy: 0.48 — 2 keV

Pulse duration: 35 — 300 fs

Low charge mode pulse duration: No
Pulse energy: 1 —20 mJ @ 266 - 800 nm

Max energy adjustment factor: 4.2
Low charge mode: No

Coherent X-ray imaging

Brilliant hard X-ray pulses for coherent
diffractive imaging (CDI). Ultra short pulses for
“Diffraction-Before-Destruction” experiments.

Photon energy: 5 — 12 keV

Pulse duration: 40 — 300 fs

Low charge mode pulse duration: <10 fs
Pulse energy: 1 -3 mJ

Max energy adjustment factor: 2.4
Low charge mode: Yes



Atomic, Molecular & Optical Science

Soft X-rays for intense ultra short pulses.
Gaseous targets of atoms, molecules, and

nanoscale objects: protein crystals or viruses.

Photon energy: 0.48 — 2 keV

Pulse duration: 35 — 300 fs

Low charge mode pulse duration: No
Pulse energy: 1 - 20 mJ @ 266 - 800 nm

Max energy adjustment factor: 4.2
Low charge mode: No

Coherent X-ray imaging

Brilliant hard X-ray pulses for coherent
diffractive imaging (CDI). Ultra short pulses for
“Diffraction-Before-Destruction” experiments.

Photon energy: 5 — 12 keV

Pulse duration: 40 — 300 fs

Low charge mode pulse duration: <10 fs
Pulse energy: 1 -3 mJ

Max energy adjustment factor: 2.4
Low charge mode: Yes

Matter in Extreme Conditions

High peak brightness, ultra short pulses of
tunable energy X-rays for studying the transient
behavior of matter in extreme conditions.

Photon energy: 2.5 - 12 keV

Pulse duration: 10 — 300 fs

Low charge mode pulse duration: <10 fs
Pulse energy: 1 -3 mJ

Max energy adjustment factor: 4.8
Low charge mode: Yes



Atomic, Molecular & Optical Science Coherent X-ray imaging Matter in Extreme Conditions

Soft X-rays for intense ultra short pulses. Brilliant hard X-ray pulses for coherent High peak brightness, ultra short pulses of
Gaseous targets of atoms, molecules, and diffractive imaging (CDI). Ultra short pulses for tunable energy X-rays for studying the transient
nanoscale objects: protein crystals or viruses. “Diffraction-Before-Destruction” experiments. behavior of matter in extreme conditions.
Photon energy: 0.48 — 2 keV Photon energy: 5 — 12 keV Photon energy: 2.5 - 12 keV

Pulse duration: 35 — 300 fs Pulse duration: 40 — 300 fs Pulse duration: 10 — 300 fs

Low charge mode pulse duration: No Low charge mode pulse duration: <10 fs Low charge mode pulse duration: <10 fs

Pulse energy: 1 - 20 mJ @ 266 - 800 nm Pulse energy: 1 -3 mJ Pulse energy: 1 -3 mJ

Max energy adjustment factor: 4.2 Max energy adjustment factor: 2.4 Max energy adjustment factor: 4.8

Low charge mode: No Low charge mode: Yes Low charge mode: Yes

Low charge mode: Lower charge per bunch allows for tighter compression without destroying the electron beam’s phase space. Originally studying for
accelerating 0.02 nC bunches instead of 1 nC.



Need to quickly switch between various beam/light parameters

No such look up table, or button exists



From the FAQ for users on the LCLS website:

1) What is the photon energy range which LCLS can provide and how long does it take to switch?

Factor of > 37

At present, the available photon energy range is 270 eV up to 10 keV.

45
minutes (energy adjustments of a factor of 2-3)

Please ask the operator for a time estimate when requesting photon energy
changes.
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LCLS-1I

LCLS-II: Injector and Accelerator
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European XFEL
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Accelerator Tuning Challenges

* Dynamics of intense charged particle bunches dominated by:
 Components drift unpredictably with time, misalignments



Accelerator Tuning Challenges

* Dynamics of intense charged particle bunches dominated by:
 Components drift unpredictably with time, misalignments
* Uncertain and time varying electron bunch distribution off cathode
 Complex collective effects:

@ FAST

Example images of laser spot
(10Aug. 2016, 11 Nov.2017)



Accelerator Tuning Challenges

 Dynamics of intense charged particle bunches dominated by:
 Components drift unpredictably with time, misalignments
* Uncertain and time varying electron bunch distribution off cathode
 Complex collective effects:
* Wakefields
e Space charge
e Coherent synchrotron radiation

@ FAST

Example images of laser spot
(10Aug. 2016, 11 Nov.2017)



Accelerator Tuning Challenges

* Dynamics of intense charged particle bunches dominated by:
 Components drift unpredictably with time, misalignments
* Uncertain and time varying electron bunch distribution off cathode
 Complex collective effects:
* Wakefields
e Space charge
e Coherent synchrotron radiation

e Limited diagnostics
@ FAST

Example images of laser spot
(10Aug. 2016, 11 Nov.2017)



Machine Learning Approaches



ML for improvement of diagnostics

Detection of faulty BPMs at CERN (1024 BPMs) > Cluster analysis, faulty signals should appear as outliers
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NN-based model for automatic FEL tuning

Compact, THz FEL design based on previously operational TEU-FEL
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desired electron beam characteristics at the
entrance of the undulator
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suggested machine settings to obtain the
requested electron beam characteristics

3 — 6 MeV electron beam
200 — 800 ym photon beam

Previously operated at University of
Twente in the Netherlands

Was going to be re-built at CSU:
have simulation from design studies
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ML methods for shot-to-shot spectral profiling of FEL light

Machine learning applied to single-shot x-ray diagnostics in an XFEL

A. Sanchez-Gonzalez,! P. Micaelli,! C. Olivier,! T. R. Barillot,! M. Ilchen,>3 A. A. Lutman,* A. Marinelli,* T. | A. Sanchez-Gonzalez, et al. https://arxiv.org/pdfl1610.03378.pdf

Maxwell, A. Achner,® M. Agéker,® N. Berrah,® C. Bostedt,*7 J. Buck,® P. H. Bucksbaum,>° S. Carron
Montero,* 1% B. Cooper,! J. P. Cryan,2 M. Dong,® R. Feifel,'* L. J. Frasinski,! H. Fukuzawa,'? A.

Galler,® G. Hartmann,® '3 N. Hartmann,* W. Helml,* !4 A. S. Johnson,' A. Knie,'® A. O. Lindahl,% ! J.
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Machine Learning Approaches
(mostly statistics and big data so far)



Machine Learning Approaches
(mostly statistics and big data so far)

Automatic Feedback for in-hardware Tuning
and Optimization



FERMI: Optimization Through Correlation Minimization

- Giulio Gaio, IFCA Machine Learning Workshop, SLAC, 03/02/2018

* Automatic optimization of the temporal overlap between seed laser pulse and electron bunch (1 variable)

* Correlation between the electron bunch arrival time (sensor) and the FEL energy (target)

* The actuator is a mechanical delay line (slit) on the seed laser path

FEL quality

Shot-to-shot correlation
(Pearson) between the FEL
quality and a machine
parameter affecting it

machine parameter

25



FERMI: Optimization Through Correlation Minimization
- Giulio Gaio, IFCA Machine Learning Workshop, SLAC, 03/02/2018
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number, the most important features of the photon energy spectrum:

intensity, spectral purity and number of modes.

Actuator: seed laser delay line.

“Free-electron Laser Spectrum Evaluation and Automatic Optimization”,

Nuclear Inst. and Methods in Physics Research, A 871 (2017) 20 29

26



OCELT at EUXFEL

Generic optimizer: SASE optimization

Air coils between the undulator cells were
used to optimize the SASE signal

Up to 6 air coils are typically used at the
same time.

Nelder-Mead (simplex) and conjugate gradient (CG) method
Limited to ~6 parameters

Won’t work with large hysteresis

Won’t work with time-varying system
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Tuning Method Currently Being Developed at LANL

Extremum Seeking

Model-independent feedback
- Noisy and time varying systems
- Many coupled parameters



Bounded Extremum Seeking: Model-Independent Tuning and Optimization

A. Scheinker and D. Scheinker, “Extremum Seeking with Discontinuous Dithers,” Automatica, vol. 69, pp. 250-257, 2016.
A. Scheinker and D. Scheinker, “Extremum Seeking for Stabilization of Systems not Affine in Control,” 2017.
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Bounded Extremum Seeking: Model-Independent Tuning and Optimization

X1 fl(xlaﬂ'7wn7p17'°'7pm7t)
=x=f(x,p,t) = :
In fn(xlvﬂ'7:Enap17'°'7pm7t)
Injector
81 B Q-Quadrupole Magnet
2
Q, Bl Bend Magnet
- Q, [ 1 Buncher
o Q [ ] Other Components (diagnostics/scrapers/jaws...)
1 Q - Beam
-~ Q7
.
% Pre Buncher Drift Tube Linac

Main Buncher D —




Bounded Extremum Seeking: Model-Independent Tuning and Optimization
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Bounded Extremum Seeking: Model-Independent Tuning and Optimization
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Bounded Extremum Seeking: Model-Independent Tuning and Optimization

y = V(x,t)+n(t)
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Bounded Extremum Seeking: Model-Independent Tuning and Optimization
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Cost is noisy measurement of the difference between initial
current into the machine and surviving current at the end of

Injector B Q-Quadrupole Magnet the transport region.
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X, X, Phase Space, Original-Red, New-Blue

-

15

y_(mrad)

After the magnetic lattice was matched to transport the beam, beam phase space was continuously
varied, and arbitrary phase drifts were introduced into the RF buncher cavities.

Without adaptive feedback all beam is quickly lost (red line in figure below).

With adaptive tuning the 22 quad magnetic lattice and 2 RF buncher cavities are continuously re-tuned to
maintain maximal beam transmission and acceleration.
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A. Scheinker et al., “Minimization of Betatron oscillations of electron beam injected into a time-
varying lattice via extremum seeking,” IEEE Transactions on Control Systems Technology, 2016.
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A. Scheinker. “Iterative Extremum Seeking for Feedforward Compensation of Beam Loading in Particle Accelerator RF Cavities,” in
Proceedings of the 2017 American Control Conference, May, 2017.
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FACET: E-bunch profile prediction based on non-destructive measurements of energy spread spectrum. A. Scheinker and S. Gessner,
“Adaptive method for electron bunch profile prediction,” Physical Review Accelerators and Beams, 18, 102801, 2015.
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FACET: E-bunch profile prediction based on non-destructive measurements of energy spread spectrum. A. Scheinker and S. Gessner,
“Adaptive method for electron bunch profile prediction,” Physical Review Accelerators and Beams, 18, 102801, 2015.
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FACET-II Virtual Diagnostics and Phase Snace Control: Adjusting RF phases to match energy spread
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FACET-II Virtual Diagnostics and Phase Space Control: Adjusting RF phases to match energy spread spectrums
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LCLS automatic longitudinal phase space tuning. A. Scheinker. and D Bohler, “Demonstration of model-independent
control of the longitudinal phase space of electron beams in the LCLS with fs resoltuions,” submitted.

gun

BC1 L2-linac g2
250 MeV 4.3 GeV

02 7, J{£)=0.044% (fwhm=0.117) 02 (E)=13.912 GeV, ¥ =0.094x10""

2 S v:\;{;.ggzm
Energy Spread . f }

£ IJJ
o
Longitudinal charge ‘ ) L
density distribuﬁon 004 -0.02 0 lfo.og/mmom 006 008

L1X

Normalized parameters

0,09

0.08

002

001

L3-linac
14 GeV

100 1
Step number ()

50

200

undulator

100 150 200
Step number ()

0,005

51



o o
o ©

o
~

o
o o

Normalized within [-1, 1]
Normalized parameters

0.1

0.09 -

0.08 -

0.07 -

0.06 -

0.05 -

0.04 -

0.03 -

0.02 -

0.01 -

0

N

o
IS
T

6 parameters being tuned

N

L L L L
[ 50 100 150 200

Step number (n)

Longitudinal charge density distribution

T
XTCAV
LiTrack | 7
= = LiTrackO
M N
\
\
\
— e -~ —
0 20 40 120 140 160 180 200

LiTrackES intial

Cost function being minimized

Cost

. . . .
0 50 100 150 200
Step number (n)

Energy Spread

0.025

XTCAV

LiTrack

= = LiTrack0
0.02 -
0.015 -
0.01 -
0.005 -

0 . | .
0 50 100 150 200 250 300 350

LiTrackES final Goal

52



gun

AE/E %

-2

-1

0

1

2

-0.

LCLS automatic longitudinal phase space tuning. A. Scheinker. and D Bohler, “Demonstration of model-
independent control of the longitudinal phase space of electron beams in the LCLS with fs resoltuions,” submitted.
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ES in OCELOT for time-varying systems

Objective Function Monitor
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Combining ML and ES
(LANL and SLAC)
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Re-training a deep NN with many output

nodes would take too long




Ongoing work
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