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Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

Abstract

The report describes the development of a discrete element method (DEM) based modeling
approach to quantitatively predict deformation and failure of typical nickel based superalloys. A
series of experimental data, including microstructure and mechanical property characterization at
600°C, was collected for a relatively simple, model solid solution Ni-20Cr alloy (Nimonic 75) to
determine inputs for the model and provide data for model validation. Nimonic 75 was
considered ideal for this study because it is a certified tensile and creep reference material. A
series of new DEM modeling approaches were developed to capture the complexity of metal
deformation, including cubic elastic anisotropy and plastic deformation both with and without
strain hardening. Our model approaches were implemented into a commercially available DEM
code, PFC3D, that is commonly used by engineers. It is envisioned that once further developed,
this new DEM modeling approach can be adapted to a wide range of engineering applications.
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1. Executive Summary

This project developed a novel discrete element method (DEM) based modeling approach to
quantitatively predict deformation and failure of nickel-based superalloys. Ni-based superalloys
are important for a wide variety of power generation systems, including industrial gas power
turbines, advanced ultra-super critical steam turbines, nuclear reactors, and aerospace turbine
engines. A potential advantage of DEM when modeling deformation and failure originates from
its stochastic formulation that naturally captures local microstructure and property variations
because heterogeneity is an integral part of DEM assemblies. This presents a potential
opportunity for DEM to simulate failure processes in a more spontaneous and realistic manner
than continuum-based approaches. While the technical effectiveness of the model is not currently
ready for widespread use, this project demonstrated an important first step and proof of principle.
Feasibility was considered by incorporating our model into a commercially available DEM code,
PFC3P v5, that is commonly used by engineers. It is envisioned that once further developed, this
new modeling approach can be adapted to a wide range of engineering applications.

2. Project Accomplishments and Summary of Activities

This is the final report submitted for this project. The scope of this project was to create and
validate a discrete element method (DEM) based modeling approach to quantitatively predict
deformation and failure of typical nickel-based superalloys. The project ended on December 31,
2017 after a no-cost extension was requested and granted because of delays that were incurred
because 1) we were not able to hire the post-doctoral scholars until midway through the first
quarter and 2) one post-doctoral scholar left the project early. The no-cost extension allowed Dr.
Agnieszka Truszkowska to complete the project.

Table 1 summarizes the status of the project milestone objectives for the final report, and
progress against those milestones. The table is followed by a discussion of the project
accomplishments and activities. The report will describe the experimental data that was collected
for determining inputs for the model, the data that was collected for validation of the model, and
finally a description of the model development and validation against experimental data.

Table 1 Milestones

Milestone Description Planned Actual Status

Completion  Completion
Date Date

Microstructure and material 12/31/16 12/31/17 Complete
parameter inputs for model have
been determined.

DEM model developed and 12/31/16 12/31/17 Complete for anisotropic elastic
validated single crystals and isotropic non-
hardening and hardening plasticity.
Polycrystal and creep behavior are
still being developed.
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2.1. Microstructure and material parameter characterization

2.1.1. Model Nickel Based Superalloy Nimonic 75

We selected a relatively simple, model solid solution Ni-20Cr alloy (Nimonic 75). Nimonic 75 is
ideal for this study because it is a certified tensile and creep reference material (Gould and
Loveday, 1990; Ingelbrecht and Loveday, 2000), and we acquired certified rods of material from
LGC Standards. The as-received microstructure did not have the expected microstructure of
grain boundary carbides, so we annealed the as-received Nimonic 75 at 600 °C for 400 hours to
observe the microstructure evolution. The annealed microstructure has been characterized and
compared with the as-extruded microstructure by optical microscopy (OM), scanning electron
microscopy (SEM), energy dispersive x-ray spectroscopy (EDS), and electron backscatter
diffraction (EBSD).

2.1.2. Qualitative Microstructure and Phase Identification

Figure 1 shows the optical microscopy comparison of the microstructures before and after
annealing. It is found that the number of intergranular carbides is significantly increased after the
annealing treatment to give the expected microstructure for Nimonic 75. Figure 2 shows the
phase identification by SEM/EDS mapping. Three phases exist in the as-received state (Figure
2a): Ni-20%Cr matrix phase (Circle A), inter- & intra-granular Cr-rich carbides (Arrows B) and
large polyhedron-shaped Ti nitrides (Arrow C). After heat treatment, Cr-rich carbides (Arrows B,
Figure 2a) changes to CrMn-rich carbides (Arrows B, Figure 2b) and they are mostly distributed
along the grain boundaries. The Ti nitride phase (Arrow C, Figure 2a) changed to TiCrMn
carbonitride (Arrow C, Figure 2b).
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Figure 1. Optical microstructure of Nimonic 75 on three orthotropic planar sections: (a) as-received; (b) annealed at
600 °C for 400 hours.
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(a) As Extruded (b) As Annealed (400 hr 600 °C)

Figure 2. Phase identification by SEM/EDS mapping: (a) as-received; (b) annealed at 600 °C for 400 hours.

2.1.3. Intergranular and Intragranular Carbides

As shown in Error! Reference source not found.a, before annealing the carbides are found
more frequently inside grains and twins rather than at boundaries. Intergranular carbides are
sparsely distributed along grain boundaries (GBs) and triple junctions (TJs). Carbides can also be
found at twin fronts (TFs) and coherent twin boundaries (TBs), but are few in quantity. After
annealing (Error! Reference source not found.b), carbides are observed most frequently at the
grain boundaries. Carbides at twin fronts (TFs) and twin-grain boundaries (TGBs) also
significantly increase in number with fewer found at coherent twin boundaries (CTBs). Carbides
can also be found at twin-twin boundaries (TTBs), which is rarely observed before annealing.

nnecaled (400 hr 600 °C) WG

CTB: ent Twin Boundary
TTB: Twin-Twin Boundary
TF: Twin Front TJ: Triple Joint
TGB: Twin-Grain Boundary

Inter-  granular —
ular
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CTB: Coherent Twin Boundary W, .r v 2 —
TTB: Twin-Twin Boundary s Q Tirwe T

TF: Twin Front TI: Triple Joint

Figure 3. SEM observation of carbides before (a) and after (b) annealing at 600 °C for 400 hours.
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2.1.4. Grain Boundary Segregation

Figure 4a shows a HR-STEM EDS mapping of a triple joint in the as-received state. No chemical
segregation in shown at grain boundaries but a small decrease of Ni and a small increase of Cr
are shown at the triple joint. Figure 4b shows a HR-SEM EDS mapping of special grain
boundaries after annealing treatment. The special grain boundary has a misorientation of 30°/<1

1 1>, which is vulnerable to creep void initiation (Zhang and Field, 2013).
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Figure 4. (a) HR-STEM EDS mapping of a triple joint in the as-received state. (b) HR-SEM EDS mapping of special
grain boundaries (30°/<1 1 1>) after annealing at 600 °C for 400 hours.

2.1.5. Statistical Quantification of Grain Size and Orientation

Statistical quantification of the microstructure was obtained by EBSD mapping (Figure 5).
Distributions of grain size & shape (Figure 6), grain orientation (Figure 7), and grain boundary
misorientation (Figure 8) have been generated for both the as-received and annealed states.
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Grain size and shape distributions do not change after annealing treatment if twins are not
considered. Annealing twins may grow by recrystallization as indicated by the slight increase of
small grain area in Fig. 6a. From the pole and inverse pole figures (Figure 7), a weak FCC <1 1
1>-<1 0 0> fiber texture is shown in the material. The texture is further weakened after annealing
treatment. The misorientation distribution of grain boundary shows slight decreases of 60° <1 1
1> (3.3) primary and 40°/<1 0 1> (3.9) secondary twin boundaries (TBs). This is likely ascribed
to the coalescence of coherent twin boundaries during the growth of annealing twins. The
measured grain size distribution enables our polycrystal tessellation described later in the report.

(a) As Extruded

Figure 5. Crystal orientation map obtained by EBSD: (a) as-received; (b) annealed at 600 °C for 400 hours.
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Figure 8. Grain boundary misorientation before and after annealing: (a) misorientation axis distribution; (b)
misorientation angle distribution.

2.1.6. Elastic-Plastic Behavior of Nimonic 75 Subjected to Monotonic Tension at 600 °C
Quasi-static monotonic tension experiments for Nimonic 75 were conducted across a wide range

of strain rates at the temperature of 600 °C. The short-term elastic-plastic behavior of the

material and its sensitivity to strain rate were evaluated. Critical parameters for DEM model
input were determined, including polycrystalline Young’s modulus and proportional limit, and
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single-crystal critical resolved shear stress (CRSS). In addition, we have identified important
features of visco-plastic deformation, work hardening, and dynamic softening. The detailed
results are presented in the following sections.

2.1.6.1.Materials and Experiments

We annealed the as-received certified reference material Nimonic 75 at 600 °C for 400 hours to
obtain the desired microstructure of grain boundary carbides. A dog-bone cylinder-shaped testing
specimen was designed for the high-temperature tension experiment. The geometry and
dimensions of a typical tensile testing specimen are shown in Figure 9a. The gage section and the
grip section of the high-temperature testing specimen were designed to be long enough to allow
the usage of the induction heating copper coil (Figure 9b). Epsilon 3448 high-temperature
extensometer with a gage length of 25 mm was used to measure the engineering strain (Figure
9b). Three K-type thermocouples were attached on the specimen surface by spot welding at three
locations in the gage section: the midpoint, 12.5 mm above the midpoint, and 12.5 mm below the
midpoint (Figure 10a). Before each test, the induction copper coil was tuned to ensure a uniform
temperature distribution within the gage section (Figure 10b).

High-Temperature
Extensometer:
Epsilon 3448

Testing
Specimen

66
1=
o

22639

Induction
Heating
Copper Coil

75

Unit: mm ' N 1@ f
(@) (b)

Figure 9 (a) Geometry and dimension of tensile testing specimen; and (b) the experimental setup for monotonic
tension at high temperature.
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Figure 10. (a) High-temperature tensile specimen and conduction copper coil to heat up the specimen. (b)
Verification of uniform temperature distribution within the gage section.

Monotonic tension was applied by position control at four constant speeds: 0.001 mm/s, 0.01
mm/s, 0.1 mm/s, and 1 mm/s. Load and position signals were recorded by the load frame. The
engineering strain was measured by high-temperature extensometer. After heating up to 600 °C,
each specimen was loaded up to a tensile strain of 10% and unloaded. The choice to unload the
specimen at a tensile strain of 10% is to prevent contact of the extensometer arms with the
induction heating coil when the arms open during tension. After the experiment was completed,
the actual strain rate was calculated from the measured engineering strain. For each strain rate,
we conducted two tests to evaluate the repeatability.

2.1.6.2 . Experimental Results

Figure 11 presents the stress-strain response of Nimonic 75 monotonically tensioned at 600 °C
across four strain rates: 1.70x107 /s (Figure 11a), 1.45x10** /s (Figure 11b), 1.43x1073 /s (Figure
11c), and 1.43x1072 /s (Figure 11d). True stress and true strain were also calculated and plotted in
Figure 11as well. The true stress and true strain are calculated from the engineering stress and
engineering strain using the simple relations:

o=3S (1 + e) Equation 1

e=In(l1+e) Equation 2
where S and e are engineering stress and engineering strain, respectively. ¢ and & are true
stress and true strain, respectively. In Figure 11a-d, an inset that magnifies the initial yielding

region of the stress-strain curve is embedded. From Figure 11, the strain rate effect on the elastic-
plastic behavior of the material can be clearly observed.
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2.1.6.3.Polycrystalline Young’s Modulus, Proportional Limit, and Single-Crystal Critical
Resolved Shear Stress (CRSS)

Young’s modulus can be experimentally determined by dynamic or static methods. Dynamic
modulus can be obtained from a specimen vibrated in the flexural mode. Static modulus can be
defined as the slope of a straight line that best fits the linear elastic portion of the stress-strain
curve, which is obtained from specimen subjected to monotonic tension at a quasi-static loading
rate. Since static and dynamic methods are associated with isothermal and adiabatic processes,
respectively, dynamic modulus is slightly greater than static modulus, being ~0.2% greater at
room temperature and ~1% greater at 1000 °C (Betteridge and Heslop, 1974). The proportional
limit represents the termination of the linear elastic portion of the stress-strain behavior and is an
indication of the onset of plastic deformation. There is no universal mathematical method to
determine the proportional limit.

To reliably determine the Young’s modulus and the proportional limit from the experimental
data, we have proposed the following analytical procedure. We linearly fit the stress-strain data
in a section starting from zero stress to a “high-bound” stress level using the least squares
method. The slope of the least square regression line is calculated as Young’s modulus for this
stress-strain section. The coefficient of determination (R?) that indicates how well data fit the
regression line can be calculated as:

s Zbis)

- —
SStot Z(yl.—y

Equation 3

where f; is the fit value and ; = lz v, 1s the mean of the data in the fitting section. By fixing
i=l1
the starting point (zero stress) and increasing the “high-bound” stress level, we fit a series of
stress-strain sections and obtain the regression line slope and the R? as a function of the
increasing “high-bound” stress level. As a higher R? indicates better fitting, the “high-bound”
stress corresponding to the highest R? is thus taken as the proportional limit. The associated slope
of the regressed line is taken as the Young’s modulus of the material tested at the specific
loading condition.

Based on the analytical procedure described above, the determination of Young’s modulus and
proportional limit for Nimonic 75 tested at 600 °C is illustrated in Figure 12. The Young’s
modulus and proportional limit corresponding to each strain rate are summarized in Table 2 and
Figure 14a. It is found the strain rate effects on the Young’s modulus and proportional limit are
trivial.
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Figure 11. Stress-strain response of Nimonic 75 tested under monotonic tension at 600 °C: (a) strain rate of 1.70x10"
5 /s; (b) strain rate of 1.45x10* /s; (c) strain rate of 1.43x1073 /s; (d) strain rate of 1.43x1072 /s; (e) engineering stress-
engineering strain responses for all four strain rates in one plot; (f) true stress-true strain responses for all four strain
rates in one plot.
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Figure 12. Young’s modulus and proportional limit determined by finding the maximum value of the coefficient of
determination (R?) as a function of the “high-bound” stress level in the fitting section: (a) strain rate of 1.70x10? /s;
(b) strain rate of 1.45x10* /s; (c) strain rate of 1.43x1073 /s; (d) strain rate of 1.43x1072 /s,

Table 2. Polycrystalline Young’s modulus, proportional limit, and single-crystal CRSS for Nimonic 75 subjected to
monotonic tension at 600 °C.

Strain Rate (/s) Young(’éli\;[)odulus Propoﬁ\i/(l);:; Limit Scirf{gsl;-(cg/[y;zgl
1.70x10° 151.58 217.60 24.07
1.45%10* 170.49 208.84 23.10
1.43x10°3 175.62 212.18 23.47
1.43x10%2 154.15 216.92 23.40
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In (Akhtar and Teghtsoo, 1971), the critical resolved shear stress (CRSS) for single-crystal Ni-Cr
alloys with different compositions was measured as a function of increasing temperature (up to
620 K). It was concluded that for all Ni-Cr compositions, CRSS decreases with increasing
temperature. Above 500 K, the CRSS becomes nearly independent of temperature. The trend of
CRSS versus the temperature is seen in Figure 13a. In Figure 13, the CRSS at 0 K is denoted as
7,. The CRSS above 500 K is referred to as the plateau stress z,. Figure 13b shows how we

deduced the CRSS for single-crystal Ni-20Cr alloy to be 36.8 MPa and 23.1 MPa at room
temperature (strain rate = 1.66x10*) and 600 °K (873 °K) (strain rate = 1.45x10%), respectively,
by interpolating the data for the various Ni-Cr compositions.

CRSS is thought to be dependent on strain rate. To estimate the single-crystal CRSS at various
strain rates, we propose a way to assess the strain-rate sensitivity of single-crystal CRSS via the
strain-rate sensitivity of the polycrystal proportional limit. We assume a structural relationship

exists between single crystal CRSS (z-CRSS) and polycrystal proportional limit (GP)

Single Poly

(o )Poly = M x Fx(tcpss )Single Equation 4

where M is the Taylor factor and is known to be 3.06 for FCC material having random texture.
F denotes the strengthening factor that accounts for the grain-size hardening effect (Hall-Petch
relation) and precipitation hardening effect. As the CRSS (23.1 MPa) for Ni-Cr alloy was
measured at a strain rate of 1.66x10* /s in (Akhtar and Teghtsoo, 1971), the structural factor can

be estimated by the polycrystalline proportional limit (O'P )PO[V (208.84 MPa) measured at
1.45x10* /s in our monotonic tension experiment. Thus, the value of M x F can be estimated to
be 9.04. Consequently, an estimation of single-crystal CRSS can be acquired by applying the
structural relationship (Equation 4) on the polycrystalline proportional limit, which is
summarized in Table 2 and Figure 14b.
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Figure 14. Strain rate effects on the polycrystalline Young’s modulus and proportional limit (a), and the estimated
single-crystal critical shear resolved stress (CRSS) (b) for Nimonic 75 subjected to monotonic tension at 600 °C.

2.1.6.4 Features of Visco-Plastic Behavior, Work Hardening and Dynamic Recovery

Figure 15a presents the true stress-true plastic strain curves for all the four strain rates. The
plastic strain is calculated by subtracting the elastic part from the total strain. A detailed
examination of the stress-plastic strain curves for all four strain rates reveals that the entire
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plastic deformation (up to total strain of 10 %) of the material consists of two stages: Stage I-a

plastic flow plateau following immediately the initial yielding, and Stage II-a power-law plastic
flow with strain hardening rate being gradually decreased. A schematic of this two-stage plastic
flow is illustrated in Figure 15b.

To capture the feature of Stage-I plastic plateau, two parameters are identified: plateau stress

(O piea,) and plateau strain range (Ag ). The plateau stress (o, ) sets the stress level of

the perfectly plastic flow. The plateau strain range ( Ae

Plateau

pawa ) INdicates the plastic strain range

during which the plastic plateau occurs and can serve as an indication of the starting of the
Stage-II plastic deformation. The strain-rate dependence of &,,,,, and A&, .. 1S summarized in

Table 3 and Figure 16. It is visualized that as the strain rate is increased, the plateau stress
decreases. A similar trend exists for the plateau strain range up to the strain rate of 1.43x1073 /s.

Strain Rate:
500 -4 Nimonic 75 o 2
m Al 600 °C 1.43 x 10-3/5 W
L 400 143x 10" /s DYV
- -4
§ 300 1.45x1g /s
E 1.70 x 10"/ E
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> © 3 Plastic Plateau Strain Hardening
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Figure 15. (a) True stress-true plastic strain curves for Nimonic 75 tested under monotonic tension at 600 °C; (b)
schematic of two-stage visco-plastic behavior.

Table 3. The plateau stress (0 puatean) and plateau strain range (A&pirean) during Stage-I plastic plateau for Nimonic 75
subjected to monotonic tension at 600 °C.

Strain Rate (/s) Plateau Stress, 0, (MPa) Plateau Strain Range, A¢,,,,., (%)
1.70x10° 245.00 0.687
1.45%10* 225.26 0.397
1.43x1073 220.00 0.308
1.43x10%2 218.57 0.399
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plateau.

Figure 15a shows that a power-law relation exists between the stress and plastic strain during
Stage-II plastic deformation. The description using Ramberg—Osgood relationship (Ramberg and
Osgood, 1943) seems simple and straightforward. However, the Ramberg—Osgood relationship is
purely phenomenological and does not reflect any physical mechanism. Fundamentally, the
plastic flow is accommodated by dislocation slip. During plastic deformation, multiplication and
accumulation of dislocations can lead to strain hardening. Particularly for hot deformation, the
net increase of dislocation is essentially contributed by two competitive processes: dislocation
accumulation and dislocation annihilation, which reflect the strain hardening effect and the
dynamic recovery effect, respectively. Therefore, to appropriately account for the physics behind
Stage-II plastic deformation, a model that inherently quantifies the evolution of dislocations,
such as the Kocks-Mecking constitutive equation (Kocks and Mecking, 2003), is more promising.

2.1.7. Strain Rate Effects on the Serration Plastic Flow of Nimonic 75 at 600 °C

Analysis on the serrated plastic flow for Nimonic 75 based on the experimental tensile data is
presented here. This is important since the stick-slip behavior of serrated flow can be captured
and simulated with the DEM model; indeed, serrations often emerge from our model
formulation. Figure 17a displays the true stress-true strain curves for Nimonic 75 alloy subjected
to monotonic tension at 600 °C at strain rates from 1.70 x 107 s''to 1.43 x 102 s’. For better
data visualization, the stress-strain curves are shifted along the strain axis. A glance at the stress-
strain curves shows serrated flow appears at all the investigated strain rates. Different serration
types are summarized in a serration map as a function of strain rate and strain (Figure 17b). A
general trend of early-stage serration type changing from Type A+B to Type C can be readily
visualized from Figure 17b. This trend is consistent with the documented Portevin-Le Chatelier
(PLC) effect for various solid solution alloys (Rodriguez, 1984; Yilmaz, 2011; Zhang et al.,
2017). A detailed identification of serration types for different strain rates will be described in

the following.
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Figure 17. (a) True stress-true strain curves for Nimonic 75 alloy subjected to constant-strain-rate tension at 600 °C;
(b) schematic map showing variation of serration type with respect to the strain rate and strain; (c)-(f) identified
serration types at strain rates of 1.43 x 102 s}, 1.43 x 107 57!, 1.45 x 10* 57!, and 1.70 x 107 s, respectively.

At a high strain rate of 1.43 x 102 s’! (Figure 17¢), the material macroscopically yielded at a
point with a strain of 0.0015 and a stress of 215.7 MPa. Afterwards, stable plastic flow with low
strain-hardening rate (Ac/Ae=~1477.1 MPa) occured until an abrupt stress rise was detected at a
strain of 0.0037 (point a in Figure 17c¢). The stress rise was composed of two stages. During the
first stage, the stress increased rapidly (Ac~9.4 MPa) until a yielding point b was reached. A
second stress increment (Ac=3.1 MPa) was followed until a peak stress (point ¢ in Figure 17¢)
was reached. It is noted that although the second-stage stress rise is smaller than that in the first
stage, the strain hardening rate in the second stage is much higher, comparing Ac/Ae=~17075.2
MPa for the first stage and Ac/Ae~20241.5 MPa for the second stage. The two-stage stress rise
reflects the aging effect caused by solute clusters diffusing to mobile dislocations. This solute
aging effect reached to a maximum degree at the peak point c (Figure 17c), where dislocation
was pinned in the solute cloud. Right after the peak stress, the stress dropped extremely rapidly,
bringing the stress back to slightly above the general level of the stress-strain curve. The stress
drop is believed to be associated with the release of the pinned dislocation. The amount of stress
drop might be used to indicate the accumulated obstacle effect to the moving dislocation arisen
from the forest dislocation and the solute cloud. The previous observed stress rise and stress drop
behavior describes a typical Type A serration. The reason why we designate Type A+B to this
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serration event in Figure 17c is based on the fact that small oscillation of stress was observed
prior to, during, and after the stages of stress rise and stress drop even at the very beginning of
the serrated plastic flow. Such a secondary Type-B stress oscillation accompanying the primary
Type-A serration becomes more obvious with more accumulation of strain (Figure 17¢).

When the strain rate is controlled at a lower value of 1.43 x 102 s7!, serrated flow was detected
by the stress drop at a strain of 0.0019 (point a in Figure 17d). A stress rise followed immediately
after the stress drop. The strain hardening rates of the stress drop and the stress drop were of the
same order. Sequences of stress drop and stress rise followed successively, appearing to oscillate
about the general level of the stress-strain curve. This is a typical Type-B serration behavior. We
found that such a Type-B serration terminated at a strain of 0.035 (point b in Figure 17d), where
the stress-strain curve exhibited an abrupt stress drop followed by a gradual stress rise turning
the stress back to the general level. According to the documented serration shapes, the serration
changed from Type B to Type C at point b. It is noted that Type C serration did not occur
continually. Instead, there is a strain interval between two sequential counts of Type-C “tooth,”
in which one stress drop and one stress rise are included. What’s more, stress oscillation in small
magnitude was present in the stress-strain curve between two sequential Type-C “teeth.”
Therefore, we identify the serrated flow after point b to be of Type C+B.

At a low strain rate of 1.45 x 10 s}, serrated flow started with a detection of stress drop at
0.0018 strain (point a in Figure 17¢). The following stress rise brought the stress back to the
general level stress-strain curve. Subsequent stress drop and stress rise follow the same fashion
and occur continuously. Therefore, a typical Type C serration was identified after the onset of
the serrated flow at this strain rate. At a strain of 0.018 (point b in Figure 17¢), the continuous
Type C serration, where one Type-C “tooth” is followed by the other, breaks. Instead, a Type
C+B serration behavior similar to the later stage of serrated flow at the strain rate of 1.43 x 10
sl was observed. The general trend of the serration-type changing from Type C to Type C+B
was identified for the strain rate at 1.70 x 107 s’ as well. But there exist two importance features
for the strain rate of 1.70 x 107 s’!, making it different from the case at strain rate of 1.45 x 10
s'l. First, the general locus of the stress-strain curve in the initial Type C serration stage shows a
near-zero strain hardening rate. This mechanical response is very similar to the yield plateau
caused by Liider’s band propagation often observed in mild steel. However, in annealed mild
steel, a typical inhomogeneous plastic deformation always starts with an upper yield stress
signifying the termination of the elastic deformation, and proceeds at a decreased stress level
known as the lower yield stress. In the current case (Figure 17f), there is no upper yield stress for
the onset of inhomogeneous deformation. In addition, all the stress jumps and drops are below
the general locus of the stress-strain curve (Figure 17f). Second, at the transition strain where
serration changed from Type C to Type C+B, the strain hardening rate of the general stress-strain
locus increased abruptly and gradually decreased with the increasing strain. This is different
from the strain rate at 1.45 x 10 s'!, where a continuity of strain hardening exists at the
transition strain from Type C serration to Type C+B serration (see Figure 17¢).

As consequence of the interactions between mobile dislocations and solute atoms, mobile
dislocations can become pinned by the solute atmosphere when sufficient solute concentration is
reached. Macroscopically, the pinning event is detected when a peak stress is reached during the
stress rise segment. With the aid of additional applied stress, the pinned dislocations can
overcome the barrier energy and move freely, resulting in a rapid stress drop. Therefore, we
consider the stress drop as the most important macroscopic parameter that is directly correlated

29



to the dynamic strain aging effect caused by the interaction between mobile dislocations and
diffusing solutes. In this regard, we extract the stress drop Ao .o, from the serrated flow and
investigate its variance with respect to increasing strain in different types of serrated flow in our
material.

Stress drop Ao 4oy, 18 defined as the difference between the local maximum stress (peak stress)
and its successive local minimum stress. For a Type A+B or Type C+B serration where a mixing
of Type B serration is present, a primary Ac 4, (for Type A or C) is distinguished from a
secondary AG 4o, Which is lower in magnitude and represents the stress drop associated with the
mixed Type B serration. The definitions are schematically illustrated in Figure 18a. The
variations of stress drop with respect to the increasing strain at various strain rates are
summarized in Figure 18b-Figure 18e¢. As the original Ao, data (see the marks in Figure 18b-
Figure 18e) are scattered within certain ranges, we smooth the data into trend lines (see the solid
lines in Figure 18b-Figure 18¢) using the moving average algorithm.
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Figure 18. Variations of stress drop with respect to the increasing strain at various strain rates: (a) schematics
illustrating the definitions of stress drops in different types of serrations; (b)-(e) stress drops at strain rates of 1.43 x
102s1,1.43 x 103 s, 1.45 x 10* s}, and 1.70 x 105 s, respectively.
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For the high strain rate of 1.43 x 10 s! (Figure 18b), the primary Type A Ac 4., increases
continuously from ~6 MPa at the onset of serration to a saturation value of ~11 MPa at the strain
of 0.06. Likewise, such a trend is exhibited in the secondary Type B Ao 44, Where it initially
increases from a small magnitude of 0.5 MPa and approaches to saturation (~4 MPa) at 0.06
strain. For the higher strain rate of 1.43 x 103 s'! where Type B followed by Type C+B serration
is exhibited, the Type B Ao,y increases slowly from a magnitude of 4 MPa to a strain of
0.03%, at which a rapid increase of Ao ,op, Was continued until it reaches ~9 MPa at a transition
strain of 0.035. In the subsequent Type C+B serration flow, both the primary and secondary

A0 grop stay almost unchanged at 10 MPa and 0.5 MPa, respectively. For the two lower strain
rates of 1.45 x 10 st and 1.70 x 107 s7! (Type C serration followed by Type C+B), some
common observations are obtained: (1) the Ao ..oy, is continuous at the transition strain at which
serration type changes from Type C to Type C+B the early-stage; (2) secondary Ao 4,y in the
Type C+B serration is insensitive to the strain and remain in small magnitudes 1~2 MPa in
average. However, there exists an important difference between these two strain rates. At the
strain rate of 1.45 x 10 s”!, the Type C A4y, increases monotonically from ~6 MPa to ~15
MPa in the entire strain range. However, at the strain rate of 1.70 x 10 5!, Ac 4,4, 0Oscillates
between 6 MPa and 10 MPa in the Type C stage. When the serrated flow enters the Type C+B
stage, the primary Aoy, only exhibits a very small increasing from 9 MPa to 10.5 MPa. It is
noticed that such an increasing trend is visualized from the average trend line. Actually, the
scattering of the primary Ao 4o, during this stage is much higher than that shown in the strain
rate of 1.45 x 104 7!

As described above, the Ao g,y in Type B and Type C serrations (except for the slowest strain
rate of 1.70 x 10 s'!) shows a general positive correlation to the increasing strain. The same
trend applies for the primary Ao 4o, in Type A+B and Type C+B serrations. This common
observation signifies that the collective pinning strength (or the aging effect) exerted to the
mobile dislocations by the solute cloud and the obstacle defects (majorly immobile forest
dislocations in our alloy) becomes aggregated. This is likely attributed to the fact that the
immobile dislocations are multiplied as the material undergoes plastic deformation. Another
reason could be related to the strain-induced vacancy concentration (Militzer et al., 1994).
Vacancies can be generated and segregate at dislocations and grain boundaries by movement of
dislocation jogs during high temperature deformation. Because vacancies in the vicinity of
dislocations are sinks of diffusion solute atoms, it is reasonable to derive that the increased
plastic strain will lead to an increasing solute aging effect. Applying the suggested mechanism
above, it is also reasonable to explain the oscillation of Ao 4.4, in the Type C stage at the slowest
strain rate of 1.70 x 10 s”!. We know that the upper bound of the Type C serrated stress-strain
response forms a yielding plateau, which bears almost zero strain hardening (Figure 17f). The
absence of a macroscopic strain hardening in this stress-strain segment suggests that the
accumulation of immobile dislocations is minimal. Therefore, the pinning effect resulted from
the interaction between obstacle and the solute atoms is unchanged.

2.1.8. Fracture Stress, Fracture Strain and Fracture Behavior of Nimonic 75 at 600 °

In order to capture the fracture behavior in the DEM model, the fracture stress and fracture strain
of Nimonic 75 subjected to tension at 600 °C was determined. We carried out tension
experiments with two strain rates (1.43x102 s7! and 1.43x107 s!) without using an
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extensometer. We use the strain-position relationship obtained in the previous 10%-tension
experiment to extrapolate the strain beyond 10% using the position data recorded in our current
experiment. In this way, we can have the full range of stress-strain response up to fracture
(Figure 19a). We repeated each strain rate with three specimens. The fracture stress and fracture
strain together with the reduction of area measured from final fracture profile are summarized in
Table 1 and Figure 19b. The experimental result turns out that fracture stress and fracture strain
are independent of the two investigated strain rates. However, larger reduction of area is found as
the strain rate is increased.
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Figure 19. (a) Stress-strain response up to fracture; (b) fracture stress, fracture strain, and reduction of area.

Table 4. Fracture stress, fracture strain, and reduction of area for Nimonic 75 subjected to tension at 600 °C under
strain rates of 1.43x1072 s'and 1.43x1073 s,

Strain Rate, s°! Fracture Stress, MPa Fracture Strain Reduction of Area
0.0143 465.79 0.25496 0.501
0.0143 481.54 0.27708 0.432
0.0143 450.23 0.27547 0.427
0.00143 486.68 0.25929 0.327
0.00143 464.8 0.26506 0.312
0.00143 451.49 0.26548 0.331

2.1.9. Determination of Creep Properties

Creep tests were conducted at National Energy Technology Laboratory (NETL). Figure 20a
shows the creep specimens used in the creep tests. Creep testing was conducted by a ATS 2330-
MM lever arm creep frame (Figure 20b). A dual extensometer system (Figure 20c), which is not
directly attached to the specimen but is part of a "chassis" that hold the specimen and
extensometers together as one, is used to measure the creep strain. Creep samples were heated by
an ATS furnace (model 3210). Three thermocouples were directly attached to the specimen using
twisted wires to monitor the temperature. The specimen was soaked for one hour before the
constant load was applied. Constant load of 160 MPa was applied to three companion creep
specimens at 600 °C. Creep tests were interrupted at 200, 400, and 600 hours. The purpose of
carrying out interrupting creep experiments is to characterize the long-term microstructural
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evolution so that the correct creep mechanism can be understood and will be implemented into
the DEM model.
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Figure 20. Creep specimen (a), creep frame (b), and dual extensometer system (c) used for the creep tests conducted
at National Energy Technology Laboratory (NETL).

Figure 21a presents the creep curve for the 600-hour creep specimen. A comparison with the
certificated results was also made (Gould and Loveday, 1990). The 600-hour specimen shows
normal two-stage primary and steady-state creep deformation. The creep curve shows a
sigmoidal transient creep stage during the initial ~150 hours, which is a typical creep feature for
Nimonic 75 (Betteridge and Heslop, 1974). The creep rate at 400 hour, time to 2% creep strain,
and time to 4% creep strain from NETL creep tests are compared to the certificated creep value
(Gould and Loveday, 1990) as shown in Table 5. The creep rate at 400 hour stands in the range
with two-time standard deviation (2S). However, the time to 2% creep strain and the time to 4%
creep strain (extrapolated) stands out of the range with two-time standard deviation (2S). The
reason is unclear and will need further investigation. The variance of creep rate at 400 hour with
the applied stress is plotted in Figure 21b. The stress exponent 7 for the creep rate

(;400;” = Ao”") can be evaluated to be 6.
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Figure 21. (a) Creep curve from NETL 600-hour creep test and a comparison to creep curves in Ref. (Gould and
Loveday, 1990). (b) Variance of creep rate at 400 hour with the applied stress (Gould and Loveday, 1990).

Table 5. Comparison of the certificated creep properties (Gould and Loveday, 1990) with the result from NETL
creep tests.

Creep Property Certified Value (M) Standard Deviation (S) NETL Result
Creep rate at400 72 x 10 hour 5 x 10% /hour 62 x 10* /hour
H (0]
Time tsotrzai/; creep 278 hours 16 hours 320 hours
H (0]
Time to 4.A) creep 558 hours 30 hours 640 hours
strain (extrapolated)

2.1.10. Microstructure Evaluation of Nimonic 75 During Creep Deformation

In order to evaluate the microstructural evolution during creep deformation, three companion
specimens were interrupted at 200, 400, and 600 hours, respectively. We have chosen two
specimens that have experienced 200-hour and 600-hour creep deformation to assess the
microstructure change (Figure 22). The creep strain and creep strain rate corresponding to the
two creep deformation stages are listed in Table 6. The microstructure was characterized on the
cross-section plane that is perpendicular to the loading direction (or extrusion direction, ED) by
optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive x-ray
spectroscopy (EDS), electron backscatter diffraction (EBSD). The revealed creep
microstructures were compared with the undeformed well-annealed microstructure (400 hours at
600 °C).
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Figure 22. Creep specimens used to evaluate evolution of creep microstructure.

Table 6. Creep strain and creep strain rate for the two creep samples for microstructure examination.

Specimen Creep strain Creep strain rate
200-hour creep sample 0.0123 6.7¢-5 /hour
600-hour creep sample 0.0372 5.7e-5 /hour

Figure 23. Optical and SEM microstructure of Nimonic 75 characterized on the cross section plane: (a) undeformed
state (annealed at 600 °C for 400 hours); (b) creep deformation for 200 hours; (c) creep deformation for 600 hours.
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Figure 24. Magnified SEM observation of carbides in the vicinity of one grain before (a) and after (b) creep
deformation for 200 hours.

Figure 23 shows the OM and SEM observation of the microstructure compared between the
annealed and creep deformed states. It is found inter-granular carbides are increased after creep
deformation. Figure 24 presents the magnified SEM micrographs captured in the vicinity of one
grain for the undeformed and the 200-hour creep deformation states. As clearly revealed in
Figure 24, the number of carbides is significantly increased at grain boundaries (GBs). In
particular, the morphology of inter-granular carbides tends to appear more elongated and more
continuous compared to the undeformed state. Such a dense distribution of elongated carbides
can be found at twin-twin boundaries (TTBs) and twin fronts (TFs) as well. The increase in
interfacial carbides coverage at GBs, TFs, and TTBs is suggested to be associated with the local
accumulation of interfacial defects that are produced under the externally applied creep stress
over the time.
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Figure 25. Crystal orientation map and grain boundary map (with and without twin boundaries) obtained by EBSD:
(a) after 200-hour creep deformation; (b) after 600-hour creep deformation.

Quantification of the grain structure after creep deformation was obtained by EBSD mapping
(Figure 25). Grain size & shape were evaluated with either including or excluding the £3 & X9
twin boundaries. Grains were best fitted by ellipses. Based on the best fitted ellipses, probability
distributions of grain area, grain diameter, grain aspect ratio, and grain orientation were
determined, as is shown in Figure 26. A comparison between the undeformed and creep
deformed states shows trivial changes in grain morphology during creep deformation.
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Figure 26. Comparison of probability density distribution of grain size and grain shape between the undeformed
(annealed) and creep deformed (200 and 600 hours) states: (a) grain size in terms of area and diameter; (b) grain
shape in terms of aspect ratio and major axis orientation.

M.R.D

—2130
— 1831
1574
1.353
1.163
~——1.000
—0.860

1D (Al)

RD4—TED

Inverse pole figure
(A2) (A3)

[010)
0[1

[100]
011

N TN W

01

M.R.D

—1.600
—1.456
1.326
1.207
1.099
——1.000
—0.910

(b) Creep for 200 hours

(c) Creep for 600 hours

(a) Undeformed (Annealed)

Figure 27. Evolution of grain orientation distribution: (a) undeformed state (annealed at 600 °C for 400 hours); (b)
creep deformation for 200 hours; (c) creep deformation for 600 hours.

Evolution of grain orientation distribution is visualized in Figure 27 in terms of pole figures and
inverse pole figures. From Figure 27, it is found that the direction of <1 1 1> poles that
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converged mostly towards the tensile loading direction (or ED direction) in the undeformed state
has a tendency of departure from loading direction. This indicates grain rotation occurs during
creep deformation. Such grain rotation results in a weakening of axisymmetric <1 1 1>-<1 0 0>
fiber texture that was originally exhibited at the undeformed state and acts as a “relaxation”
process that leads to a more random distribution of grain orientations.
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Figure 28. Grain boundary misorientation before and after creep deformation: (a) number fraction histogram of
misorientation angle; (b, ¢, d) misorientation axis distribution for the undeformed and creep deformed states.

The misorientation distribution of grain boundary as displayed in Figure 28 shows slight increase
(5% in number fraction) of 60° <1 1 1> (3.3) primary twin boundaries (TBs) after creep
deformation. The number fraction change of TBs between 200-hour and 400-hour creep
deformations is insignificant. The multiplication of primary twin boundary infers that primary
twins are nucleated during the creep deformation process. Overall, the above results give a good
measure of the steady-state creep regime microstructure for use in developing the polycrystalline
DEM model.
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2.2. Discrete Element Method (DEM) Model Development

All simulations were performed using the commercial software PFC*P v5 (Itasca Consulting
Group, Inc., Minneapolis, MN, USA), though this choice was made purely for convenience
based on the authors’ previous experience with the software; any number of other
commercial or open source DEM implementations are compatible with our approach.
Hardware requirements are the same as the PFC*P v5 software hardware requirements.
Documentation and additional codes employed are available from Matthew Evans upon
request: matt.evans@oregonstate.edu.

2.2.1. The Discrete Element Method

The discrete element method was originally developed by (Cundall, 1971) for the modeling of
rocks and later expanded to soils (Cundall and Strack, 1979). In this introduction, we present
major points of the method, while for details of the implementation the reader is referred to
(Potyondy and Cundall, 2004). In this work, the three-dimensional version of the DEM with
spherical elements is employed.

Traditional DEM is predicated upon the simultaneous solution of Newton’s equations of motion
for each body in an assembly of discrete particles. Contacting particles interact via simple
constitutive relations. Particle overlap is allowed at contacts (the so-called soft contact approach),
but these overlaps are small relative to particle size (e.g., less than 1%). A given calculation

cycle begins by identifying contact points and identifying their unit normals.

Figure 29 shows two interacting spherical elements and an element interacting with a rigid planar
wall. The contact plane normal (N, ) is defined by the line segment between the element

centroids X, or element centroid and nearest point on the wall, X . The contact plane spans the

contact point X, . N.B.: In DEM modeling, contacts may be either real or virtual. Real contacts

occur when two bodies are actually in contact or overlapping. Virtual contacts exist when two
bodies are proximal but not yet touching (typically, when their surface separation is 10 times
the mean diameter of the two entities). In unbonded assemblies, this serves to provide
computational efficiency in the contact detection algorithm (typically the most expensive part of
the calculation). In bonded assemblies, however, this separation has physical meaning — two
elements are able to have a physical separation, yet still be connected via a bond between them.

Herein, the behavior of elements contacts is described by a linear contact law. The normal force
between two contacting elements is given by /' =—kx where & is particle stiffness and x is
contact overlap. If the two elements are bonded (as they are in this work), an additional normal
force is generated due to the presence of the bond, as described subsequently. Shear forces at
contacts are linear and formulated incrementally.
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Figure 29. DEM components: (a) two interacting elements, (b) an element interacting with a wall, and (c) two
elements bonded with a parallel bond.

The resultant force (and subsequently, the equation of motion) for a single element is defined as:

Equation 5

where the total force F is the sum of forces F; due to the i” neighboring element; N, is the total
number of contacts the element has formed, m is element mass, and a is the acceleration.
Similarly, the total moment, M, experienced by an element is:

N
< . 2 2 |-
M= ZMci =Jlm =(§MR }L‘, Equation 6

i=1

where M,; is the moment on the i element contact, / is the moment of inertia, @ is the angular
acceleration, and we exploit the fact that, for spherical elements, moment is directionally
independent. Each contact force F.; and moment, M., is resolved into a normal component
acting along the contact plane normal, n., and shear component that lies in the plane. As
mentioned previously, in simulations of unbound granular materials forces are related to the
overlap of impinging elements as shown in Figure 29. Positive overlap generates repulsive force.
This sign convention is natural for unbonded materials where contacts only work in compression
and so there are no tensile forces, but it is the reverse of the convention typically used in solid
mechanics.

To model monolithic materials, elements can be bonded together by replacing the asymmetrical
contact laws with cohesive interactions that can support tension. A common scheme for this is
the parallel bond developed by Potyondy an Cundall (Potyondy and Cundall, 2004) and shown
in Figure 29(c). The parallel bond represents two welded elements as a cylinder of material
running between the element centers that can transmit both moment and force between the
elements. The constitutive law for the parallel bond is used in the differential form:
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dF du, du

—=kA +k A—
3;4 dime dtdA@ Equation 7
LA A

dt dt ; dt

where the force, F, due to the normal, u,, and shear, u,, displacements, and the moment, M, due
to the difference in the twisting, A@,, and bending, Af,, rotations of the two elements are related
by normal, k,, and shear stiffness, k. The geometric terms A4, /, and J are the bond’s cross-
sectional area, moment of inertia, and polar moment of inertia, respectively. For unbonded
elements the interaction range is set by the element radii, as discussed previously. Parallel bonds,
however, can be installed between any two elements with any equilibrium length, and thus once
a DEM assembly is parallel bonded the elements should no longer be considered to be spherical.
In this work, assemblies of elements were generated by simulating the dynamic packing of
unbonded elements interacting through contact laws. Once a stable packing was achieved, the
element-element contact laws were turned off and parallel bonds installed between all pairs of

elements with a spacing less than a cutoff separation referred to as the gap parameter, g. , so

that a bond is installed between elements i and j if:
g = pr2 _XpIH _(R1 +RQ) Equation 8

where x,; and x> are positions of the elements’ centroids and R; and R> the element radii (Figure
1). In this work, the geometric terms A4, /, and J are defined by the bond radius which is defined
as the radius of the smaller element, R}, = min{R(l), R(Z)} or the radius of the element at an
element-wall contact.

Each simulation step in DEM consists of computing the total forces and moments for every
element using Equation 5 and Equation 6. From these, accelerations, translational and angular
velocities, and new element positions are computed with the Verlet algorithm (Verlet, 1967).

2.2.2. Geometric algorithms and discretization scheme for DEM model

DEM models are typically used to simulate discontinuous materials with a high degree of spatial
heterogeneity. This approach is quite powerful, but implementation for continuum modeling is
challenging. Of particular note is the need for force homogenization and equilibration across the
sample space. We initially developed an algorithm that iterates forces in the assembly towards a
constant value and produces a physically realistic elastic response, as shown in Figure 30.
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Figure 30. At left is a representation of the contact force distribution in our DEM model and at right is an elastic
stress-strain response from our model with a physically realistic solid metal elastic modulus.

While Figure 30 shows an example isotropic response, the polycrystalline Nimonic 75 grain
structure has been tessellated for the DEM model by a 3-D Voronoi algorithm that captures our
measured distributions of grain size, grain orientation, and grain boundary misorientation. The
measurements of those microstructural parameters were described above. As X3 and X9
annealing twin boundaries are unlikely to be initiation sites for creep damage (Zhang and Field,
2013), these boundaries are excluded for reconstructing the 3-D grain structure. An example of a
3-D tessellation is shown in Figure 31.

Grain #
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Figure 31. An example DEM model volume of a 3-D grain structure containing 400 crystalline grains.

2.2.3. Determination of the Elastic Property Inputs for the Model

To predict the elastic constants off Ni-20Cr as a function of temperature we have first calculated
the material’s elastic constants at zero Kelvin, and then used the softening of elastic constants in
classical molecular dynamics simulations to extrapolate these properties to higher temperatures.
Here we first report on the calculation of 0 K elastic properties using density functional theory
(DFT), and then on the translation of these results to high temperature properties
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2.2.3.1.DFT Calculation of Single Crystal Anisotropic Elastic Constants at 0 K

DFT calculations were performed on a single unit cell of in pure Ni and on a 2x2x2 supercell of
Ni-20Cr with the atoms arranged in a special quasi-random structure (SQS) (Zunger et al., 1990).
A SQS is an arrangement of the atoms in the supercell that possesses the same element-by-
element pair correlation functions as would be found in a truly random solid solution, and thus
correctly captures the long range interactions between the alloy constituents in the materials
electronic structure. The SQS was generated using a reverse Monte Carlo approach in which Ni-
Cr atom pairs are selected randomly and the positions in the supercell switched, and the switch
kept or discarded probabilistically based on comparison of the pair distribution function of the
trial configuration with that of a random solid solution. It should be noted that the ordering of the
solute atoms on the lattice in the SQS breaks the cubic symmetry of the supercell and so elastic
properties must be averaged over each of the three <100> type directions. The SQS supercell is
visualized in Figure 32.

Figure 32. Special quasi-random structure (SQS) 2x2x2 supercell used in the DFT calculation.

The DFT calculations were performed using Vienna Ab initio Simulation Package (VASP).
Projector-augmented plane-wave pseudopotentials (PAW) and generalized gradient
approximation (GGA) of the exchange-correlation energy by Perdew-Burke-Ernzerhof (PBE)
(Perdew et al., 1996) were included in the calculation. Before calculating of the elastic constants,
convergence tests were carried out to calculate the total energy in a unit supercell by selecting
cutoff energy varying from 260 eV to 480 eV, and Monkhorst-Pack K-point mesh size varying
from N=1 to N=4. The purpose of the convergence test is to identify the optimized values of
cutoff energy and K-point mesh size so that a reliable, computationally efficient, DFT
calculation is enabled. The lattice parameter used in the convergence test is assumed to be 3.52 A.
The optimized K-point mesh size and cutoff energy were obtained to be N = 3 and Ecut = 440 eV,
respectively (Figure 33). The supercell structure was then relaxed by choosing lattice parameter
ranging from 3.51 A to 3.53 A. The equilibrium lattice parameter corresponding to the minimum
total energy was found to be 3.523 A (Figure 34).
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Figure 33. Convergence tests for optimized K-point mesh size (a) and cutoff energy (b).
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Figure 34. Calculation of equilibrium lattice parameter.

For face centered cubit (FCC) Ni-20Cr alloy, there are three independent anisotropic elastic

constants, namely C,,, C,,,and C,,. C,, and C,, are associated with the bulk modulus B and

Zener’s modulus C' (or tetragonal shear modulus), which are defined as:

1
BZE(CM +2C12)

1

C =§(C11 _CIZ)

If we elastically deform the unit supercell by applying a hydrostatic strain tensor then
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e 00
e =10 ¢ 0 Equation 11

ij
0 0 ¢

We are able to determine the bulk modulus B by fitting the calculated total energy E as a
function of volume V' (Mehl et al., 1990):

1 d’E
B:_(C11+2C12):V2> 2 .
3 dv Equation 12

V=7,

where V is the equilibrium supercell volume corresponding to the minimum total energy. To

obtain the Zener’s modulus, we elastically deform the supercell by applying a volume
conservative tetragonal strain tensor:

e 0 0
=10 -¢ 0 Equation 13
0 0 £/-¢)

The associated change of total elastic energy can be calculated as:

AE = Vii%%%, =2VC'e* + 0(53): V(Cll _ C12)52 N 0(83) Equation 14

i=l j=l

The Zener’s modulus C' can be determined by fitting the change of total energy AE as a
function of &

1 d(AE) Equation 15

where V, is the volume corresponding to the minimum change of total energy. If we elastically
deform the supercell by applying a volume-conservative orthorhombic strain tensor:

Equation 16

&y

0
0
&2

I
S M O
S O M

1+ &*

The associated change of total elastic energy can be calculated as:
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3 3
1
AE = VZZ—GUQ/. =2VC,&" + 0(83) .
P Equation 17
So the elastic constant C,, can be determined by fitting the change of total energy AE as a

function of &:

1 d(AE) Equation 18

where V, is the volume corresponding to the minimum change of total energy. Based on
Equation 12, Equation 15, and Equation 18, we calculated the bulk modulus B, Zener’s modulus
C', and C,, for Ni-20Cr alloy to be 204.1 GPa, 60.0 GPa, and 131.7 GPa, respectively (see
Figure 35a, b, ¢). The bulk modulus, Zener’s modulus, and elastic constants C,,, C,,, C,, are
also compared to DFT calculation for pure nickel, as shown in Figure 35 and listed in Table 7.
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Figure 35. Calculation of bulk modulus B (a), Zener’s modulus C’ (b), and Ca4 (c) through elastically deforming
supercell by applying hydrostatic strain tensor, volume-conservative tetragonal strain tensor and orthorhombic strain
tensor, respectively. (d) Comparison of the elastic constants of Ni-20Cr to those of pure nickel.
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Table 7. Comparison of 0-K equilibrium lattice parameter, bulk modulus, Zener’s modulus, and anisotropic elastic
constants calculated by DFT between pure Nickel and Ni-20Cr alloy.

Equilibrium Bulk Zener’s
Material lattice parameter, modulus modulus  C, , GPa C, , GPa C44’ GPa
a, A B,GPa (', GPa
Pure Ni
(2x2x2 3.518 200.1 55.7 274.3 163.0 128.8
supercell)
Ni-20Cr
(2x2x2 SQS  3.523 204.1 60.0 284.1 164.1 131.7
supercell)

2.2.3.2 Extrapolation of 0K results to 600°C

The isothermal elastic constants of a material are given by the second derivative of the material’s
volumetric Helmholtz free energy, F,, with respect to strain:

0°F,
v 0¢;0¢; Equation 19

This contains two contributions: the curvature of the interatomic potentials, and the change in the
internal vibrational energy of the solid as a result of deformation. On increasing the temperature
of the solid, both of these contributions change. The system samples more of the curvature of
the soft tails of the interatomic potential, and also there is a change in the distribution of
occupied phonon modes. The temperature range of interest for this work is around 600°C (873
K), which is much larger that the Debye temperature for Nickel (450 K), and thus we can ignore
the quantum mechanical filling of vibrational modes (the second contribution) and use classical
molecular dynamics to determine the contribution of the anharmonisity in the interatomic
bonding. As these molecular dynamics simulations must be performed using forces obtained
from first principles, these calculations are computationally expensive, and thus we have used a
set of test simulations with forces obtained from empirical potentials to carefully identify the
most computationally efficient set of parameters that yields a meaningful prediction.

Four sets of simulations were performed which test both the validity of using only a 3x3x3
supercell and the ability of the SQS to reproduce the properties of the random solid solution.

Elastic constants were computed from fits to the averaged pressure (stress) response of the
materials to quasistatic isothermal deformation of the material at different temperatures. For each
simulation, the system was equilibrated under NPT, and then switched to the NVE ensemble
with the averaged stress tensor recorded as a function of a slow homogeneous deformation of the
simulation box. The interactions of Ni and Cr were modeled using the embedded atom method
(EAM), and the average of 20 simulations was used to obtain each datum. Figure 36 shows the
comparison of the reported experimentally measured elastic constants of pure Ni along with the
elastic constants obtained by us using 108, and 2048 atoms simulation cells. The MD results for
the two system sizes fall exactly on top of each other, indicating that the smaller simulation cell
captures the elastic softening but includes larger uncertainty. This is an important result for our
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future DFT-MD simulations. Secondly the empirical potentials track the overall trend in the
softening reasonably well, but over estimate the softening in Ci12 and underestimate the softening
in C11 and Cas. The second plot in Figure 36 shows the comparison of elastic constants of Ni and
Ni-20Cr obtained though MD simulations. For the alloy the results are shown for both the large
random alloy, and the smaller SQS, indicating that the SQS performs well at reproducing the
properties of the random alloy. The elastic constants for the alloy are softer than those of pure Ni,

but the softening behavior tracks almost identically.
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Figure 36. Plots of elastic constants of Ni and Ni-20Cr as a function of temperature above the Debye temperature.
C11, C12, and Cu4 are plotted in blue, gold, and green respectively. The left plot shows the comparison of
experimental (dot-dashed) and values obtained from MD simulations of 108 atoms (solid) and 2048 atoms (dashed).
The right plot shows the comparison of MD obtained elastic constants of Ni (dot-dashed) with Ni-20Cr (solid: 108
atoms, dashed: 2048 atoms).

While the trend in individual elastic constants track the experimental values, the trends in both
elastic anisotropy ratio, 2Cs4/(C11-C12), and Poisson’s ratio do not follow the experimental trend
(Figure 37). This indicated a limitation of using EAM potentials, which are fit to reproduce 0 K
elasticity, the crystal’s lattice parameter, and the binding energy, but not to reproduce the
anharmonicity in the interatomic bonding. It should be noted that the 0 K DFT results do a much
better job at reproducing the anisotropy ratio (2.31 for Ni and 2.20 for Ni-20Cr).
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Figure 37. Plots of the anisotropy ratio (left) and (100) Poisson’s ratio (contraction along (010)/due to stress along
(100)) for Ni and Ni-20Cr as a function of temperature above the Debye temperature. Blue line is experimentally
results for Ni, gold for Ni obtained with MD using EAM potentials, and the green line for Ni-20Cr from MD with

EAM.
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While the results above indicate a problem with the EAM for capturing subtleties in the
temperature dependence of elastic response of Ni alloys, the EAM prediction for the averaged
isotropic properties of the Ni-20Cr alloy is reasonable, as shown in Figure 38. Both plots show
the experimentally measured Young’s modulus for poly crystalline Ni-20Cr. The computed
temperature dependent values of the elastic stiffness tensor as used to compute the
polycrystalline Young’s modulus using both the Voigt (average stiffness) and Reuss (average
compliance) models which provide lower and upper bounds, respectively, for the elastic response
of a polycrystalline assembly.
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Figure 38. Young’s modulus in terms of elastic constants computed with molecular dynamics at different
temperatures compared against experimental data. Left image are results for 2048 atoms and right image are ones
for 108 atoms built with special-quasi-random structures.

From these results we conclude that, for our current needs in this project, the experimentally
obtained elastic constants for Ni can be extrapolated to higher temperature by fitting
Watchman’s functional form of the elastic softening:

™

Cij(T) = Cf; — B;jTe T, Equation 20

where C?; is the 0 K elastic constant, B;; is a parameter related to the Gruneisen parameter, and
Ty is a temperature related to the Debye temperature for vibrations along the #jth deformation
mode. The elastic constants for Ni-20Cr at high temperature can be obtained to a first
approximation by shifting the C°; for pure Ni to that for Ni-20Cr that we have already computed
using DFT. Thus, in this manner we have identified an initial set of elastic constants for our
model.
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2.2.4. Isotropic elasticity in DEM

2.2.4.1.General model components of isotropic elasticity model in DEM for metallic
materials

Two main components of the isotropic elasticity model were: 1) Creation of representative DEM
assemblies that can be used for simulation of continuum solids, ii) Ensuring the same elastic
response in tension and compression characteristic of crystalline metallic materials.

While heterogeneity of DEM is a powerful and advantageous feature for modeling of continuum
solids, its extent has to be controlled in order to obtain meaningful continuum behavior. Figure
39a shows a typical DEM assembly with a highly heterogeneous element size distribution. A
broad size distribution, characteristic of many granular materials, leads to large local
heterogeneity of materials and phenomena such as force percolation (Figure 39b and Figure 39c¢)
where minority of elements carry majority of forces. To avoid this in continuum modeling the
isotropic elasticity model had its size distribution reduced to AR = R/6 where R is the arithmetic
mean element radius. This size distribution prevents crystallization and keeps random element
arrangement, while allowing for less variation in material properties and element force
propagation capabilities.
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Figure 39. Stress distribution in a DEM assembly: a) Typical, non-uniform stress distribution in a granular medium.
Colors indicate the relation of average force on a particle to assembly mean; b) and ¢) - force percolations; thickness
of the bar is proportional to the magnitude of the force at a given contact. b) Force percolation characteristic for non-
uniform assemblies as in a) - majority of the load is carried by only small number of particles; c¢) Greatly reduced
force percolation after assembly generation and pre-processing steps applied in this work.
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Figure 40. Two bonded elements subject to first tension, then compression. Material response needs to be the
same in tension and compression in order for DEM models to correctly capture metal behavior.
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Figure 41. Force vs. displacement of the upper element from Figure 40. In the plot on the left, the slope of the line
changes in compression. In the plot on the right, the slope does not change, which is the desired behavior.

To ensure the elastic tension-compression response characteristic of metallic materials, element
stiffnesses were set to zero and only the parallel bonds contributed to material deformation. As
shown in Figure 40-Figure 41, a non-zero element stiffness results in different force-
displacement response in compression and in tension, which is not desirable in most of this work.

2.2.4.2.Assembly generation

Element assemblies were generated by randomly positioning elements in a cubical or
rectangular space until a predefined void fraction of 0.40 was achieved. The void fraction
was selected to be approximately halfway between the best estimates for the random close
pack (RCP) case of 0.36 and the jamming transition of 0.44 where an unbonded assembly
will become unstable and readily flow. Element radii were randomly drawn from a uniform
distribution with a range 4R = R/6 where R is the arithmetic mean element radius.
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Mass-scaling was employed to improve calculation speed; in this approach, element sizes are
increased by several orders of magnitude to increase the critical time step for numerical stability
(see, e.g., (Belheine et al., 2009; Evans and Frost, 2007; Ning et al., 2015; Yun and Evans, 2011;
Zhao et al., 2017)). Simulations were performed in the absence of gravity so that the increased
element sizes do not generate excessive self-weight within the assembly. Changing the particle
size also affects the dimensionless inertial number, /, which is used to define the line of
demarcation between quasi-static and dynamic simulations (Roux and CHevoir, 2005): [ =

vd / \ P/p, where y is strain rate, d is element diameter, P is pressure, and p is particle density.
Simulations with an inertial number less than 107 are quasi-static. In the current work the
average inertial number is lower than 5x10.

After the model domain was randomly populated with elements the system was relaxed by
simulating the evolution of the system with damped dynamics until element accelerations are
minimized. After equilibration, all neighboring elements within a chosen cutoff distance (called
the gap cutoff parameter, g, max) were fused together with parallel bonds to form a contiguous
network, and then the bounding walls were removed. Stress equilibration is not necessary as
once parallel bonds are installed the elements’ contact stiffnesses are removed. At this point the
elements cease to be particle-like and are instead a trellis of bonds, all initially fully relaxed with
no internal forces or moments. The total number of bonds formed is a function of the gap cutoff
parameter. If the gap between elements is smaller than the predefined gap parameter, g max, @
bond will form between these elements.

2.2.4.3 Isotropic elasticity for materials without elastic tension-compression symmetry

Besides the zero-element stiffness model, we have also implemented strategies for development
of models with a non-zero element stiffness which can be useful for continuum materials which
response is not the same in tension and compression. The development consisted of two
additional preprocessing steps in between first and second generation step described in the
previous section:

1) Removal of “floaters”

“Floaters” are elements generated in DEM that have no or too little contacts. They are a
numerical artifact and need to be removed to provide reliable models. Implemented was a
floater-removal algorithm based on one proposed by (Potyondy and Cundall, 2004). Algorithm
changed the size of elements until their number of contacts becomes physically admissible while
their average contact force remains within fixed interval around mean contact force of the whole
assembly. Figure 42 shows the result of applying our floater removal algorithm. Values of
contact forces carried by elements increased by two orders of magnitude compared to newly
generated assembly due to increased number of element contacts.

2) Reduction of locked-in stresses

Locked-in stresses are residual stresses present in a DEM assembly due to its discrete nature
rather than numerical features. They originate from unhomogeneous stress distribution related to
element size distribution as well as varying coordination numbers. After bonding the assembly,
large locked-in stresses would put elements in excessive tension or compression introducing bias
in the simulations of continuous materials. To reduce locked-in stresses implemented was an
algorithm similar to one used for removal of “floaters”. Namely, the element size was changed

53



until the contact force of that element was below an upfront set threshhold - a very low force
value, negligible compared to meaningful forces developed in deformation simulations.
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Figure 42. Generation and pre-processing of a DEM assembly with non-zero element stiffness. 1) Generation of a
random assembly of polidisperse spherical elements 2) Assembly after removal of floaters 3) Assembly after
reduction of locked-in stresses. |F| is the magnitude of the total contact force on each element. Forces after Step 2)
are larger due to increased number of contacts. Forces in 3) are intentionally reduced to low values and made more
uniform (Figure 39b) and c).

2.2.4.4 Results of implementing isotropic elasticity for metals in DEM

A stress-strain response from a representative model is shown in Figure 43. The deformation was
driven by top and bottom walls and the response was linear and tension-compression symmetric.
The Young’s modulus value was within the range of values for metals and was readily adjustable
by modifying the stiffness of parallel bonds allowing it to reach any value. On the other hand, the
Poisson’s ratio was limited to values around 0.18-0.25. Such restricted Poisson’s ratio also arises
in other emerging mesoscopic methods for simulating continuum materials such as bond-based
peridynamics (Kumar et al., 2016; Madenci and Oterkus, 2016a).
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Figure 43. Elastic deformation of an isotropic material modeled with DEM. Assembly is first loaded, then unloaded.
Stress-strain curves during both processes overlap and show a linear trend. Elements are colored based on
displacement which values are consistent with element position relative to the walls that are initiating the
deformation.
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2.2.5. Anisotropic Elasticity in DEM

There were two approaches developed for DEM model of anisotropic elasticity, emergent and
imposed approach. In the imposed approach, each contact was formulated such as to model cubic
elasticity while in the emergent approach, cubic elasticity was a consequence of collective
behavior of the entire, heterogeneous assembly. The imposed approach was completely
developed while due to software limitations was implemented only on small assemblies thus it is
in the preliminary result phase. The emergent approach was completed and is currently being
considered for publication

2.2.5.1.Introduction of cubic anisotropy in DEM

The elastic response of cubically symmetric crystals is defined by the fourth rank elastic
stiffness tensor with three independent moduli Ci1, Ci2, and Cas to provide the following
stress-strain relationship:

O, ¢, C, C, 0 0 0 )&,
Oy G, G G, 0 0 0 || &,
Oz G, G, ¢, 0 0 0 || & Equation 21
.| |0 0o 0 ¢, 0 0],
o, o 0 o0 0 ¢C, 0 |e.
o, 0 0 0 0 0 Cy)\e,

This relatively simple expression belies that cubically symmetric materials have a complex
directionally dependent deformational response to a load. To present the rationale behind the
approach set forth here for replicating this within DEM, it is necessary to describe the
subtleties of cubic anisotropy in more depth. The extra variable needed to describe elastic

response of cubic materials over isotropic media is often expressed as the Zener anisotropy

2Cy4

ratio, Z = . This describes a material’s deviation from isotropic behavior with a ratio

11— C12
of one indicating that the material is isotropic. Figure 44 shows the directionally dependent
stiffness of three cubic materials with Z ranging from less than one to greater than one. The
materials’ stiffness in response to a uniaxial normal load varies with crystal loading
direction (the left most plot in each sequence in Figure 44). Moreover, on any surface the
material will have a hard and soft direction of shear. These soft and firm shear stiffnesses
are plotted in the second and third plots in each sequence, respectively. The right-most plots
show the soft and stiff shear stiffnesses overlaid, demonstrating that the soft and stiff shear
stiffnesses are degenerate on the high symmetry {100} and {111} planes. In these plots, it
can be seen that materials with an anisotropy ratio Z < 1 have the largest normal stiffness
along (100) direction and the highest shear stiffness on {111} planes, while materials with Z > 1
have the largest normal stiffness along (111) direction and largest shear stiffness on {100}.
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Figure 44. Elastic indicatrix for strontium fluoride, magnetite, and nickel. In each plot, the left most plot is the
directionally dependent stiffness of the materials in response to a normal stress. The middle two plots show the shear
stiffness along the soft and stiff shear directions on the plane normal to the polar direction, and the right most plot
shows these shear stiffnesses overlaid. In the upper plots (labeled “Plane Strain”) the stiffness is in response to an
imposed uniaxial normal or in-plane shear strain while keeping the other strains values at zero, and the lower plots
labeled “Plane Stress” are the stiffnesses in response to an imposed uniaxial normal or in-plane shear stress while
keeping the other stress values at zero. In all plots, the values of stiffness are plotted scaled by the materials’ Ci1.
The Zener ratios for strontium fluorite, magnetite and nickel are 0.78, 1.22, and 2.64, respectively. As the Zener
ratio transitions from less than to greater than one, the materials’ stiff axis transitions from (100) to (111).

The goal of this work was to capture cubic elasticity in DEM using the parallel bond formalism
that is already implemented in many DEM software packages. In these packages, the user may
assign a normal and shear stiffness for individual parallel bonds and thus the task becomes
determining a method for assigning these stiffnesses based on bonds’ initial orientations relative
to a set of imagined crystallographic axes such that the emergent collective response of the
bonded assembly is described by the stiffness tensor in Equation 21.

2.2.5.2. Imposed approach for modeling of anisotropic, cubic elasticity

The imposed approach attempted to introduce proper cubic anisotropy on each bond in the
assembly by formulating the three stiffness parameters (Figure 44) from cubic stress-strain
relation. This involved deriving bond stiffness that would satisfy stress-strain relation of a cubic
material under plane strain conditions (Figure 44) and would preserve the three stiffness
directions outlined in Figure 44. The resulting stiffness was expressed as a 3x3 matrix with

components depending on normal direction, v, and two shear directions, v and v,,

v, =[sin(6)cos(¢),sin(6)sin(4),cos()] |
= [—cos 49)cos(¢),—cos(9)sin(¢),sin (6’)] Equation 22
vV, = [sm 0]

Where 6 and ¢ are angles of initial bond orientation in spherical coordinates. The stiffness
matrix and its components were
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K(l9,¢):%7zRCC1*1 F B D Equation 23
E D C
) —(a —1)ﬂ(8sin4 (9)cos(4¢)+4cos(20))+1l(a ~1)f+16a
N 16
5 ,B(—8(a—1)sin2(9)cosz(0)c0s(4¢)+7(a—1)cos(49)+9a+7)
- l6a
c ﬂ(Z(a—l)sinz(9)005(4¢)+(a—1)cos(29)+3a+1)
- 4a Equation 24
b (a—1) Bsin® (0)cos(0)sin(4¢)
- 2a
Ee_ (a - l)ﬂsin3 (9)5in(4¢)
- 2a
- (a —1)ﬂ(8 sin’ (@) cos(8)cos(4¢4)—2sin(260)—7sin (449))
- 16
With
o0 =—2 . ;
C11 _C12
C, Equation 25
B=—
Cll
Where C;,, C;,, and C,,are fitted parameters.

The preliminary results were obtained with a small, not necessarily representative assembly as
the implementation of this model was restricted by the software and involved considerable
computational performance decrease. The results, shown in Figure 45, indicated that this
approach spanned a larger variety of cubic materials then the emergent approach as shown below.
Even though the assembly size was not representative, the results still indicate the potential of
this approach and justify its possible future development.
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Figure 45. Ratios of elastic constants of real cubic materials (blue diamonds) and several materials modeled with
imposed anisotropy approach (red circles).

2.2.5.3 . Emergent approach for modeling of anisotropic, cubic elasticity

2.2.5.3.1. Emergent Approach formulation

The goal of this approach was to capture cubic elasticity in DEM using the parallel bond
formalism that is already implemented in many DEM software packages. In these packages, the
user may assign a normal and shear stiffness for individual parallel bonds and thus the task
becomes determining a method for assigning these stiffnesses based on bonds’ initial
orientations relative to a set of imagined crystallographic axes such that the emergent collective
response of the bonded assembly is described by the stiffness tensor in Equation 21.

As the packing of elements in DEM is random, and on average isotropic, it is presumed that the
cubic response must arise from the collective behavior of the assembly rather than being met at
each individual element. Within this approach there are three steps of reasoning that can be used
guide the selection of a directionally dependent function for assigning bond stiffnesses: From
von Neumann’s principle, the angular dependence of the stiffness distribution must possess cubic
symmetry, that is, four axes of threefold rotational symmetry about the <111> directions of the
imagined crystal. Second, the stiffness tensor in Equation 21 possesses only three independent
variables, of which only one describes the deviation from isotropic elasticity. With only one
degree of anisotropy it is conjectured that any angular stiffness function with the proper
rotational symmetry could give rise to collective behavior that is cubically anisotropic. Finally,
in cubic materials there is a qualitative change in the directionally dependent normal stiffness as
the Zener anisotropy ratio, Z, transitions from smaller to greater than one. As can be seen in
Figure 7, for Z<1 the normal stiffness is maximal along <100>, while for Z>1 the modulus is
stiffest along <111>. It is therefore presumed that changing the angular distribution of parallel
bond stiffnesses from being maximal along <111> to maximal along <100> will alter the
direction a system’s deviation from isotropic elasticity.

To meet these criteria, one could construct angular bond stiffness functions from a sum of
suitably symmetrized spherical harmonics functions, and then iterate the shape of the angular
distribution to explore the angular function space. However, rather than doing this, the goal of
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this article is to present a proof of concept that DEM can be used to model cubically elastic
media. To this end, a more pragmatic approach was chosen, with two very simple piecewise
functions defined as the external surface of a set of overlapping prolate spheroids (as shown in
Figure 46). The shape of the distribution is described by a single parameter a that describes the
aspect ratio (major to minor axes) of a family of spheroid with constant volume. One function is
maximal along <100> and is composed of three spheroids with major axes along the <100>
directions, while the second function, maximal along <111>, is composed of 4 co-centered
spheroids with principal axes along the four <111> directions. In each case the spheroids the
stiffness along a direction is given by the maximum radius of the three or four spheroids in
which the radius is given by the equations:

k(n,a)=k,(A4/L)r, (n,a) Equation 26
A
k,(A/L)=-k
' ( ) L, : Equation 27
and the dimensionless parameter
r, (n,a)=max ({r,r,...7}) Equation 28

n is the initial contact normal direction, Ay is the bond area, Ly the bond length, and ki the
stiffness magnitude. Bond length is defined as the sum of element radiuses, Lo=R1+R2. N
indicates the number of spheroids — 3 or 4 in this work. For the case of N=3 spheroids
aligned along (100):

a’ :
= l Equation 29
2 2 2 2
\/nx +(n} +n; )ai
2
a?’
v, = - i
i - — Equation 30
n, +(nx +n; )ai
2
a3
vy = Equation 31

i
i3
2 2 2 2
\/l’lz +(}’ly +nx)a[

where nx, ny, and n, are the x, y, and z components of unit vector n. For the case of N=4 spheroids
aligned along (111) the spheroid radii are given by:
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In this way, the anisotropic behavior of the DEM model is controlled by three independent
tuning parameters: an and as, the anisotropy in the system of spheroids used to assign the normal
and shear stiffnesses, respectively, and ax =kn/ks, the ratio of the normal and shear stiffness
magnitudes. In Appendix A, a general analytic model is presented for determining the elastic
moduli of a material with angularly dependent stiffness functions if the bonds are all deformed
uniformly due to a homogeneous deformation of the assembly. In Appendix B, the model is used
to prove that that the stiffness functions based on overlapping spheroids (Equation 26- Equation
35) result in cubically anisotropic elasticity.

The expression chosen to represent the spheroids has the property of describing spheroids of
constant volume independent of a. In exploring the space of model parameters, it is useful to define
log normalized parameters « as the log of a shifted and scaled parameter that varies from O to 1 so that
generally

log(a)-log(a,;, )
~log(a,,, )-log(a,, ) Equation 36

The plots in Figure 46 show the angular dependence of normal stiffness (blue) and shear stiffness
(gold) assigned to parallel bonds in the Z<1 and Z>1 models at the vertices of the domain of log-
normalized model parameters. In this work, only the space of model parameters was explored with
an and a;s running from 0.022 to 5 and axranging from 0.005 to 1. Parameters outside this range would
lead to unrealistically exaggerated shapes of the spheroid distributions. These extreme limiting shapes
are shown on Figure 46 and include cases where the shear stiffness becomes much smaller than the
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normal stiffness or the spheroid distribution becomes very narrow and pointy along its major
directions.

(a) (b) a. Zener ratio <1 () a, Zener ratio >1
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Figure 46. (a) Shows two piecewise angular functions with cubic symmetry defined as the outer surface of
overlapping spheroids. The upper left function is constructed from three identical spheroids with major axes along
the (100) directions and the function on the lower right is formed by four identical spheroids with major axes along
the (111) directions. (b & c¢) The angular distributions of parallel bond normal stiffness (blue) and shear stiffness
(gold) as a function of the model parameters an, as, and ax plotted on the normalized log scale (see text and Equation
36 for explanation). In this space the log normalized parameters o, and os span from 0.029 to 3.5 and o« spans 0.078
to 5.5. Figure (b) is for modeling materials with Z<1 which are stiffest along the (100) directions and so the normal
stiffness is represented by three spheroids aligned along these directions. Figure (c) shows stiffness distributions for
modeling materials with Z>1 which are stiffest along the (111) directions, and so the normal stiffness is represented
by four spheroids aligned along these directions.

2.2.5.3.2. Assembly generation and deformation

Assembly generation followed the steps described in Section 2.2.4.2. The influence of the gap
cutoff parameter on the bonded network, the element coordination number, and the resulting
elastic response was verified for a number of gap cutoff parameter values from 1.7x10* R to 0.8
R.

The stiffnesses of individual bonds were assigned based on the bonds’ initial orientation
according to the spheroid distributions described in Equation 26- Equation 35. Elements that
were initially bonded to box walls were used as “grip elements” to apply the elastic
deformation, as discussed subsequently. A typical assembly is shown in Figure 47.
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Figure 47. Properties of a typical modeled assembly: a) 3D representation, dark blue elements are the grip elements;
b) probability distribution function of bond orientations; c¢) bonds as seen on a cross-section of the assembly colored
by their anisotropic shear stiffnesses, [Pa/m]; d) measurement spheres.

2.2.5.3.3. Measuring Average Stresses and Strains in the Assembly

Stresses and strains in the assembly were computed using spherical measurement volumes
(O'Sullivan, 2011; Potyondy and Cundall, 2004). Their radii and placement were random,
the former being user-defined and the latter being constrained to exist fully within the
assembly. Specifically, stresses and strain rates were measured and strains were computed
through time integration of the measured strain rates. Stresses and strain rates were averaged
over all measurement spheres. A total of 5,000 measurement spheres were typically used, each
with a radius that corresponds to 6 times mean element radius. On average, 165 elements
contributed to the stress/strain measurement of each measurement sphere.

2.2.5.3.4. Determining the Size of the Minimum Representative Volume

The minimum representative volume (MRV) is the smallest assembly with a sufficient
number of elements to produce an average macroscopic response independent of assembly
size. The MRYV is typically evaluated by the convergence of effective properties, in this case
the averaged Ci1, Ci2 and Cis constants of a cubic material. The MRV was determined as the
next-to-smallest assembly size in which variation in properties from one assembly to another
originated solely from uncertainty in the randomly placed measurement spheres rather than the
variations in assembly packing. The MRV was found for an assembly with model parameters
described in Section 2.2.5.3.2. The gap parameter was 0.17 R which corresponded to a stable
element coordination number of C, = 8. Tested assemblies had between 5,000 and 80,000
elements.
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2.2.5.3.5. Computing the Stiffness Tensor

MRYV assemblies were used for computing the full stiffness tensor. Element assemblies were
deformed along the six independent strain paths (three uniaxial strain and three pure shear)
up to a maximum strain of 107, During each of these simulated deformations the assembly’s
internal stress and strain state was determined using measurement spheres as described
previously.

Uniaxial compression simulations were performed by setting the grip element velocities to

u=—y[x, 0 0] Equation 37
u=—y[0 y, 0] Equation 38
u= —7?[0 0 zﬁ] Equation 39

for deformations label as €, (2, £(3) deformations respectively. For the cases of pure shear
deformation strains €™, (3, £(® are imposed by grip element velocities of:

u=y[0 z ] Equation 40
u= }?[zc 0 xc] Equation 41
u= }?[ Y. X, O] Equation 42

withy = 0.2 1/s. For each of the six deformations linear fits of stress/strain vs. time were
performed to each of the six stress/strain components so that the i and j components of stress
and strain during the & deformation are described by:

o) = Wy Equation 43

i i

Ef»k) — p®y Equation 44

i

where the slopes a and b are fitting parameters. The stress and strain are related via the stiffness
tensor giving six sets of six coupled equations:
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oV =Cce® | ijk=1..6 Equation 45

i /e

(36 equations in total), which can be written also in terms of the fitted slopes:

a! =C,p", i, jk=1...6 Equation 46

L q

The stiffness tensor must be symmetric about its diagonal (Cj; = C;;) and so contains only 21
independent elements. To reduce the system to 21 independent equations, the equations for stress
elements under conjugate deformation paths were added together to obtain equations:

agk) + a’(ci) — Cijbj(k) + ijbj(i), fori < k Equation 47

The motivation for this approach is to impose only the conditions on Cj; required to satisfy
Newton’s third law. If the assembly is truly behaving as a cubically anisotropic elastic medium,
it should be evident from computing the full stiffness tensor. The systems of 21 coupled
equations in (Equation 46—Equation 47) were solved numerically using the generalized
minimal residual (GMRES) method in MATLAB (Saad and Schultz, 1986). The results were
rounded to 0.1 GPa.

Stiffness tensor components obtained with DEM have a certain amount of statistical noise
because they are obtained with a randomly distributed bond network. This introduces slight
differences in the values of elastic constants that would be otherwise equal, and similarly gives
small non-zero values when they must be zero for a continuum. Uncertainties were quantified as
the largest deviation of each group of constants from the mean value of a symmetrized tensor.
This included the average magnitude of small non-zero terms in the stiffness tensor that should
be equal to zero.

By computing the 21 independent elements of the stiffness matrix explicitly, and demonstrating
the correct rotational invariance of the properties, it was shown that the assemblies’ properties
possessed the correct cubic symmetry. Once this was established further calculations of elastic
moduli were performed using a single deformation with simultaneous compression along y
with shear applied in the xz plane. This deformation was imposed by assigning a velocity u
to the external grip elements based on their position relative to the center of the assembly,
Xcz[xc, Ye, Zc]:

2 Equation 48

where y is the strain rate. Simulations were continued until the strains reached values
between 1x107 and 1x1073,
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2.2.5.3.6. Determining the Accessible Anisotropic Space

Parameter sweeps were used to determine the applicability of the proposed approach for
modeling cubic materials. Parameter sweeps included changing values and ratios of the a; and a;
constants (Equation 29 - Equation 35) as well as normal to shear stiffness ratios from Equation
26 - Equation 27. Simulations were performed for materials with Z>1 and Z<1. The limits of the
anisotropic behavior were determined and results were compared with known values for
common cubic materials (Simmons and Wang, 1971). Table 8 shows ranges of parameters used
in the sweeps.

Table 8. Ranges of parameters used in determining the accessible anisotropic space.

Material an as as/an kn kn/ ks
7>1 0.01-5.0 0.01-100 0.01-500 1x1013 1-5,000
7<1 0.01-10.0 0.01-50 0.01-500 1x1013 1-5,000

2.2.5.3.7. Minimum Representative Volume and Gap Cutoff Parameter

The minimum representative volume (MRV) was determined using a representative set of
spheroid parameters for a material with a Zener ratio larger than one. Normal stiffness followed
the 4 spheroid distribution with @,=4.31 and k,=1 x 10'3 (Equation 26 and Equation 32 -
Equation 35) and shear stiffness the three spheroid distribution with as=10.0 and ks=3.55 x 10'?
(Equation 26 and Equation 29-Equation 31). The influence of the gap cutoff parameter on
bonding and the elastic response was also quantified. The variation in elastic constants with the
number of elements in an assembly is shown in Figure 48a and MRV was chosen to measure
30,700 elements. Also, the coordination number as a function of maximum gap size (Equation 8)
is shown in Figure 48b.

(a) (b)
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Figure 48. (a) Normalized elastic constants as a function of element number. MRV was chosen to have 30,700
elements. Values were normalized by those obtained with the largest assembly (82,238 elements) (b) Coordination
number of a MRV assembly as a function of maximum gap parameter. Gap cutoff parameter was 0.17R and yields a
stable element coordination number of 7.7.
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2.2.5.3.8. Description of the Model Assembly

The standard assembly used in subsequent simulations consisted of 30,700 elements held
together with 118,008 bonds and an average coordination number of 7.7. This results in a cubic
assembly with sides of length 60.0 R. Figure 49 shows the elastically deformed assembly and
Figure 50 shows an example elastic response of the assembly.
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Figure 49. MRV assembly compressed in the y direction and sheared in xz. Elements are color-coded by the
magnitude of element displacement in units of the mean element radius R.

The stress-strain curves in Figure 50 generally follow a linear trend, except for a very small
region at the beginning of the simulation. Final strains were at least two orders of magnitude
larger in the directions of specified deformations relative to the unstrained directions.
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Figure 50. Stresses-strain curves in the deformation directions, (a) normal and (b) shear, and the corresponding
elastic constants. Stress-strain curves are linear besides in the initial part of the simulation.
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2.2.5.3.9. Full Stiffness Tensor

The full stiffness tensor was obtained for a representative case of anisotropy parameters, the
same as the one used for the MRV. The full stiffness tensor the DEM assembly was measured to
be:

75.5 304 304 0.05 -03 04
304 763 309 02 005 02
304 309 76.1 02 005 0 Equation 49
C. = GPa

1005 02 02 287 0 005
-03 005 005 0 285 0.05

04 02 0 005 0.05 28.6

Averaging the cubically equivalent so stiffness element, and setting to zero those that would be
zero under cubic symmetry give the tensor:

76.0 30.6 30.6 0 0 0
30.6 76.0 30.6 O 0 0
30.6 30.6 76.0 0 0 0
Cij = GPa
0 0 0 286 0 0 Equation 50
0 0 0 0 286 0
0 0 0 0 0 286

~ (C11+C22+C33) = (C12+Ci3+C ~ (Caa+Cs5+C o
Here C;; = %33), Cip = %23), and Cyy = %566) The variations in stiffness

of the cubically equivalent element, including the ones that would be zero, provides a method
for quantifying uncertainty. The largest uncertainty in this set of stiffness elements is in Ci1 and
C12 values and measures 0.3 GPa. The Cas uncertainty is 0.1 GPa whereas the mean magnitude
of terms that should otherwise be zero measures 0.15 GPa. These uncertainties are below
detection in typical mechanical deformation experiments. The symmetry and cubic nature of the
tensor presented in Equation 49 - Equation 50 implies that to use the proposed approach only two
deformations are needed to describe a cubic material in the model.

2.2.5.3.10. Rotational Invariance of the Stiffness Tensor

The same model discussed in Section 3.3.8 was used to assess the rotational invariance of the
elastic properties. The rotation matrix applied to obtain the rotated stiffness tensor is presented in
Equation 51:

-0.3062 -0.9186 0.2500
R=| 0.8839 -0.1768 0.4330 Equation 51
—-0.3536  0.3536 0.8660
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which corresponds to angles of 60°, 30°, and 45° about the X, y, and z axes, respectively.
Rotating the stiffness tensor Equation 49 with this transformation matrix gives the tensor:

80.3 292 277 05 -3.0 13
292 792 288 19 1.1 =26
277 288 807 24 19 12
105 19 24 268 12 1.1 Equation 52
30 1.1 19 12 257 05
13 =26 12 1.1 05 272

This tensor represents the stiffness tensor if the principle axis of the stiffness distributions instead
of being aligned with the Cartesian axis were rotated by R!. We can therefore verify that the
elastic behavior is rotationally invariant by assigning the stiffnesses to the assembly from the
spheroid distributions rotated by R*! and then computing the DEM stiffness tensor. The result is:

80.2 292 275 07 -34 1.8

292 794 291 23 07 24

275 29.1 812 22 20 14 i

C = GPa Equation 53
Y 07 23 22 269 12 12

-34 10 20 12 257 05

1.8 -24 12 12 05 272

which is in good agreement with Equation 52 within the uncertainty established from Equation
49 and Equation 50. Rotating Equation 53 back and diagonalizing as in case of full stiffness
tensor (Equation 50) yields:

75.9 30.8 30.8 O 0 0
30.8 759 308 O 0 0
30.8 30.8 759 O 0 0
C. = GPa )
v 0 0 0 288 0 0 Equation 54
0 0 0 0 288 0
0 0 0 0 0 28.8

with uncertainty in Ci1, C12, and Css 0 0.7, 0.7, and 0.1 GPa, respectively. The average value of
the non-zero terms that should otherwise be zero is 0.2 GPa. The tensors in Equation 50 and
Equation 54 agree to within 0.1, 0.2, and 0.2 GPa for Ci1, Ci2, and Cs4, implying rotational
invariance of the proposed anisotropy approach.

2.2.5.3.11. Reproducibility with Different Assemblies

To establish that the model’s elastic behavior is robustly reproducible with different element
assemblies the stiffness tensor calculations were repeated for two additional DEM samples
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generated with different random seeds. These different element assemblies had the same average
packing density and a similar total number of elements, (30,714 and 30,718 compared to original
30,700). For all three assemblies, the elastic response was obtained using two different sets of
model parameters that yielded the elastic constants of C12/C11=0.3 and C44/C11=0.43. Results are
shown in Table 9. The elastic constants are very close for the three different assemblies in case
of both parameter sets indicating that the model is reproducible and can be readily applied to
various DEM assemblies.

Table 9. Elastic response of DEM assemblies generated with different random seeds.

Parameter set | Value Sample 1 Sample 2 Sample 3
Set 1 Ci2/Cni 0.30 0.30 0.31
Caa/C11 0.43 0.44 0.44
Set 2 Ci2/Cni 0.30 0.30 0.31
Caa/C11 0.42 0.42 0.42

2.2.5.3.12. Accessible Anisotropic Space

In order to determine the space of cubic elastic anisotropy that can be accessed by the DEM
model, simulations were performed to compute a random cloud of elastic moduli for model
parameters selected with a uniform random sampling of the normalized log space. The
resulting data cloud showing the anisotropic space accessible by both the Z<1 and Z>1
models is shown in Figure 51. For reference, this accessible space is plotted alongside the
literature reported moduli for a wide range of cubic materials (Simmons and Wang, 1971).
The domain of the elasticity space that can be accessed here is a property of the granular
model and is not expanded by extending the range of the model parameters sampled.
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0.3
C12/Cy4

Figure 51. Comparison of elastic behavior with cubic materials. Red dots show literature reported elastic constants
for a variety of cubic metals, ceramics, and oxides (Simmons and Wang, 1971). The open circles show the elastic
moduli obtained with the DEM model from a random sampling of the o, o, and ox normalized log space. In this
plot, the vertical dot-dashed grid lines are contours of constant Poisson ratio in the (100) direction, C12/(C11+C12) in
steps of 0.1. The dashed black lines emanating radially from the bottom right are contours of constant Zener ratio (in
steps of 0.25), with the solid line showing the contour for Zener ratio =1, and thus isotropic behavior. The red line
cutting from bottom left to top right is the line along which the Cauchy symmetry relation, C12=Cas, holds true.
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2.2.5.3.13. Obtaining Specific Model Parameters

Because the space of model input parameters is three dimensional while the space of the
resulting model’s normalized elastic moduli is two dimensional, many different model
parameters sets can lead to the same anisotropic elastic behavior. To elucidate the mapping from
model parameters to emergent elastic moduli (and to enable efficient determination of model
parameters for a desired elasticity) interpolation schemes have been developed based on an
artificial neural network (ANN). Feed forward ANNs with a two hidden layers of nine neurons

Surfaces of constant Cy,/Cy4 Surfaces of constant C,,/Cy Overlay

1.0 1.0 1.0

@ . ® . © g
1.8'/ g 7

&‘,—T{l

Zener ratio >1

Zener ratio <1

Figure 52. Surfaces of constant elastic moduli plotted in the space of log-normalized model parameters with the
x,y, and z axes the normal, shear, and stiffness ratios respectively. Blue surfaces (plots (a) and (d)) are contours of
C12/Ch1 ratio. Orange surfaces (plots (b) and (e)) are contours of Cas/Ci1. The top row (plots (a—c)) are for the Zener
ratio >1 model, while the bottom row is for the Zener ratio < 1 model. Plots (c) and (f) show the two moduli
contours overlaid.
each were trained to a randomly selected set of 70% of the log normalized model parameters
used to compute moduli plotted in Figure 52. For both the Z<1 and the Z>1 models twenty
ANNSs were trained starting from different initial conditions, and the variance between the ANNs
used to test the quality of training and uncertainty in the interpolation. The trained ANNs
reproduced a validation dataset (half of the remaining data selected at random) with an R-
squared value better than 0.997 — as well as should be expected for the uncertainty in the
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computed elastic moduli. Using these ANN to explore the model parameter space in Figure 52 &
Figure 53 shows contour surfaces in the log-normalized parameter space that have constant
elastic moduli — Figure 52 shows isosurfaces of dimensionless Ci2 and Cas, while Figure 53
shows isosurfaces of Zener ratio and constant Poisson ratio along (100), defined as C12/(C11+Ch2).
These plots show that for any desired elastic response there are a range of possible model

parameters that could reproduce it. The question of which alternative a user should choose will
be discussed in more detail.

Surfaces of constant Zener ratio Surfaces of constant Poisson ratio

Overlay

Zener ratio >1

Zener ratio <1

Figure 53. Surfaces of constant Poisson ratio plotted in the space of log-normalized model parameters with the x,y,
and z axes the normal, shear, and stiffness ratios respectively. Blue surfaces (plots (a) and (d)) are contours of
constant Zener ratio 2Cs4/(C11-Chr2) ratio. Orange surfaces (plots (b) and (e)) are contours of constant (100) Poisson
ratio defined as C12/(C11+C12). The top row (plots (a—)) are for the Zener ratio >1 model, while the bottom row is
for the Zener ratio < 1 model. Plots (c) and (f) show the two moduli contours overlaid.

2.2.5.3.14. Limits of the Accessible Domain of Elastic Properties

It is clear from the data cloud plotted in Figure 51 that there is only a limited domain of the
elasticity space that can be accessed by the DEM models, and there are many known cubic
materials possessing elastic constants that fall outside this domain. It is thus worthwhile to
consider what sets the fundamental limits of the DEM model, and what this tells us more
generally about the nature of atomic bonding. The domain of accessible moduli can be roughly
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described as having Zener ratios between 0.65 and 1.5 with Css> 0.6 C2. The surfaces of
constant modulus in Figure 52 show that in both the Zener ratio >1 and the Zener ratio < 1
models the strongest influence on elastic properties is the change in the ratio of shear to normal
stiffness, ar, with C12 diminishing and Ca4 increasing as ay is increased. In the Zener ratio <1
model the isosurfaces for Ci2 (Cas) are concave up (down) with varying anisotropy of the normal
stiffness distribution. These surfaces have a valley in the log normalized parameter space running
along o, ~ 0.7. This corresponds to a normal stiffness anisotropy ratio of a, = 1, the condition of
no directional dependence in bonds’ normal stiffness. In the Zener ratio >1 model the directions
of curvature of the C12 and Cau4 isosurfaces are reversed. The parameter that has the weakest
impact on the models’ elastic moduli is s, the anisotropy ratio of the shear stiffness, which is
perhaps not surprising as the input parameter space was restricted so that shear stiffness
amplitudes were always softer that normal stiffnesses.

Rather than considering the normalized Ci2 and Ca4 moduli it is instructive to examine surfaces
of constant Zener ratio and (100) Poisson ratio v (the ratio of lateral contraction due to an
elongation along a (100) direction and defined by C12/(C11+C12)) as is shown in Figure 53. The
Poisson ratio is similar in behavior to C» in Figure 52, being strongly dependent on ax. The
Poisson ratio increases quickly with diminishing shear stiffness when the stiffness ratio is just
less than 1, but the speed of change slows once the shear stiffness is negligible in comparison to
the normal stiffness. When the stiffness ratio is just less than 1 the DEM assemblies exhibit v
close to zero (that is, there is no coupling between deformations in orthogonal directions), and
for shear stiffnesses larger than the normal stiffnesses the DEM assemblies become auxetic. This
unusual behavior can be understood by considering the deformation of an idealized case of four
identical elements connected by parallel bonds at 45° to a loading axis (see Figure 54). It is
trivial to show that the Poisson ratio of this idealized element cluster is

V= _Ay _ kn B ks
Ak +k, Equation 55
System of 4 elements F

connected by parallel

bonds with shear /\7 z
stiffness ks and normal 1

stiffness k,, under tensile
load F ‘

Figure 54. Idealized 4 element model to illustrate the effect of normal to shear stiffness ratio on the Poisson
contraction.
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Clearly if this simple model were rotated by 45° so that the bonds were parallel or perpendicular
to the loading the Poisson contraction of the assembly would be zero, and so with a large random
assembly the collective behavior will fall between these extremes.

The simple example in Figure 54 shows that Poisson contraction of the DEM assembly
originates from the balance of shear and normal deformations of the bonds. The contraction does
not originate from geometric rotation of bonds acting like network of pinned bars in a complex
truss — a good thing as the atomic bonding in a material are not simple pair interactions.
However, the Poisson contraction is still a collective property and does not stem from Poisson
contraction of individual elements. Each element represents a chunk of elastic material
seamlessly welded to its neighboring elements, and so each element should experience a Poisson
contraction. This is not captured in standard DEM models which treat elements as rigid and
represent their elastic behavior with independent contact laws. Correctly capturing Poisson
coupling in this formalism would require the equilibrium length of a bond between two elements
to alter based on the combined state of all the other bonds those elements participate in. This is a
fundamental limitation of the current parallel bond DEM that we will seek to remedy in future
work, and unfortunately, may require losing the simplicity of independent local contact laws. It
is clear from Figure 51-Figure 53 that the DEM networks simulated in this work have trouble
producing a Poisson ratio greater than about 0.3. It was found that this limit could be increased
by changing the density of the bonding network to reduce the average element coordination, but
a thorough investigation of this is beyond the scope of this report.

Also shown in Figure 53 are surfaces in parameter space with constant Zener ratio. It can be seen
that these lie vertically and so are only weakly coupled to the stiffness ratio, ax. The anisotropy
increases as a, or a; move away from 1 (&, or o move away from 0.703), and dependence on a;
fades as ax diminishes. The limit to the elastic anisotropy achievable with the DEM model can
be understood by looking at the plots of the directionally dependent stiffness shown in Figure 46
(and also later in Figure 55). As the shear or normal anisotropy parameter becomes large or small
the corresponding stiffness distribution becomes very acute, either composed on needle like
lobes or pancake like discs. In these extreme cases, the solid angle subtended by the directions of
high stiffness is very low and, as the elements have an average coordination of eight, the
likelihood of a contact lying exactly along the stiff direction becomes low. This means that
although the bond stiffnesses are highly anisotropic, there are a number of very stiff bonds
embedded in a network of much softer bonds and thus one would expect to require a large MRV.

Beyond the problem of numerically sampling a stiffness distribution with long tails, a second and
more fundamental limit on the accessible elastic properties is set by the integral of the stiffness
functions. In Appendix C, the analytic model derived in Appendix A is compared with the DEM
simulations. Performing a random sampling of the parameter space, as was performed for DEM
in Figure 51, produces a very similar accessible domain of elasticity as that shown in Figure C.1.
The analytic model and DEM simulations display elastic anisotropy ranging from 0.6 to 1.5.
Where the models differ is in their ability to cross the red C;2=Cyy line.

In Appendix D, the analytic model is used to determine how the limits of the accessible elastic
domain are related to the angular stiffness functions. For expanding this domain to reach more
extreme anisotropies, it is shown that larger values of Z can be achieved if the stiffness functions
are altered to permit independent tuning of shear and normal stiffness along the (110) directions.
To test this a set of modified stiffness functions was defined that added or subtracted a stiffness
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contribution due to a function defined as the envelope of six spheroids aligned along (110). For
the Z>1 model these new stiffness functions were defined with the normal stiffness k,(n,a,) =

k, (7‘(111) (n, a,) + 0.57(110)(m, an)), and shear stiffness k.(n,a,) =k, (7‘(100) (n,a,) —

0.57(110y(n, as)), where 7100y, T(111), and 7110y are radial functions describing the envelope of

three, four, and six overlapping spheroids aligned with the principal axes along the (100), (111),
and (110) directions, respectively. For the Z<1 model the stiffness functions were k,(n,a,) =

kO (r(loo) (n, an) + 0.57‘(110) (n, an)), and ks(n, as) = kO (T(lll) (n, as) - 0.57‘(110) (n, as)).
The domain of elasticity that can be accessed using these functions is also plotted in Figure
C.1(a) and is considerably wider in Z that the simpler model, but is still bounded by the C12=Ca4
line.

To examine the cause of the C1»=Cas boundary, Appendix D also examines the integral that
dictates the quantity C;, — C44. This was found to be always negative; there is no modification
that could make this positive. That is, a system of parallel bonds deformed homogeneously
cannot have C;, — C,4 > 0. This then raises a question: what is different about the DEM
simulations that enables C;, — C44 to be positive in some circumstances? In the analytic model, it
is seen that C;, — C,4 becomes identically zero when the shear stiffness goes to zero in
agreement with the Cauchy relationship that C;, = C,4 in materials held together with center to
center pair interactions only. That the DEM simulations are able break through this we attribute
to non-homogeneous displacement of the elements. In the DEM simulations the orientation and
stiffness of bonds is random, and thus the deformation field of the elements will include locally
non-affine displacements. The result will be a larger fraction of elastic energy stored in bonds
oriented in soft directions and deformation fields that could involve local rotation of clusters of
elements. The authors speculate that these could be responsible positive values of C;, — Cyy4.

A more systematic approach to expanding the accessible elastic domain would be through the
use of stiffness functions constructed from a more complete basis set. For example, one could
define a stiffness distribution using a correctly symmetrized set of spherical harmonics. For more
flexibility still, one could define the shear stiffness to depend on the direction of displacement in
addition to the orientation of the bond. The standard parallel bond model used in DEM has only a
single shear stiffness; that is, for a given contact normal, the shear stiffness is the same in all
directions perpendicular to the contact. This is not the case in a cubically elastic medium where,
as can be seen in Figure 44, on any contact plane there will be a soft and stiff direction of shear.

2.2.5.3.15. Selection of Element Packing Density, Coordination, and Polydispersity

The choice of assembly packing fraction, element polydispersity, and coordination number all
affect the collective macroscopic elastic behavior but were not fully explored in this work.
Rather, a set of reasonable choices for these parameters were found for which the sensitivity of
the model to the variation in packing, element size distribution and element coordination was
low.

The packing efficiency is quantified here by the assembly porosity, or void fraction, as is
common in the geotechnical literature for granular materials. A lower limit of an admissible void
fraction is 0.36 which corresponds to a closest possible packing of monodispersed spheres.
Smaller void fractions can be obtained in highly polydisperse assemblies, but in this work the
element size distribution was relatively low — only large enough to prevent regular crystal-like
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packing of elements. An upper limit of void fraction occurs at around 0.44 with the jamming
transition in a non-bonded assembly, above which the assemblies become so loose that they are
mechanically unstable. Although the elements in the assemblies in this work are bonded, the
bonding network with a high void fraction would be very loose and thus a poor representation of
an elastic continuum. The interaction cutoff for bonding adjacent elements was tuned so that the
average element coordination was 8.0. In general, a higher coordination number may give
macroscopic response closer to continuum behavior; however, more redundant bonding in and
assembly inhibits Poisson contraction and so a compromise was needed reach higher Poisson
ratios and C12 values relative to Ci1 and Caa.

2.2.5.3.16. Choosing Optimal Model Parameters

The most surprising result from Figure 53 is that it does not matter how one chooses to introduce
anisotropy into the directional dependence of the bond stiffnesses. One can create a DEM model
with the same macroscopic Zener anisotropy ratio using stiffness distributions defined by either
oblate (a < 1) or prolate (a > 1) spheroids, providing one imposes the correct cubic symmetry of
these distributions. The concept is particularly noticeable in Figure 55 which shows the locus of
parameters that all yield a particular elasticity tensor, along with spherical plots of the stiffness
distributions that produced them. The contours show a remarkable mirror symmetry in the a; =1
plane (a; = 0.703 plane). For both the Zener ratio <1 and >1 models the angular functions for
normal stiffness that produce the left-hand contour are built from prolate spheroids. These
distributions resemble the angularly dependent normal stiffness in Figure 44, while the right-
hand contour is constructed using oblate distributions of normal stiffness that appear to have
little in common with the moduli in Figure 44.

At this point, some questions arise. Which of the many choices of parameters for a desired elastic
response should one choose? And, how can one discriminate between the choices? and should
one switch from angular functions based on spheroids to a basis set that provides more flexibility
such as spherical harmonics?

Sticking with spheroid angular functions, a number of arguments can be made to steer the choice
of model parameters. One approach is to choose parameters that reflect the underlying behavior
of the material of interest. With this rationale, one might choose parameters in which the same
anisotropy ratio is used for shear stiffnesses as for normal stiffness — restricting oneself to
parameters on the diagonal a, = a, plane as plotted in Figure 56. On this equianisotropy plane
one still has to decide whether to use oblate (a < 1) or prolate (@ > 1) distributions. Keeping with
the philosophy of mimicking the bonding behavior of the material the best choice might be to use
parameters with a >1.

An alternative approach to choosing between model parameters that produce equivalent
macroscopic elastic response is to ask what is different about the system at the microscopic level,
and to choose the system with the least microscopic heterogeneity, and thus, the smallest MRV.
With this rationale, one would choose the parameters for a, and a; closest to one — and when
faced with the choice of prolate or oblate distributions, opting for oblate distributions would be
preferable as these have a more equitable distribution of stiffness over a given solid angle. To
quantify heterogeneity, we compute the mean normalized standard deviation of the distribution
of local strains obtained from the set of measurement spheres. This noise metric for the eight sets
of model parameters (labeled i—viii) along the contour in Figure 55(a) are given in Table 10. For
this system which, is not strongly anisotropic, the distribution of local strains is narrow with a
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width of around 5-6%, for both the normal and shear components of strain. There is no obvious
trend in this heterogeneity with the model parameters, other than that the noise in the normal
strain is slightly larger than the noise in the shear strain.

An alternative means to quantify this internal state of the DEM assembly can be made indirectly
by comparing the elastic moduli of the DEM element assembly to the moduli of the analytic
model with the same stiffness functions. This comparison was also performed for parameter sets
indicated in Figure 55(a) with the results reported in Table 10. In these cases the mean field
analytic model and the DEM simulations are in good agreement and there is no overall trend in
the deviation. The comparison was also performed over the entire log normalized parameter
domain for the Z > 1 model as shown in Figure C.1(b) in Appendix C. Here the assumption is
that differences between the mean field analytic model and the DEM model arise because of
heterogeneous deformation and therefore, the deviation in moduli between the two is a metric of
the heterogeneity in the DEM assembly. In Figure C.1(b) it can be seen that the deviation from
mean field behavior depends most strongly on the ratio of the shear to normal stiffness, and that
C12 matches the mean field model when the normal and shear stiffnesses have similar
magnitudes, while Cs4 matches the mean field model when the shear stiffness is low.

As a final comment, the rationale for selecting the parameters for spheroid-based models can be
applied to choosing other angular functions and selecting the model parameters for these
alternative functions. The advantage to be gained from selecting more flexible angular functions,
besides reducing the MRV, is expanding the boundaries of accessible elastic behavior.
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Zener ratio <1 (b) Zener ratio >1
Stiffest along (100) Stiffest along (111)

Figure 55. Contours of identical elastic behavior. Plot (a) shows contours of Ci2/Ci1= 0.2, and C44/C11= 0.35 for the
Zener ratio <1 model. Plot (b) shows contours of Ci2/C11= 0.35, and Cas/C11= 0.35 for the Zener ratio >1 model.
The vertical dashed red line indicates the line along which the bond normal and shear stiffnesses are isotropic. The
inset polar plots show the shear (gold) and normal (blue) stiffness distributions (all plotted on the same absolute
scale).

Table 10. Table quantifying variation in internals state for DEM parameters shown in Figure 55.(a) which all have
the same normalized elastic moduli of C12/Ci1 = 0.2 and C44/C11=0.35. The 2™ and 3 columns show the mean
normalized noise in measurement sphere normal and shear strains, and the last two columns quantify the deviation
from the analytic model derived in Appendix A.

Model Parameters Normalized Deviation from analytic model:
measurement sphere (Cii/C11)pEM — (Cij/ C11)Model
noise (%)
Set | an ds ax &1 (%) &4 (%) Deviation: A;, Deviation: Ay,
i | 1.30 ] 0.03 | 0.33 5.8 5.0 -0.028 0.017
ii | 1.82  0.12  0.22 5.7 4.8 -0.013 0.003
iii | 2.83 | 0.88 | 0.24 6.1 4.3 -0.008 -0.015
iv | 1.78 | 3.61 | 0.22 5.4 4.3 -0.014 0.006
v | 050 0.03 | 0.34 5.8 5.1 -0.025 0.014
vi 034 0.12  0.23 5.5 5.0 -0.012 0.006
vii | 0.21  0.88 | 0.27 5.8 4.5 -0.007 -0.002
viii | 0.38 | 3.61 | 0.22 5.4 4.5 -0.005 0.009
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2.2.5.3.17. Summary of Elastic Anisotropy

In this work, the discrete element method (DEM) was adapted to enable a random packing of
elements to model materials with cubic anisotropy. The ability to capture cubic elasticity is a
prerequisite for extending the discrete element method to model stochastic mechanical processes in
monolithic solids which consist of cubically anisotropic elastic constituents (polycrystals,
composites, etc.). Additionally, the DEM model presented here provides a roadmap for adapting
traditional DEM to model orthotropic rocks and geotechnical materials. This extension to DEM
was accomplished using the established parallel bond contact formalism and is capable of
modeling a broad range of cubic materials with Zener ratios smaller and larger than one.
Anisotropy in the collective elastic response of the DEM assembly comes from assigning the
stiffness of element to element bonds depending on the bonds’ initial orientation — and crucially,
assigning them using an angular dependence function that has the same underlying cubic
symmetry as the crystal it mimics. In this first demonstrative work, these angular functions
where defined by the envelope of three or four overlaid spheroids with principal axes aligned,
respectively, along the (100) or (111) directions of the crystal being represented. The models
have three parameters that define the overall elastic behavior (a,, as, and ax, respectively, the
normal and shear stiffness anisotropy, and the ratio of the shear to normal stiffness magnitude).
A fourth parameter sets the overall magnitude of the resulting stiffness tensor. Two different
models were presented to capture the properties of materials with Zener ratio <I and Zener ratio
>1. It was demonstrated that the models’ elastic behaviors have the correct symmetry and
rotational invariance.
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The research presented here also explored the mapping between the model parameters and the
resulting elastic properties and examined the limits on domain of elastic properties that can be
accessed with the DEM model. An artificial neural network (ANN) was trained to interpolate
between input DEM model parameters and the ensuing elastic moduli of the DEM assembly. The
interpolation scheme enabled connections between the model parameters and resulting behavior
to be elucidated efficiently and revealed the surprising result that only the scale of the asymmetry
aspect ratio in the contact mechanics is important, not its direction of deviation. The ANN
analysis further revealed that the input parameters are non-unique and thus a desired set of elastic
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Figure 56. Contours of elastic moduli on the plane of the parameter space on which the normal and shear
stiffnesses have identical anisotropy ratio (an=ais). The red dashed line marks the parameters at which the
normal and shear stiffnesses are isotropic (an=as=1). Plots (a & b) are for the Zener ratio >1 model and (c & d)
are for Zener ratio <1. Plots (a & ¢) show the normalized moduli C12/C11 (blue) and Ca4/Ci1(gold). Plots (b &
d) show the Zener ratio (blue) and Poisson ratio (gold).
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stiffness tensor ratios can be achieved with numerous combinations of input parameters.
Accompanying the DEM model, an analytic mean field model of the DEM elasticity was
presented and used to examine the limit on the accessible domain of elastic properties. This
model reveals that the accessible domain can be expanded to larger and smaller Zener anisotropy
ratios by changing the functional form of the angular stiffness functions, but that there is a hard
limit to increasing the Poisson ratio that is set by the Cauchy C1,=Ca4 limit. The combination of
the ANN and the mean field model can be used to quickly and efficiently choose an optimal set
of DEM model parameters to represent a system with a specific desired stiffness tensor.

2.2.6. Isotropic plasticity without hardening

2.2.6.1.Plastic deformation in DEM

The DEM model of isotropic non-hardening plasticity relies on the framework outlined in
Section 2.2.1. In traditional DEM simulations of bonded assemblies such as rock, plasticity is
modeled through permanent breakage of parallel bonds. The resulting stress-strain response is a
brittle failure as shown in Figure 57. The bonds break when their tensile or shear stresses exceed
their tensile, o, or shear strength, 7. The tensile ¢ and shear 7 stresses on the bond are
expressed as,

R P

o= y + Ji R Equation 56
[ |

T = 7+T Equation 57

Here F,, and F are the bond normal and shear forces, M}, and M, are the bending and twisting
moments, A = mR? is the bond area, and I = inﬁ‘* and | = %nﬁ‘* are the moment of inertia and

the polar moment of inertia. Schematic display of each force and moments contribution to bond
deformation is shown in Figure 58.

81



120 T

«— Fracture
100 F
80
g
S 6of
:]J)j Damping of
P 401 the released
\ elastic energy
20
Linear j
0 elasticity
_20 1 1 1
0 05 1 15 2

Strain, [-] %1073

Figure 57. Brittle fracturing in a typical DEM simulation — stress-strain response and assembly cross-section. Dark
colors represent elements with coordination number lower than 5.
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Figure 58. Basic deformation mechanisms contributing to parallel bond failure

To implement plasticity without hardening, the bonds are allowed to reform after breaking
until their gap parameter becomes larger than the gap cutoff (Equation 8), at which point the
bond will remain broken. Additionally, whenever a bond breaks, the assembly is scanned and
new bonds are formed according to the gap cutoff criterion. With these modifications, the model
introduces plastic deformation through a combination of two mechanisms: (1) elongation of
bonds (i.e., free volume generation); and (2) promoting local sample deformation along high
shear stress planes to facilitate shear banding. The contribution of these two mechanisms is
influenced by the relative fraction of particular bond breaking modes — tensile and shear failure.

The bond strengths were defined by an expression derived to satisfy two criteria: (1) the bond
breaks at least once before it reaches its final length and is excluded from the computation; and
(2) the bond does not reach lengths significantly larger than the length determined by the gap
cutoff parameter (Equation 8).
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Neglecting the bending and twisting moment contributions, the normal and shear stresses,
respectively (Equation 56-Equation 57), on the bond are proportional to the product of bond
normal and shear stiffness and the displacement of one of the elements at time 7, u;:

‘f,, Hl\_/[bH ‘1_?,1 Ak ||u|| Equation 58
O, =—=+ RI— = ”_':knul_”
A J A A
‘I_Ts Hl\_/[t ‘1_?5 Ik u| Equation 59
== ~ =k ||u|
A J A A
Approximating the displacement as the gap cutoff parameter gyq. yields
t.=kg, . Equation 60
o.=kg. Equation 61

The expression in Equation 61 holds exactly for a bond under pure tension with one of the
elements being stationary. For other failure modes using Equation 60-Equation 61 leads to
multiple bond failures before the final failure which is the desired behavior, for example, to
simulate slip under shear. In practice, the strengths are corrected with additional factors,
Brn, Bs < 1.0 that tune the macroscopic stress to target values:

Gc = ﬂnkngmax
T, = Bk,& Equation 62

2.2.6.2.Assembly generation

Assembly was generated using the same steps as outlined in Section 2.2.4.2 except that the after
removal of walls it was carved down to create a dog-bone shaped tensile sample (Figure 59). The
sample was deformed by imposing the displacement of the elements on the outer circular faces
of the sample, hereafter referred to as grip elements. Similar to physical tensile experiments, the
dog-bone sample shape was used to prevent stress concentrations causing premature failure
adjacent to the grip region of the sample. The dog-bone assembly shape was created by removing
all elements with centers of mass that lie outside a volume defined as a cylindrical region and
two hyperboloid shoulder regions.

Starting with a rectangular box with the origin at its corner, the sample shape was defined
according the following conditions,
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z=z, —H,x=x,——,y=y, ——
c i 5 y=Jy

2 Equation 63
2
ﬁz :x2-|—y2_(£) -1
c

Element with a height H; < z. < H, is included in the assembly if f; < 0
/4

Z:Zc’x=xc__9y=yc__

2 2

2
R,
fh:x2+y2—[ ;’j

Equation 64

H; is either H; or Ha, x, y, z are transformed coordinates of the element centroid, x, y., Z. such
that the assembly center coincides with the coordinate system origin, W is the width/side of the
original box, Ry, is the radius of the cylindrical section and ¢ = 2R, a parameter that
determines the size of the hyperbolic regions (¢ = 2 herein).

2.2.6.3.Model properties and implementation

The described model was used to simulate tensile testing of a DEM assembly. The grip elements
(Figure 59a) were defined to have a fixed axial velocity (i.e., a constant displacement rate, u,) to
stretch the assembly until failure. Lateral motion of the grip elements was unconstrained. The

velocity of the grip elements was selected to give a dimensionless inertial number, defined as [ =

]'/E/ +/ P/p where y is the shear strain rate, d is mean element diameter, P is bulk stress, and p is
assembly density, of approximately 10, This value is an order of magnitude less than the
threshold needed to maintain quasi-static conditions (da Cruz et al., 2005). During the
simulations, the volume-averaged macroscopic stresses and strain rates in the sample were
calculated using 500 spherical measurement volumes randomly located within the assembly.
Each measurement volume encompassed approximately 130 elements. Average strains were
obtained by integration of average strain rates.

The assembly used in this work is shown in Figure 59a while its properties are summarized in
Table 11. The solid fraction of the assembly was ® = 0.60 while for comparison, @ pcp =

0.64 for a random close packing of monodispersed spheres. Bond modulus and normal-to-shear
stiffness ratio were calibrated to reproduce specimen-scale response consistent with a generic
metallic material. This resulted in a material with an average Young’s modulus of 169 GPa and
Poisson’s ratio of 0.23. Bond strength scaling factors f3,, and 55 were set to produce yield stresses
of approximately 200 MPa. Figure 59b shows distribution of normal bond stresses during the
elastic part of the simulation. All of the mentioned parameters can be calibrated to give a desired
yield stress and elastic modulus value, while Poisson’s ratio is more restricted in this formulation.
Such restricted Poisson’s ratio also arises in other emerging mesoscopic methods for simulating
continuum materials such as bond-based peridynamics (Kumar et al., 2016; Madenci and
Oterkus, 2016a).
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Figure 59. The DEM assembly: (a) showing grip elements (dark blue), components of sample generation, and
local cage with blue elements being the neighbors (nodes) (b) bonds colored by their normal stress (units in Pa)

at a point in the region of elastic deformation.

Table 11. Model properties

Parameters Value
Elements  Maximum relative element diameter dpqx/ d 1.0833
Minimum relative element diameter d,,;, /d 0.9167
Bond modulus, [Pa] 1.0595x10"?
Normal-to-shear stiffness ratio, [] 5.0
Bonds Bn 0.02 - 0.06
Bs 0.012 - 0.026
Gap parameter, [m] 0.08d
Number of elements 15,512
Number of parallel bonds 58,962
Average coordination number 7.6
Solid fraction ® 0.6
Relative height H/d 50
Assembly Relative radius of the cylindrical section R,/ d 12.5
Displacement rate, u, 0.83d/s
Young’s modulus, [GPa] 169
Poisson’s ratio 0.23
Yield stress, [MPa] 200

2.2.6.4 Deformation analysis

Two different metrics, called d2min and local cage deformation herein, were used to assess the
mechanisms of plastic deformation in the model. These metrics quantify local plasticity, thus
enabling visualization of shear bands and other deformation localizations that deviate from the
affine deformation of the sample.
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The d2min analysis compares the displacement of each element u with the expected continuum
displacement at that point. The analysis does not rely on absolute values of the differences, but
rather, on their relative deviations at a given time and any deviations from the mean. The
continuum displacement was computed for a cylindrical sample of equivalent height and radius
of the gauge length portion of the assembly. The continuum displacement field for a deformation
along z can be defined as:

(Z“ 20 j
Equation 65
cn [ ] (LO /2)

where z. is the z-component of the element position, Ly is the initial height of the assembly, and
& is the total displacement, defined as § = (Lye,, — L)/ 2. The new height Ly is computed
from the positions of the top and bottom grip elements as L, ew,=Zmax — Zmin With Za =
max(z.; + Rp;) and z,,;, = min(zc i+ Ry j). Here i and j correspond to the top and bottom grip
elements, respectively. Computation of zmin assumes that since the assembly starts with its base
at z=0.0, any tensile deformation will result in a negative z location. Finally, the d2ui» metric is
defined as dypmin = llu — ucnlls.

The local cage deformation metric uses a notional polyhedral “cage” around an element with
nodes as the neighboring elements (Figure 59a). The cage deformation, d., is defined as the
maximum difference between displacements u of any two nodes, i.e. neighboring elements, d, =
max(|lu; — ui||). This metric was found to work well for shear band visualization.

2.2.6.5.Volume conservation analysis

Volume conservation was tracked in the central, uniform diameter cylindrical section of the
assembly, i.e. in the uniform gauge section spanning from H; to Hz (Figure 59). Volume
conservation was analyzed using three different metrics: comparison of ideal (i.e., where plastic
deformation is volume conserving) and current cross-sectional areas of the cylinder, computation
of plastic volume change, and computation of the & coefficient, which relates the elastic and
plastic volume change, as defined below.

The volumetric strain during plastic deformation AV, /¥ was computed by subtracting the

calculated elastic volumetric strain AV, /¥, from the total volumetric strain AV /V at a given

stress o :

v, v, ¥, B v, ' E Equation 66

where AV =V -V, , Eis the Young’s modulus of the assembly, and v is its Poisson’s ratio.

When plastic deformation is volume conserving, the total volume change would be equal to the
elastic volume change leading to a zero plastic volume change.

The « coefficient represents the relation of elastic and plastic volume change at any time i of the
simulation:
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Vs " E Equation 67

Here ¢, is the instantaneous strain and AV, /V, = (I{ -V, ) / V,is the difference between current

volume V; and the initial volume ¥, thus referring to the total volume. When & is 0.0, plastic

deformation of the system is volume conservative. Positive « values indicate the volume is
increasing with plastic extension. Below the yield stress, « is not well defined and thus it should
be considered only in the plastic region of the deformation.

Ideal cross-sectional area A, at time i was calculated using the definition of « coefficient

(Equation 67) and represents the cross-sectional area of the cylindrical portion of the assembly if
the plastic deformation of model was perfectly volume conserving. Assuming the gauge height

H =H,—-H, gives:

A

ID,i

:(HQMJ&

E H Equation 68

1

The volume of the cylindrical section at any given strain was computed as the volume of a tight
envelope built around the cylinder from positions of element centers. The only elements included
in the construction of the envelope were elements originally present in the cylindrical region
between vertical positions Hi to H (Figure 59).

2.2.6.6. Non-hardening Plasticity Results

To gain insight into the element-scale formation of fractures, plastic deformation was performed
with the bond strengths adjusted to give three different bond breakage modes: (1) bonds break
only in tension; (2) bonds break approximately evenly in tension and in shear; and (3) bonds
break only in shear. This was achieved by: (1) setting the shear strength value relatively high; (2)
setting both shear and tensile strengths to similar values; and (3) setting the tensile strength
relatively high.

Figure 60 shows the stress-strain curves for all three cases. The strain at which the sample fails
increases with an increasing number of bonds that fail in shear. This originates in the interchange
of the two deformation mechanisms — elongation and slip. When bonds break in tension, the
material deforms by bond elongation in the axial direction, which promotes cracks to open. On
the other hand, when bonds break in shear, the assembly is able to deform somewhat along shear
band planes and thus introduce slip-like behavior that increases the ductility.
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Figure 60. Stress-true strain curves for Case 1 (all bond failures are in tension), Case 2 (bond failure mode is
approximately equal between tension and shear), and Case 3 (all bond failures are in shear).

Results of the d2min deformation analysis are presented in Figure 61. The angle of high and low
domin patterns are closer to the 45-55° characteristic angles for shear bands in Case 3 where all
bond failures are in shear. This is also true for the final fracture angle. For Case 1 the fracture
angle is much closer to horizontal, while for bonds only failing in shear, the fracture forms along
a characteristic angle that is similar to shear bands (e.g., 45-55°). However, while the domin
analysis reasonably predicts the future crack location and inclination in Cases 1 and 2, it fails to
do so in Case 3.
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Figure 61. Results of the domin analysis in the central cross-sections of the assembly for cases where (1) bonds break
only in tension; (2) approximately half of the bond failures are in tension; and (3) bonds break only in shear. (a) at a
strain of approximately 0.005 and (b) at fracture.

The localization of deformation on shear bands is even more visible through the local cage
deformation analysis (Figure 62). The shear bands were visualized by plotting elements with
local cage values 2-3 times larger than the assembly mean. The angles in Figure 62a were
obtained from fitting the shear band areas in three dimensions with a plane. The angles in Figure
62b were computed from fitting of the actual fracture planes. Note that due to the 3D nature of
these planes, they do not always look to match the depicted 2D representation. When the bonds
fail predominantly in tension, we get a behavior similar to mode I fracture with a fracture plane
almost 90° from the loading axis. In contrast, as the fraction of bonds breaking in shear increases,
the localization patterns become less horizontal and into the range of 48 — 60° seen for bulk
metallic glasses (BMGs) in tension (Lund and Schuh, 2003; Schuh et al., 2007; Zhang et al.,
2003). As opposed to the domin patterns, the shear bands in the cage analysis align with the final
fracture angle and position in the assembly for all cases.
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Figure 62. Results of the local cage deformation analysis in the assembly and its central cross-sections (a) at a strain
of approximately 0.5% and (b) at fracture (b). Gold/orange indicates cage deformation values 2-3 times larger than
the mean. Light blue (b) indicates the elements surrounding the fracture.

Figure 63 shows the results of volume conservation analysis. The results indicate that the volume
during plastic deformation is not conserved. While the assembly contracts laterally as shown in
Figure 63a, the reduction in cross-sectional area and the rate of contraction is not sufficient to
maintain a constant volume. The results are similar for all three cases, though plastic volume
change and a coefficients are lower for the mixed failure and shear-only failure cases.
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Figure 63. Results of the volume conservation analysis: a) Current and ideal cross-sectional areas of the assembly b)
Plastic volume change as a function of strain with average a coefficient values during main plastic deformation parts
of the simulations. In Case 1 all bond failures are in tension, in Case 2 the bonds failure mode is approximately
equal between tension and shear, and in Case 3 all bond failures are in shear.

2.2.6.7.Comparison with plastic deformation of non-hardening solids and other methods used
for plasticity simulations of continuum materials

The isotropic, non-hardening DEM model developed here for solid materials can be viewed as an
initial framework for the modeling of many amorphous materials, for instance glassy polymers
and bulk metallic glasses (BMGs). Indeed, the limited plastic deformation (~1%, Figure 60) and
localization of deformation onto shear bands (Figure 62, cases 2-3) is reminiscent of the
observed tensile behavior for ductile BMGs (Dmowski et al., 2010; Scudino et al., 2011).

On the micro- and nanoscales, amorphous materials like BMGs are inherently heterogeneous,
both in structure and mechanical properties (Ding et al., 2014; Dmowski et al., 2010; Ketov et al.,
2015; Li et al., 2015; Liu et al., 2011; Wang et al., 2016). This gives rise to a number of unique
mechanical phenomena like non-affine deformation (Hufnagel et al., 2016), local, irreversible
plasticity occurring during elastic deformation (Hufnagel et al., 2016), and length-scale
dependence of stress-strain response (Furukawa and Tanaka, 2009; Murali et al., 2011; Rycroft
and Bouchbinder, 2012). Due to the complexity of these phenomena and limitations of
experimental measurements, computational models are often needed to help understand the
structure and properties of amorphous materials (Anand and Su, 2005). This is because the
atomistic details of the fracturing process and related shear banding are quite difficult to capture
experimentally (Sun and Wang, 2015). However, the atomistic models commonly used to
provide insight (e.g., molecular dynamics) are generally limited to two atomic component
systems and very short time scales. Because of these limitations, there is motivation to develop
mesoscale modeling methods that can inherently capture the stochastic nature of shear band
formation and fracture and provide a practical way to predict mechanical performance in
engineering applications.

DEM models inherently begin with an assembly structure that introduces heterogeneity to the
local mechanical properties through the random structure variability, i.e., locally dense versus
relatively loosely bonded regions, akin to the real variability of amorphous materials. Moreover,
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the additional inclusion of random heterogeneity into the element interaction laws (e.g., stiffness,
strengths, etc.) is straightforward. In either case, the intrinsic heterogeneity of the DEM model
captures non-affine deformation on a local level as well as the emergence of shear band
localization (Figure 62, Cases 2-3). Fracturing in the model is spontaneous and when shear bond
failure controls the deformation, the fracture angle falls in the observed range of angles (48 —
60°) for BMGs in tension (Lund and Schuh, 2003; Schuh et al., 2007; Zhang et al., 2003) (Figure
62, Case 3). The nature of the fracture — brittle mode I or shear band instability — can be
controlled by adjusting relative contributions from two bond breakage modes — tensile and shear.
This is consistent with molecular dynamics findings of (Murali et al., 2011) where the brittle
BMG fracture was found to originate from void nucleation whereas ductile BMG fracture
developed through shear banding. In the DEM-based model presented here, tensile breakage of
element bonds favors void nucleation by separating the elements and expanding the volume
more rapidly (Figure 63b) while the shear breakage introduces more lateral, shearing
deformation of the assembly.

For some examples of non-hardening solids, such as bulk metallic glasses, large quantities of
heat can be generated during local plasticity and thus the evolution and propagation of shear
bands is intimately related to how locally generated heat enables thermally activated deformation
processes, or even localized melting (Greer et al., 2013; Hufnagel et al., 2016; Schuh et al.,
2007). These processes are dictated by a balance of the rate of heat production and heat
dissipation through thermal conduction. Accordingly, predictive models of plasticity in BMGs,
such as those developed by Li (Zhao and Li, 2011), often solve for the deformation field and the
temperature distribution simultaneously. The DEM model as presented in this manuscript only
models the displacement fields of the materials undergoing plasticity as an important first step;
however, there is no fundamental impediment to extending it to simultaneously model thermal
evolution and including temperature dependent plasticity laws. Indeed, computing the thermal
conductivity for granular materials is routinely performed with DEM simulations and is used as a
well-established diagnostic of granular packing (Evans et al., 2011; Yun and Evans, 2010).
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Table 12. Summary of numerical methods currently used for modeling plastic deformation of non-
hardening solids and their comparison with DEM.

Method Advantages

Disadvantages

Differences with DEM

Coarse-grain
models

Captures well certain
deformation phenomena

Continuum
representation

(Furukawa and
Tanaka, 2009;
Rycroft and
Bouchbinder, 2012)

Cannot model stress-strain
distribution near crack tip

Cannot model complex,
multiaxial loads

DEM can model complex loads
and resolve stress-strain

distribution during interactions
with objects such as a crack tip

FEM Modeled deformation is
. quantitatively and

Contlnuum. qualitatively accurate

representation

(Dolbow et al.,

2001; Gao et al.,
2016; Tandaiya et
al., 2009; Zheng and

Difficulties handling
discontinuities and crack
propagation. Increased
complexity to do so

DEM readily handles
discontinuities and models
crack propagation

Shen, 2011)
Phase field Modeled deformation is Fracturing based on density DEM treats fractures and cracks
. quantitatively and distribution not real explicitly.
Continuum o )
. qualitatively accurate detachment of material.
representation
(Zhang and Zheng,
2014; Zheng and
Shen, 2011)
RFM, DRFM Can handle discontinuities Unclear if possible for Regular lattice model as
Diserete Can model both ductileand SXPnsiontomodel - apposed to heerogeneous DEM
representation brittle plastic deformation etc Py, p, fallg
(Picallo et al., 2009,
2010)
Peridynamics Can handle discontinuities Thus far applied only on Integral, not differential
Discrete Good agreement with reeiliirtrlﬁstﬁzi;;es;’l;? formulation
representation experimental data for & & Y

(Fu et al., 2001: various types of materials

Madenci and
Oterkus, 2016a;
Madenci and
Oterkus, 2016b;
Silling, 2000; Sun
and
Sundararaghavan,
2014)

Needs detailed constitutive
laws

Limitation on Poisson’s
ratios achieved
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MD and other Most microscopically Limited to small DEM can model larger systems

atomistic accurate and least relying on  dimensions, short times, during longer, representative

Atomistic constitutive laws. and binary atomic systems  times.

representation Source of a lot of credible DEM formulation is very

(Lund and Schuh, information on thq physics similar, mathe.InaFlcally, so it

2003: Murali et al. of BMG deformation and can more readily incorporate

201 1; " fracturing. MD findings, like the LJ
potential.

Results of this study reveal that DEM has distinctions compared to other discrete methods and
the modeling methods currently used for amorphous materials such as coarse-grain models, finite
element models, and phase field and atomistic simulations (Hufnagel et al., 2016; Sun and Wang,
2015). The characteristics of these methods compared to DEM are outlined in Table 2. As
opposed to coarse-grain models (Furukawa and Tanaka, 2009; Rycroft and Bouchbinder, 2012;
Sun and Wang, 2015), DEM is capable of modeling multiaxial, complex deformation including
stress and strain distributions near the crack in the material (Jebahi et al., 2013). Although these
tasks can be readily accomplished by continuum methods, such as the finite element method
(FEM) or the phase field method, both of which require constitutive laws (Dolbow et al., 2001;
Gao et al., 2016; Tandaiya et al., 2009; Zheng and Shen, 2011), DEM provides a more
straightforward treatment of the actual material separation at fracture. FEM differential,
continuum formulation requires complex treatment of discontinuities such as fracture (Zheng and
Shen, 2011), while phase field models do not resolve the fracture explicitly, rather as a zero
density in the density field (Zhang and Zheng, 2014). In inherently discontinuous DEM,
fracturing occurs spontaneously (i.e., it is an emergent behavior) and fracture propagation is
modeled explicitly by removal of bonds between elements followed by their relative
rearrangements. Handling of discontinuities and fracturing is a strength of other discrete methods
— including peridynamics (Fu et al., 2001; Madenci and Oterkus, 2016a; Madenci and Oterkus,
2016b; Silling, 2000; Sun and Sundararaghavan, 2014), and lattice-based random fuse and
ductile random fuse models (Picallo et al., 2009, 2010). Both of these methods were successful
in reproducing brittle (Ha and Bobaru, 2011; Picallo et al., 2009) and ductile behavior (Madenci
and Oterkus, 2016b; Picallo et al., 2010; Sun and Sundararaghavan, 2014) of solid materials. A
limitation of the present work, and similar to bond-based peridynamics, that that our current
DEM formulation limits the Poisson’s ratio to about 0.2 and does not properly conserve volume
during plastic deformation (Madenci and Oterkus, 2016a). Regarding the elastic properties, it has
been demonstrated that a modified DEM formulation can be used to give anisotropic elastic
constants matching many realistic cubic single crystals and accurate modelling of the elastic
properties is an ongoing area of research (Truszkowska et al., 2017).

The major differences when comparing other discrete methods, such as peridynamics and
random fuse models, to DEM are that DEM is naturally heterogeneous, its grid is not regular,
and its elements are truly distinct entities. This makes DEM compelling framework with the
potential to model phenomena that other discrete and mesoscale methods do not capture. Finally,
atomistic simulations like molecular dynamics (MD) are widely used to study the microscale
behavior of amorphous materials (Lund and Schuh, 2003; Murali et al., 2011) and DEM and MD
are very similar in their mathematical formulations. Accordingly, DEM can incorporate elements
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and findings of MD results in forms closer to the original atomistic ones while enabling
simulations at representative spatial and temporal scales, currently unattainable by MD.

In future work, DEM may be further modified to include more complex, physically justified
element interaction laws to more accurately simulate the material response on the local scale.
This may be accomplished by considering constitutive laws like that proposed by (Anand and Su,
2005) and those used in MD simulations. With further development, the DEM framework for
continuum modeling may provide a powerful predictive tool for plasticity and damage evolution
in solids.

2.2.6.8.Summary of Non-Hardening Plasticity

This work successfully adapted the discrete element method, originally developed for the
modeling of unbound granular assemblies and later, brittle solids, to model isotropic non-
hardening plasticity in solids. Additionally, two deformation analysis tools, d2ui» and local cage
deformation, were explored to visualize non-affine deformation and shear band formation
leading up to fracture. While both tools indicate degrees of local deformation of the assembly,
the local cage deformation highlighted the presence of shear bands and better showed how they
evolved to cause final fracture.

The DEM model successfully simulated tensile plastic deformation by shear band formation until
failure up to strains of about 1%, which is a behavior characteristic for some non-hardening
materials of practical importance such as bulk metallic glasses. The model behavior was
governed by two competing mechanisms, bond elongation and slip, which have relative
contributions that are set by the bond failure mode, tensile or shear. As the shear/slip mechanism
becomes more pronounced, deformation becomes localized on shear bands, one of which
eventually fractures, which is behavior akin to metallic glasses in tension.

2.2.7. Isotropic plasticity with strain hardening

There were two DEM models developed for simulation of plastic deformation with
hardening. The first one relied exclusively on parallel bond formalism described in the
previous sections while in the second an additional, non-linear pairwise potential was
introduced on top of the linear parallel bond deformation. Both models followed the same
basic DEM framework and assembly generation described earlier with any additional steps
indicated.

2.2.7.1. Hardening with parallel bond formalism only

2.2.7.1.1. Local and nearest-neighbor hardening

Figure 64 shows the results of implementing two strain hardening methodologies — one that acts
locally at a single element and another that hardens the neighborhood including the next nearest
neighbors. To match the experimental behavior, the percent hardening value was a free variable.
In the local hardening scheme, only the broken and subsequently reformed bond would be
hardened, whereas in the nearest neighbor scheme all the surrounding bonds would be hardened
as well. Models were found to fracture at about 5-8% strain regardless of what hardening scheme
was used.
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Figure 64. Simulations of tensile testing with various degrees and types of hardening compared to the experimental
data. Note that the experimental samples fail at around 20% strain and the displayed data is from experiment that
were stopped before failure occurred.

2.2.7.1.2. Investigation of plasticity mechanisms

To understand what triggers the onset of fracture in our simulations, we selected regions around
the crack to compare with regions far away to identify local structural signatures that control
fracture (Figure 65). We have also performed identical simulations and analysis with using
geometrically identical assemblies with statistically different element arrangements to confirm

Figure 65. Investigated cross-sections
around and away from crack. Green
particles are the ones included in the
analysis.
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that our conclusions are a general feature of our DEM method rather than an artifact of one
assembly (Figure 66).
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Figure 66. Statistically different assembly were used to give similar stress-strain response (at right); however, the
onset of failure is different due to structural differences between the assemblies. The second assembly (at left)
fractured at a different location from the first one (Figure 65).

Our analysis has involved looking for structural defects (e.g., elements with low coordination
number) prone to initiating fracture along with other potential fracture indicators like
inhomogeneous stress or force distributions. Figure 67 shows some of the structural analysis
tools we developed for probing the local element coordination number. Figure 67a shows the
average element coordination values in measurement volumes used to compute stresses and
strains in the assemblies. Blue colored volumes indicate coordination numbers slightly lower
than average and the red colored, slightly higher. Although the differences are small, this
analysis indicates certain structural patterns exist including regions of relatively low coordination
number that may be structurally weaker than other parts of the assembly. Figure 67b shows
coordination numbers of every element in a center slice of the assembly in Figure 65. Even
though coordination values look evenly distributed, when only low values are plotted (Figure
67c) patterns consistent with Figure 67a emerge, indicating spots of lower coordination in the
bottom part of the assembly. Figure 68 compares the two different assemblies, their front and
center cross-sections with only low coordination values plotted. Comparing these low
coordination maps to Figure 65 and Figure 66, it can be seen that predicting the failure location
solely based on structural patterns is not straightforward; however, we believe it provides useful
information that should be considered in any future work.
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Figure 67. Results of coordination number analysis of the assembly in Figure 65: a) Measurement spheres and
spheres with high (red) or low (blue) average coordination b) Element coordination number in the assembly during
fracturing c¢) Elements with number of contacts less than 6 during fracturing as seen from the opposite side to b).
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Figure 68. Elements with low coordination number during initial stages of the simulation in the first (Figure 65) and
statistically different second (Figure 66) assembly. Two cross-sections were analyzed, one in the center and another
offset from the center.

Figure 69 shows the element coordination number during the simulation in the vicinity of the
crack as failure progresses. Figure 70 shows the two assemblies split into 20 layers, with each
layer colored by its average coordination number. 10, 20, and 50 layer segmentations were tested
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and the results confirm that structural inhomogeneous likely affect the location of specimen
failure in the DEM simulations.
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Figure 69. Elements with a low coordination in the area around the crack as the simulation progresses in the first
assembly.
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Figure 70. Both assemblies split into 20 layers, with each layer colored by its average coordination number. Besides
the grip elements on top and bottom the coordination number does not vary greatly in each layer but a pattern
emerges indicating slightly lower coordination in the assembly’s bottom halves where failure initiated.

Besides analyzing the structure of the assemblies, we have also analyzed the deformation using
the metrics presented in Section 2.2.6.4. Results of the d2min analysis, shown in Figure 71,
indicated locally large deformations at a few locations but did not identify shear band formation.
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The results of local cage deformation analysis shown in Figure 72 clearly indicate deformation
occurs by shear bands that crisscross though the sample gauge length at ~45° to the loading axis
as expected. However, these presence of shear bands does not seem to be related to the location
of final fracture.
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Figure 71. d2min analysis of the second assembly. Left — all the d2min values in a central cross-section; Right — red
values indicate particles with d2min values about 2 or more times larger than the assembly mean.
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Figure 72. Shear band formation captured by the cage deformation analysis: a) Cage deformation values in the
assembly’s cross-section. b) Particles with cage deformation values 1.97 or more times larger (orange) than the
average in the assembly’s cross-section c¢) 3D view of the particles with large cage deformation. In b) and c) the blue
particles are the sample interior, the red and cyan are top and bottom grip particles that drive the deformation.

2.2.7.1.3. Force restoration

When a bond breaks it reaches a maximum shear stress, after which, if its length is smaller than a
fixed threshold the bond is reformed slowing slip-like plastic deformation behavior. The bond
reforming for the models discussed above did not restore any force on the bond; hence, each
reformed bond has ~0.0 initial stress but a longer length. This can cause elements to extensively
stretch apart in the normal direction, potentially opening into a crack. On the assembly scale,
such crack formation may cause premature brittle fracture rather than plastic slip.
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In a plastically deforming metal, normal force is generally sustained across slip planes while
shear deformation occurs. To better represent the physics of metal deformation and suppress
crack formation, we have investigated reforming bonds with the normal force restored to the
same value prior to shear failure. To investigate the influence of force restoration we have
simulated the first assembly in this section (Figure 65) with the normal force being fully or
partially restored every time a bond breaks in shear. Figure 73 shows the stress-strain responses
of an assembly with only 10% of the normal force being restored such that the resulting
macroscopic stress values become comparable with the experimental data. Restoring the full
normal force to that same model causes a very large increase in macroscopic strain hardening
response of the assembly, possibly due to bond reorientation and geometric hardening. Thus, it is
concluded there is a strong interaction between force restoration and hardening that needs to be
understood.
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Figure 73. Simulations of tensile testing with normal force restoration compared to simulations without force
restoration and our experimental data.

2.2.7.1.4. Small assemblies with hardening distribution

To further investigate the insensitivity to the details of the hardening law, we have developed a
hardening distribution law and tested it with small and fast 3D models. The small models were
first simulated using our usual hardening schemes and compared to the large models as plotted in
Figure 74. The agreement in the macroscopic stress-strain response was sufficiently close to
consider the small models as a good first approximation in allow further testing.
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Figure 74. Comparison of stress-strain response in large and small models.

We used an exponential distribution function to introduce non-local hardening. When a bond
broke, hardening is applied to all bonds that fall into the hardening region determined by the
distribution. The amount of hardening followed an exponential decay curve as shown in Figure
75 and would equally affect axial and lateral bonds. The hardening of the broken bond was
determined by:

Tc =1+ C)T'¢ Equation 69

Where C; is the hardening factor and 7 are the shear strengths before and after hardening. The
hardening of any other bond in the assembly was determined as

Toy = (1 + Cle_aldAjlcz)T’CN Equation 70

Here da; is the distance between the broken bond and the other bond. C; is a scale parameter that
determines the maximum amount of original hardening that will be applied to the other bonds. a
is the parameter that controls speed of exponential decay — the lower the a, the more non-local
the hardening will be. As seen in Figure 75, a value of 2 causes hardening of the entire assembly
whereas @ = 20 limits the hardening to the next nearest neighbor.
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Figure 75. Hardening distribution scheme. Graph shows the influence of various values of the a parameter on the
non-locality of hardening. Small a values will cause hardening of the entire assembly (blue line = 2) while large will

limit it to as little as next nearest neighbors (green line = 20). Pictures on the right show exaggerated hardening that
follows this distribution in a case of central bond breaking,.

The simulations were performed with various values of the a coefficient and thus variable
localization of the hardening. The scale parameter C; was tuned so that the stress-strain response
of each set compared reasonably to our experiments. Results, shown in Figure 76, indicated that
once the stress-strain response is tuned to become similar to experimental data, regardless of the
non-locality of hardening used, all assemblies fail at similar strains. Overall, it was concluded
that the model response is relatively insensitive to the details of the hardening function. As
explained in the next section, the actual permanent bond failure and related failure of the sample
are mostly a function of the maximum gap parameter. Furthermore, while the failure mechanism
is a combination of void formation and shear banding, the desired element slip mechanism is
generally not achieved by any of the proposed models. The models deform by elongation with
insufficient lateral contraction, which also causes low volume conservation shown in Section 4.
Nevertheless, proposed model may be capable of simulating proper metal deformation with
further changes to its force-displacement laws. Thus, the various hardening schemes proposed in
this sections may still be of use depending on the simulated material.
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Figure 76. Macroscopic stress-strain response of assemblies with varying amount of non-local hardening as
compared to experimental data. All the assemblies fail roughly at the same strains regardless the amount of non-
local hardening introduced. The small differences in strain to failure were attributed to failure occurring near the
grip or in the interior of the assembly.

2.2.7.2 Introduction of a non-linear pair-wise potential

2.2.7.2.1. Pair-wise potential formulation

This part of our work achieves a stress-strain response of a metallic material through addition of
a Lennard-Jones-like pair-wise potential to the bonded DEM framework introduced in Section
2.2.4.2 and 2.2.6.1. The pair-wise potential had the form of the classical Lennard-Jones
potential as shown in Figure 77,

F, = f;n, Equation 71

i

where f; is the force between two elements i and ; that depends on the distance between

element centroids, 7;,

20_12 J6
— 24¢ R Ty <K Equation 72
ij ij ij
0 , ;2R
With
r —Hx —xH Equation 73
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xi and x;j are element centroids, ¢is a fitted parameter that determines the magnitude of the pair-
wise force, o is a parameter that sets the proximity of elements below which pair-wise force
becomes repulsive, and 7, is a user-defined cut-off radius, above which the pair-wise potential

value is set to 0.0. Here o was set to twice the minimum element radius, which introduces the
possibility of elements not repelling one another while still slightly overlapping due to the
presence of a small attractive force at very small separation distances. However, we selected this
approach as the best compromise relative to using twice the maximum element radius or twice
the mean element radius as these approaches would result in elements exhibiting repulsion when
still at a distance.

As shown in Figure 77, the pair-wise potential would reach a maximum value after which it
would decrease, eventually asymptotically approaching 0.0. As opposed to parallel bond force,
the pair-wise force was not incremental and did not, in general, start with a 0.0 value. It was not
explicitly dependent on relative velocities of interacting elements.
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Figure 77. Pair-wise potential force as a function of element distance normalized by mean element diameter.
Reo indicates the cut-off distance used in the main part of this work and R¢; through R¢; are cut-offs used in the
later calibration studies.

The total force on each contact between elements, F,, consists of the parallel bond, F,, and

pair-wise potential contributions, F;,

F. =F, +F, Equation 74
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2.2.7.2.2. Assembly preprocessing

The assembly was generated in the same way as for other plasticity models. The difference was a
presence of additional preprocessing step introduced due to the pair-wise potential. As opposed
to parallel bonds whose forces always start from 0.0 and evolve incrementally, the pair-wise
potential initially starts with a value that is dependent on element distance and not necessarily 0.0
(Section 2.2.4.1). In order to ensure low stress values in the assembly before any deformation
simulation was performed, the assembly was preprocessed following the generation procedure
described in Section 2.2.4.2.

Before preprocessing the pair-wise potential was introduced to the assembly in the form that was
to be used in the later simulations. The parallel bond stiffnesses were set to 0.0 in the
preprocessing step as it was shown to reduce the processing time and improve achieved initial
stress. At any time of the preprocessing if the average stress in the assembly reached a value in
the interval between 0.0 and 0.1 MPa, the preprocessing was stopped and the assembly was
ready to be used in any deformation simulations.

Preprocessing consisted of two steps: I. Simulating damped dynamics without any deformation
and II. Simulation of tension or compression. In part I. similarly to first part of the assembly
generation step the elements were allowed to reconfigure to equilibrium with no applied
deformation or constraints. The newly installed pair-wise potential would either cause large
negative stresses due to remaining overlap or large positive stresses due to long-distance forces
prevailing the overlap contribution. During the first preprocessing step the elements would find
their equilibrium configurations by decreasing the overlaps and/or their separation distances.
After this step the assembly would reach either slightly negative or slightly positive average axial
stress that would remain unchanged with further cycling. If the final axial stress was still too
large for the sample to be ready for further simulations, compressive or tensile deformation
would be applied in the second step of preprocessing. Both deformations were performed using
the grip particles defined in Section 2.2.6.3 and Figure 59 and would usually not last long as the
target axial stress would be reached rapidly. Once the sample was ready, it was used in the actual
deformation simulations with parallel bonds properties restored. A typical preprocessing axial
stress evolution with time is shown in Figure 78. Single preprocessed sample can be used with
varying parallel bond properties while changing any of the pair-wise potential parameters
requires new preprocessing.
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Figure 78. Time evolution of average axial stress during a typical preprocessing simulation.

2.2.7.2.3. Model properties and implementation

Figure 59 shows the assembly used in this work and Table 13 summarizes its properties. The
solid fraction of the assembly was @ = 0.60 which is slightly lower than ® = 0.64 for a random
close packing of monodisperse spheres.

The tensile testing simulation was calibrated to reproduce strain-controlled experimental stress-
strain response of tensile testing of a NIMONIC 75 nickel-chromium alloy at high temperature of
600°.
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Table 13. Model properties

Parameters Value
Elements Maximum relative element diameter d,, 4, /d 1.0833
Minimum relative element diameter d,,;,, /d 0.9167
Element density, kg/m’ 8908.0
Parallel Bond modulus, [Pa] 5.926el1
Bonds Normal-to-shear stiffness ratio, [] 5.0
B 1e25
Bs 1.2032¢-3
Gap parameter, [m] d
Pair- Repulsion distance, o [write over d] 12 F
Wise 13
Potential Potential magnitude parameter, & [J] 9.3176¢e4
Cut-off radius, R. [over d] 1.48d
Assembly Number of elements 15,512
Initial number of bonds 74,531
Average coordination number 9.6
Solid fraction 0.6
Relative height H/d 50
Relative radius of the cylindrical section R.,;/d 12.5

2.2.7.2.4. Volume change computation

Volume conservation was investigated on three different levels: globally for the cylindrical part
of the dog-bone shape assembly, locally for horizontal segments of the whole assembly, and
locally for each of the local cages.

Volume change of the cylindrical part was computed from the volume of a three-dimensional
tight envelope created from element centroids. The tight envelope yielded slightly better fit than
its alternative — convex hull. Volume for later times of the simulation was computed only from
the elements originally present in the cylindrical region thus effectively tracking cylinder

deformation. In computing the « coefficient (Equation 67), o,and &, were the global, average,
instantaneous axial stress and strain.
Local cage volume change was computed from three-dimensional convex hulls created from

vertices of each cage. The vertices were fixed — initial neighbors of the central cage element
were used throughout the computation. The strain &, in the computation of « coefficient was not

changed. This approach provided means for element-wise study of the volume conservation and
identification of any patterns of high and low conservation regions.
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2.2.7.2.5. Stress-strain response

The rate of DEM deformation was 0.083d/s and the simulations where repeated with two higher
rates, 0.42d /s and 0.83d/s. Results with all three rates were almost identical and within the
experimental uncertainty. Figure 79 shows the stress-strain response compared to three sets of
experimental data. Table 14 summarizes elastic and plastic properties from experimental work
and numerical simulation. The plastic deformation follows closely the experimental values for all
three sets, including the 0.02% offset value and the failure stress and strain (Table 14). On the
other hand, the elastic properties display some more discrepancy, particularly with Poisson’s
ratio being 0.21. While the Young’s modulus can be adjusted to a value closer to the
experimental one, the Poisson’s ratio modifications would likely need improvements to the
model itself and its limitations are a common feature of other emerging mesoscopic methods
such as peridynamics (Kumar et al., 2016).
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Figure 79. Comparison of experimental and numerical stress-strain responses for tensile testing of NIMONIC 75 at
600°C.

Besides the tensile testing simulations, performed were also the unloading simulations in which
the sample was deformed in tension until the desired strain and then subsequently compressed.
The unloading modulus (Fig. 80) for each case was computed from a reduced dataset due to the
curves non-linearity. The reduction consisted of symmetric trimming of the data points with
respect to beginning and end of unloading. The percent of data removed from the dataset for
interpolation on each end was fixed for all cases. The unloading stress-strain response shown in
Figure 80 had a consistent pattern and the Young’s modulus closely matched the one obtained

with tensile simulations.
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Table 14. Elastic and plastic properties of numerical models compared with experimental data.

Young’s Yield strength, Ultimate tensile . . o
Model modulus, GPa  MPa (0.2%) strength, MPa  train to failure, %
Numerical 136.2 222.2 544.2 22.47
Exp 1 194.8 227.9 554.9 23.11
Exp 2 198.8 218.5 562.8 25.79
Exp 3 200.2 218.3 554.6 24.38
600 T T T T
Young’s modulus: 136.2 GPa
500 ¢ M _
w 400 ]
o
=
v 300 ! 1
(7)) 1 1
Q) 1 1
= i !
D 200 ! , ]
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150.6 GPa 137.4 GPa :141.3 GPa, 155.7 GPa :
100 ; , |
0 L 1 1 1 1 ’
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Figure 80. Stress-strain curves for the unloading simulations and the corresponding moduli. The sample was first
stretched in tension until the indicated strain and then compressed to zero average stress. The dashed lines represent
the interval over which the unloading moduli were obtained with a linear fit.

2.2.7.2.6. Deformation analysis

Figure 81 shows the results of the dui, analysis. During the earlier stages of plastic deformation, the
central region of the sample has low dzui» values thus the deformation is closer to continuum. In the near-
failure stages the d>min analysis indicates the position of the fracture with better agreement with continuum

below the fracture.
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Figure 81. Results of the dmin analysis in the central cross-sections of the assembly at different strains and at failure.

Results of local cage deformation analysis are shown in Figure 82 revealing localization of
deformation on shear bands. The shear bands were visualized by highlighting the elements with
local cage deformation values higher than 2.0-2.3 times the assembly mean. The angles of shear
bands and the fracture were obtained through three-dimensional fitting of a plane and are also
indicated. The fracture angle of 40° is within the range of fracture angles of NIMONIC 75.

4.5% strain 18.5% strain Failure

£45°

£248°

£76°

Figure 82. Results of the local cage deformation analysis in the assembly and its central cross-sections at
different strains and at failure. Gold/orange indicates cage deformation values more than two times larger
than the mean. Light blue indicates the particles surrounding the fracture.

2.2.7.2.7. Volume conservation

The results of volume conservation analysis are shown in Figure 83. Even though the cylindrical
region visibly contracts (Figure 83a), reduction in cross-sectional area does not compensate for
assembly elongation and the volume is not conserved (Figure 83b).
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Figure 83. a) Ideal vs. current cross-sectional area of the cylindrical region in Figure 59. b) Plastic volume
conservation as a function of axial strain with a coefficients obtained through linear interpolation of indicated
intervals.

Figure 84 shows elements with volume change that is twice higher than the assembly mean. As
expected, volume change is higher towards the interior of the assembly and lowest in the grip
region. At the same time, high volume change seems to be only partially aligned with the shear
bands shown in Figure 82.
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Figure 84. Orange elements have their local cage volume change twice larger than the assembly mean.
2.2.7.2.8. Interaction between parallel bond force and the pair-wise potential

Figure 85 shows schematic interaction between two bonded elements A and B in tension and
compression with deformation parallel to the contact normal and with no pair-wise potential. By
convention, the contact force results from element A acting on element B (Potyondy and Cundall,
2004). Similarly, the parallel bond force is the action of the parallel bond on element B
(Potyondy and Cundall, 2004). This implies that if the bond is in tension, the force on element B
is negative and the two elements attract each other. On the other hand, in compression, the force
on element B is positive and there is repulsion between elements A and B. The consequence of
this is that elements slipping past each other experiencing local compression will be

accompanied by element repulsion and a tendency to form cracks or voids quickly on slip bands.
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The presence of a supplementary pair-wise potential significantly changes this scenario.
Following the convention outlined in section 2.2.7.2.1, for elements in close proximity the pair-
wise potential on element B in both tension and compression will result in a negative force thus
introducing attraction between the two elements. This not only provides additional tensile
deformation resistance, but also promotes slip without easy crack or void formation since it
hinders the repulsion introduced by the parallel bond during compressive phases of local
deformation.

Figure 85. Parallel bond forces in tension (left) and
compression (right). Parallel bond introduces
attraction in tension and repulsion in compression.

2.2.7.2.9. Hardening mechanism

There are three major sources of hardening in this work - unbounded normal parallel bond force,
contact reorientation, and the pair-wise potential.

The unbounded normal force on parallel bonds is a consequence of constraining the bond failure
exclusively to failure in shear. The constraint, imposed by setting the normal strength of the bond
to unphysically large values, causes the bonds force to develop continuously until the shear stress
exceeds that bonds shear strength (Equation 56 - Equation 57). Only when the bond breaks in
shear and is being reformed is the normal force on it reset to 0.0. Both normal and shear forces
are reset to 0.0 and the bond is excluded from the computations if bonds gap exceeds the gap
cutoff parameter (Equation 8). If the bond orientation is such that the shear force does not
develop very rapidly or almost at all, the normal force will be able grow considerably until its
reset to 0.0 following bond breakage in shear or the bond becomes longer than the threshold and
becomes inactive. This process of load transfer to bonds aligned in strong directions is the major
source of hardening in this work, by far exceeding the latter two. Furthermore, it is even more
supported due to the deformation direction being aligned with bonds which shear force is
underdeveloped — in this case the vertical bonds. Figure 86 shows the stress-strain response of
assemblies with no pair-wise potential and three different maximum gap parameters. Except the
response for the smallest parameter, the stress-strain responses undergo hardening and the
responses are very linear which originates from linear nature of the force-displacement law. The
maximum strains are much higher in the later cases than for the shortest bond case and allow
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bonds to elongate in the vertical, deformation direction while developing a high normal force due
to negligible shear force increase.
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Figure 86. Stress-strain response for two different gap cutoff parameters in simulations without the pair-wise
potential for cases with high bond normal strength and a normal strength five times larger than the shear strength.
Stress was normalized by the stress value at the yield point.

Defining hardening per bond as positive normal force time derivative, 50.6% of total bonds
harden at the end of the tensile testing simulation, just before failure. Out of these 50.6%, 68.5%
have bond breakage frequency lower than the assembly mean in the last third of the plastic
deformation and 47.6% have breakage frequency lower than a quarter of the mean. This indicates
a direct correlation between the increasing normal force that induces macroscopic hardening
response and the lower bond breakage. Looking at the whole assembly, 68% of all bonds have
the breakage frequency lower than the mean signifying that not all the bonds with less frequent
breakage develop high normal force and contribute to hardening. This is a consequence of
heterogeneous nature of the assembly and bond orientation as different bonds carry varying
amounts of force. Similarly, not all the hardening bonds are oriented in the deformation direction,
meaning that their normal forces do not directly contribute to the axial stress.

Figure 86 shows the results of setting the normal strength of the bonds to values comparable to
shear strength using a bond stiffness dependent expression (Equation 62). The resulting
hardening rates are considerably lower than in the cases with high normal strength. This
confirms that the main source of hardening in the model was the high normal force originating
from practically unconstrained normal strength.

The second, though less impactful source of hardening is contact reorientation. Figure 87 shows
best-fit spherical harmonics to the 3D histograms of contact orientation, contact normal force,
and contact shear force. During the simulation, contact orientation changes from near isotropic to
anisotropic and vertically oriented. This is not surprising, given that contacts align themselves
with deformation direction. Figure 88 shows the normalized time evolution of anisotropy of
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contact orientation, which again confirms the transition to vertical alignment. On the other hand,
based on the 3D histograms, the normal and shear forces do not change their dominant direction
and anisotropy greatly, although based on the values in Figure 88 the changes are still

considerable.
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Figure 87. Fits of the 3D histograms of a) contact orientation, b) normal and c¢) shear forces at the beginning of the
simulation and at two different strains. Note scale change from left to right in (c).
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orientation, normal force, and shear force.

Finally, a minor hardening contribution comes also from the shape of the pair-wise potential
(Figure 77) which induces non-linear element interaction but also slight well-shaped increase of
force after the initial linear region. This is the same mechanism as described in section 2.2.7.2.8.

2.2.7.2.10. Calibration

The proposed model has a number of calibration parameters that must be considered collectively
for any given material. Meanwhile, there exist certain trends in the calibration process as well as
in the model itself that should considerably reduce the parameter fitting procedure.

The primary feature of the model relevant to calibration is that the parallel bonds and pair-wise
potential are treated as independent entities. The amount of each may range from none to any
value by setting their relative magnitudes, bond stiffnesses and pair-wise potential magnitude
factor € (Equation 72). In this work the influence of this relative contribution was measured with
the average ratio of average pair-wise potential and bond force.

When no pair-wise potential was present, the stress-strain response was purely linear as in Figure
86 and Figure 89. Hardening occurs for larger maximum gap parameters (Equation 8) and
normal bond strength higher than shear strength (Equation 62).

The pair-wise potential introduced non-linearity to the stress-strain response. As shown in Table
15, even a small amount of the pair-wise potential considerably affected the maximum strain.
Larger contribution of the pair-wise potential lead to higher Poisson’s ratios while the maximum
strain reached would decrease. The yield strain tended to remain constant though the yield stress
decreased with increasing pair-wise potential influence.

The pure pair-wise potential case displayed a bell-shape stress-strain response as shown in
Figure 89. The large contributions of pair-wise potential in the model shift the stress-strain
response from the linear parallel bond-dominated to a bell-shaped, potential-dominated one.
Large contribution of the pair-wise potential caused deviations from linear elastic behavior and
significant shifts in yield strain towards higher, unphysical values. At the same time with
increasing potential influence the Poisson’s ratio values become higher and closer to values
consistent with those observed in physical tests of metals.
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Figure 89. Normalized stress-responses for models with different contribution of pair-wise potential, F,, to parallel
bond, F,, force (F=F/F.) and pair-wise potential cut-off radius R. (in terms of mean element diameter d). The gap

cut-off parameter in the calibration models equaled 0.5d,,,, .

Table 15. Elastic and plastic properties of models with different model parameters. Stress-strain curves for all
models are shown in Figure 50. The gap cut-off parameter in the calibration models equaled 0.5d -

ID  F/F

0.0
0.2
2.0
211
0.5
2.2
211
0.04
0.38
15.5

11 1.0

SO0 ONOUAWNR

RCr dave

0.0
1.0
1.0
1.0
1.1
1.1
1.1
2.5
2.5
2.5

2.5

E, GPa

130.9
130.2
144.9
140.8
124.4
144.9
120.5
137.0
145.3
192.7

0.8

v
0.23
0.15
0.16
0.17
0.17
0.22
0.17
0.18
0.18
0.29

0.31

&y, %

0.06
0.05
0.05
0.05
0.06
0.05
0.05
0.60
0.50
0.40

5.0

oy, MPa &,,,., %

72.6
74.6
74.9
68.6
76.2
75.9
67.8
801.2
772.6
964.6

45.9

12.7
114
3.8
3.5
11.6
8.0
6.0
15.1
13.6
13.3

11.0

Omaxr MPa
136.7
135.2
147.1
450.5
143.9
164.6
479.5
1430
1549
4503

61.1

As shown in Figure 89 and Table 15, the most viable potential to bond force ratios fall in the
range of 0.1 to less than 10.0. These ratios introduce desired non-linearity while maintaining
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linearity of the elastic region. In practice, the case with no potential can serve as the first
calibration guideline as tuning the bond properties approximately determines the maximum
stress and strain reached as well as elastic properties of the sample. Further addition of the
potential will influence the plastic response depending on potential magnitude and maximum
interaction distance, R. (Equation 72-Equation 73). Selecting different R. values allows for
variable influence of the potential during the later stages of plastic deformation. Smaller R,
values will cause the potential to become negligible in the earlier stages of plasticity while larger
will maintain its influence until failure. This has a clear influence on the stress-strain response,
leaving the later part of plastic response more linear in cases with lower R. values as shown in
Figure 90. For any amount of potential influence, care must be taken that the bond strengths are
high enough to not fail in the elastic region. Once calibrated, the stress-strain response can be
scaled by proportionally changing the parallel bond stiffnesses and potential magnitude. If the
bond strengths are independent of bond stiffnesses, these also need to be scaled accordingly.
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Figure 90. Normalized stress-responses for models with different R. cutoff values compared to the model with
parallel bonds only.

2.2.7.2.11. Choice of assembly size

An important component of discrete element modeling is establishing the number of elements
needed for the minimum representative volume (MRV). MRV represents the smallest number of
elements that collectively act as a continuum. Determination of MRV commonly proceeds by
increasing the number of elements until some chosen volume-averaged metric does not change
significantly with further size increase. The MRV is then chosen as the smallest set of elements
with such response.

Figure 91 shows the stress-strain response of assemblies with four different sizes, including the
one used in this work and Table 16 shows their properties. The overall response is somewhat
similar for all four assemblies while the oscillations decrease with increasing assembly size. The
final strain reached before failure increases considerably for the smallest assembly. The largest
assembly has almost identical stress-strain response as the smaller one used here. Even though
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the response is smoother in the larger assembly, given the matching of the stress-strain curves
and doubled computational load, it is justifiable to use the smaller assembly except if higher
accuracy is needed.
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Figure 91. Stress-strain response of assemblies with different number of elements.

Based on the elastic properties of the four assemblies summarized in Table 16, the properties in
the 806 and 4,394 elements assemblies vary considerably from the larger assemblies and their
Poisson’s ratios are not reliable. The match in for the current and the larger assembly is not as
close as in the case of the plastic stress-strain response. As shown in Section 5.2.10 the deviation
in the elastic properties, especially the Poisson’s ratio is a property of this model. As it is, the
model is suited for plastic deformation with elasticity being regarded only in an approximate
sense.

Table 16. Elastic and plastic properties of models with different number of elements compared to the original model.

Number of
el;;?n:;t: E,GPa Vyy Uyy v &y, % oy, MPa &,,,% Opao MPa
806 1174  -004 008 002 0.06 160.7 46.0 639.2
4,394 172.8 032 048 040 007 133.3 29.1 5103
15,512 136.2 0.23 0.18 0.21 0.1 162.1 22.5 544.2
35,878 151.5 0.18 0.18 0.18 008 131.1 23.6 5395
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2.2.7.2.12. Reproducibility with different assemblies

The reproducibility of the model was verified with three additional models generated with
different random seeds. The plastic stress-strain response of the models compared to the original
model are shown in Figure 92 and the elastic properties in Table 17. While the plastic stress-
strain response in all the cases is almost identical, the elastic properties vary considerably.
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Figure 92. Stress strain response of the assemblies generated with different random seeds compared to the original

assembly.
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Table 17. Elastic properties of the original model and the models formed with three different random seeds. The
“large” refers to largest model used as described in Section 2.2.7.2.11. These are all interpolated over a fixed
interval.

Young’s Poisson’s ratio Poisson’s ratio Mean
modulus in xx direction in yy direction Poisson’s ratio
[GPa] [-] [-] [-]

Original seed 136.2 0.23 0.18 0.21
Seed 2 129.9 0.1 0.1 0.1
Seed 3 121.1 0.13 0.27 0.20
Seed 4 142.6 0.11 0.14 0.12
Original seed, large 151.5 0.18 0.17 0.18
Seed 2, large 142.1 0.18 0.19 0.19
Seed 3, large 139.0 0.22 0.19 0.21
Seed 4, large 135.5 0.17 0.13 0.15

A characteristic feature of these models is occasional higher anisotropy between the Poisson’s
ratio in the two lateral directions, here xx and yy. This size-dependent discrepancy diminishes in
the larger assemblies, also shown in Table 17, but the value does not necessary become similar
for all tested seeds. Both the Young’s modulus and the Poisson’s ratio seem to fall into a range
of values with a deviation that lessens with the assembly size.

Figure 94 shows some of the data and linear fits used to obtain the elastic properties. While the
data is linear for the Young’s modulus, Poisson’s ratio is often obtained from a considerably
more oscillatory dataset. This is likely a consequence of both the discrete nature of the assembly
and the presence of a pair-wise potential that varies with absolute distance rather than
incrementally reaching higher force values initially starting from zero for all the elements. Again,
the proposed model is suitable for simulation of materials plastic response and its elastic
properties should be used in an approximate sense, considering that they are represented by
intervals rather than single values. As shown in Figure 94, the datasets used for obtaining the
elastic properties are considerably more linear in case of larger assemblies. The properties for
larger assemblies shown in Table 17 also display smaller deviation. This indicates that elastic
behavior of our DEM model needs a larger minimum representative volume than the plasticity
simulations. This finding is expected since elasticity is characterized by smaller displacement
and thus needs larger resolution for quantification of these changes.

121



%107

18 T T T T T T T
| | —original seed |
16 ——seed 2
seed 3
14 ——seed 4
12 T
©
0_.‘ 10 - -
1)
o
s 8r .
)]
6 i
4+ i
21 i
0 1 1 1 1 1 1 1
-2 0 2 4 6 8 10 12 14
Strain, [-] x10™
£ i
©
)
data8
-3.5 ' : : ' : ' '
-2 0 2 4 6 8 10 12 14

Strain, [-] x10™

Figure 93. Elastic property fits for all four seeds in regular size models. The Poisson ratio plots show datapoints as
markers and fits as lines. O is the original seed and S with number indicates the random seed. Fitting was performed
in both lateral directions — xx and yy as indicated.
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Figure 94. Elastic property fits for all four seeds in large models. The Poisson ratio plots show datapoints as markers
and fits as lines. O is the original seed and S with number indicates the random seed. Fitting was performed in both
lateral directions — xx and yy as indicated.
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Appendix A. Analytic Model of Elasticity

Consider a DEM assembly that contains IV, parallel bonds per unit length, uniformly distributed
over orientation, and with an average length /. The bonds have normal and shear stiffness that
depend on orientation, &, (72), and k, (7)respectively. If the assembly is deformed with a

homogeneous strain ¢ (and one assumes that deformation of the bonds is affine) then the
displacement of a bond with orientation 7 is given by:
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and

E, (R) =k, (A)u? +~k, (A)u?
2 2 A
= (b, ()=, (D)((7-2)-8) 43K, () G -2) (i -2)
Averaging over all orientations gives the total elastic energy density:
N, ¢t nr (a
EV:4—7;J.dnEb(n) A.

The elements of the elastic stiffness tensor C,,, are given by the second derivative of the elastic

energy density so that:

O’E,

Cow =dju A
’ " 0g,0¢,

where d,,, is the multiplicity of the symmetry equivalent index combinations (so that for example
dyy =1, dyyy =2, dyy, =4, dyyy =4, and dyy 5 =8).

Switching to the notation of the reduced stiffness matrix, we can compute the stiffness element

C, by imposing a homogeneous strain state & = 771.5(") + njg(" ): the sum of two superimposed
strains with magnitudes 77; and 7, along strain directions &% and &Y. The energy density of the

assembly with this deformation is:
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Taking the second derivatives with respect to 7 gives:

C = d”f;:; lejd{k ~k)( -g"’)-ﬁ)2+ky(ﬁ-g<"))-(ﬁ-g(">)} A8
O’E,
= anon,

le RURPAYPIU I 5 0). (450
Idn[k k)Z( n)(ng ~n)+ks2(n~€ )(ng )}

Appendix B. Proof of Cubic Elasticity from Spheroid Stiffness
Distributions

Cubic elasticity requires that C;, =C,, =C,; #0, C, =C,,=C,; =C,,=C,, =C,, #0,

C,, =C =C #0, all other elements are identically zero, and that 2C,, # C,, —C,,. Each case

will be considered separately, first showing that C,,, C,,, and C,, are non-zero and independent

and then showing that C,,and C,; are identically zero. Finally, it will be shown that the

symmetry of the stiffness functions k, and k, leads to equivalence between the symmetry related
elastic constants in a cubic systems.

Demonstration that C,, is Non-zero

Considering strain path:

oS O O

0
0 B .10
0

K
Il
S O =
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and direction n parameterized by polar angle, €, and azimuthal angle, ¢, the elastic constant

C,, can be written as the integral:

2 k (0,0)—k, (6, ! in* (0
C“:]Zbl jdesin(e)jcwﬁ (£ (0:¢) 52( ¢)_)CZOS (9)sin’(9) #0 B.11
3 +k,(0,¢)cos’ (¢)sin’ (0)
Demonstration that C,, is Non-zero
Considering the additional strain path:
0 00
&=(0 1 0 B.12
0 00
one obtains:
2
C,= ]Z];lz jd@sin(@)]d;ﬁ[(kn —k, )sin’ (¢)cos® (#)sin’ (9)] #0 B .13

where the angularly dependent stiffness functions have been written simply as k and k, for the
sake of brevity.

Demonstration that C44 is Non-zero

Using the strain path:

0 0
0 1 B .14
1 0

one obtains:

_ (k, —k,)4sin’ (¢)sin’ (0)cos® (6)
J.d6’31n(l9)J.d¢ +k, (sin2 (¢)Sin2 (0)+0052 (9)) #0 B

_n
167

C44

Demonstration that Cl 418 Identically Zero
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Mixing the normal and shear deformation using the strain paths one obtains:

C14 =

The stiffness functions k,and k; are constructed to possess cubic symmetry (triad axes along

(111)) and so also posses mirror symmetry on the ¢ =0 plane. The term sin(¢)cos’ () is

antisymmetric in ¢ and so the expression integrates identically to zero.

Demonstration that C 4518 Identically Zero

Mixing shear deformations along different directions using the strain path:

one obtains:

N
=——|d@sin(0)|d
Cas 87 I sin( )I ’ +k, sin(2¢)sin® ()

In this expression, sin(2¢) is antisymmetric in ¢ and, as with C,,, the expression integrates

identically to zero.

Demonstration that C,,, C,,, and C,, are Independently Tunable

For non-isotropic elasticity one requires that 2C,, # C;, —C,,. Using the equations above:

]Xl;l; [aosin(6)[dg

C.—C, =
e +k, cos’ (¢)sin®(0)

independent.

Symmetry Relationships Between Stiffness Elements
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(k, -k, )sin(2¢)sin® (¢)cos® ()

(k, =k, )cos’ (¢)cos(2¢)sin* (0)

It can hence be seen by comparison of this with the equation for that C,,, C,,, and C,, must be

.16
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The final task is to show that if k, and k, posses cubic symmetry, then the elastic constants also

satisfy the cubic symmetry relations so that, for example, C,, = C,, = C,;. By possessing cubic
symmetry, the stiffness function is invariant under a three-fold rotation about [111] so that:

k(n)=k(n-L) B .20
where:
0 0 1
L =L3[m] =1 0 O B .21
010

is the transformation matrix for a three-fold rotation about [111] axis. Consider imposed normal
strain along y:

so that C,, is given by:

2
c, Nl

| (k, ~k, ) (8,5 +k, (i0-2,)-(7-2,) B .23

Using the symmetry relationship, we can write this in terms &, a normal strain path along x:

N | k) (A (Log L) A)

C,, =—2— [ di B .24
87 k(i (Lg - L)) (A (L& - L))
Rearranging the order of these matrix products and substituting for n'=7n-L gives:
]Vbl2 ” ] ~1)2 A A
Cp = il (k, =k, ) (&) +k, (i2,)- (3 5,) | B .25

and as k, (ﬁ) =k, (n-L)=k, (ﬁ ') and £, (ﬁ) =k (ﬁL) =k, (ﬁ'), and the integral is performed

s

over the full solid angle we see that:
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A similar approach can be used to prove the equivalence of the other symmetry related stiffness
elements; however, this is left as an exercise for the reader.

Appendix C. Comparison of Analytic Model with DEM Model

As with the DEM simulation, a simple method for identifying the accessible elastic domain using
the analytical model is to randomly sample the parameter space and plot the resulting cloud of
elastic properties. The results are shown in Figure Fig. C.1(a). It can be seen that the domain is
remarkably similar to that which is accessible by the DEM model presented in Figure 8. Also
shown in Fig. C.1(b) is the deviation between the analytic model and the DEM model in both

C,/C, and C,, /C,, for the case where Z>1. It can be seen that deviation of the models is

lowest in C,, / C,, for high @, and the reverse for C,,/ C,,. It we assume that the deviation

between the analytic and DEM models is due to the non-affine internal deformation in the DEM
model, then we can see that an optimal choice of model parameters is to choose anisotropy

factors a, and a, as close to 1 as possible, and choosing @, to minimize the non-affine
deformation of the assembly.

(b) Deviation between analytic and DEM models

~-L

60 01 02 03 04 05 06

Cy2/Cy4

Cyp, Z>1 -0.2 0 +0.2 Cusy Z>1

Figure C.1: (a) Domain of elasticity space accessible by spheroid based stiffness interactions demarked by plotting
the elasticity from 10,000 randomly sampled points in the input parameter space. The blue and gold data is for the
model using stiffness functions used in the DEM model, and it can be seen that the accessible domain is similar to
the at in Figure 8 for the DEM model. The purple and orange data is generated using stiffness functions ad before
but with the addition of correction terms from the addition of spheroids aligned along the <110> directions. (b)
Deviation between the analytic model and DEM simulations plotted at 500 randomly sampled points of the log
normalized input parameter space. Red is zero deviation.
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Appendix D. Insights for expanding the accessible domain of
elasticity

The accessible domain of elasticity space is enclosed in one direction by a line of constant Zener
ratio and in the other by the Cauchy relationship C,, = C,,. The boundaries of accessible space

of the DEM model are parallel to those of the analytic model, but while both models can achieve
similar levels of elastic anisotropy, the DEM model can access a region considerably to the right

of the C,, = C,, boundary of the analytic model. That is, the analytic model cannot produce
values of C,, —C,, > 0. To examine how the angular distributions of bond stiffness could be

revised to push past the boundaries in Z and C,, —C,,, we can examine the integral equations
that give rise to these quantities. The Zener ratio is given by:

Idn 2.k, + x.k,)
1- C12 jdn vk, + 7 k)

s

Z = D .27

where the tilde denotes the dimensionless elastic stiffness element normalized by C,, and the

functions y and y are

2, =sin’ (20)sin’ (¢)

%, =cos®(0)—sin’ (6)(2cos(260)+1)sin’ (4)
7, =2sin* (8)cos’ (¢)cos(2¢)
y, =-2sin’ (0)<:os2 ((é)(sin2 (0)005(2¢) —1)

If we consider just the case for the Z > 0 model in which k, peaked along (111) and k; along

<100>, then to push the boundaries in Z, we wish to maximize the numerator of Z while

minimizing its denominator. That is we wish to maximize the overlap of » and k in the
numerator, and minimize overlap of » and & in the denominator. The functions y and y are
plotted overlain with their respective stiffness functions in Figure D.1. From these figures it is
clear that Z could be increased if k,was altered so that bonds were stiffer for normal

displacements along the <1 10> directions, and that k, was varied to make bond softer in shear
along (110). With the spheroid-based forms of k,and &, it is not possible to independently tune
the stiffness of the <1 10> directions, and thus the model predicts that the best next iteration of a

stiffness function would include the flexibility to tune the stiffness in these directions as well. In
the complementary direction the distance from the C,, = C,,boundary is given by:

C12 C Jdl/l n n é/s 5) D 29
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where:
¢, =2sin’(0)sin’(¢) (sin2 (6)cos® (¢)—cos’ (0))

¢ = %(sin" (0)(~sin’ (24))+sin’ (0)(2c0s(20)+1)sin’ (¢)—cos’ (0)) P
These are also plotted in Figure D.1. The function {, has maxima along the <1 10> directions,

but is antisymmetric, and so the overlap with k, integrates to zero. The term ¢ is negative for

all directions, and so the integral of its overlap with £ is also negative. This means that not only

is (~712 - (~,’44 always less than or equal to zero, there is no change that can be made to the stiffness
functions that will make C”u —(:”44 >0 while still possessing cubic symmetry in k, and k,. This

makes it all the more remarkable that the DEM model is able to obtain values of 612 -C L 1N

excess of 0.1. We attribute this to a not overly redundant bond network permitting non-affine
deformation of the assembly.

Z>1 Overlap with k, Overlap with kg

Numerator of Z
Maximize overlap

Increase k;, along (110) Overlap already large

kn

Denominator of Z:
Minimize overlap

Overlap already small Decrease kg along (110)

Cio—Cyy
Maximize overlap

Overlap antisymmetric Overlap is negative
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Figure D.1: The overlap kernels for the integrals for F and él 5= C 44 for the Z model. Bond stiffness functions are

plotted as a translucent green surface. For the other function positive values are plotted in gold, and negative values
in blue. The left-hand column is for the integral of the normal stiffness, and the right column for the shear stiffness.
The top row is for the kernels in the integrals of the numerator of Z, the middle row for the terms in it denominator.
Expanding the boundary of the accessible domain in Z requires maximizing the top row and minimizing the middle

row. The bottom row shows the kernels of the integrals in é’l ) é’ 44+ The integral over kn is identically zero by
symmetry, and as function weighting the integral over kS is everywhere negative C12 -C S 0, and there is no

change to the stiffness functions consistent with the cubic symmetry that will ever make Clz -C 44 DoSItIVE.
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