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We show that a doped spin-1/2 ladder with antiferromagnetic intra-chain and ferromagnetic inter-
chain coupling is a symmetry protected topologically non-trivial Luttinger liquid. Turning on a large
easy-plane spin anisotropy drives the system to a topologically-trivial Luttinger liquid. Both phases
have full spin gaps and exhibit power-law superconducting pair correlation. The Cooper pair sym-
metry is singlet d,y in the non-trivial phase and triplet S, = 0 in the trivial phase. The topologically
non-trivial Luttinger liquid exhibits gapless spin excitations in the presence of a boundary, and it
has no non-interacting or mean-field theory analog even when the fluctuating phase in the charge
sector is pinned. As a function of the strength of spin anisotropy there is a topological phase tran-
sition upon which the spin gap closes. We speculate these Luttinger liquids are relevant to the
superconductivity in metalized integer spin ladders or chains.

Symmetry protected topological states (SPTs)[1-3]
have attracted lots of interest in condensed matter
physics recently. These states do not break any sym-
metry and are fully gapped, except at the boundary.
The gapless boundary excitations of SPTs are protected
by symmetry, hence are very different from “accidental
boundary states” found at, say, semiconductor surfaces
(due to “dangling bonds”). Searching for real materials
realizing SPTs is a very active area of research.

The best known examples of SPT are topological in-
sulators and superconductors[l, 2]. In addition to these
there are “bosonic” SPTs[3]. A classic example is the an-
tiferromagnetic (AF) spin-1 Heisenberg chain[4, 5], which
is gapped in the bulk but possesses gapless spin-1/2 exci-
tations on the boundary[6]. These spin-1/2 boundary ex-
citations are protected so long as the SO(3) spin rotation
symmetry is respected (in fact even its Zgx Zy subgroup
is sufficient for the protection)[7, 8]. Unlike topological
insulators and superconductors, which can be realized in
non-interacting (or mean-field) theories, the novel collec-
tive mode dynamics of spin-1 chains is caused by strong
interaction. So long as the protective symmetry is un-
broken, inequivalent SPTs are connected by topological
phase transitions where the bulk gap closes.

In this paper we demonstrate that in one space di-
mension there exists topologically inequivalent (gapless)
Luttinger liquids whose distinction is also protected by
symmetry. These Luttinger liquids exhibit power-law
Cooper pair correlation, hence are phase fluctuating su-
perconductors. Interestingly the pairing symmetries are
different in topologically inequivalent phases. Because
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the spin gap in the topological non-trivial Luttinger lig-
uid is due to collective mode dynamics, even after pinning
the fluctuating phase in the charge sector it has no non-
interacting or mean-field theory analog, hence is different
from that discussed in Ref.[9-11]. They are also very dif-
ferent from the Weyl[12] or Dirac[13] semi-metals whose
existence is not protected by a on-site (non-crystal) sym-
metry. We also study the phase transition between these
Luttinger liquids and show that the quantum critical
point exhibits central charge ¢ = 2.

We begin by briefly reviewing a known topological
phase transition between different phases of a spin-1
chain. The Hamiltonian under consideration is[14]

L L
H=JY 8;-8i1+D) S2.. (1)
=1 i=1

In Eq. (1) ¢ labels the sites of a one-dimensional lattice
under periodic boundary condition (PBC) (i.e., L4+1 = 1)
and S is the spin-1 operator. The last term breaks the
SO(3) spin rotation symmetry down to U(1)x Zy. It
favors (S?.) to be zero (non-zero) for D > 0 (D < 0).
For D = 0 the ground state of Eq. (1) is a non-trivial
SPT (the Haldane phase)[4, 5]. On the other hand, for
D/J >> 1 the ground state is a product state with S, =
0 on every site. Both phases have a full spin gap and
do not break the U(1)x Zs symmetry, but the Haldane
phase possesses gapless boundary excitations while the
“large D” phase does not[14]. As a function of D there is
a topological phase transition occurring around D/J = 1.
The central charge of the critical theory is estimated to
be 1[14].

Now we consider doping the above spin chain. To
model doping we construct the following “t-J” type lad-



der Hamiltonian (see Fig. 1(a)):

L 2 L
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i=1 a=1 i=1
L
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Here a = 1, 2 labels the two chains and note that we only
allow intra-chain hopping. This allows us to interpret
« as labeling two different orbitals of an atom later, as
atomic orbitals do not hybridize. In general as long as
the strength of the inter-chain hopping is weak compared
with |J, | we do not expect any qualitative change in
the results. Eq. (2) is supplemented with the Hilbert
space constraint that there is at most one electron per site
(i.e. na; <1). Eg. (1) can be shown to be the effective
Hamiltonian at half filling (one electron per site) under
the conditions t =0, J; <0 (FM) and |J| >> J, D.

Now consider doping holes into the system. We first
consider large |.J| | so that minimizing the rung exchange
energy requires doped holes to form “vertical pairs”. Un-
der such condition the two electrons on each rung are
effectively a spin-triplet boson which can hop into the
empty rung created by doping via a second order virtual
process t, = O(t?/|J1|) (see Fig. 1(b)). The resulting
effective Hamiltonian is given by

L 1 L
H, =—t Z Z bzmbiﬂ,m +hec + Jy Z Si- S
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where m = —1,0,1 labels the three states of spin 1, 51 is
the total spin operator of the i*" rung, J, = O(J), D, =
O(D) and both are positive.

To illustrate the basic physics it is instructive to con-
sider the limit t, >> Jp and t, >> Dy. Under such con-
dition, one can generalize the result of [16-18] and show
that the ground state wave function exhibits spin-charge
separation, namely,

(0lbgy my - - - bap,mn [t0) = flz1 ... zn)g(m ... my)
forz; <...<zxy <z + L. (4)

In Eq. (4) f(z1...2nN) is the charge and g(my...mp)
is the spin wavefunction, both are subjected to PBC.
f(z1...zn) is the ground state of spinless hard-core
bosons with nearest neighbor hopping. g(ms...my) is
the ground state of an effective spin Hamiltonian defined
on the “squeezed” lattice, i.e. the lattice formed by delet-
ing the holes. The effective spin Hamiltonian has the

same form as the last two terms of Eq. (3) except the pa-
rameters are renormalized: Jer = Jp <ﬁmi+1>f xL/N >0
and Degr = Dy(n;)y x L/N = Dy > 0, where n; is the
boson number operator and (..) y denotes the expectation
value computed using the hard-core boson wave function
f- In the case of Dy = 0, g is the ground state of the
spin-1 AF Heisenberg chain[4, 5]. For Dy, >> J,, g is
the ground state wavefunction of the large-D phase of
Eq. (1)[14].
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FIG. 1: (Color online) (a) A caricature of Eq. (2). The red
vertical bonds are ferromagnetic while the black horizontal
bonds are AF. (b) A caricature of Eq. (3). The triplet bosons
are denoted by the light green ellipses. When doped these
bosons can hop to nearest neighbor empty rungs. Each triplet
boson experiences a spin anisotropy term and interacts with
neighboring bosons via AF exchange interaction. (c¢) The
overlap between the exact ground state of 11 triplet bosons
on a 12 rung lattice and the factorized wavefunction, as a
function of J,/tp for several value of Dy/Jp

As a preliminary check of the validity of the factor-
ized wavefunction we show in Fig. 1(c) the overlap of the
exact ground state and the factorized wavefunction for
a 12-site spin-1 chain doped with one bosonic hole. Al-
though the factorized wavefunction only becomes exact
in the Jy/t, — 0 and Dy/t, — 0 limit, the computed
overlap is close to unity for a substantial range of Jy/tp
and Dy /ty. Due to spin-charge separation while both the
Dy = 0 and the large D, phases are described by the
same gapless Luttinger liquid in the charge sector, they
differ topologically in the spin sector. Thus we have two
topologically inequivalent Luttinger liquids !

In order to check whether the above Luttinger liquids
survive when the parameters of Eq. (2) move away from
the limit considered above, and to study the phase transi-
tion between these Luttinger liquids, we performed large
scale density-matrix renormalization group[15] (DMRG)
calculations. Specifically we studied the ground state and
spin excitations of Eq. (2) for t =1,J =0.3,J, = +3 as
a function of D at 5% hole doping. We perform up to 24
sweeps and keep up to m=10000 states in each DMRG
block with a typical truncation error e ~ 10~ for PBC
and € ~ 107! for open boundary conditions (OBC). This
leads to excellent convergence for the results that we re-
port here. For more details we refer to the supplementary



material A.

First let us focus on D = 0. The main panel of Fig. 2(a)
shows the values of the spin-1 and spin-2 excitation gaps
(Ag=1,Ag—2) under OBC for FM rung coupling and
several ladder length. Here the spin gap is defined as
Ag = Eo(S, = S) — Eo(S, = 0), where Ey(S,) is the
ground state energy of the system with total spin S,.
Interestingly, while Ag—o (red circles) is non-zero, Ag—;
(black squares) is zero. This is paradoxial if one takes
Ag—1 = 0 as implying the presence of gapless bulk S =1
excitations, as spin-2 excitations can be made up from
two spin 1 excitations. However, this behavior is totally
consistent with the presence of gapless boundary spin-1/2
excitations (Fig. 2(b)). Two spin-1/2s make up a spin-1
and a spin-0 hence will not contribute to the spin 2 ex-
citation. In Fig. 2(c) and (d) we compare the spin gap
under PBC and OBC. At D = 0 Ag—; is non-zero under
PBC but is zero under OBC. This directly confirms the
presence of gapless boundary excitations. For compari-
son in the inset of Fig. 2(a) we show the spin-1 gap when
the rung coupling is AF (J; = +3). As expected, the
spin 1 excitation is gapped for OBC (and PBC).
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FIG. 2: (Color online) (a) The spin gap Ag at D = 0 with
5% hole doping for different ladder length L. The black (red)
symbols mark the spin-1(2) excitation gap. The main panel
is for FM rung coupling and the inset shows the spin 1 gap for
AF rung coupling. (b) A caricature for the spin gapped and
charge gapless bulk with spin-1/2 boundary excitations (red
arrows).(c) The spin 1 gap as a function of D under PBC. (d)
The spin-1 gap as a function of D under OBC.

Fig. 3(a) and (b) show the absolute value of the Cooper
pair correlation function

Ds(r),an(r) = <AZ(t),a(i)As(t),b(i + 7)) where
Ai(t),a(i) = ((:ZTTCZTJFGi - (—i—)chLaT) /2. (5)

In Eq. (5) 4 sits on the lower chain and a = z,y, (z£y) de-
notes the nearest neighbor (next nearest neighbor) along
the chain, rung (diagonal) directions respectively. The
symbols s and t stand for singlet and triplet. The triplet
pair correlation, panel (a), exhibits exponential decay.
On the surface this is counter-intuitive because the rung
coupling is strongly FM. Upon further reflection this is
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FIG. 3: (Color online) The triplet (a) and singlet(b) Cooper
pair correlation functions at D = 0. See main text for detailed
explanation. The ladder size is 120 x 2. The inset shows the
singlet Cooper pair correlation functions for L=120, 160 and
200 in the In-In scale.

expected because the spin sector is in the Haldane phase,
hence all triplet spin correlation should decay exponen-
tially. Fig. 3(b) shows the much slower decaying sin-
glet pair correlation. The pairing channel which exhibits
the strongest correlation (consistent with power-law de-
cay, see inset in Fig. 3(b)) is associated with a = 2+ y
and b = =z + y. The overlapping cyan and pink sym-
bols in Fig. 3(b) denote (a,b) = (z + y,z + y) and
(a,b) = (z + y,x — y), respectively. The degeneracy is
caused by taking the absolute value. The actual corre-
lations have opposite sign. Such sign structure can be
interpreted as dgy-pairing on the ladder.

If we view the o = 1,2 as labeling two orbitals of an
atom and use CL-J and C;i,o to denote the corresponding
electron creation operator, then the Cooper pair which
exhibits power-law correlation is created by

T T T T T T T T
(Cl,iT627i+1J, - Cl7i¢62,i+1T) - (02,iTcl,i+1¢ - 62,i¢cl7i+1T)'

This is spin singlet, orbital antisymmetric and odd par-
ity pairing. Our result suggests the doped spin-1 ladder
studied above is a spin-gapped charge-gapless liquid with
power-law superconducting correlations.

Now let’s increase the value of D. In Fig. 2(c) we show
the spin gap under PBC as a function of D. The gap
reaches a minimum at D, ~ 0.12 and the value decreases
with increasing ladder length consistent with a zero spin
gap at D.. A closer inspection of Fig. 2(c) shows an
even-odd effect in terms of the number of hole pairs. We
explain such effect in the supplementary material B. In
Fig. 2(d) we plot the spin-1 gap under OBC as a function
of D for several values of L at 5% doping. The result is
consistent with the absence of a spin gap for D < D,
while a finite spin gap remains for D > D, as L — oo.
The results of Fig. 2(a,c,d) support the statement that
the for D < D, the spin sector realizes a non-trivial SPT
(the Haldane phase) with gapless edge excitation, while
for D > D, the spin state is a trivial SPT (the large D
phase) with no gapless edge excitations. A topological



phase transition occurs at D. where the spin gap closes.
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FIG. 4: (Color online) (a) The entanglement entropy as a
function of number of rungs in an untraced subsystem for
D =0 and D = D. under OBC. The length of the ladder is
L = 120. The red line is the fit using Eq.(70) in Ref.[19]. The
inset shows the deduced central charge as a function of 1/L
for L = 120,160,200. The triplet (b) and singlet (c¢) Cooper
pair correlation functions at D = 0.2 > D.. The ladder size
is 120 x 2 and the doping level is 5%.

In Fig. 4(a) we plot the entanglement entropy as a
function of number of rungs in an untraced subsystem
for OBC. The oscillatory behavior is a consequence of
the Friedel-like oscillation induced by the boundary effect
due to the finite density wave susceptibility associated
with hole pairs. This is common in 1D Luttinger liquids.
Using the data of the longest ladder (L = 200) the best
fit using Eq.(70) in Ref.[19] gives ¢ ~ 1.08 (consistent
with ¢ = 1) for D = 0 and ¢ ~ 1.96 (consistent with
¢ =2) for D = D.. The central charge at D, is consistent
with the sum of the central charge associated with the
gapless charge sector (namely ccharge = 1) and that of the
spin sector (namely cgpin = 1) at the topological phase
transition point.

Next we study the superconducting pair correlation in
the large D phase. In Fig. 4(b,c) we show the absolute
value of the spin triplet and spin singlet Cooper pair cor-
relation function. In this case all singlet pair correlations
decay exponentially. In contrast the tripet correlation
decays much slower (consistent with power-law decay).
In part (b) the cyan and pink symbols overlap signifying
the same absolute value. The actual values have oppo-
site sign. The spin state of the triplet Cooper pair that
show the strongest correlation is S = 1,5, = 0. Again if
we interpret the two chains as corresponding to the two
atomic orbitals 1,2 the triplet Cooper pair in question is
created by

i T T T T i T i
(CuTCz,n + C1,¢¢Cz,m) + A(Cl,iTCQ,i+1J, + C1,¢¢Cz,i+1¢)
i i T T
_A(Cz,nc1,i+1¢ + 02,i¢c1,i+1¢)7 (6)

where A is a constant. This is spin triplet, orbital anti-
symmetric and even parity Cooper pairing.

The topologically non-trivial and trivial Luttinger lig-
uids described so far can also be obtained from bosoniza-
tion. However, for space consideration we refer to the
supplementary material C.

Doped spin ladders with AF rung coupling have been
extensively studied (see Ref.[3-7] of supplementary ma-
terial). At half-filling the spin state is a good exam-
ple of the resonant-valence-bond state[20]. Upon dop-
ing the system becomes a spin gapped Luttinger liquid
with dy2_,» Cooper pairing. In this paper we studied
doped spin ladders with FM rung coupling. At half-filling
the spin state can be either a non-trivial SPT (Haldane
phase) or a trivial one (the large D phase). Upon dop-
ing they also become phase fluctuating superconductors
( spin gapped Luttinger liquids) with different Cooper
pair symmetries. This suggests the possibility of super-
conductivity in metalized integer spin ladders or chains.
A particular interesting question is the relevance of our
work to the superconductivity in FeSe. FeSe becomes ne-
matic below 90K while maintains paramagnetic down to
the lowest measured temperature. Superconductivity on-
sets at ~ 8K with A/ep = O(1) suggestive of real space
pairing. In Ref.[21, 22] it is proposed that the nematic,
yet paramgnetic, state is due to the spontaneous forma-
tion of spin-1 chains. If so the superconducting pairing
considered here could be relevant.
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A: SOME DETAILS OF THE DMRG
CALCULATIONS

We determine the ground state phase diagram and
properties of the model Hamiltonian in Eq. (2) by ex-
tensive and highly accurate DMRG [1] simulations. For
the present study, we consider both PBC and OBC, and
keep up to m = 10000 number of states in each DMRG
block with up to 24 sweeps to get converged results. The
typical truncation error is of the order € ~ 10~8 for PBC
and € ~ 107! for OBC. This allows us to get accurate
results for both systems including ground state energy
and entanglement entropy.

For the critical theory in one dimension with OBC, the
central charge of the conformal field theory can easily
be extracted by fitting the von Neumann entanglement
entropy to the analytical form [2]

B sin(k(2z + 1) + const,

. 4(L . (2x
| sin k7| ( :1) sin [ 2((2le1))]

where L is the length of system and x is the number of
rungs in the untraced subsystem. c is the central charge
and k% is a fitting parameter. Performing the fit of S(x)
using Eq.(1) to the data in Fig.4(a) with different system
sizes, we get the central charge c = 1 for D = 0 and ¢ =~ 2
for D = D,.

B: THE EVEN-ODD EFFECT IN FIG.2(C) OF
THE MAIN TEXT

To understand this effect, we point out that the same
even-odd effect should exist at half-filling as a function
of the number of rungs (Eq.2 of the main text) or the
number of sites (Eq.3 of the main text). This is because
Q= Hle ™3 (where S¥ is the total x-component spin
operator on the i" rung (site)) commutes with the Hamil-
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tonian, hence is a good quantum number. It is straight-
forward to show that for the Haldane phase () = 1 while
for the large D phase Q = (—1)L. Therefore, for odd L
a Q = —1 excited state crosses the () = 1 Haldane state
at D.. On the other hand, for even L such level cross-
ing is avoided. This presence/absence of avoided crossing
is responsible for the even-odd effect in Ag—;. For the
doped case the number of rungs (sites) in the “squeezed”
spin ladder (chain) depends on the number of hole pairs
(holes) which explains the even-odd effect in Fig.2(c) of
the main text.

C: BOSONIZATION

In this appendix we look at the problem discussed
in the main text from the bosonization point of view.
Fermionic Hubbard ladder has been studied by bosoniza-
tion extensively in previous works [3-7]. Our results are
consistent with that reported in Ref.[3, 7]. However, the
physics of doped two topologically distinct phases has not
been discussed before. Our purpose is to show that the
topologically inequivalent Luttinger liquids discussed in
the main text are indeed stable low energy phases.

Our starting point is the following fermion Hub-
bard ladder with ferromagnetic (FM) rung coupling and
single-ion spin anisotropy terms. The intra-chain anti-
ferromagnetic (AF) exchange will be generated by the
superexchange and for sufficiently large U charge fluctu-
ation will be suppressed.

H = Hy+ Hing

2
Hy = —tz Z Z (czaaci+1ag + hC)

i a=lo=1,)

Hint - UZ Z (niaT - %)(niod, - %)

i a=1,2

+ Ji Z gi,l . §i,2 +D Z(Si,l,z + Si2.2)? (2)

Here a = 1, 2 labels two chains and o =7, | denotes spin
polarization. S; . represents spin operator on it site of



chain-a;, given by

The parameter J, is inter-chain spin exchange, it is FM
if J, < 0; D represents the single-ion anisotropy. It is
easy-plane if D > 0.

The Hine term in Eq. (2) can be rewritten as

1 1 .

Hyy = U Z (Miat — 5)(”1@ - 5) +J1: ZSm 02
ia=1,2 i

+ iy Z( i$,1 ?,2‘5‘3?,1532) (3)

7

Here J, ., =J1 +2D, Ji 4y = J1L and U' = U — D/2.
Thus for non-zero D, the inter-chain FM coupling be-
comes anisotropic.

In the following we apply Abelian bosonization method
to study Eq. (2) and Eq. (3). The low energy fermion
operators which annihilate the left and right moving
fermions near the Fermi points of Hy in Eq. (2) are rewrit-
ten in terms bosonic variables as follows

UR L),a,0 i z -
VR(L),a,0(T) = ZR(L),0 . i(¢ao (@) Eba.0 (@) . ()
2ma

where o« and o are the chain and spin indices as be-
fore. a is a short-distance cutoff. The “branch” in-
dex R(L) denotes right(left) moving fermions, respec-
tively. Ug(r),a,c is a Klein factor which ensures the

J

!
Hcon = v

JJ_,Z
4m2

_ﬁ/dx cos(2¢4 ) cos(2¢_ ») +

anti-commutation relation between fermions with differ-
ent chain, spin and branch indices. For convenience, we
perform linear transformations on the four ¢, , and 6, »
modes to get the four symmetric/anti-symmetric (+/-),
charge/spin (c/o), modes:

bt = 5 (P10 £ P2p) + (d1,0 £ P2,1)]

(1,4 £ P2t) = (1 £ ¢2,)]. ()

N~ N =

¢j:,a =
In the following, we skip the details of the analysis and

just summarize the main results.
The bosonized kinetic energy Hamiltonian is given by

Hy = /dx >
p==,

B=c,o

Vu,B 2 1 9
o7 |:K#75H,u,5(m) + Ku,,@ (az¢u,ﬁ)

(6)

where v, g and K, g are Fermi velocities and Luttinger
parameters renormalized by the Hubbard and spin ex-
change interactions. 11, g is the momentum density con-
jugate to ¢, 3.

The two-particle scattering processes (Fig. 1) induced
by Hubbard and spin exchange interactions introduce
Sine-Gordon terms. At a generic doping level Umk-
lapp scatterings are forbidden and the allowed momen-
tum conserving two-particle scatterings are shown in
Fig. 1(a). These scatterings give rise to the following
Sine-Gordon terms:

/dx cos(2¢— ) [cos(2¢4 ») — cos(2¢_ )]

_i_@ / dx [Cos(2¢+’a) cos(204 ») + cos(2¢+ ») cos(20_ ,) — cos2¢_ . cos(29,’a)]
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At half-filling, Umklapp scattering is allowed (Fig. 1(b)). The additional Sine-Gordon terms are

Hon = —;_]—2/ /d(L’ cos(2¢4 ) cos(2¢_ ) — JQJ;T?/ /dx cos(2¢4 ) cos(20_ )
iz
+4J7;’2 /dx[cos(?qﬁ’c) cos(2¢4 o) — cos(2¢4 ) cos(2<b,’a)] (8)

We are interested in FM J, ;,J1 . and when
[ L ayl, |12l > U >t

At half-filling, the system is an insulator hence the
modes are pinned by the Umklapp scattering and mo-
mentum conservation scattering, which pin ¢4, =
0,6_ = 0. Depending on the ratio between |J |

and D, different fixed points in the spin sector can

(

be realized. According to RG analysis, in the nearly
isotropic region, J, , =~ Ji g, < 0 (which means
D < |JL|), the most relevant Sine-Gordon terms are
J 1 2y (cos2¢1c+cos2¢_.) cos20_, and J| ,(cos(2¢4.+
cos2¢_.) cos2¢,, which pin ¢, = 0,0_, = £7J.
As D increases, the FM couplings become more
anisotropic such that the most relevant Sine-Gordon
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FIG. 1: The two-particle scattering processes for right-
moving (solid lines) and left-moving (dashed lines) electrons
induced by Hubbard and spin exchange interactions. « de-
notes chain index and o denotes spin index. —a and —o
denotes the “flipped” chain and spin index.(a) Momentum
conserving scattering corresponding to Hcon; (b) Umklapp
scattering corresponding to Hyumk.

terms are J g, c082¢4+, cos20_, and J| zy(cos2¢,. +
cos2¢_.)cos20_,. They pin ¢, = £5,0_, = £7.
Thus as the single-ion anisotropy D increases, there is
a phase transition between two distinct spin gapped
phases. We identify these phases as the Haldane and
“large D” phase discussed in the main text.At the in-
terface between these two phases, a kink occurs in ¢4,
which corresponds to the edge state of S, = :l:%. This
is a manifestation of the topological nonequivalence of
these two spin gapped phases.

Away from half-filling, the Umklapp scattering ceases
to exist. As a result the total charge mode ¢, becomes
gapless. However, the anti-symmetric charge mode ¢_.
is still pinned by the momentum conservation scattering
terms. This allows the two spin gapped phases to survive
doping. These are the two inequivalent topological Lut-
tinger liquids. In particular despite both being charge
gapless the interface between the doped Haldane phase
and the doped large D phase still exhibits the interface
kink in ¢4, signifying the presence of interface modes.

Because total charge mode is gapless, it is interesting
to consider the superconducting pair correlation function.
If we interpret the two chains as corresponding to the two
atomic orbitals 1,2, only spin singlet, orbital antisymmet-
ric and parity odd pairing field

YRr11YL,2) — YL,11YR2L — YR1VL21 + VL, 11YR 21
~ e e [e™csin(0_g + ¢pyo) + € sin(0_y — ¢40)]

shows power law decay in the doped Haldane phase. This
is consistent with the DMRG results in the main text.

Interestingly, the symmetry of the pair field that ex-
hibits power law decay in doped large-D phase is quite
different. The pairing channel which exhibits strongest
correlation is S, = 0 spin triplet, orbital antisymmetric,
parity even pairing, which shows algebraic decay corre-
lation:

YR,eaVr,dl + YL, 11YR20 + VRV 2t + YD1 YR 21
~ e e (e co8(fho +O-5) — €77 cOS(Br0 — 0o ).
(10)

Again this is consistent with the DMRG result.

Besides cooper pair instability, gapless charge mode
can also result in power-law decaying CDW correlation.
However it should be noted that 2k CDW correlation
decays exponentially in both doped Haldane phase and
large-D phase. Instead it is the 4kp pair density wave
(i.e. the CDW of cooper pairs) that exhibits power law
correlation in both the doped Haldane phase and doped
large-D phase

2igsc+4kpa 20— o

(11)

Oppw = ¢}3,1,T¢E’2,¢¢L,1,¢¢L,2,¢ ~e

The decaying exponents of the PDW and SC have the re-
lation Ks.Kpaw = 1. The exponents depend on Luttinger
parameter of the total charge mode: K, = 1/2K,.,
Kpaw = 2K.. When U’ is small the superconducting
correlation is dominant. As U’ increases the pair den-
sity wave correlation becomes dominant. Irrespective of
which correlation wins we have a phase fluctuating su-
perconductor.
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