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Ar#ficial	Intelligence:	Machines	Tuning	Themselves	

-k

Adapa?ve	Feedback	

Surrogate	models	
Big	data	
Global	tuning	
Anomaly	detec?on	

Virtual	diagnos?cs	
Real	?me	feedback	
Op?miza?on	
Phase	space	tuning	

Ocelot	op#miza#on	
and	tuning	framework	
(DESY	and	LCLS)	



Mo?va?on	



AMO	

Atomic,	Molecular	&	Op#cal	Science	
	
SoN	X-rays	for	intense	ultra	short	pulses.	
Gaseous	targets	of	atoms,	molecules,	and	
nanoscale	objects:	protein	crystals	or	viruses.	
	
Photon	energy:	0.48	–	2	keV	
Pulse	dura#on:	35	–	300	fs	
Low	charge	mode	pulse	dura#on:	No	
Pulse	energy:	1	–	20	mJ	@	266	-	800	nm	
	
Max	energy	adjustment	factor:	4.2	
Low	charge	mode:	No	



AMO	 CXI	

Atomic,	Molecular	&	Op#cal	Science	
	
SoN	X-rays	for	intense	ultra	short	pulses.	
Gaseous	targets	of	atoms,	molecules,	and	
nanoscale	objects:	protein	crystals	or	viruses.	
	
Photon	energy:	0.48	–	2	keV	
Pulse	dura#on:	35	–	300	fs	
Low	charge	mode	pulse	dura#on:	No	
Pulse	energy:	1	–	20	mJ	@	266	-	800	nm	
	
Max	energy	adjustment	factor:	4.2	
Low	charge	mode:	No	

Coherent	X-ray	imaging	
	
Brilliant	hard	X-ray	pulses	for	coherent	
diffrac?ve	imaging	(CDI).	Ultra	short	pulses	for	
“Diffrac?on-Before-Destruc?on”	experiments.	
	
Photon	energy:	5	–	12	keV	
Pulse	dura#on:	40	–	300	fs	
Low	charge	mode	pulse	dura#on:	<10	fs	
Pulse	energy:	1	–	3	mJ	
	
Max	energy	adjustment	factor:	2.4	
Low	charge	mode:	Yes	



AMO	 CXI	 MEC	

Atomic,	Molecular	&	Op#cal	Science	
	
SoN	X-rays	for	intense	ultra	short	pulses.	
Gaseous	targets	of	atoms,	molecules,	and	
nanoscale	objects:	protein	crystals	or	viruses.	
	
Photon	energy:	0.48	–	2	keV	
Pulse	dura#on:	35	–	300	fs	
Low	charge	mode	pulse	dura#on:	No	
Pulse	energy:	1	–	20	mJ	@	266	-	800	nm	
	
Max	energy	adjustment	factor:	4.2	
Low	charge	mode:	No	

Coherent	X-ray	imaging	
	
Brilliant	hard	X-ray	pulses	for	coherent	
diffrac?ve	imaging	(CDI).	Ultra	short	pulses	for	
“Diffrac?on-Before-Destruc?on”	experiments.	
	
Photon	energy:	5	–	12	keV	
Pulse	dura#on:	40	–	300	fs	
Low	charge	mode	pulse	dura#on:	<10	fs	
Pulse	energy:	1	–	3	mJ	
	
Max	energy	adjustment	factor:	2.4	
Low	charge	mode:	Yes	

Ma^er	in	Extreme	Condi#ons	
	
High	peak	brightness,	ultra	short	pulses	of	
tunable	energy	X-rays	for	studying	the	transient	
behavior	of	maZer	in	extreme	condi?ons.	
	
Photon	energy:	2.5	–	12	keV	
Pulse	dura#on:	10	–	300	fs	
Low	charge	mode	pulse	dura#on:	<10	fs	
Pulse	energy:	1	–	3	mJ	
	
Max	energy	adjustment	factor:	4.8	
Low	charge	mode:	Yes	



AMO	 CXI	 MEC	

Atomic,	Molecular	&	Op#cal	Science	
	
SoN	X-rays	for	intense	ultra	short	pulses.	
Gaseous	targets	of	atoms,	molecules,	and	
nanoscale	objects:	protein	crystals	or	viruses.	
	
Photon	energy:	0.48	–	2	keV	
Pulse	dura#on:	35	–	300	fs	
Low	charge	mode	pulse	dura#on:	No	
Pulse	energy:	1	–	20	mJ	@	266	-	800	nm	
	
Max	energy	adjustment	factor:	4.2	
Low	charge	mode:	No	

Coherent	X-ray	imaging	
	
Brilliant	hard	X-ray	pulses	for	coherent	
diffrac?ve	imaging	(CDI).	Ultra	short	pulses	for	
“Diffrac?on-Before-Destruc?on”	experiments.	
	
Photon	energy:	5	–	12	keV	
Pulse	dura#on:	40	–	300	fs	
Low	charge	mode	pulse	dura#on:	<10	fs	
Pulse	energy:	1	–	3	mJ	
	
Max	energy	adjustment	factor:	2.4	
Low	charge	mode:	Yes	

Ma^er	in	Extreme	Condi#ons	
	
High	peak	brightness,	ultra	short	pulses	of	
tunable	energy	X-rays	for	studying	the	transient	
behavior	of	maZer	in	extreme	condi?ons.	
	
Photon	energy:	2.5	–	12	keV	
Pulse	dura#on:	10	–	300	fs	
Low	charge	mode	pulse	dura#on:	<10	fs	
Pulse	energy:	1	–	3	mJ	
	
Max	energy	adjustment	factor:	4.8	
Low	charge	mode:	Yes	

Low	charge	mode:	Lower	charge	per	bunch	allows	for	?ghter	compression	without	destroying	the	electron	beam’s	phase	space.	Originally	studying	for	
accelera?ng	0.02	nC	bunches	instead	of	1	nC.	



Need	to	quickly	switch	between	various	beam/light	parameters	
	
No	such	look	up	table,	or	buZon	exists	



From	the	FAQ	for	users	on	the	LCLS	website:	
	
1)	What	is	the	photon	energy	range	which	LCLS	can	provide	and	how	long	does	it	take	to	switch? 	

		
Answer	:	
(8/25/16)	LCLS	Machine	Phys.	
At	present,	the	available	photon	energy	range	is	270	eV	up	to	10	keV.	Photon	energies	as	high	
as	12.8	keV	may	be	reached	with	advanced	no?ce	and	reduced	reliability.	
		
Energy	changes	can	require	anywhere	from	5	minutes	(small	energy	adjustments	of	5-50%)	to	45	
minutes	(energy	adjustments	of	a	factor	of	2-3).	In	addi?on,	some	accelerator	tuning	may	be	
required	in	order	to	re-establish	the	full	x-ray	pulse	energy	(e.g.,	to	achieve	more	than	2	mJ	may	
require	another	hour	or	more).	This	retuning	is	generally	faster	when	the	energy	is	increased	rather	
than	decreased.		Please	ask	the	operator	for	a	?me	es?mate	when	reques?ng	photon	energy	
changes. 	 		
	

Factor	of	>	37 	
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LCLS-II	



European	XFEL	
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Accelerator	Tuning	Challenges	
	

•  Dynamics	of	intense	charged	par?cle	bunches	dominated	by:	
•  Components	dria	unpredictably	with	#me,	misalignments	



Accelerator	Tuning	Challenges	
	

•  Dynamics	of	intense	charged	par?cle	bunches	dominated	by:	
•  Components	dria	unpredictably	with	#me,	misalignments	

•  Uncertain	and	#me	varying	electron	bunch	distribu#on	off	cathode	
•  Complex	collec#ve	effects:	

Example images of laser spot
(10 Aug. 2016, 11 Nov. 2017)

@	FAST	



Accelerator	Tuning	Challenges	
	
•  Dynamics	of	intense	charged	par?cle	bunches	dominated	by:	

•  Components	dria	unpredictably	with	#me,	misalignments	
•  Uncertain	and	#me	varying	electron	bunch	distribu#on	off	cathode	

•  Complex	collec#ve	effects:	
•  Wakefields		
•  Space	charge	
•  Coherent	synchrotron	radia#on	

Example images of laser spot
(10 Aug. 2016, 11 Nov. 2017)

@	FAST	



Accelerator	Tuning	Challenges	
	

•  Dynamics	of	intense	charged	par?cle	bunches	dominated	by:	
•  Components	dria	unpredictably	with	#me,	misalignments	

•  Uncertain	and	#me	varying	electron	bunch	distribu#on	off	cathode	
•  Complex	collec#ve	effects:	

•  Wakefields		
•  Space	charge	
•  Coherent	synchrotron	radia#on	

•  Limited	diagnos#cs	

Example images of laser spot
(10 Aug. 2016, 11 Nov. 2017)

@	FAST	



Machine	Learning	Approaches	
	



Detec?on	of	faulty	BPMs	at	CERN	(1024	BPMs)	>	Cluster	analysis,	faulty	signals	should	appear	as	outliers	

ML	for	improvement	of	diagnos#cs	
	

E.	Fol	and	Tomas	Garcia,	Detec#on	of	faulty	Beam	Posi#on	Monitors	at	CERN	
Machine	Learning	Applica?ons	for	Par?cle	Accelerators,	Feb.	28	–	March	2,	2018,	
SLAC	Na?onal	Accelerator	Laboratory	



Auralee Edelen,  ICPA Workshop, 30-31 Jan. 2018, Daresbury, UK

Intermediate goal: get the right beam parameters at the undulator entrance

Auralee	Edelen,	ICPA	Workshop,	30-31	Jan.	2018,	Daresbury,	UK		

Compact, THz FEL design based on previously operational TEU-FEL 3 – 6 MeV electron beam
200 – 800 µm photon beam

Previously operated at University of 
Twente in the Netherlands

Was going to be re-built at CSU: 
have simulation from design studies

NN-based	model	for	automa#c	FEL	tuning	
	



22	

ML	methods	for	shot-to-shot	spectral	profiling	of	FEL	light	
	

Shot-to-shot	data:	Current	profiles,	BPMs,	X-ray	gas	detectors	
	



Machine	Learning	Approaches	
(mostly	sta#s#cs	and	big	data	so	far)	



Machine	Learning	Approaches	
(mostly	sta#s#cs	and	big	data	so	far)	

	
Automa#c	Feedback	for	in-hardware	Tuning	

and	Op#miza#on	
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FEL	quality	
Shot-to-shot	correla#on	
(Pearson)	between	the	FEL	
quality	and	a	machine	
parameter	affec#ng	it	

0.4	
0	

-0.8	

0	Ji^er	

machine	parameter	

FERMI:	Op?miza?on	Through	Correla?on	Minimiza?on	
-	Giulio	Gaio,	IFCA	Machine	Learning	Workshop,	SLAC,	03/02/2018	

•  Automa?c	op?miza?on	of	the	temporal	overlap	between	seed	laser	pulse	and	electron	bunch	(1	variable)		

•  Correla?on	between	the	electron	bunch	arrival	?me	(sensor)	and	the	FEL	energy	(target)	

•  The	actuator	is	a	mechanical	delay	line	(slit)	on	the	seed	laser	path	
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FERMI:	Op?miza?on	Through	Correla?on	Minimiza?on	
-	Giulio	Gaio,	IFCA	Machine	Learning	Workshop,	SLAC,	03/02/2018	

“Free-electron	Laser	Spectrum	Evalua?on	and	Automa?c	Op?miza?on”,		
Nuclear	Inst.	and	Methods	in	Physics	Research,	A	871	(2017)	20	29	

The	FEL	Quality	Factor	(FELQFactor):	index	which	summarizing,	in	a	
number,	the	most	important	features	of	the	photon	energy	spectrum:	
intensity,	spectral	purity	and	number	of	modes.	
	
Actuator:	seed	laser	delay	line.	
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8Automated optimization of the European XFEL performance with OCELOT S. Tomin, Machine Learning Applications for Particle Accelerators, 28.02.2018

Generic optimizer: SASE optimization

Air coils between the undulator cells were 
used to optimize the SASE signal

Up to 6 air coils are typically used at the 
same time. 

Nelder-Mead	(simplex)	and	conjugate	gradient	(CG)	method	

-  Limited	to	~6	parameters	

-  Won’t	work	with	large	hysteresis	

-  Won’t	work	with	?me-varying	system	

S.	Tomin,	Machine	Learning	Applica?ons	for	Par?cle	Accelerators,	SLAC	ML	Workshop	
I.	Agapov	et	al.,	Automa?c	tuning	of	Free	Electron	Lasers,	arXiv:1704.02335v1	

OCELT	at	EUXFEL	



Tuning	Method	Currently	Being	Developed	at	LANL	
	

Extremum	Seeking	
	

Model-independent	feedback	
-  Noisy	and	?me	varying	systems	
-  Many	coupled	parameters	
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Bounded	Extremum	Seeking:	Model-Independent	Tuning	and	Op?miza?on	
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Bounded	Extremum	Seeking:	Model-Independent	Tuning	and	Op?miza?on	
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75 = ẋ = f(x,p, t) =

2

64
f1(x1, . . . , xn, p1, . . . , pm, t)

...
fn(x1, . . . , xn, p1, . . . , pm, t)

3

75

Bounded	Extremum	Seeking:	Model-Independent	Tuning	and	Op?miza?on	

y = V (x, t) + n(t)
noise	

y = (I(t)� I0)
2 + n(t)

Surviving	beam	
current	at	end.	

Q1
Q2
Q3
Q4
Q5
Q6

Q7
Q8

Q9 Q10 Q11Q12 Q13Q14 Q15Q16 Q17Q18

Qi-Quadrupole Magnet

Injector

Drift Tube Linac

Bend Magnet

Other Components (diagnostics/scrapers/jaws...)
Beam

Q19Q20 Q21Q22

Buncher

Pre Buncher
Main Buncher

x1(t) = Xrms(position 1)

x2(t) = Yrms(position 1)

.

.

.

xn(t) = Xrms(position n)

p1(t) = Q1 current

...

pm(t) = Qm current



37	

Magnet Current Settings
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Qi-Quadrupole MagnetInjector
Bend Magnet

Other Components (diagnostics/scrapers/jaws...)
Beam

Buncher

Pre Buncher
TADB01 Main Buncher

TDDB01

Drift Tube Linac

4 knaT3 knaT2 knaT1 knaT

Current Monitor
02CM01

70MeV ABS/COLL

Drift Tube Linac

y = (I(t)� I0)
2 + n(t)

Cost	is	noisy	measurement	of	the	difference	between	ini?al	
current	into	the	machine	and	surviving	current	at	the	end	of	
the	transport	region.	

Minimiza?on	of	y	equivalent	
to	properly	tuning	magnets	
for	all	beam	to	be	
transported.	
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Beam and Phase Delay Varying During This Time Interval

ANer	the	magne?c	larce	was	matched	to	transport	the	beam,	beam	phase	space	was	con?nuously	
varied,	and	arbitrary	phase	driNs	were	introduced	into	the	RF	buncher	cavi?es.	
	
Without	adap?ve	feedback	all	beam	is	quickly	lost	(red	line	in	figure	below).	
	
With	adap?ve	tuning	the	22	quad	magne?c	larce	and	2	RF	buncher	cavi?es	are	con?nuously	re-tuned	to	
maintain	maximal	beam	transmission	and	accelera?on.	
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A.	Scheinker	et	al.,	“Minimiza?on	of	Betatron	oscilla?ons	of	electron	beam	injected	into	a	?me-
varying	larce	via	extremum	seeking,’’	IEEE	Transac1ons	on	Control	Systems	Technology,	2016.		
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A.	Scheinker.	“Itera?ve	Extremum	Seeking	for	Feedforward	Compensa?on	of	Beam	Loading	in	Par?cle	Accelerator	RF	Cavi?es	,’’	in	
Proceedings	of	the	2017	American	Control	Conference,	May,	2017.		

Break	up	cavity	field	errors	
into	slices	and	create	costs	for	
itera?ve	minimza?on	

Create	feed-forward	waveforms	for	
each	slice	to	compensate	for	beam	
loading	
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FACET:	E-bunch	profile	predic?on	based	on	non-destruc?ve	measurements	of	energy	spread	spectrum.	A.	Scheinker	and	S.	Gessner,	
“Adap?ve	method	for	electron	bunch	profile	predic?on,”	Physical	Review	Accelerators	and	Beams,	18,	102801,	2015.	
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FACET:	E-bunch	profile	predic?on	based	on	non-destruc?ve	measurements	of	energy	spread	spectrum.	A.	Scheinker	and	S.	Gessner,	
“Adap?ve	method	for	electron	bunch	profile	predic?on,”	Physical	Review	Accelerators	and	Beams,	18,	102801,	2015.	
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FACET-II	Virtual	Diagnos?cs	and	Phase	Space	Control:	Adjus?ng	RF	phases	to	match	energy	spread	
spectrums	
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FACET-II	Virtual	Diagnos?cs	and	Phase	Space	Control:	Adjus?ng	RF	phases	to	match	energy	spread	spectrums	
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LCLS	automa?c	longitudinal	phase	space	tuning.	A.	Scheinker.	and	D	Bohler,	“Demonstra?on	of	model-independent	
control	of	the	longitudinal	phase	space	of	electron	beams	in	the	LCLS	with	fs	resoltuions,”	submiGed.	

XTCAV

Energy	Spread	
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density	distribu?on	
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LCLS	automa?c	longitudinal	phase	space	tuning.	A.	Scheinker.	and	D	Bohler,	“Demonstra?on	of	model-
independent	control	of	the	longitudinal	phase	space	of	electron	beams	in	the	LCLS	with	fs	resoltuions,”	submiGed.	
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ES	in	OCELOT	for	?me-varying	systems	



Combining	ML	and	ES	
(LANL	and	SLAC)	
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Re-training	a	deep	NN	with	many	output	
nodes	would	take	too	long	
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Ongoing	work	


