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Abstract. The scalability of unstructured mesh-based applications depends on partitioning
methods that quickly balance the computational work while reducing communication costs. Zhou et
al. [SIAM J. Sci. Comput., 32 (2010), pp. 3201–3227; J. Supercomput., 59 (2012), pp. 1218–1228]
demonstrated the combination of (hyper)graph methods with vertex and element partition improve-
ment for PHASTA CFD scaling to hundreds of thousands of processes. Our work generalizes partition
improvement to support balancing combinations of all the mesh entity dimensions (vertices, edges,
faces, regions) in partitions with imbalances exceeding 70%. Improvement results are presented for
multiple entity dimensions on up to one million processes on meshes with over 12 billion tetrahedral
elements.
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1. Introduction. Parallel simulation-based engineering workflows using unstruc-
tured meshes require adaptive methods to ensure reliability and efficiency [55]. Start-
ing with a problem specification on a geometric model [39, 54], an effective workflow
automatically executes parallel mesh generation [62], analysis, and analysis-based
mesh [11, 44] and/or model [42] adaptation. The analyze-adapt cycle is repeated un-
til a desired level of solution accuracy is reached. Between each step in the cycle is
an opportunity to improve scalability and efficiency through dynamic partitioning.

Current dynamic load balancing methods do not effectively reduce imbalances to
the levels needed by applications capable of strong scaling to the full size of leadership
class petascale systems. This paper presents a scalable approach that quickly reaches
the required imbalance levels for multiple criteria by pairing ParMA, Partitioning
using Mesh Adjacencies, with current partitioning methods. Section 2 introduces the
dynamic partitioning problem and then reviews (hyper)graph, geometric recursive
sectioning, and diffusive partitioning methods. Section 3 provides our contributions,
describes how they satisfy the dynamic partitioning problem, and then describes the
partition improvement procedures. Section 4 begins with a comparison of ParMA and
its predecessor, LIIPBMod. Next, we present a ParMA feature comparison test and
multicriteria partitioning results on meshes with over 12 billion elements running on
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over one million cores. Section 4 closes with a discussion of scaling improvement in a
CFD analysis running on over a half-million cores. Section 5 concludes the paper.

2. Unstructured mesh partitioning. The dynamic partitioning problem seeks
to quickly improve the load balance and reduce communication costs of an existing
partition that is reasonably distributed, such as those generated by (hyper)graph and
geometric partitioning tools. Hendrickson and Devine [24] define the requirements
of dynamic partitioning as (1) balance the computational work, (2) reduce the in-
terprocessor communication costs, (3) modify the partition incrementally, (4) output
the new communication pattern, (5) execute on parallel systems quickly, (6) con-
sume small amounts of memory, and (7) provide an easy-to-use functional interface.
For unstructured meshes these requirements are mostly satisfied by multilevel (hy-
per)graph and recursive sectioning methods [51]. Multilevel (hyper)graph methods
are limited in scalability; memory requirements limit their effective usage on more
than several thousand processors [23]. Recursive sectioning methods are limited in
quality; they have lower memory and time requirements at the expense of increased
interpart surface area. Additionally, these methods can only balance one dimension
of mesh entity. This approach can result in a less-than-optimal balance of the other
entity dimensions as process counts increase. The balance of the other dimensions
can be improved, but not fixed, with carefully defined weights in the multiconstraint
partitioning options provided by Zoltan’s recursive coordinate bisection implementa-
tion and by the multilevel (hyper)graph methods [1, 33, 50]. Below, we review the
graph, geometric sectioning, and diffusive partitioning approaches in more detail.

2.1. (Hyper)graph partitioning. Graph-based partitioning methods define
an assignment of weighted graph nodes to k parts such that each part has the same
total weight and the interpart communication costs are minimized. A graph is con-
structed from an unstructured mesh by selecting one dimension of mesh entity (i.e.,
vertices, edges, faces, or regions) to define graph nodes, and one mesh adjacency be-
tween the selected entity dimension to define graph edges. At a higher level, the goal
of this selection is to represent a work unit with the graph node and an information
dependency between two work units by a graph edge. 3D element-based finite ele-
ment and finite volume codes typically select mesh regions for graph nodes and mesh
faces shared by elements for graph edges. This selection results in the unique assign-
ment of mesh regions to parts, which enables efficient local execution of element-level
computations [27].

Parallel, multilevel, graph-based partitioning methods produce high quality parti-
tions with tens of thousands of parts in a fraction of the time needed by most analysis
procedures [7, 34, 36, 50]. One approach to generalize these methods to represent
more complex information dependencies uses hypergraphs. A hypergraph is defined
as a set of weighted nodes and hyperedges. Hyperedges differ from graph edges in
that they represent dependencies between multiple graph nodes and, in doing so, have
the ability to better model the communication costs of an application [8, 9]. As with
graph-based partitioning, the goal of hypergraph partitioning is to balance the node
weight across the k parts while minimizing a hyperedge-based objective function. Bo-
man and Devine propose constructing the hypergraph from an unstructured mesh
by creating one hypergraph node for each mesh region (in three dimensions), as is
done in the graph-based construction, and a hyperedge connecting the mesh regions
bounded by each mesh vertex. This richer representation improves the modeling of
communication costs, but results in algorithms that are more compute and memory
intensive relative to graph-based methods.
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2.2. Geometric partitioning. Geometric methods represent information via
spatial coordinates and relations via distance; the closer two pieces of information
are, the stronger their relation. The exclusive use of coordinate information signif-
icantly reduces the memory requirements of these methods relative to (hyper)graph
methods that rely on topological relations [23]. Along with the lower memory cost,
the spatial sorting procedures used by geometric methods are also computationally
cheaper than the topological traversals needed by graph methods. The lower computa-
tional and memory usage costs come at the expense of significant increases in interpart
communications [47]. For applications that require frequent balancing, though, the
resulting communication overheads may be offset by the time saved computing the
partition [23].

Geometric recursive sectioning methods can quickly compute well-balanced par-
titions for a single entity dimension [6, 14, 46, 61, 67]. Recursive coordinate bisection
(RCB) [4] and recursive inertial bisection (RIB) [56, 61, 67] methods recursively cut
the parent domain: RCB along a coordinate axis and RIB perpendicular to the parent
domain’s principal direction. Multisectioning techniques [14, 46] can be considered
extensions of the recursive coordinate bisection methods as they define cuts along
coordinate axis, but they do so with multiple parallel cut planes at each recursion.

Partitioning methods using space-filling curves (SFCs) produce partitions of sim-
ilar quality to RCB and RIB. For 3D unstructured meshes, Hilbert [57] and Morton
curves have been used effectively by the Zoltan [16] and SPartA [23] packages, respec-
tively. Given the simplicity of SFC partitioning methods (encoding, sorting, and then
splitting), a high degree of on-node and internode concurrency is possible. For exam-
ple, a constant time Hilbert curve encoding procedure (spatial coordinates to curve
position) [57] and its subsequent sorting has been demonstrated on shared-memory
devices using a data-parallel implementation [29], and a two-collective splitting ap-
proach is used by SParTA. As an added benefit, sorting provides a cache efficient
layout of the mesh entities for subsequent mesh-based operations that benefit from
topological locality [22, 70].

2.3. Diffusive partitioning. Diffusive partitioning methods efficiently improve
an existing partition by transferring load between neighboring parts. Load trans-
fer can be coordinated globally or locally. Global load transfer selects elements to
minimize either the total weight of transferred elements, or the maximum weight
transferred into or out from a part [25, 26, 37, 40, 48, 49, 63]. Alternatively, lo-
cal load transfer iteratively moves elements from heavily loaded to less loaded parts
[60, 13, 48, 66]. This approach can have significantly lower overall computational
costs if the total amount of transferred load is controlled. Control is typically exerted
through greedy heuristics. These heuristics first determine the amount of load to
transfer between neighboring parts and then select elements to satisfy the transfer
requirement. Fiduccia and Mattheyses [18] and Kernighan and Lin [35] proposed se-
lecting elements based on the subsequent part quality improvement. For partitioning
complex graphs with up to one trillion edges [58, 59] these heuristics have proven suc-
cessful as part of a label propagation-based approach. Likewise, a greedy improvement
heuristic is applied to reduce the communication cost of parallel sparse matrix-vector
multiplication [5]. In Zhou’s work on unstructured meshes a similar heuristic is shown
to be highly scalable given a distributed mesh representation [69, 71].

3. Partitioning using mesh adjacencies. Zhou et al.’s 2010 work [69] defines
the LIIPBMod algorithm for reducing vertex imbalance and the number of vertices
on part boundaries while indirectly trying to limit the increase of element imbalance.
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In 2012, Zhou et al. [71] execute a strong scaling study of a massively parallel CFD
application using partitions created with (hyper)graph partitioners and LIIPBMod.
Our work, ParMA, defines new algorithms for balancing all entity dimensions (ver-
tices, edges, faces, and regions), with weights, while reducing the number of vertices
on the part boundaries, the number of disconnected components, and the average
number of neighboring parts. ParMA developments were guided by Zhou’s work for
vertex balancing.

Our work, relative to Zhou’s, demonstrates multi-entity balancing on up to 3.5
times more parts, 1Mi, with up to two times smaller parts, 1100 elements. Like Zhou,
we focus on balancing tetrahedral meshes. We also support balancing mixed and
other monotopological meshes (e.g., all quadrilaterals or all hexahedra).

ParMA’s implementation relies on the PUMI parallel unstructured mesh infra-
structure [30] and interprocess communication algorithms detailed by Ibanez, Dunn,
and Shephard [28]. We refer readers to these papers for details on the element migra-
tion procedure and neighborhood communications for information exchange.

In this work, ParMA, combined with graph and geometric partitioning methods
provided by Zoltan [15], satisfies the requirements for dynamic load balancing de-
scribed in section 2 to over one million parts on meshes with over 12 billion tetrahedral
elements. Partition quality requirements (1) and (2) are satisfied by partitioning the
mesh with a graph or geometric partitioner and then running ParMA to reduce the
imbalance of mesh entity dimensions critical to the application. For example, ParMA
is applied to balance the entities used as degree of freedom holders in finite element
method procedures. The incremental partition change requirement (3) is implicitly
satisfied by the definition of ParMA’s diffusion procedure and RCB. Graph-based
methods provided by Zoltan’s API also have execution modes that minimize data
movement. Requirement (4) is implicitly satisfied as applications in the workflow
are driven from the partitioning of the mesh that ParMA produces. Performance
requirements (5) and (6) are satisfied by combining ParMA with a partitioner that
scales to the required concurrency level. Lastly, requirement (7) is satisfied through
Zoltan’s API to interact with the mesh data structure and ParMA’s direct use of mesh
modification and query APIs.

3.1. Partitioned mesh representation. PUMI provides the O(1) queries of
intra- and interpart mesh topology information needed by ParMA via a complete and
distributed mesh representation [30, 53]. The distributed mesh is the union of mesh
parts. A mesh part is defined as a collection of mesh faces M2 in two dimensions, and
regions M3 in three dimensions, assigned to a processing resource, typically a core or
hardware thread. Mesh entities are denoted as Md

i , where d specifies the dimension
and i specifies the id or index. At the shared boundary of two or more parts mesh
entities are copied (as shown for mesh vertex M0

0 and edge M1
0 in Figure 1) and locally

tracked on each part through a remote copy object. Distributed mesh operations
involving a mesh entity on the part boundary are coordinated through an ownership
protocol, depicted by the discs and bold segments in Figure 1.

Two parts with common boundary mesh entities are neighbors. Sets of mesh
entities sharing common neighboring parts form a partition model entity [52]. Like
mesh entities, we denote the ith partition model entity of dimension d as P d

i . A mesh
entity is classified on the partition model entity of equal or greater dimension which
bounds it. For example, in Figure 1 mesh vertex M0

0 is classified on the partition
model vertex P 0

0 , mesh edge M1
0 is classified on the partition model edge P 1

1 , and
mesh face M2

0 is classified on the partition model face P 2
2 . These classifications are
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Fig. 1. (left) Example of a mesh, (middle) its partition model, and (right) its ownership. Discs
and bold segments denote entity ownership.

respectively noted as M0
0 @ P 0

0 , M1
1 @ P 1

1 , and M2
0 @ P 2

2 . Information is exchanged
by neighboring parts, typically for synchronizing data associated with part bound-
ary entities, through nonblocking, collective, neighborhood communications provided
by PCU [28, 41]. Using these communications, PUMI also provides procedures to
efficiently move mesh elements between processors, referred to as migration.

3.2. Partition improvement. ParMA reduces the peak imbalance of multiple
entity dimensions by iteratively migrating some mesh elements from heavily loaded
parts to neighboring parts with less load. The entity dimensions to balance are defined
by an application specified priority list. For example, if element>vertex is specified,
then the algorithm prioritizes improvements to element balance over vertex balance.
The greater-than relation indicates that element balance improvements are allowed
to degrade the vertex balance, but vertex balance improvements cannot degrade the
element balance. The balance of unlisted entity dimensions (edges and faces in this
example) are not considered and may be degraded. If vertex=element is specified, then
the algorithm considers the balance of mesh elements and vertices equally important.
In this case, the lower-dimension entities are processed first, as improvements to their
balance tend to improve the balance of the entities they bound (higher-dimension
entities). The target imbalance for each listed entity dimension is specified by the
application as tgtImbd, where d ≤ dmax (the maximum-dimension entity in a mesh).
Applications which perform work on entities regardless of their ownership define the
imbalance of a part, Idp , as the weight of mesh entities of dimension d existing on part
p divided by the average weight of dimension d entities per part. The weight of a
mesh entity is set to one when it is not specified by the application. The maximum
imbalance of dimension d entities across all parts is denoted as Id.

The ParMA iterative diffusion procedure is summarized in Algorithm 1. This
process is repeated for each specified entity dimension in order of descending priority,
as described above. For simplicity, the pseudocode is written with only a single entity
dimension, d, being passed to the supporting procedures. In practice, though, we have
the list of higher priority entity dimensions to avoid disturbing the imbalance of the
higher priority entities during the balancing of the current, lower priority, entity di-
mension. Iterations are stopped on line 9 if the target imbalance (tgtImbd) is reached,
or they are stopped on line 10 if no migration opportunities remain (discussed in sec-
tion 3.5), or if a maximum number of iterations is reached. Each diffusive iteration
has four steps [60]. First, on line 2, neighboring parts exchange local information (e.g.,
the weight of mesh entities) using PCU. Next, each part determines how much load
needs to be migrated and where it needs to go on line 3, targeting, and then marks
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elements for migration on line 4, selection. Before migration is executed, on line 5,
each part determines whether too much weight is being sent to it and, as necessary,
cancels a portion of the incoming element migrations. The cancellation process is
detailed in subsection 3.4.2. The final step, migration, moves the marked elements to
their defined destinations using PUMI.

Algorithm 1 ParMA Load Balancing

1: procedure RunStep( (in/out) mesh, (in) d)
2: ComputeAndExchangeWeights( (in) d, (out) weight, (out) neighborWeights)
3: Targeting( (in) mesh, (in) weight, (in) neighborWeights, (out) targetWeights)
4: Selection( (in) mesh, (in) d, (in) targetWeights, (out) migrationP lan)
5: Cancellation( (in) mesh, (in) neighbors, (in/out) migrationP lan)
6: Migration( (in/out) mesh, (in) migrationP lan)

7: procedure Balance( (in/out) mesh, (in) dimensions)
8: for all d ∈ dimensions do
9: while imbalance of d > tolerance do RunStep( (in/out) mesh, (in) d)

10: if Balancing Stagnates then
11: break

The targeting and entity selection steps are detailed in the following sections.

3.3. Targeting. ParMA defines the load transfer requirements for balancing a
given entity dimension based on the relative weight of the entities in neighboring parts.
Parts with an entity imbalance, Idp , greater than the specified imbalance, tgtImbd, are
defined as heavily loaded parts. A lightly loaded part is defined based on the partition
improvement requirements. If the application requires vertex=edge>element, then
migration to decrease element imbalance should not increase the imbalance of vertices
or edges. Thus, during element improvement a part is a “lightly loaded” target to
receive elements if it has fewer vertices, edges, and elements than the heavy part.

The amount of load, ldpq, migrated from a heavily loaded part p to a neighboring
part q during improvement of mesh entities of dimension d is defined as

(1) ldpq = α ∗ sf ∗

(∑
i

w(Md
i ∈ p)−

∑
i

w(Md
i ∈ q)

)
,

where w(Md
i ) is the application specified weight associated with a given entity i , α is a

diffusion rate limiting constant ∈ (0, 1] [13], and, in three dimensions, sf is the ratio of
mesh faces shared by parts p and q to the total number of faces classified on partition
boundaries of p. The surface area bias sf helps define load transfer requirements
that can be satisfied in a single iteration by selecting elements for migration that are
classified on the part boundary. A large transfer across a small boundary will not
only take several iterations to satisfy, but it will also lead to a large increase in the
number of entities classified on the part boundary, as each iteration will “tunnel” into
the part. The entity selection process is detailed in section 3.4.

We tested the effect of α on run time and imbalance to guide the choice of a
conservative default value. The test mesh of the automotive part shown in Figure 2 has
2048 parts and an initial vertex imbalance of 46%. Table 1 and Figure 3, respectively,
show the run time and vertex imbalance as α is varied from 0.2 to 1.0. The target
vertex imbalance was set to 5%. With the exception of the α = 1.0 case, all the cases
reached an imbalance of 6% or 7% before stagnation detection stopped the vertex
balancer (section 3.5). Setting α to 0.6 yields the fewest iterations and the shortest
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run time. Increasing α from this value causes too many elements to be migrated
in each iteration, which results in imbalance oscillations that increase the run time.
Similarly, lower values of α increase the run time by migrating too few elements in each
iteration. Given these observations, α is conservatively set to 0.5 for the remaining
tests in this work. Note that this setting of α may be tuned for a specific case to
improve performance.

Fig. 2. Coarse mesh of the 2014 RPI Formula Hybrid suspension upright.

Table 1
Diffusion iterations and run time for various α settings.

α Iterations Time (s) I0

0.2 45 19.3 1.07

0.4 31 14.0 1.07

0.6 27 12.5 1.06

0.8 27 13.5 1.07

1.0 31 16.6 1.09

Compared to Zhou’s LIIPBMod, ParMA’s use of (1) enables finer grained migra-
tions. In LIIPBMod, a part is a target for migration if (1) the difference between the
vertex imbalance of the source part and the target part is greater than 2% or (2) the
vertex imbalance is less than 4.5%. Note that LIIPBMod does not support weights
associated with mesh vertices.

3.4. Entity selection. Entity selection’s primary objective is to reduce the im-
balance of a given entity dimension. While selecting mesh elements for migration it
is important to maintain interpart boundaries with low surface area, as an increase
in the number of mesh entities classified on boundaries increases application commu-
nications and, in some cases, the computational load [32]. Thus, entity selection’s
secondary objective is to reduce the number of mesh entities classified on partition
model entities of dimension d < dmax.

Entity selection satisfies the objectives with part-level and entity-level heuristics.
In section 3.4.1 we describe how the part-level heuristic defines a vertex traversal
order for evaluating the entity-level heuristic. Next, in section 3.4.2, we describe
how the entity-level heuristic evaluates the topology of a cavity, the set of elements
adjacent to a given vertex. Combined, these two procedures reduce both the surface-
to-volume ratio of the parts and their entity imbalance. Pseudocode for the selection
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Fig. 3. Effects of α on the number of iterations and vertex imbalance. The initial mesh has
2048 parts and a 46% vertex imbalance.

procedure, as called in Algorithm 1, is given in Algorithm 2 and described in the
following sections.

Algorithm 2 ParMA Selection

1: procedure Selection( (in) mesh, (in) d)
2: if dist not set then
3: IdentifyDisconnectedComponents((in) mesh, (out) comps)
4: SetVertexComponentIds((in) mesh, (in) comps, (out) ids)
5: FindTopologicalCenters((in) mesh, (in) comps, (out) centers)
6: ComputeCoreDistance((in) mesh, (in) ids, (in) centers, (out) dist)
7: OffsetCoreDistance((in) mesh, (out) dist)
8: else
9: UpdateDistance((in) mesh, (in/out) dist)

10: for cavSize ∈ {2, 4, 6, 8, 10, 12} do
11: CreateTraversalQueue((in) mesh, (in) dist, (out) q)
12: for all v ∈ q do
13: if ShouldMigrateCavity((in) mesh, (in) v, (in) cavSize) then
14: Add cavity of v to migrationP lan

3.4.1. Part-level core distance heuristic. The number of mesh entities clas-
sified on partition model entities is reduced by migrating elements that are furthest
from the topological center of the part, referred to as “the core.” To find these ele-
ments we traverse the part boundary vertices in order of their distance from the core.
We define this distance as the shortest edge-based path between a vertex and the
part’s core. Thus, as diffusive iterations are executed, elements bounding vertices far
from the core are migrated and the maximum distance of the part is reduced [17, 38].
This approach satisfies the second entity selection objective by forming parts with
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lower surface to volume ratios and reduced communications. In Algorithm 2, the core
is found on line 5 and the distance is computed on line 6.

To understand the distance computation procedures, we must first account for
parts produced by the graph and geometric partitioning that have multiple connected
components. We define a (connected) component of a part as the set of elements in
which there exists a path via Md−1 adjacencies (faces in three dimensions) between
any two elements. Given this complexity, we first identify the components (lines 3
and 4 of Algorithm 2), compute the distance in each component (lines 5 and 6 of
Algorithm 2), and then offset the component distances to ensure a strictly increasing
ordering for the traversal of boundary vertices (line 7 of Algorithm 2); we want the
traversal to process the entire boundary of one component before moving on to the
next one. The remainder of this subsection defines these procedures.

Connected components are identified via a breadth-first Md−1 adjacency-based
traversal [12] starting at the first mesh element in the part (based on iterator ordering).
As elements are visited, they are marked with the component id. When there are no
more unmarked Md−1 adjacent elements to visit, the component id is incremented
and the traversal is restarted with an unmarked element in another component. This
process is repeated until all elements in the part are marked with a component id.

By traversing Md−1 mesh adjacencies between elements we have identified compo-
nents with the strongest topological connectivity. But, to compute the core distance
at mesh vertices, we first need to uniquely assign vertices to components. For vertices
bounded by elements with the same component id the assignment is obvious. The
problem comes with vertices at the common boundaries between components formed
by lower-dimension topological mesh adjacencies (i.e., an edge or vertex adjacency).
To resolve this assignment issue, we set the vertex id to the lowest bounding com-
ponent id. Now that vertices have component ids, we can find the vertices at the
topological center of each component.

We find the central vertices in a component via a breadth-first traversal starting
from all the boundary vertices of a component. When there are no more vertices to
visit, the traversal ends. From the set of vertices with the largest traversal depth,
the first (based on vertex iterator ordering) is chosen as the component’s core. The
left half of Figure 4 shows the vertices marked with their traversal depth. Note that
selecting a different vertex with a depth of three could reduce the maximum distance
to any boundary vertex, thus representing a more central vertex, and result in a
small improvement to the subsequent boundary traversal. From the central vertices,
Dijkstra’s algorithm [12] is run to compute the core distance to all other vertices in
the component. The core distance at each vertex is shown in the right half of Figure 4.
A more complex example of distancing is shown in Figure 5.

Now that all components have vertices with distance, we must offset the distances
so that our element selection procedure can traverse all the boundary vertices of a
component before moving to another component. In Algorithm 2 the offset is com-
puted on line 7. Figure 6 depicts the distance of the disconnected components before
and after the offset is applied. Algorithm 3 computes the component vertex distance
offsets. The procedure begins by sorting the components in order of descending depth,
forming the list c. Next, on line 2, the deepest component, r0, has its offset set to zero.
Lines 3 through 4 then compute the offset of the ith component, ri, by summing the
previous component’s offset and maximum distance, ri−1 + max(R(M0

j ∈ c(i − 1)))

(where R(M0
j ) is the distance of a vertex), plus an upper bound on a component’s dis-

tance increase, maxDistIncrease. This upper bound enables fast distance updates
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Fig. 4. (left) The distance from each vertex to the boundary and (right) the distance from the
core vertex (marked with a zero near the bottom left corner).

by including a buffer into the offset that allows the parts to grow during diffusion
iterations without overlapping. As each diffusion iteration can only add one layer
of elements to a component, the maximum growth in distance for a component is
bounded by the number of iterations. So, maxDistIncrease is set to the maximum
number of diffusive iterations. The final step on line 5 loops over the components in
ascending order of their depth and applies the offset to their vertices. This compo-
nent traversal order, combined with the conditional checking that the current distance
value is less than the offset, prevents the distance of vertices on the boundary of two
components being offset multiple times.

Within a component, detection of nonmanifold [64] portions of the boundary is
critical to ensure that the core distance accurately records the shortest Md−1 adjacent
path from the core to each vertex. For example, consider the 2D nonmanifold vertex
junction indicated by the arrow in Figure 5b. Here the paths from the core vertex
marked in the upper portion of Figure 5a to either side of the junction will have
significantly different lengths due to the large holes in the mesh formed by land masses.
Detection of a nonmanifold junction at a given boundary vertex, s, is through the
breadth-first traversal of s’s cavity vertices (i.e., the vertices bounding elements in
the cavity), rooted at the distance-1 parent of s. Vertices in the cavity are reachable
via Md−1 adjacencies if the traversal can visit them without passing through s. For
example, consider vertex s in the cavity depicted in Figure 7 to have the lowest
distance in the priority queue of vertices being processed by Dijkstra’s algorithm.
The detection traversal starts at vertex p, the parent of s, by enqueuing vertices f
and h. s is also edge-adjacent to p, by definition, but it is skipped, as paths through it
are not considered. The traversal continues by dequeuing a vertex and enqueuing its
edge-adjacent vertices that have not been previously visited and are not s. Figure 7
depicts the depth of each edge in the traversal tree with hash marks. If there existed
another element that was adjacent to s that was also adjacent to e and d, or h and b,
then the edge (e, d) or (h, b) would provide an edge-adjacent path from p to b, c, and



PARTITION IMPROVEMENT C57

(a) Component core vertices marked with a zero.

B

C

A

(b) An edge-disconnected junction (arrow) and three disconnected com-
ponents (A, B, C).

Fig. 5. Components in one of four parts of the MPAS 60km [31] ocean mesh. Dark shaded
elements are isolated (no Md−1 adjacency path to elements on the part boundary), and light shaded
elements are on a different part.

d and the junction would be identified as manifold.
Compared to LIIPBMod, our part-level heuristic supports improvement of lower

quality partitions by directly accounting for connected components and nonmanifold
junctions within components.

In LIIPBMod, the boundary vertices are iterated over based on the order they
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Fig. 6. Core distance of disconnected components A, B, and C from Figure 5 (left) before and
(right) after the offset is applied.

Algorithm 3 Vertex Distance Offset

1: c ← sortDescending(components)
2: r0 ← 0 //component zero’s offset
3: for i← 1, numComponents do
4: ri ← ri−1 + max(R(M0

j ∈ c(i− 1))) + 1 + maxDistIncrease

5: for i← numComponents, 1 do
6: for M0

j ∈ c(i) do

7: if R(M0
j ) < ri then

8: R(M0
j )← R(M0

j ) + ri;

appear in the underlying data structure without consideration for the part topology.

3.4.2. Entity-level cavity heuristics. In the previous subsection we described
how the part-level heuristic defines a vertex traversal order for evaluating entity-level
heuristics. In this subsection, we define those entity-level heuristics and how they
select elements for migration to reduce the entity imbalance. We start by describing
size-based cavity selection. Next, we describe and demonstrate how multiple boundary
traversals with increasing cavity size limits benefit partition improvement. In Algo-
rithm 2 these steps are listed on lines 10 through 13. Lastly, we detail cancellation, a
critical mechanism for multicriteria load balancing.

Our entity-level, gain-like heuristic [18, 35] is based on Zhou’s cavity-based ap-
proach [69, 71], but it is more flexible. Like LIIPBMod, we check the number of
elements in the cavity (the set of elements adjacent to a vertex on a part boundary),
but we also check the adjacencies within the cavity and the on- and off-part adjacen-
cies external to the cavity. With this additional information we can migrate cavities
that are bounded by vertices classified on partition model vertices, edges, and faces.
LIIPBMod’s heuristic avoided multipart junctions; any cavity whose bounding vertex
is classified on a partition model vertex or edge was not eligible for migration. In
addition to more flexible migration, our heuristics improve the selection quality with
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p
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Fig. 7. Determining whether s is a nonmanifold component boundary by creating a cavity of
elements bounded by s and then trying to walk from its parent vertex p to b, c, or d without going
through s. The hash marks indicate the depth of each edge visited in the walk.

(1) multiple boundary traversals with increasing cavity size in a single iteration and
(2) support for migrations to be canceled by the receiver.

The primary check for selection is based on the number of elements in a cavity.
If a cavity is small, then migrating it will decrease the number of entities in the
source part and classified on partition model entities. Conversely, migrating a face-
connected cavity (i.e., between any two elements in the cavity there exists a path
via face adjacencies) with several elements can result in an increase in the number of
mesh entities classified on partition model entities. However, migrating small cavities
with a few disconnected elements can yield significant entity reductions. Note that
LIIPBMod uses a fixed cavity size of five elements.

To illustrate the effect of size and connectivity on entity reductions consider the
cavities depicted in Figure 8 and the reductions listed in Table 2. Figures 8a–c and d–f,
respectively, depict face-connected and face-disconnected cavities. Here, the vertices
bounding the cavities are marked with a disc. Vertices classified on the partition
model face P 2

j bounded by parts P 3
0 and P 3

1 are marked with a circle or disc, and in

cavity c a vertex classified on a partition model region, M0
i @ P 3

0 , is marked with a
square. In this example, all elements are migrated from P 3

0 to P 3
1 . After migration

the faces bounded by the circled vertices are now on the part boundary from P 3
0 to

P 3
1 , and in cavities a–b and d–f there is one less vertex classified on P 3

0 . Migration of
cavity c does not change the number of entities classified on the part boundary since
there is an entity added to the part boundary for each one migrated.

Ideally, we would like to select the combination of cavities for migration that
results in the greatest imbalance reductions. Solving this problem exactly would be
expensive, so instead we iterate over the part boundary multiple times in order of
descending vertex distance while relaxing (increasing) the cavity size selection limit
before executing the PUMI element migration procedure. Thus, the first traversal of
the boundary will select only cavities with one or two elements, followed by cavities
with less than four elements in the second traversal (the first traversal may have
created new one or two element candidates), and so on. The traversal stops at a
cavity size limit of 12, roughly half of the average number of elements adjacent to a
vertex in a tetrahedral mesh [2].
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d
vertex bounding cavity vertex classi ed on

e f

a b c

vertex classi ed on 

Fig. 8. Vertex bounded cavities being migrated from part 0 to 1.

Table 2
Reduction in the number of mesh entities classified on P 2

j for cavities a–f depicted in Figure 8.

Cavity
Entity dimension a b c d e f
Vertex 1 1 0 1 1 1
Edge 3 2 0 5 7 8
Face 2 2 0 4 6 6

We tested the effectiveness of selection with an increasing size limit versus a
static size limit by balancing a small test mesh. For both approaches the cavity size
limit is set to 12. The test mesh of the suspension upright has 228,000 elements and is
partitioned to 2,048 parts using RIB. The RIB partition has a perfect element balance
and a 53% vertex imbalance. Our run with vertex balancing ParMA targets a 5%
vertex imbalance. Balancing with the increasing cavity size limit requires 2.0 seconds
on 2048 Blue Gene/Q cores. At the end of the run, the target vertex imbalance is
reached, the element imbalance is 9%, and the average number of vertices per part is
reduced by 3.4%. On the same number of cores, the fixed cavity size run takes 3.4
seconds to reach the target vertex imbalance and has a 15% element imbalance, and
a slight (0.07%) increase in the average number of vertices per part.

Once a cavity is selected, it needs to be assigned to a neighboring part for mi-
gration. The assignment and subsequent migration should result in a reduction of
the number of mesh entities classified on the part boundary. In a 3D mesh we assign
the cavity to the part that shares the most mesh edges with it. Counting shared
edges avoids counting vertices (the lowest-dimension shared entity) that are not ad-
jacent to a higher-dimension shared entity (an edge or a face) while providing more
information than the counting of shared faces (the highest-dimension shared entity in
three dimensions). Figure 9 depicts a two element cavity with entities classified on
both partition model faces and edges. Specifically, the cavity has two faces shared
with part one (dark shaded), two faces with part two (unshaded), and an additional
classification of edge F on the partition model edge shared with part two (dashed
line in bold). Counting shared edges correctly identifies part two as the destination;
it has six cavity edges versus part one only having five. The “Sum” row of Table 3
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Fig. 9. Counting mesh entity partition model classification to select either part one or part two
for the migration of part zero cavity elements. The cavity bounding vertex is marked with a disc.
(left) Part classification; faces in the foreground classified on part two are not shaded. (right) Mesh
edge labels. For clarity, edges in the foreground have bold labels.

Table 3
Existence of Figure 9 cavity edges on parts. The column groups list the edge existence prior to

migration of the cavity (Owner=0) and after migration to part N (Owner=N). An entry is “1” if
the edge exists on the part. The last row lists the total number of cavity edges on each part.

Cavity owner
0 1 2

Part 0 1 2 0 1 2 0 1 2
A 1 1 1 0 1 1 0 1 1
B 1 1 0 0 1 0 0 1 1
C 1 1 1 0 1 1 0 1 1
D 1 0 1 0 1 1 0 0 1

Edge E 1 1 0 1 1 0 1 1 1
F 1 1 1 1 1 1 1 1 1
G 1 0 1 1 1 1 1 0 1
H 1 0 1 1 1 1 1 0 1
I 1 0 0 1 1 0 1 0 1

Sum 9 5 6 6 9 6 5 5 9

lists the total cavity edge count on each part when the cavity elements are owned by
part zero, the initial owner, and parts one and two, the two possible target parts. For
this example, migrating the cavity to part two reduces the total number of shared
edges from 20 to 19; if part one were selected, the total number of shared edges would
increase by one. If multiple parts are tied for the most shared edges, then the first
part with remaining capacity is selected as the destination.

As the part boundary is traversed and the cavity heuristic selects elements for
migration, the weight of the selected entities is tracked to prevent migrating too much
weight to the target parts. Tracking is based on the simple rule, rooted in the unique
assignment of elements to parts, that an entity will not exist on the part if all the
elements it bounds are marked for migration. Thus, the weight tracking mechanism
checks for this condition and, if satisfied, adds the entities’ weight to the running total
for the given destination part.

During the balancing of lower priority entity dimensions (e.g., elements during
vertex>element balancing) the imbalance of higher priority entity dimensions is pre-
served by cancelling the migration of some elements [48]. First, the sending parts
determine how much weight associated with higher priority entities is migrated to
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the target parts. These weights are then sent to the respective targets using PCU’s
neighborhood communication procedures [28]. The target part then iterates over the
incoming migration requests in descending order of the migration weight, accepts the
request if capacity remains, reduces the remaining capacity accordingly, and sends the
accepted weight to the sender. The sending part then traverses the list of migration
elements in the order they were selected (i.e., descending distance from the part’s
topological core) and keeps elements in the list until the peer’s higher priority entity
weight capacity is exceeded. A summary of the interaction between the part-level and
entity-level heuristics is given in section 3.6.

3.5. Stagnation avoidance. A stagnation [69] avoidance procedure stops exe-
cution of diffusion when the imbalance or part shape has not improved over several
iterations. Specifically, a second order accurate backward finite difference [20] approx-
imates the rate of change of the imbalance, imb, and the average number of boundary
mesh vertices per part, sides. Diffusion is stopped if the rate of change in imb is
less than one percent of the target imbalance and the change in sides is less than
one-hundredth of the initial sides.

3.6. Time complexity. The part-level heuristic requires first executing an
O(|Md|+|Md−1|) element-based, breadth-first traversal to identify disconnected com-
ponents. Next, the vertex component ids are set, O(|M0|), and boundary vertices
are inserted into STL sets, O(|M0|log|M0|). The component vertices are then tra-
versed in breadth-first order via edge adjacencies to locate the topological center,
O(|M0|+ |M1|). For simplicity, our implementation uses an STL set to maintain the
vertices at each tree depth. This choice adds O(|M0|log|M0|) to the cost and could be
avoided with a list-based traversal. Next, Dijkstra’s algorithm is run to compute ver-
tex distances, O(|M1|+ |M0|log|M0|). As the vertices are visited, adjacent elements
are accessed for nonmanifold topology detection, a cost increase of O(|Md|). Lastly,
the vertex distances are offset, O(|M0|). The overall complexity of the part-level
heuristic for a 3D tetrahedral mesh is O(|M1| + |M2| + |M3| + |M0|log|M0|). But,
for each entity dimension being balanced these procedures only need to be executed
once. In subsequent iterations we can execute a lower cost distance update on just
the boundary vertices (line 9 of Algorithm 2).

In each iteration the entity-level heuristic first requires building an STL map-
based distance queue of vertices to traverse, O(|M0|log|M0|). The vertices in the
queue are then traversed, O(|M0|), and cavities constructed by adjacent element
queries, O(|Md|). Lastly, the cavity edges are queried for determining the destination
part, O(|M1|). Thus, the entity-level heuristic’s complexity is O(|M0|log|M0|+|M1|+
|Md|).

A detailed analysis of convergence and overall time complexity of general diffusive
load balancing procedures can be found in the work of Subramanian and Scherson
[60] and Berenbrink, Friedetzky, and Hu [3].

4. Results. ParMA support for balancing 2D and 3D unstructured meshes with
complex topological features is demonstrated in the following subsections. First, we
compare ParMA against its predecessor LIIPBMod on up to 256Ki (256·210) parts.
We then test the effect of ParMA’s entity selection features described in section 3.4
on partition quality and imbalance. Then, we present ParMA’s ability to improve
partitions created with graph and geometric partitioning methods on up to 1Mi (220)
parts. Lastly, we discuss the effect of partition improvement on the scalability of
PHASTA CFD up to 512Ki parts.
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Fig. 10. AAA geometric model and close-up view of a coarse mesh.

4.1. LIIPBMod comparison. We compare the performance of ParMA vertex>
element improvement against LIIPBMod on a 64Ki, 128Ki, and 256Ki partition of
a 941 million element tetrahedral abdominal aortic aneurysm (AAA) mesh. This
mesh was generated by successively refining the initial coarse mesh shown in Fig-
ure 10. Three test partitions of the mesh were created by running local ParMETIS
(one instance per process [69]) part k-way on a 16Ki base partition created with
global ParMETIS part k-way. Our partition improvement test then executed ParMA
and LIIPBMod on the three partitions using the Mira Blue Gene/Q system at the
Argonne Leadership Computing Facility (ALCF).

Figure 11 depicts the change in vertex and element imbalance resulting from
ParMA and LIIPBMod. In these tests, LIIPBMod targets a 5% vertex imbalance
and ParMA targets 5% vertex and element imbalance. Note that LIIPBMod does
not explicitly target reducing the element imbalance; it simply tries not to harm
it significantly while balancing vertices. LIIPBMod balancing stagnates at around
10% for the vertex imbalance and, at 256Ki, increases the element imbalance by two
percentage points. At all three partition sizes ParMA meets the vertex and element
imbalance target of 5% and executes 75% faster than LIIPBMod. For these partitions,
ParMA and LIIPBMod have an insignificant effect (less than one percent) on the total
number of vertices. The ParMA features that support fast balancing are discussed in
sections 3, 3.3, and 3.4. Next, we discuss the performance cost and partition quality
improvements of these features.

4.2. Feature tests. We tested ParMA vertex>element improvement on a
497,058 triangular-element MPAS North America 15km-to-75km graded ocean mesh
partitioned to 1Ki parts. The initial partition generated with local ParMETIS part
k-way has a vertex and element imbalance of 36% and 17%, respectively, and, on
average, 280 vertices per part.

Configuration 1 of Table 4 serves as the baseline for feature inclusion. It uses
iterator-based part boundary vertex traversal (disabled graph distance), disables de-
tection of nonmanifold part junctions, has a fixed cavity size for selection, and when
balancing elements does not cancel selections to help preserve vertex imbalance. Con-
figurations 2, 3, 4, and 5 successively add the features listed in Table 4.

For each configuration, Figures 12a and 12b depict the change in partition qual-
ity, relative to the initial partition, after ParMA balancing. ParMA’s target imbal-
ance was set to 5% for vertices and elements. Partition quality is measured in three
ways: (1) the average number of neighbors per part, counted via shared vertices,
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Fig. 11. Evolution of the (top) vertex and (bottom) element imbalance with ParMA, LIIPBMod,
and ParMETIS in the 941 million element AAA mesh.

Table 4
ParMA test configurations.

Configuration Enabled features
1 None
2 1 + core distance traversal
3 2 + nonmanifold feature detection
4 3 + increasing cavity size selection
5 4 + selection cancellation

“avgNB/part,” (2) the average number of vertices and edges per part, “avgVtx/part”
and “avgEdge/part,” and (3) the entity imbalance, Id. For each of these measures
a value of one indicates no change from the initial partition, while a value greater
(lower) than one indicates an increase (decrease) in the measure relative to the initial
partition.

Figure 12a depicts the improvement in quality after vertex balancing. The average
number of neighbors, vertices, and edges per part increases by one percent or less with
all features enabled. Relative to the over 20% decrease in vertex imbalance, these
increases are negligible.
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(a) Partition quality after vertex balancing.

(b) Partition quality after vertex>element balancing.

(c) Disconnected components.

Fig. 12. Partition quality of a 1, 024 part MPAS North America 15km to 75km graded ocean
mesh using the ParMA configurations listed in Table 4.

Vertex>element balancing, Figure 12b, further improves the partition quality
as features are enabled. After Configuration 1 (element balancing with no features
enabled), the element imbalance is reduced from 5% to 3% at the cost of a vertex



C66 SMITH, RASQUIN, IBANEZ, JANSEN, AND SHEPHARD

imbalance increase from 5% to 20%. Enabling core distance traversal, Configuration
2, reduces the average number of disconnected components per part. Figure 12c shows
that the disconnected component count, relative to the initial partition, increases by
50× in Configuration 1 while Configuration 2 only has a 10× increase. The large
reduction in disconnected components reduces the number of vertices on the part
boundaries. This reduction in turn helps limit the vertex balance increase to 13%
after element balancing. The features of Configuration 4 further reduce the number
of boundary vertices (as indicated by the reductions in average neighbors, edges,
and vertices per part) and results in a 10% vertex imbalance. With all features
enabled, Configuration 5, a final vertex imbalance of 7% is reached while maintaining
the 5% element imbalance and further improving the other quality measures. This
Configuration runs in 72% of the time of Configuration 1: 3.07 seconds versus 4.25
seconds. The faster run time is mainly the result of vertex balancing times reducing
from 4.09 seconds to 2.82 seconds, and only a slight increase in the element balancing
times from 0.16 seconds to 0.25 seconds.

We also ran the feature test on the 3D 2.3 million element RPI Formula Hybrid
suspension upright mesh, the geometric model depicted in Figure 2. The test mesh
has 2,048 parts and a 46% vertex and 10% element initial imbalance. ParMA’s target
imbalance was set to 5% for both vertex and vertex>element balancing. Figure 13
shows the results of the tests. In Configuration 1, balancing the mesh vertices to 10%
increases the element imbalance to 26%. The subsequent element balancing reduces
the element imbalance to 5% in 17.8 seconds but increases the vertex imbalance to
29%. As features are enabled the partition quality and imbalances improve at the
cost of increased run time. Running with all features enabled (Configuration 5) re-
quires 37.6 seconds (two times longer than Configuration 1) and reaches an element
imbalance of 5% and a vertex imbalance of 9%.

A critical difference of the 3D upright tests to the 2D MPAS tests is the large
reduction in disconnected parts and the related decrease in the average neighbors and
entities per part. Compared to the initial partition, Configuration 5 of the upright
test reduces the average neighbors, vertices, and disconnected components per part by
17%, 8%, and 93%, respectively, and 3%, 2%, and 27% versus Configuration 1. This
difference is mostly due to the change from two to three dimensions and the increased
connectedness of the geometric model that enables more migration opportunities; the
MPAS mesh has multiple geometric surfaces which only share one or two vertices with
other surfaces.

The feature tests were run using one part per core on the Blue Gene/Q at the
Rensselaer Center for Computational Innovations. Tests with all features enabled and
additional balancing criteria are described next.

4.3. Multicriteria improvement. Analysis codes which have work associated
with multiple entity dimensions and have a nonuniform distribution of that work re-
quire multicriteria balancing. Codes with this requirement include finite elements with
nonuniform p, particle-in-cell [68], contact/impact [19], atomistic-to-continuum [21],
and other multimodel or multiphysics techniques [10]. ParMA satisfies this require-
ment by balancing the entity dimensions defined in a priority-sorted list. For each
entity in the mesh the application also optionally provides weights specifying the asso-
ciated computational load. To test this ability we ran ParMA vertex=edge>element
balancing on a 2.3 million element, 2,048 part mesh of the suspension upright. The
test emulates a nonuniform work distribution associated with edges by setting entity
weights. On part zero, edge weight is set to two; all other parts have entity weights
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(a) Partition quality after vertex balancing.

(b) Partition quality after vertex>element balancing.

(c) Disconnected components.

Fig. 13. Partition quality of a 2, 048 part RPI Formula Hybrid suspension upright mesh using
the ParMA configurations listed in Table 4. Lower is better.

of one.
Two initial partitions were used in testing; one is the result of mesh adaptation

(listed as “adapt”), and another is generated with RIB. The partitions’ average entity



C68 SMITH, RASQUIN, IBANEZ, JANSEN, AND SHEPHARD

Table 5
vertex=edge>element partition improvement on a 2.3 million element, 2048 part, mesh of the

RPI Formula Hybrid suspension upright of Figure 2.

Avg/part
Stage Vtx Edge Face I0 I1 I2 I3 Time (s)

Adapt 357.749 1741.012 2497.981 1.46 1.92 1.15 1.10
Vertices 334.0 1687.7 2469.3 1.08 1.92 1.16 1.19 10.27
Edges 330.5 1679.0 2464.3 1.09 1.06 1.09 1.13 6.88
Elements 328.829 1674.661 2461.637 1.09 1.06 1.07 1.08 10.26

RIB 350.457 1737.694 2503.369 1.53 1.92 1.10 1.00
Vertices 337.8 1705.0 2483.4 1.04 1.95 1.07 1.10 3.01
Edges 333.2 1692.8 2475.8 1.06 1.05 1.04 1.07 3.86
Elements 331.387 1687.526 2472.306 1.07 1.05 1.04 1.04 0.85

counts and imbalances are listed in Table 5. The adapt partition, relative to the
RIB partition, has a 10 point higher element imbalance and, on average, four more
neighbors and two more disconnected components per part. Given the lower initial
quality, ParMA improvement on the adapt partition requires about 350% more time
to run (27.4 seconds versus 7.7 seconds) and has final entity imbalances (noted in
the “elements” row) a few points higher than the final ParMA imbalances of the RIB
partition. Note that, even with the run time increase, the time spent in ParMA is
insignificant relative to the time spent executing a typical finite element analysis on
a partition of this size.

Despite an initial weighted-edge imbalance of over 90% in both partitions, ParMA
reduces the entity imbalances to less than 9% while also reducing the average per part
entity weights by up to 5%. Critical to this result is ParMA’s ability to diffuse away
edge weight from the heavily imbalanced part zero while not overloading other parts.
Diffusion reduces the number of mesh edges in part zero from 1,674 to 901 in the
adapt partition and from 1,665 to 889 in the RIB partition.

4.4. Partitioning to over one million parts. ParMA quickly reduces large
imbalances and improves part shape of a 1.6 billion element suspension upright mesh
partitioned from 128Ki to 1Mi (220) parts (approximately 1500 elements/part). The
initial 128Ki partition has less than 7% imbalance for all entity dimensions. We ran
the tests on the Mira Blue Gene/Q located at the ALCF. One hardware thread was
used per part:

• Partitioning with global RIB completes in 103 seconds and results in a 209%
vertex imbalance and a perfect element imbalance. ParMA runs on 1Mi pro-
cessors in 20 seconds and reduces the vertex imbalance to 6%, only increases
the element imbalance to 4%, and reduces the average number of vertices per
part by 5.5%.

• Local partitioning with ParMetis (one serial instance of ParMETIS for each
initial part) completes in 9.0 seconds and results in a 63% vertex imbalance
and a 12% element imbalance. ParMA runs in parallel on 1Mi processors
in 9.4 seconds and reduces the vertex imbalance to 5%, reduces the element
imbalance to 4%, and reduces the average number of vertices per part by 2%.

Partitioning a 12.9 billion element mesh from 128Ki (< 7% imbalance) to 1Mi parts
(approximately 12,000 elements/part) using serial instances of ParMETIS completes
in 60 seconds and results in a 35% vertex imbalance and an 11% element imbalance.
Running ParMA in parallel on 1Mi processors takes 36 seconds to reduce the vertex
and element imbalances to 5% and reduce the average number of vertices per part by
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0.6%.
Table 6 lists the number of elements, the initial and target part counts, and the

initial entity imbalances, I0−3 for vertices, edges, faces, and regions, respectively, for
three partitions. Table 7 lists the results of ParMA runs on those partitions. Note
that the column “Dec. (%)” lists the percentage decrease in the average vertices per
part after ParMA relative to the partitioning stage, “Split.”

Table 6
Initial meshes for upright tests. The name of each mesh describes the number of elements in

the target part.

Target Elms per

Name Elements Parts parts tgt. part I0 I1 I2 I3

small 1.6 × 109 217 220 1541.7 1.06 1.06 1.06 1.07

medium 12.9 × 109 217 220 12 333.8 1.05 1.06 1.07 1.07

large 12.9 × 109 217 219 24 667.6 1.05 1.06 1.07 1.07

Table 7
X+ParMA vertex>element upright test results.

Avg Dec.
Scope Density Method Stage vtx (%) I0 I1 I2 I3 Tot (s)
local small RIB Split 455.1 1.34 1.18 1.13 1.13 10.67

ParMA 427.6 6.42 1.07 1.06 1.05 1.05 8.94
pmetis Split 427.0 1.63 1.32 1.13 1.12 8.99

ParMA 418.8 1.97 1.05 1.05 1.04 1.04 9.48
medium RIB Split 2825.5 1.31 1.14 1.08 1.07 54.32

ParMA 2752.0 2.67 1.06 1.05 1.04 1.05 48.81
pmetis Split 2687.7 1.35 1.14 1.11 1.11 59.81

ParMA 2671.3 0.61 1.05 1.05 1.04 1.05 36.15
large RIB Split 5273.9 1.16 1.13 1.12 1.13 42.69

ParMA 5122.9 2.95 1.05 1.04 1.04 1.05 52.87
pmetis Split 5132.4 1.21 1.09 1.10 1.10 37.02

ParMA 5102.2 0.59 1.04 1.04 1.04 1.04 41.55
global small RIB Split 470.1 3.09 2.07 1.45 1.00 103.14

ParMA 445.4 5.54 1.06 1.04 1.03 1.04 20.23
large RIB Split 5367.3 2.49 1.70 1.29 1.00 96.79

ParMA 5228.8 2.65 1.05 1.02 1.03 1.04 379.84

4.5. CFD scaling improvement. As an example of ParMA’s ability to im-
prove simulations of very complex geometric models at extreme scale, consider the
geometry shown in Figure 14. The left side of the figure depicts the surface of the
vertical tail and rudder, while the right side provides a detailed view of a complex
geometric junction. At this junction we show a close-up view of a clip-plane cut-
ting through the very small gap between the vertical stabilizer and the rudder where
many parts are contained. In this region several of the parts are “cut off” from the
surrounding geometry and have a limited number of neighbors to diffuse through for
partition improvement.

The partitions of the 1.2 billion element tetrahedral mesh for this study were
obtained through a series of steps. First, mesh adaptation was executed on a 4Ki
part mesh using an error-based size field [11, 44]. To balance and partition this mesh,
global ParMETIS part k-way [33] was executed to create an 8Ki part mesh. Starting
from this 8Ki part mesh, with a 7% vertex imbalance and 1% element imbalance,
ParMETIS part k-way was applied locally to each part to create partitions of the
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Fig. 14. (left) Full view of the vertical stabilizer and rudder and (right) a slice at their junction
colored by part number illustrating the complex geometry and small features of the fluid mesh.

mesh in powers of two from 64Ki parts to 512Ki parts. These partitions were then
balanced using ParMA vertex>element to create a second set of partitions.

The flow in this case is solved by PHASTA. PHASTA is a stabilized finite element
analysis code [65] using an implicit solver. The code is written in FORTRAN and is
parallelized with MPI. PHASTA’s computational work is dominated by equation for-
mation and equation solution. Both types of work are executed on the same partition
of mesh elements [45]. An ideal partition will have balanced elements for equation
formation work and balanced vertices, the degree-of-freedom holder, for equation so-
lution work. Furthermore, the partition will have parts with a low surface-to-volume
ratio to limit the cost of neighborhood communications that exchange information on
boundary vertices [43].

As shown in Figure 15, through three part-count doublings, ParMA is able to
improve the vertex imbalance with only insignificant increases in element imbalance.
For example, in the largest partition, 512Ki parts, ParMA reduces the vertex im-
balance from 54% to 6% and only increases the element imbalance from 1.8% to
3%. As expected, the 1.2 percentage point increase in element imbalance has no
effect on the nearly perfect scaling of equation formation (scaling factor, defined
as (time(base) · procs(base))/(time(test) · procs(test)), of 0.96 maintained). Criti-
cally, though, ParMA improves the linear algebra work performance by 28% over the
ParMETIS partition and improves scaling from 0.82 to 1.14, as shown in Figure 16.
As sparse linear algebra is memory bandwidth limited [70], a superlinear scaling is
observed as the working data size is reduced and cache utilization is increased. Simi-
lar, but less dramatic, performance and scaling gains are observed in the 256Ki part
case. In the smaller 64Ki and 128Ki partitions the performance difference is negli-
gible. All PHASTA runs were performed on Mira using one process per core. This
configuration, although not optimal for achieving peak floating point performance on
the Blue Gene/Q, was selected to avoid an unfortunate process to core mappings that
could assign two heavily loaded processes to the same core and thus confound the
interpretation of performance results.

5. Conclusion. The ability to evenly distribute the work associated with a spe-
cific combination of mesh entity dimensions (i.e., vertices, edges, faces, and regions)
in parallel unstructured mesh-based applications is critical to scalability on massively
parallel leadership class systems. ParMA, Partitioning using Mesh Adjacencies, cou-
pled with graph- and geometric-based partitioning tools, provides fast, multicriteria,
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Fig. 15. Evolution of the (top) vertex and (bottom) element imbalance with and without ParMA.

diffusive partition improvement to meet this need. Demonstrations are provided on
meshes with over 12 billion elements running on over one million processes (four pro-
cesses per core) on the Mira IBM Blue Gene/Q. Additionally, for a massively parallel
PHASTA CFD analysis running on a half million processes (one process per core) on
Mira, ParMA improves the performance of sparse linear algebra computations by 28%
versus a ParMETIS partition. Likewise, the strong scaling factor of these computa-
tions is improved from 0.82 to 1.14, a critical result for efficiently reducing the time to
solution as core count is increased. ParMA achieves these improvements by reducing
the vertex imbalance from 54% to 6% while maintaining an element imbalance at or
below 3%. Efforts to further understand the impact on additional partition quality
metrics on the strong scalability of PHASTA, and other applications, using the latest
leadership class systems are ongoing.
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Fig. 16. Improvement of PHASTA sparse linear algebra scaling with ParMA. The PHASTA
performance on the 64Ki ParMETIS partition is used as a baseline for all runs. Higher is better.
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