skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Development of Ultra-Fine Multigroup Cross Section Library of the AMPX/SCALE Code Packages

Abstract

The Consortium for Advanced Simulation of Light Water Reactors Virtual Environment for Reactor Applications (VERA) neutronic simulator MPACT is being developed by Oak Ridge National Laboratory and the University of Michigan for various reactor applications. The MPACT and simplified MPACT 51- and 252-group cross section libraries have been developed for the MPACT neutron transport calculations by using the AMPX and Standardized Computer Analyses for Licensing Evaluations (SCALE) code packages developed at Oak Ridge National Laboratory. It has been noted that the conventional AMPX/SCALE procedure has limited applications for fast-spectrum systems such as boiling water reactor (BWR) fuels with very high void fractions and fast reactor fuels because of its poor accuracy in unresolved and fast energy regions. This lack of accuracy can introduce additional error sources to MPACT calculations, which is already limited by the Bondarenko approach for resolved resonance self-shielding calculation. To enhance the prediction accuracy of MPACT for fast-spectrum reactor analyses, the accuracy of the AMPX/SCALE code packages should be improved first. The purpose of this study is to identify the major problems of the AMPX/SCALE procedure in generating fast-spectrum cross sections and to devise ways to improve the accuracy. For this, various benchmark problems including a typicalmore » pressurized water reactor fuel, BWR fuels with various void fractions, and several fast reactor fuels were analyzed using the AMPX 252-group libraries. Isotopic reaction rates were determined by SCALE multigroup (MG) calculations and compared with continuous energy (CE) Monte Carlo calculation results. This reaction rate analysis revealed three main contributors to the observed differences in reactivity and reaction rates: (1) the limitation of the Bondarenko approach in coarse energy group structure, (2) the normalization issue of probability tables, and (3) neglect of the self-shielding effect of resonance-like cross sections at high energy range such as (n,p) cross section of Cl35. The first error source can be eliminated by an ultra-fine group (UFG) structure in which the broad scattering resonances of intermediate-weight nuclides can be represented accurately by a piecewise constant function. A UFG AMPX library was generated with modified probability tables and tested against various benchmark problems. The reactivity and reaction rates determined with the new UFG AMPX library agreed very well with respect to Monte Carlo Neutral Particle (MCNP) results. To enhance the lattice calculation accuracy without significantly increasing the computational time, performing the UFG lattice calculation in two steps was proposed. In the first step, a UFG slowing-down calculation is performed for the corresponding homogenized composition, and UFG cross sections are collapsed into an intermediate group structure. In the second step, the lattice calculation is performed for the intermediate group level using the condensed group cross sections. A preliminary test showed that the condensed library reproduces the results obtained with the UFG cross section library. This result suggests that the proposed two-step lattice calculation approach is a promising option to enhance the applicability of the AMPX/SCALE system to fast system analysis.« less

Authors:
 [1];  [2];  [1];  [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  2. Univ. of Michigan, Ann Arbor, MI (United States)
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1437904
Report Number(s):
ORNL/TM-2018/773
CASL-U-2018-1507-000; TRN: US1801750
DOE Contract Number:  
AC05-00OR22725
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
22 GENERAL STUDIES OF NUCLEAR REACTORS; NUCLEAR FUELS; FAST REACTORS; NEUTRON TRANSPORT

Citation Formats

Jeon, Byoung Kyu, Sik Yang, Won, Kim, Kang Seog, and Clarno, Kevin T. Development of Ultra-Fine Multigroup Cross Section Library of the AMPX/SCALE Code Packages. United States: N. p., 2018. Web. doi:10.2172/1437904.
Jeon, Byoung Kyu, Sik Yang, Won, Kim, Kang Seog, & Clarno, Kevin T. Development of Ultra-Fine Multigroup Cross Section Library of the AMPX/SCALE Code Packages. United States. https://doi.org/10.2172/1437904
Jeon, Byoung Kyu, Sik Yang, Won, Kim, Kang Seog, and Clarno, Kevin T. 2018. "Development of Ultra-Fine Multigroup Cross Section Library of the AMPX/SCALE Code Packages". United States. https://doi.org/10.2172/1437904. https://www.osti.gov/servlets/purl/1437904.
@article{osti_1437904,
title = {Development of Ultra-Fine Multigroup Cross Section Library of the AMPX/SCALE Code Packages},
author = {Jeon, Byoung Kyu and Sik Yang, Won and Kim, Kang Seog and Clarno, Kevin T.},
abstractNote = {The Consortium for Advanced Simulation of Light Water Reactors Virtual Environment for Reactor Applications (VERA) neutronic simulator MPACT is being developed by Oak Ridge National Laboratory and the University of Michigan for various reactor applications. The MPACT and simplified MPACT 51- and 252-group cross section libraries have been developed for the MPACT neutron transport calculations by using the AMPX and Standardized Computer Analyses for Licensing Evaluations (SCALE) code packages developed at Oak Ridge National Laboratory. It has been noted that the conventional AMPX/SCALE procedure has limited applications for fast-spectrum systems such as boiling water reactor (BWR) fuels with very high void fractions and fast reactor fuels because of its poor accuracy in unresolved and fast energy regions. This lack of accuracy can introduce additional error sources to MPACT calculations, which is already limited by the Bondarenko approach for resolved resonance self-shielding calculation. To enhance the prediction accuracy of MPACT for fast-spectrum reactor analyses, the accuracy of the AMPX/SCALE code packages should be improved first. The purpose of this study is to identify the major problems of the AMPX/SCALE procedure in generating fast-spectrum cross sections and to devise ways to improve the accuracy. For this, various benchmark problems including a typical pressurized water reactor fuel, BWR fuels with various void fractions, and several fast reactor fuels were analyzed using the AMPX 252-group libraries. Isotopic reaction rates were determined by SCALE multigroup (MG) calculations and compared with continuous energy (CE) Monte Carlo calculation results. This reaction rate analysis revealed three main contributors to the observed differences in reactivity and reaction rates: (1) the limitation of the Bondarenko approach in coarse energy group structure, (2) the normalization issue of probability tables, and (3) neglect of the self-shielding effect of resonance-like cross sections at high energy range such as (n,p) cross section of Cl35. The first error source can be eliminated by an ultra-fine group (UFG) structure in which the broad scattering resonances of intermediate-weight nuclides can be represented accurately by a piecewise constant function. A UFG AMPX library was generated with modified probability tables and tested against various benchmark problems. The reactivity and reaction rates determined with the new UFG AMPX library agreed very well with respect to Monte Carlo Neutral Particle (MCNP) results. To enhance the lattice calculation accuracy without significantly increasing the computational time, performing the UFG lattice calculation in two steps was proposed. In the first step, a UFG slowing-down calculation is performed for the corresponding homogenized composition, and UFG cross sections are collapsed into an intermediate group structure. In the second step, the lattice calculation is performed for the intermediate group level using the condensed group cross sections. A preliminary test showed that the condensed library reproduces the results obtained with the UFG cross section library. This result suggests that the proposed two-step lattice calculation approach is a promising option to enhance the applicability of the AMPX/SCALE system to fast system analysis.},
doi = {10.2172/1437904},
url = {https://www.osti.gov/biblio/1437904}, journal = {},
number = ,
volume = ,
place = {United States},
year = {Wed Jan 31 00:00:00 EST 2018},
month = {Wed Jan 31 00:00:00 EST 2018}
}