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Disclaimer 
This report was prepared as an account of work sponsored by an agency of the United States 
Government.  Neither the United States Government nor any agency thereof, nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 
product, or process disclosed, or represents that its use would not infringe privately owned rights.  
Reference herein to any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any agency thereof.  The 
views and opinions of authors expressed herein do not necessarily state or reflect those of the 
United States Government or any agency thereof. 

 

Abstract 
The report describes the development of a discrete element method (DEM) based modeling 
approach to quantitatively predict deformation and failure of typical nickel based superalloys. A 
series of experimental data, including microstructure and mechanical property characterization at 
600°C, was collected for a relatively simple, model solid solution Ni-20Cr alloy (Nimonic 75) to 
determine inputs for the model and provide data for model validation. Nimonic 75 was 
considered ideal for this study because it is a certified tensile and creep reference material. A 
series of new DEM modeling approaches were developed to capture the complexity of metal 
deformation, including cubic elastic anisotropy and plastic deformation both with and without 
strain hardening. Our model approaches were implemented into a commercially available DEM 
code, PFC3D, that is commonly used by engineers. It is envisioned that once further developed, 
this new DEM modeling approach can be adapted to a wide range of engineering applications.  
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1. Executive Summary 
This project developed a novel discrete element method (DEM) based modeling approach to 
quantitatively predict deformation and failure of nickel-based superalloys. Ni-based superalloys 
are important for a wide variety of power generation systems, including industrial gas power 
turbines, advanced ultra-super critical steam turbines, nuclear reactors, and aerospace turbine 
engines. A potential advantage of DEM when modeling deformation and failure originates from 
its stochastic formulation that naturally captures local microstructure and property variations 
because heterogeneity is an integral part of DEM assemblies. This presents a potential 
opportunity for DEM to simulate failure processes in a more spontaneous and realistic manner 
than continuum-based approaches. While the technical effectiveness of the model is not currently 
ready for widespread use, this project demonstrated an important first step and proof of principle. 
Feasibility was considered by incorporating our model into a commercially available DEM code, 
PFC3D v5, that is commonly used by engineers. It is envisioned that once further developed, this 
new modeling approach can be adapted to a wide range of engineering applications.  

2. Project Accomplishments and Summary of Activities 
This is the final report submitted for this project. The scope of this project was to create and 
validate a discrete element method (DEM) based modeling approach to quantitatively predict 
deformation and failure of typical nickel-based superalloys. The project ended on December 31, 
2017 after a no-cost extension was requested and granted because of delays that were incurred 
because 1) we were not able to hire the post-doctoral scholars until midway through the first 
quarter and 2) one post-doctoral scholar left the project early. The no-cost extension allowed Dr. 
Agnieszka Truszkowska to complete the project.   
Table 1 summarizes the status of the project milestone objectives for the final report, and 
progress against those milestones. The table is followed by a discussion of the project 
accomplishments and activities. The report will describe the experimental data that was collected 
for determining inputs for the model, the data that was collected for validation of the model, and 
finally a description of the model development and validation against experimental data.   

Table 1 Milestones 

Milestone Description Planned 
Completion 

Date 

Actual 
Completion 

Date 

Status 

Microstructure and material 
parameter inputs for model have 
been determined. 

12/31/16 12/31/17 Complete  

DEM model developed and 
validated  

12/31/16 12/31/17 Complete for anisotropic elastic 
single crystals and isotropic non-
hardening and hardening plasticity. 
Polycrystal and creep behavior are 
still being developed. 
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2.1. Microstructure and material parameter characterization 

 Model Nickel Based Superalloy Nimonic 75 
We selected a relatively simple, model solid solution Ni-20Cr alloy (Nimonic 75). Nimonic 75 is 
ideal for this study because it is a certified tensile and creep reference material (Gould and 
Loveday, 1990; Ingelbrecht and Loveday, 2000), and we acquired certified rods of material from 
LGC Standards. The as-received microstructure did not have the expected microstructure of 
grain boundary carbides, so we annealed the as-received Nimonic 75 at 600 °C for 400 hours to 
observe the microstructure evolution. The annealed microstructure has been characterized and 
compared with the as-extruded microstructure by optical microscopy (OM), scanning electron 
microscopy (SEM), energy dispersive x-ray spectroscopy (EDS), and electron backscatter 
diffraction (EBSD). 

 Qualitative Microstructure and Phase Identification 
Figure 1 shows the optical microscopy comparison of the microstructures before and after 
annealing. It is found that the number of intergranular carbides is significantly increased after the 
annealing treatment to give the expected microstructure for Nimonic 75. Figure 2 shows the 
phase identification by SEM/EDS mapping. Three phases exist in the as-received state (Figure 
2a): Ni-20%Cr matrix phase (Circle A), inter- & intra-granular Cr-rich carbides (Arrows B) and 
large polyhedron-shaped Ti nitrides (Arrow C). After heat treatment, Cr-rich carbides (Arrows B, 
Figure 2a) changes to CrMn-rich carbides (Arrows B, Figure 2b) and they are mostly distributed 
along the grain boundaries. The Ti nitride phase (Arrow C, Figure 2a) changed to TiCrMn 
carbonitride (Arrow C, Figure 2b). 
 

  

(a) (b) 

Figure 1. Optical microstructure of Nimonic 75 on three orthotropic planar sections: (a) as-received; (b) annealed at 
600 °C for 400 hours.   
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Figure 2. Phase identification by SEM/EDS mapping: (a) as-received; (b) annealed at 600 °C for 400 hours.   

 Intergranular and Intragranular Carbides 
As shown in Error! Reference source not found.a, before annealing the carbides are found 
more frequently inside grains and twins rather than at boundaries. Intergranular carbides are 
sparsely distributed along grain boundaries (GBs) and triple junctions (TJs). Carbides can also be 
found at twin fronts (TFs) and coherent twin boundaries (TBs), but are few in quantity. After 
annealing (Error! Reference source not found.b), carbides are observed most frequently at the 
grain boundaries. Carbides at twin fronts (TFs) and twin-grain boundaries (TGBs) also 
significantly increase in number with fewer found at coherent twin boundaries (CTBs). Carbides 
can also be found at twin-twin boundaries (TTBs), which is rarely observed before annealing.  

 
Figure 3. SEM observation of carbides before (a) and after (b) annealing at 600 °C for 400 hours. 
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 Grain Boundary Segregation 
Figure 4a shows a HR-STEM EDS mapping of a triple joint in the as-received state. No chemical 
segregation in shown at grain boundaries but a small decrease of Ni and a small increase of Cr 
are shown at the triple joint. Figure 4b shows a HR-SEM EDS mapping of special grain 
boundaries after annealing treatment. The special grain boundary has a misorientation of 30°/<1 
1 1>, which is vulnerable to creep void initiation (Zhang and Field, 2013).  

 
Figure 4. (a) HR-STEM EDS mapping of a triple joint in the as-received state. (b) HR-SEM EDS mapping of special 
grain boundaries (30°/<1 1 1>) after annealing at 600 °C for 400 hours. 

 Statistical Quantification of Grain Size and Orientation 
Statistical quantification of the microstructure was obtained by EBSD mapping (Figure 5). 
Distributions of grain size & shape (Figure 6), grain orientation (Figure 7), and grain boundary 
misorientation (Figure 8) have been generated for both the as-received and annealed states. 
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Grain size and shape distributions do not change after annealing treatment if twins are not 
considered. Annealing twins may grow by recrystallization as indicated by the slight increase of 
small grain area in Fig. 6a. From the pole and inverse pole figures (Figure 7), a weak FCC <1 1 
1>-<1 0 0> fiber texture is shown in the material. The texture is further weakened after annealing 
treatment. The misorientation distribution of grain boundary shows slight decreases of 60° <1 1 
1> (∑3) primary and 40°/<1 0 1> (∑9) secondary twin boundaries (TBs). This is likely ascribed 
to the coalescence of coherent twin boundaries during the growth of annealing twins. The 
measured grain size distribution enables our polycrystal tessellation described later in the report.   

 
Figure 5. Crystal orientation map obtained by EBSD: (a) as-received; (b) annealed at 600 °C for 400 hours. 

 
Figure 6. Grain size and grain shape distributions: (a) as-received; (b) annealed at 600 °C for 400 hours. 
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Figure 7. Grain orientation distribution: (a) as-received; (b) annealed at 600 °C for 400 hours. 

 

 
Figure 8. Grain boundary misorientation before and after annealing: (a) misorientation axis distribution; (b) 
misorientation angle distribution.   

 Elastic-Plastic Behavior of Nimonic 75 Subjected to Monotonic Tension at 600 ºC 
Quasi-static monotonic tension experiments for Nimonic 75 were conducted across a wide range 
of strain rates at the temperature of 600 ºC. The short-term elastic-plastic behavior of the 
material and its sensitivity to strain rate were evaluated. Critical parameters for DEM model 
input were determined, including polycrystalline Young’s modulus and proportional limit, and 
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single-crystal critical resolved shear stress (CRSS). In addition, we have identified important 
features of visco-plastic deformation, work hardening, and dynamic softening. The detailed 
results are presented in the following sections. 

2.1.6.1.Materials and Experiments 
We annealed the as-received certified reference material Nimonic 75 at 600 °C for 400 hours to 
obtain the desired microstructure of grain boundary carbides. A dog-bone cylinder-shaped testing 
specimen was designed for the high-temperature tension experiment. The geometry and 
dimensions of a typical tensile testing specimen are shown in Figure 9a. The gage section and the 
grip section of the high-temperature testing specimen were designed to be long enough to allow 
the usage of the induction heating copper coil (Figure 9b). Epsilon 3448 high-temperature 
extensometer with a gage length of 25 mm was used to measure the engineering strain (Figure 
9b). Three K-type thermocouples were attached on the specimen surface by spot welding at three 
locations in the gage section: the midpoint, 12.5 mm above the midpoint, and 12.5 mm below the 
midpoint (Figure 10a). Before each test, the induction copper coil was tuned to ensure a uniform 
temperature distribution within the gage section (Figure 10b).  
 

  
(a) (b) 

Figure 9 (a) Geometry and dimension of tensile testing specimen; and (b) the experimental setup for monotonic 
tension at high temperature. 
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(a) (b) 

Figure 10. (a) High-temperature tensile specimen and conduction copper coil to heat up the specimen. (b) 
Verification of uniform temperature distribution within the gage section. 

Monotonic tension was applied by position control at four constant speeds: 0.001 mm/s, 0.01 
mm/s, 0.1 mm/s, and 1 mm/s. Load and position signals were recorded by the load frame. The 
engineering strain was measured by high-temperature extensometer. After heating up to 600 ºC, 
each specimen was loaded up to a tensile strain of 10% and unloaded. The choice to unload the 
specimen at a tensile strain of 10% is to prevent contact of the extensometer arms with the 
induction heating coil when the arms open during tension. After the experiment was completed, 
the actual strain rate was calculated from the measured engineering strain. For each strain rate, 
we conducted two tests to evaluate the repeatability.  

2.1.6.2.Experimental Results 
Figure 11 presents the stress-strain response of Nimonic 75 monotonically tensioned at 600 ºC 
across four strain rates: 1.70×10-5 /s (Figure 11a), 1.45×10-4 /s (Figure 11b), 1.43×10-3 /s (Figure 
11c), and 1.43×10-2 /s (Figure 11d). True stress and true strain were also calculated and plotted in 
Figure 11as well. The true stress and true strain are calculated from the engineering stress and 
engineering strain using the simple relations: 

 Equation 1 
 

 Equation 2 
 

where  and  are engineering stress and engineering strain, respectively.  and  are true 
stress and true strain, respectively. In Figure 11a-d, an inset that magnifies the initial yielding 
region of the stress-strain curve is embedded. From Figure 11, the strain rate effect on the elastic-
plastic behavior of the material can be clearly observed.  

( )eS += 1s
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2.1.6.3.Polycrystalline Young’s Modulus, Proportional Limit, and Single-Crystal Critical 
Resolved Shear Stress (CRSS) 

Young’s modulus can be experimentally determined by dynamic or static methods. Dynamic 
modulus can be obtained from a specimen vibrated in the flexural mode. Static modulus can be 
defined as the slope of a straight line that best fits the linear elastic portion of the stress-strain 
curve, which is obtained from specimen subjected to monotonic tension at a quasi-static loading 
rate. Since static and dynamic methods are associated with isothermal and adiabatic processes, 
respectively, dynamic modulus is slightly greater than static modulus, being ~0.2% greater at 
room temperature and ~1% greater at 1000 °C (Betteridge and Heslop, 1974). The proportional 
limit represents the termination of the linear elastic portion of the stress-strain behavior and is an 
indication of the onset of plastic deformation. There is no universal mathematical method to 
determine the proportional limit. 
To reliably determine the Young’s modulus and the proportional limit from the experimental 
data, we have proposed the following analytical procedure. We linearly fit the stress-strain data 
in a section starting from zero stress to a “high-bound” stress level using the least squares 
method. The slope of the least square regression line is calculated as Young’s modulus for this 
stress-strain section. The coefficient of determination (R2) that indicates how well data fit the 
regression line can be calculated as: 

 

 

Equation 3 

where  is the fit value and  is the mean of the data in the fitting section. By fixing 

the starting point (zero stress) and increasing the “high-bound” stress level, we fit a series of 
stress-strain sections and obtain the regression line slope and the R2 as a function of the 
increasing “high-bound” stress level. As a higher R2 indicates better fitting, the “high-bound” 
stress corresponding to the highest R2 is thus taken as the proportional limit. The associated slope 
of the regressed line is taken as the Young’s modulus of the material tested at the specific 
loading condition. 
Based on the analytical procedure described above, the determination of Young’s modulus and 
proportional limit for Nimonic 75 tested at 600 ºC is illustrated in Figure 12. The Young’s 
modulus and proportional limit corresponding to each strain rate are summarized in Table 2 and 
Figure 14a. It is found the strain rate effects on the Young’s modulus and proportional limit are 
trivial. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 11. Stress-strain response of Nimonic 75 tested under monotonic tension at 600 ºC: (a) strain rate of 1.70×10-

5 /s; (b) strain rate of 1.45×10-4 /s; (c) strain rate of 1.43×10-3 /s; (d) strain rate of 1.43×10-2 /s; (e) engineering stress-
engineering strain responses for all four strain rates in one plot; (f) true stress-true strain responses for all four strain 
rates in one plot. 
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(a) (b) 

  
(c) (d) 

Figure 12. Young’s modulus and proportional limit determined by finding the maximum value of the coefficient of 
determination (R2) as a function of the “high-bound” stress level in the fitting section: (a) strain rate of 1.70×10-5 /s; 
(b) strain rate of 1.45×10-4 /s; (c) strain rate of 1.43×10-3 /s; (d) strain rate of 1.43×10-2 /s.  

 
Table 2. Polycrystalline Young’s modulus, proportional limit, and single-crystal CRSS for Nimonic 75 subjected to 
monotonic tension at 600 °C. 

Strain Rate (/s) Young’s Modulus 
(GPa) 

Proportional Limit 
(MPa) 

Single-Crystal 
CRSS (MPa) 

1.70×10-5 151.58 217.60 24.07 

1.45×10-4  170.49 208.84 23.10 

1.43×10-3 175.62 212.18 23.47 

1.43×10-2 154.15 216.92 23.40 
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In (Akhtar and Teghtsoo, 1971), the critical resolved shear stress (CRSS) for single-crystal Ni-Cr 
alloys with different compositions was measured as a function of increasing temperature (up to 
620 K). It was concluded that for all Ni-Cr compositions, CRSS decreases with increasing 
temperature. Above 500	K, the CRSS becomes nearly independent of temperature.  The trend of 
CRSS versus the temperature is seen in Figure 13a. In Figure 13, the CRSS at 0 K is denoted as 

. The CRSS above 500 K is referred to as the plateau stress . Figure 13b shows how we 
deduced the CRSS for single-crystal Ni-20Cr alloy to be 36.8 MPa and 23.1 MPa at room 
temperature (strain rate = 1.66×10-4) and 600 ºK (873 ºK) (strain rate = 1.45×10-4), respectively, 
by interpolating the data for the various Ni-Cr compositions.  
CRSS is thought to be dependent on strain rate. To estimate the single-crystal CRSS at various 
strain rates, we propose a way to assess the strain-rate sensitivity of single-crystal CRSS via the 
strain-rate sensitivity of the polycrystal proportional limit. We assume a structural relationship 
exists between single crystal CRSS and polycrystal proportional limit  

 Equation 4 
 

where  is the Taylor factor and is known to be 3.06 for FCC material having random texture. 
 denotes the strengthening factor that accounts for the grain-size hardening effect (Hall–Petch 

relation) and precipitation hardening effect. As the CRSS (23.1 MPa) for Ni-Cr alloy was 
measured at a strain rate of 1.66×10-4 /s in (Akhtar and Teghtsoo, 1971), the structural factor can 
be estimated by the polycrystalline proportional limit  (208.84 MPa) measured at 
1.45×10-4 /s in our monotonic tension experiment. Thus, the value of  can be estimated to 
be 9.04. Consequently, an estimation of single-crystal CRSS can be acquired by applying the 
structural relationship (Equation 4) on the polycrystalline proportional limit, which is 
summarized in Table 2 and Figure 14b. 
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(a) (b) 

Figure 13. Comparison of Young’s modulus and proportional limit at RT and 600 °C with those in literature: (a) 
Young’s modulus; (b) proportional limit. 

 

  

  
(a) (b) 

Figure 14. Strain rate effects on the polycrystalline Young’s modulus and proportional limit (a), and the estimated 
single-crystal critical shear resolved stress (CRSS) (b) for Nimonic 75 subjected to monotonic tension at 600 ºC.  

2.1.6.4.Features of Visco-Plastic Behavior, Work Hardening and Dynamic Recovery 
Figure 15a presents the true stress-true plastic strain curves for all the four strain rates. The 
plastic strain is calculated by subtracting the elastic part from the total strain. A detailed 
examination of the stress-plastic strain curves for all four strain rates reveals that the entire 
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plastic deformation (up to total strain of 10 %) of the material consists of two stages: Stage I–a 
plastic flow plateau following immediately the initial yielding, and Stage II-a power-law plastic 
flow with strain hardening rate being gradually decreased. A schematic of this two-stage plastic 
flow is illustrated in Figure 15b.  
To capture the feature of Stage-I plastic plateau, two parameters are identified: plateau stress 
( ) and plateau strain range ( ). The plateau stress ( ) sets the stress level of 
the perfectly plastic flow. The plateau strain range ( ) indicates the plastic strain range 
during which the plastic plateau occurs and can serve as an indication of the starting of the 
Stage-II plastic deformation. The strain-rate dependence of  and  is summarized in 
Table 3 and Figure 16. It is visualized that as the strain rate is increased, the plateau stress 
decreases. A similar trend exists for the plateau strain range up to the strain rate of 1.43×10-3 /s. 

 

  
  

Figure 15. (a) True stress-true plastic strain curves for Nimonic 75 tested under monotonic tension at 600 ºC; (b) 
schematic of two-stage visco-plastic behavior.  

 

Table 3. The plateau stress (𝜎Plateau) and plateau strain range (∆𝜀Plateau) during Stage-I plastic plateau for Nimonic 75 
subjected to monotonic tension at 600 °C. 

Strain Rate (/s) Plateau Stress,  (MPa) Plateau Strain Range,  (%) 

1.70×10-5 245.00 0.687 

1.45×10-4  225.26 0.397 

1.43×10-3 220.00 0.308 

1.43×10-2 218.57 0.399 
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Figure 16. Strain rate effects on plateau stress (𝜎Plateau) and plateau strain range (∆𝜀Plateau) during the Stage I plastic 
plateau.  

 
Figure 15a shows that a power-law relation exists between the stress and plastic strain during 
Stage-II plastic deformation. The description using Ramberg–Osgood relationship (Ramberg and 
Osgood, 1943) seems simple and straightforward. However, the Ramberg–Osgood relationship is 
purely phenomenological and does not reflect any physical mechanism. Fundamentally, the 
plastic flow is accommodated by dislocation slip. During plastic deformation, multiplication and 
accumulation of dislocations can lead to strain hardening. Particularly for hot deformation, the 
net increase of dislocation is essentially contributed by two competitive processes: dislocation 
accumulation and dislocation annihilation, which reflect the strain hardening effect and the 
dynamic recovery effect, respectively. Therefore, to appropriately account for the physics behind 
Stage-II plastic deformation, a model that inherently quantifies the evolution of dislocations, 
such as the Kocks-Mecking constitutive equation (Kocks and Mecking, 2003), is more promising.  

 Strain Rate Effects on the Serration Plastic Flow of Nimonic 75 at 600 ºC  
Analysis on the serrated plastic flow for Nimonic 75 based on the experimental tensile data is 
presented here. This is important since the stick-slip behavior of serrated flow can be captured 
and simulated with the DEM model; indeed, serrations often emerge from our model 
formulation. Figure 17a displays the true stress-true strain curves for Nimonic 75 alloy subjected 
to monotonic tension at 600 °C at strain rates from 1.70 × 10-5 s-1 to 1.43 × 10-2 s-1. For better 
data visualization, the stress-strain curves are shifted along the strain axis. A glance at the stress-
strain curves shows serrated flow appears at all the investigated strain rates. Different serration 
types are summarized in a serration map as a function of strain rate and strain (Figure 17b).  A 
general trend of early-stage serration type changing from Type A+B to Type C can be readily 
visualized from Figure 17b.  This trend is consistent with the documented Portevin-Le Chatelier 
(PLC) effect for various solid solution alloys (Rodriguez, 1984; Yilmaz, 2011; Zhang et al., 
2017). A detailed identification of serration types for different strain rates will be described in 
the following.   
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Figure 17. (a) True stress-true strain curves for Nimonic 75 alloy subjected to constant-strain-rate tension at 600 °C; 
(b) schematic map showing variation of serration type with respect to the strain rate and strain; (c)-(f) identified 
serration types at strain rates of 1.43 × 10-2 s-1, 1.43 × 10-3 s-1, 1.45 × 10-4 s-1, and 1.70 × 10-5 s-1, respectively.   

At a high strain rate of 1.43 × 10-2 s-1 (Figure 17c), the material macroscopically yielded at a 
point with a strain of 0.0015 and a stress of 215.7 MPa. Afterwards, stable plastic flow with low 
strain-hardening rate (Δσ/Δε≈1477.1 MPa) occured until an abrupt stress rise was detected at a 
strain of 0.0037 (point a in Figure 17c). The stress rise was composed of two stages. During the 
first stage, the stress increased rapidly (Δσ≈9.4 MPa) until a yielding point b was reached.  A 
second stress increment (Δσ≈3.1 MPa) was followed until a peak stress (point c in Figure 17c) 
was reached. It is noted that although the second-stage stress rise is smaller than that in the first 
stage, the strain hardening rate in the second stage is much higher, comparing Δσ/Δε≈17075.2 
MPa for the first stage and Δσ/Δε≈20241.5 MPa for the second stage.  The two-stage stress rise 
reflects the aging effect caused by solute clusters diffusing to mobile dislocations. This solute 
aging effect reached to a maximum degree at the peak point c (Figure 17c), where dislocation 
was pinned in the solute cloud. Right after the peak stress, the stress dropped extremely rapidly, 
bringing the stress back to slightly above the general level of the stress-strain curve. The stress 
drop is believed to be associated with the release of the pinned dislocation. The amount of stress 
drop might be used to indicate the accumulated obstacle effect to the moving dislocation arisen 
from the forest dislocation and the solute cloud. The previous observed stress rise and stress drop 
behavior describes a typical Type A serration. The reason why we designate Type A+B to this 
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serration event in Figure 17c is based on the fact that small oscillation of stress was observed 
prior to, during, and after the stages of stress rise and stress drop even at the very beginning of 
the serrated plastic flow. Such a secondary Type-B stress oscillation accompanying the primary 
Type-A serration becomes more obvious with more accumulation of strain (Figure 17c).   
When the strain rate is controlled at a lower value of 1.43 × 10-3 s-1, serrated flow was detected 
by the stress drop at a strain of 0.0019 (point a in Figure 17d). A stress rise followed immediately 
after the stress drop. The strain hardening rates of the stress drop and the stress drop were of the 
same order. Sequences of stress drop and stress rise followed successively, appearing to oscillate 
about the general level of the stress-strain curve. This is a typical Type-B serration behavior. We 
found that such a Type-B serration terminated at a strain of 0.035 (point b in Figure 17d), where 
the stress-strain curve exhibited an abrupt stress drop followed by a gradual stress rise turning 
the stress back to the general level. According to the documented serration shapes, the serration 
changed from Type B to Type C at point b.  It is noted that Type C serration did not occur 
continually. Instead, there is a strain interval between two sequential counts of Type-C “tooth,” 
in which one stress drop and one stress rise are included. What’s more, stress oscillation in small 
magnitude was present in the stress-strain curve between two sequential Type-C “teeth.”  
Therefore, we identify the serrated flow after point b to be of Type C+B.   
At a low strain rate of 1.45 × 10-4 s-1, serrated flow started with a detection of stress drop at 
0.0018 strain (point a in Figure 17e). The following stress rise brought the stress back to the 
general level stress-strain curve. Subsequent stress drop and stress rise follow the same fashion 
and occur continuously. Therefore, a typical Type C serration was identified after the onset of 
the serrated flow at this strain rate. At a strain of 0.018 (point b in Figure 17e), the continuous 
Type C serration, where one Type-C “tooth” is followed by the other, breaks. Instead, a Type 
C+B serration behavior similar to the later stage of serrated flow at the strain rate of 1.43 × 10-4 
s-1 was observed. The general trend of the serration-type changing from Type C to Type C+B 
was identified for the strain rate at 1.70 × 10-5 s-1 as well. But there exist two importance features 
for the strain rate of 1.70 × 10-5 s-1, making it different from the case at strain rate of 1.45 × 10-4 
s-1.  First, the general locus of the stress-strain curve in the initial Type C serration stage shows a 
near-zero strain hardening rate. This mechanical response is very similar to the yield plateau 
caused by Lüder’s band propagation often observed in mild steel. However, in annealed mild 
steel, a typical inhomogeneous plastic deformation always starts with an upper yield stress 
signifying the termination of the elastic deformation, and proceeds at a decreased stress level 
known as the lower yield stress. In the current case (Figure 17f), there is no upper yield stress for 
the onset of inhomogeneous deformation. In addition, all the stress jumps and drops are below 
the general locus of the stress-strain curve (Figure 17f). Second, at the transition strain where 
serration changed from Type C to Type C+B, the strain hardening rate of the general stress-strain 
locus increased abruptly and gradually decreased with the increasing strain. This is different 
from the strain rate at 1.45 × 10-4 s-1, where a continuity of strain hardening exists at the 
transition strain from Type C serration to Type C+B serration (see Figure 17e).   
As consequence of the interactions between mobile dislocations and solute atoms, mobile 
dislocations can become pinned by the solute atmosphere when sufficient solute concentration is 
reached. Macroscopically, the pinning event is detected when a peak stress is reached during the 
stress rise segment. With the aid of additional applied stress, the pinned dislocations can 
overcome the barrier energy and move freely, resulting in a rapid stress drop. Therefore, we 
consider the stress drop as the most important macroscopic parameter that is directly correlated 
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to the dynamic strain aging effect caused by the interaction between mobile dislocations and 
diffusing solutes. In this regard, we extract the stress drop ∆σ9:;< from the serrated flow and 
investigate its variance with respect to increasing strain in different types of serrated flow in our 
material.   

Stress drop ∆σ9:;< is defined as the difference between the local maximum stress (peak stress) 
and its successive local minimum stress. For a Type A+B or Type C+B serration where a mixing 
of Type B serration is present, a primary ∆σ9:;< (for Type A or C) is distinguished from a 
secondary ∆σ9:;<, which is lower in magnitude and represents the stress drop associated with the 
mixed Type B serration. The definitions are schematically illustrated in Figure 18a. The 
variations of stress drop with respect to the increasing strain at various strain rates are 
summarized in Figure 18b-Figure 18e. As the original ∆σ9:;< data (see the marks in Figure 18b-
Figure 18e) are scattered within certain ranges, we smooth the data into trend lines (see the solid 
lines in Figure 18b-Figure 18e) using the moving average algorithm.   

 
Figure 18. Variations of stress drop with respect to the increasing strain at various strain rates: (a) schematics 
illustrating the definitions of stress drops in different types of serrations; (b)-(e) stress drops at strain rates of 1.43 × 
10-2 s-1, 1.43 × 10-3 s-1, 1.45 × 10-4 s-1, and 1.70 × 10-5 s-1,  respectively.   
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For the high strain rate of 1.43 × 10-2 s-1 (Figure 18b), the primary Type A ∆σ9:;< increases 
continuously from ~6 MPa at the onset of serration to a saturation value of ~11 MPa at the strain 
of 0.06. Likewise, such a trend is exhibited in the secondary Type B ∆σ9:;<, where it initially 
increases from a small magnitude of 0.5 MPa and approaches to saturation (~4 MPa) at 0.06 
strain. For the higher strain rate of 1.43 × 10-3 s-1 where Type B followed by Type C+B serration 
is exhibited, the Type B  ∆σ9:;< increases slowly from a magnitude of 4 MPa to a strain of 
0.03%, at which a rapid increase of ∆σ9:;< was continued until it reaches ~9 MPa at a transition 
strain of 0.035. In the subsequent Type C+B serration flow, both the primary and secondary 
∆σ9:;< stay almost unchanged at 10 MPa and 0.5 MPa, respectively. For the two lower strain 
rates of 1.45 × 10-4 s-1 and 1.70 × 10-5 s-1 (Type C serration followed by Type C+B), some 
common observations are obtained: (1) the ∆σ9:;< is continuous at the transition strain at which 
serration type changes from Type C to Type C+B the early-stage; (2) secondary ∆σ9:;< in the 
Type C+B serration is insensitive to the strain and remain in small magnitudes 1~2 MPa in 
average. However, there exists an important difference between these two strain rates. At the 
strain rate of 1.45 × 10-4 s-1, the Type C ∆σ9:;< increases monotonically from ~6 MPa to ~15 
MPa in the entire strain range.  However, at the strain rate of 1.70 × 10-5 s-1, ∆σ9:;< oscillates 
between 6 MPa and 10 MPa in the Type C stage. When the serrated flow enters the Type C+B 
stage, the primary ∆σ9:;< only exhibits a very small increasing from 9 MPa to 10.5 MPa. It is 
noticed that such an increasing trend is visualized from the average trend line. Actually, the 
scattering of the primary ∆σ9:;< during this stage is much higher than that shown in the strain 
rate of 1.45 × 10-4 s-1.   

As described above, the ∆σ9:;< in Type B and Type C serrations (except for the slowest strain 
rate of 1.70 × 10-5 s-1) shows a general positive correlation to the increasing strain. The same 
trend applies for the primary ∆σ9:;< in Type A+B and Type C+B serrations. This common 
observation signifies that the collective pinning strength (or the aging effect) exerted to the 
mobile dislocations by the solute cloud and the obstacle defects (majorly immobile forest 
dislocations in our alloy) becomes aggregated. This is likely attributed to the fact that the 
immobile dislocations are multiplied as the material undergoes plastic deformation. Another 
reason could be related to the strain-induced vacancy concentration (Militzer et al., 1994). 
Vacancies can be generated and segregate at dislocations and grain boundaries by movement of 
dislocation jogs during high temperature deformation. Because vacancies in the vicinity of 
dislocations are sinks of diffusion solute atoms, it is reasonable to derive that the increased 
plastic strain will lead to an increasing solute aging effect. Applying the suggested mechanism 
above, it is also reasonable to explain the oscillation of ∆σ9:;< in the Type C stage at the slowest 
strain rate of 1.70 × 10-5 s-1. We know that the upper bound of the Type C serrated stress-strain 
response forms a yielding plateau, which bears almost zero strain hardening (Figure 17f). The 
absence of a macroscopic strain hardening in this stress-strain segment suggests that the 
accumulation of immobile dislocations is minimal. Therefore, the pinning effect resulted from 
the interaction between obstacle and the solute atoms is unchanged.   

 Fracture Stress, Fracture Strain and Fracture Behavior of Nimonic 75 at 600 º 
In order to capture the fracture behavior in the DEM model, the fracture stress and fracture strain 
of Nimonic 75 subjected to tension at 600 ºC was determined. We carried out tension 
experiments with two strain rates (1.43×10-2 s-1 and 1.43×10-3 s-1) without using an 
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extensometer. We use the strain-position relationship obtained in the previous 10%-tension 
experiment to extrapolate the strain beyond 10% using the position data recorded in our current 
experiment. In this way, we can have the full range of stress-strain response up to fracture 
(Figure 19a). We repeated each strain rate with three specimens. The fracture stress and fracture 
strain together with the reduction of area measured from final fracture profile are summarized in 
Table 1 and Figure 19b. The experimental result turns out that fracture stress and fracture strain 
are independent of the two investigated strain rates. However, larger reduction of area is found as 
the strain rate is increased. 

  
(a) (b) 

Figure 19. (a) Stress-strain response up to fracture; (b) fracture stress, fracture strain, and reduction of area. 

Table 4. Fracture stress, fracture strain, and reduction of area for Nimonic 75 subjected to tension at 600 ºC under 
strain rates of 1.43×10-2 s-1and 1.43×10-3 s-1. 

Strain Rate, s-1 Fracture Stress, MPa Fracture Strain Reduction of Area 

0.0143 465.79 0.25496 0.501 
0.0143 481.54 0.27708 0.432 

0.0143 450.23 0.27547 0.427 
0.00143 486.68 0.25929 0.327 

0.00143 464.8 0.26506 0.312 
0.00143 451.49 0.26548 0.331 

 Determination of Creep Properties 
Creep tests were conducted at National Energy Technology Laboratory (NETL).  Figure 20a 
shows the creep specimens used in the creep tests. Creep testing was conducted by a ATS 2330-
MM lever arm creep frame (Figure 20b). A dual extensometer system (Figure 20c), which is not 
directly attached to the specimen but is part of a "chassis" that hold the specimen and 
extensometers together as one, is used to measure the creep strain. Creep samples were heated by 
an ATS furnace (model 3210). Three thermocouples were directly attached to the specimen using 
twisted wires to monitor the temperature. The specimen was soaked for one hour before the 
constant load was applied. Constant load of 160 MPa was applied to three companion creep 
specimens at 600 ºC. Creep tests were interrupted at 200, 400, and 600 hours. The purpose of 
carrying out interrupting creep experiments is to characterize the long-term microstructural 
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evolution so that the correct creep mechanism can be understood and will be implemented into 
the DEM model.   

 
  

(a) (b) (c) 

Figure 20. Creep specimen (a), creep frame (b), and dual extensometer system (c) used for the creep tests conducted 
at National Energy Technology Laboratory (NETL).   

Figure 21a presents the creep curve for the 600-hour creep specimen. A comparison with the 
certificated results was also made (Gould and Loveday, 1990).   The 600-hour specimen shows 
normal two-stage primary and steady-state creep deformation. The creep curve shows a 
sigmoidal transient creep stage during the initial ~150 hours, which is a typical creep feature for 
Nimonic 75 (Betteridge and Heslop, 1974). The creep rate at 400 hour, time to 2% creep strain, 
and time to 4% creep strain from NETL creep tests are compared to the certificated creep value 
(Gould and Loveday, 1990) as shown in Table 5. The creep rate at 400 hour stands in the range 
with two-time standard deviation (2S). However, the time to 2% creep strain and the time to 4% 
creep strain (extrapolated) stands out of the range with two-time standard deviation (2S). The 
reason is unclear and will need further investigation. The variance of creep rate at 400 hour with 
the applied stress is plotted in Figure 21b. The stress exponent  for the creep rate 

( ) can be evaluated to be 6.  
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(a) (b) 

Figure 21. (a) Creep curve from NETL 600-hour creep test and a comparison to creep curves in Ref. (Gould and 
Loveday, 1990). (b) Variance of creep rate at 400 hour with the applied stress (Gould and Loveday, 1990). 

 

Table 5. Comparison of the certificated creep properties (Gould and Loveday, 1990) with the result from NETL 
creep tests.   

Creep Property Certified Value (M) Standard Deviation (S) NETL Result 
Creep rate at 400 

hours 72 × 10-4 /hour 5 × 10-4 /hour 62 × 10-4 /hour 

Time to 2% creep 
strain 278 hours 16 hours 320 hours 

Time to 4% creep 
strain 558 hours 30 hours 640 hours 

(extrapolated) 

 Microstructure Evaluation of Nimonic 75 During Creep Deformation  
In order to evaluate the microstructural evolution during creep deformation, three companion 
specimens were interrupted at 200, 400, and 600 hours, respectively. We have chosen two 
specimens that have experienced 200-hour and 600-hour creep deformation to assess the 
microstructure change (Figure 22). The creep strain and creep strain rate corresponding to the 
two creep deformation stages are listed in Table 6. The microstructure was characterized on the 
cross-section plane that is perpendicular to the loading direction (or extrusion direction, ED) by 
optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive x-ray 
spectroscopy (EDS), electron backscatter diffraction (EBSD). The revealed creep 
microstructures were compared with the undeformed well-annealed microstructure (400 hours at 
600 ºC).   
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Fig. 1 

Figure 22. Creep specimens used to evaluate evolution of creep microstructure. 

 
Table 6. Creep strain and creep strain rate for the two creep samples for microstructure examination.   

Specimen Creep strain Creep strain rate 
200-hour creep sample 0.0123 6.7e-5 /hour 
600-hour creep sample 0.0372 5.7e-5 /hour 

 
Figure 23. Optical and SEM microstructure of Nimonic 75 characterized on the cross section plane: (a) undeformed 
state (annealed at 600 °C for 400 hours); (b) creep deformation for 200 hours; (c) creep deformation for 600 hours. 
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Figure 24. Magnified SEM observation of carbides in the vicinity of one grain before (a) and after (b) creep 
deformation for 200 hours. 

Figure 23 shows the OM and SEM observation of the microstructure compared between the 
annealed and creep deformed states. It is found inter-granular carbides are increased after creep 
deformation.  Figure 24 presents the magnified SEM micrographs captured in the vicinity of one 
grain for the undeformed and the 200-hour creep deformation states.  As clearly revealed in 
Figure 24, the number of carbides is significantly increased at grain boundaries (GBs).  In 
particular, the morphology of inter-granular carbides tends to appear more elongated and more 
continuous compared to the undeformed state. Such a dense distribution of elongated carbides 
can be found at twin-twin boundaries (TTBs) and twin fronts (TFs) as well. The increase in 
interfacial carbides coverage at GBs, TFs, and TTBs is suggested to be associated with the local 
accumulation of interfacial defects that are produced under the externally applied creep stress 
over the time.  
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Figure 25. Crystal orientation map and grain boundary map (with and without twin boundaries) obtained by EBSD: 
(a) after 200-hour creep deformation; (b) after 600-hour creep deformation. 

 
Quantification of the grain structure after creep deformation was obtained by EBSD mapping 
(Figure 25). Grain size & shape were evaluated with either including or excluding the Σ3 & Σ9 
twin boundaries. Grains were best fitted by ellipses. Based on the best fitted ellipses, probability 
distributions of grain area, grain diameter, grain aspect ratio, and grain orientation were 
determined, as is shown in Figure 26.  A comparison between the undeformed and creep 
deformed states shows trivial changes in grain morphology during creep deformation.   
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Figure 26. Comparison of probability density distribution of grain size and grain shape between the undeformed 
(annealed) and creep deformed (200 and 600 hours) states: (a) grain size in terms of area and diameter; (b) grain 
shape in terms of aspect ratio and major axis orientation.   

 
Figure 27. Evolution of grain orientation distribution: (a) undeformed state (annealed at 600 °C for 400 hours); (b) 
creep deformation for 200 hours; (c) creep deformation for 600 hours. 

Evolution of grain orientation distribution is visualized in Figure 27 in terms of pole figures and 
inverse pole figures.  From Figure 27, it is found that the direction of <1 1 1> poles that 



39 
 

converged mostly towards the tensile loading direction (or ED direction) in the undeformed state 
has a tendency of departure from loading direction. This indicates grain rotation occurs during 
creep deformation.  Such grain rotation results in a weakening of axisymmetric <1 1 1> - <1 0 0> 
fiber texture that was originally exhibited at the undeformed state and acts as a “relaxation” 
process that leads to a more random distribution of grain orientations.   
 

 
Figure 28. Grain boundary misorientation before and after creep deformation: (a) number fraction histogram of 
misorientation angle; (b, c, d) misorientation axis distribution for the undeformed and creep deformed states. 

 
The misorientation distribution of grain boundary as displayed in Figure 28 shows slight increase 
(5% in number fraction) of 60° <1 1 1> (∑3) primary twin boundaries (TBs) after creep 
deformation. The number fraction change of TBs between 200-hour and 400-hour creep 
deformations is insignificant. The multiplication of primary twin boundary infers that primary 
twins are nucleated during the creep deformation process.  Overall, the above results give a good 
measure of the steady-state creep regime microstructure for use in developing the polycrystalline 
DEM model.   
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2.2. Discrete Element Method (DEM) Model Development 
All simulations were performed using the commercial software PFC3D v5 (Itasca Consulting 
Group, Inc., Minneapolis, MN, USA), though this choice was made purely for convenience 
based on the authors’ previous experience with the software; any number of other 
commercial or open source DEM implementations are compatible with our approach. 
Hardware requirements are the same as the PFC3D v5 software hardware requirements. 
Documentation and additional codes employed are available from Matthew Evans upon 
request: matt.evans@oregonstate.edu. 

 The Discrete Element Method 
The discrete element method was originally developed by (Cundall, 1971) for the modeling of 
rocks and later expanded to soils (Cundall and Strack, 1979). In this introduction, we present 
major points of the method, while for details of the implementation the reader is referred to 
(Potyondy and Cundall, 2004). In this work, the three-dimensional version of the DEM with 
spherical elements is employed. 
Traditional DEM is predicated upon the simultaneous solution of Newton’s equations of motion 
for each body in an assembly of discrete particles. Contacting particles interact via simple 
constitutive relations. Particle overlap is allowed at contacts (the so-called soft contact approach), 
but these overlaps are small relative to particle size (e.g., less than 1%). A given calculation 
cycle begins by identifying contact points and identifying their unit normals. 
Figure 29 shows two interacting spherical elements and an element interacting with a rigid planar 
wall. The contact plane normal ( ) is defined by the line segment between the element 

centroids  or element centroid and nearest point on the wall, . The contact plane spans the 

contact point . N.B.: In DEM modeling, contacts may be either real or virtual. Real contacts 
occur when two bodies are actually in contact or overlapping. Virtual contacts exist when two 
bodies are proximal but not yet touching (typically, when their surface separation is 10-6 times 
the mean diameter of the two entities). In unbonded assemblies, this serves to provide 
computational efficiency in the contact detection algorithm (typically the most expensive part of 
the calculation). In bonded assemblies, however, this separation has physical meaning – two 
elements are able to have a physical separation, yet still be connected via a bond between them. 
Herein, the behavior of elements contacts is described by a linear contact law. The normal force 
between two contacting elements is given by  where k is particle stiffness and x is 
contact overlap. If the two elements are bonded (as they are in this work), an additional normal 
force is generated due to the presence of the bond, as described subsequently. Shear forces at 
contacts are linear and formulated incrementally. 

 

cn

ip
x wx

cx

F kx= -



41 
 

 
Figure 29. DEM components: (a) two interacting elements, (b) an element interacting with a wall, and (c) two 
elements bonded with a parallel bond. 

The resultant force (and subsequently, the equation of motion) for a single element is defined as: 

, 
 

Equation 5 

where the total force F is the sum of forces Fci due to the ith neighboring element; Nc is the total 
number of contacts the element has formed, m is element mass, and a is the acceleration. 
Similarly, the total moment, M, experienced by an element is: 

, 
 

Equation 6 

where Mci is the moment on the ith element contact, I is the moment of inertia, 𝝎̇ is the angular 
acceleration, and we exploit the fact that, for spherical elements, moment is directionally 
independent. Each contact force Fci and moment, Mci, is resolved into a normal component 
acting along the contact plane normal, nc, and shear component that lies in the plane. As 
mentioned previously, in simulations of unbound granular materials forces are related to the 
overlap of impinging elements as shown in Figure 29. Positive overlap generates repulsive force. 
This sign convention is natural for unbonded materials where contacts only work in compression 
and so there are no tensile forces, but it is the reverse of the convention typically used in solid 
mechanics. 
To model monolithic materials, elements can be bonded together by replacing the asymmetrical 
contact laws with cohesive interactions that can support tension. A common scheme for this is 
the parallel bond developed by Potyondy an Cundall (Potyondy and Cundall, 2004) and shown 
in Figure 29(c). The parallel bond represents two welded elements as a cylinder of material 
running between the element centers that can transmit both moment and force between the 
elements. The constitutive law for the parallel bond is used in the differential form: 
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        Equation 7 

 where the force, F, due to the normal, un, and shear, us, displacements, and the moment, M, due 
to the difference in the twisting, ∆𝜽@, and bending, ∆𝜽@, rotations of the two elements are related 
by normal, kn, and shear stiffness, ks. The geometric terms A, I, and J are the bond’s cross-
sectional area, moment of inertia, and polar moment of inertia, respectively. For unbonded 
elements the interaction range is set by the element radii, as discussed previously. Parallel bonds, 
however, can be installed between any two elements with any equilibrium length, and thus once 
a DEM assembly is parallel bonded the elements should no longer be considered to be spherical. 
In this work, assemblies of elements were generated by simulating the dynamic packing of 
unbonded elements interacting through contact laws. Once a stable packing was achieved, the 
element-element contact laws were turned off and parallel bonds installed between all pairs of 
elements with a spacing less than a cutoff separation referred to as the gap parameter, , so 
that a bond is installed between elements i and j if: 

 Equation 8 

where xp1 and xp2 are positions of the elements’ centroids and R1 and R2 the element radii (Figure 
1). In this work, the geometric terms A, I, and J are defined by the bond radius which is defined 
as the radius of the smaller element, 𝑅A = 𝑚𝑖𝑛F𝑅(H), 𝑅(K)L or the radius of the element at an 
element-wall contact. 
Each simulation step in DEM consists of computing the total forces and moments for every 
element using Equation 5 and Equation 6. From these, accelerations, translational and angular 
velocities, and new element positions are computed with the Verlet algorithm (Verlet, 1967). 

 Geometric algorithms and discretization scheme for DEM model  
DEM models are typically used to simulate discontinuous materials with a high degree of spatial 
heterogeneity. This approach is quite powerful, but implementation for continuum modeling is 
challenging. Of particular note is the need for force homogenization and equilibration across the 
sample space. We initially developed an algorithm that iterates forces in the assembly towards a 
constant value and produces a physically realistic elastic response, as shown in Figure 30. 
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Figure 30. At left is a representation of the contact force distribution in our DEM model and at right is an elastic 
stress-strain response from our model with a physically realistic solid metal elastic modulus.   

While Figure 30 shows an example isotropic response, the polycrystalline Nimonic 75 grain 
structure has been tessellated for the DEM model by a 3-D Voronoi algorithm that captures our 
measured distributions of grain size, grain orientation, and grain boundary misorientation. The 
measurements of those microstructural parameters were described above. As Σ3 and Σ9 
annealing twin boundaries are unlikely to be initiation sites for creep damage (Zhang and Field, 
2013), these boundaries are excluded for reconstructing the 3-D grain structure. An example of a 
3-D tessellation is shown in Figure 31.  

 

Figure 31. An example DEM model volume of a 3-D grain structure containing 400 crystalline grains. 

 Determination of the Elastic Property Inputs for the Model 
To predict the elastic constants off Ni-20Cr as a function of temperature we have first calculated 
the material’s elastic constants at zero Kelvin, and then used the softening of elastic constants in 
classical molecular dynamics simulations to extrapolate these properties to higher temperatures. 
Here we first report on the calculation of 0 K elastic properties using density functional theory 
(DFT), and then on the translation of these results to high temperature properties 
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2.2.3.1.DFT Calculation of Single Crystal Anisotropic Elastic Constants at 0 K 
DFT calculations were performed on a single unit cell of in pure Ni and on a 2x2x2 supercell of 
Ni-20Cr with the atoms arranged in a special quasi-random structure (SQS) (Zunger et al., 1990). 
A SQS is an arrangement of the atoms in the supercell that possesses the same element-by-
element pair correlation functions as would be found in a truly random solid solution, and thus 
correctly captures the long range interactions between the alloy constituents in the materials 
electronic structure. The SQS was generated using a reverse Monte Carlo approach in which Ni-
Cr atom pairs are selected randomly and the positions in the supercell switched, and the switch 
kept or discarded probabilistically based on comparison of the pair distribution function of the 
trial configuration with that of a random solid solution. It should be noted that the ordering of the 
solute atoms on the lattice in the SQS breaks the cubic symmetry of the supercell and so elastic 
properties must be averaged over each of the three <100> type directions. The SQS supercell is 
visualized in Figure 32. 

 
Figure 32. Special quasi-random structure (SQS) 2×2×2 supercell used in the DFT calculation. 

The DFT calculations were performed using Vienna Ab initio Simulation Package (VASP). 
Projector-augmented plane-wave pseudopotentials (PAW) and generalized gradient 
approximation (GGA) of the exchange-correlation energy by Perdew-Burke-Ernzerhof (PBE) 
(Perdew et al., 1996) were included in the calculation. Before calculating of the elastic constants, 
convergence tests were carried out to calculate the total energy in a unit supercell by selecting 
cutoff energy varying from 260 eV to 480 eV, and Monkhorst-Pack K-point mesh size varying 
from N=1 to N=4. The purpose of the convergence test is to identify the optimized values of 
cutoff energy and K-point mesh size so that a reliable, computationally efficient, DFT 
calculation is enabled. The lattice parameter used in the convergence test is assumed to be 3.52 Å. 
The optimized K-point mesh size and cutoff energy were obtained to be N = 3 and Ecut = 440 eV, 
respectively (Figure 33).  The supercell structure was then relaxed by choosing lattice parameter 
ranging from 3.51 Å to 3.53 Å. The equilibrium lattice parameter corresponding to the minimum 
total energy was found to be 3.523 Å (Figure 34).  
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(a) (b) 

Figure 33. Convergence tests for optimized K-point mesh size (a) and cutoff energy (b). 

 

 
Figure 34. Calculation of equilibrium lattice parameter. 

For face centered cubit (FCC) Ni-20Cr alloy, there are three independent anisotropic elastic 
constants, namely , , and .  and  are associated with the bulk modulus  and 
Zener’s modulus  (or tetragonal shear modulus), which are defined as: 

 Equation 9 
 

 Equation 10 

 

If we elastically deform the unit supercell by applying a hydrostatic strain tensor then 
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Equation 11 

 

We are able to determine the bulk modulus  by fitting the calculated total energy  as a 
function of volume  (Mehl et al., 1990): 

 
 

Equation 12 
 

where  is the equilibrium supercell volume corresponding to the minimum total energy. To 
obtain the Zener’s modulus, we elastically deform the supercell by applying a volume 
conservative tetragonal strain tensor: 

 

 
Equation 13 

 

The associated change of total elastic energy can be calculated as: 

 

Equation 14 
 

The Zener’s modulus  can be determined by fitting the change of total energy  as a 
function of  

 
Equation 15 

 

where  is the volume corresponding to the minimum change of total energy. If we elastically 
deform the supercell by applying a volume-conservative orthorhombic strain tensor: 

 

 

Equation 16 
 

The associated change of total elastic energy can be calculated as: 
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Equation 17 

So the elastic constant  can be determined by fitting the change of total energy  as a 
function of :  

 
Equation 18 

 

where  is the volume corresponding to the minimum change of total energy. Based on 
Equation 12, Equation 15, and Equation 18, we calculated the bulk modulus , Zener’s modulus 

, and  for Ni-20Cr alloy to be 204.1 GPa, 60.0 GPa, and 131.7 GPa, respectively (see 
Figure 35a, b, c).  The bulk modulus, Zener’s modulus, and elastic constants , ,  are 
also compared to DFT calculation for pure nickel, as shown in Figure 35 and listed in Table 7. 

  

(a) (b) 

  

(c) (d) 

Figure 35. Calculation of bulk modulus B (a), Zener’s modulus C´ (b), and C44 (c) through elastically deforming 
supercell by applying hydrostatic strain tensor, volume-conservative tetragonal strain tensor and orthorhombic strain 
tensor, respectively. (d) Comparison of the elastic constants of Ni-20Cr to those of pure nickel. 
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Table 7. Comparison of 0-K equilibrium lattice parameter, bulk modulus, Zener’s modulus, and anisotropic elastic 
constants calculated by DFT between pure Nickel and Ni-20Cr alloy. 

Material 
Equilibrium 
lattice parameter, 

, Å 

Bulk 
modulus 

, GPa 

Zener’s 
modulus 

, GPa 
, GPa , GPa , GPa 

Pure Ni 
(2x2x2 
supercell) 

3.518 200.1 55.7 274.3 163.0 128.8 

Ni-20Cr 
(2x2x2 SQS 
supercell) 

3.523 204.1 60.0 284.1 164.1 131.7 

  

2.2.3.2.Extrapolation of 0K results to 600°C 
The isothermal elastic constants of a material are given by the second derivative of the material’s 
volumetric Helmholtz free energy, Fv, with respect to strain: 

𝐶NO =
𝜕K𝐹R
𝜕𝜀N𝜕𝜀O

 
 

Equation 19 

This contains two contributions: the curvature of the interatomic potentials, and the change in the 
internal vibrational energy of the solid as a result of deformation.  On increasing the temperature 
of the solid, both of these contributions change.  The system samples more of the curvature of 
the soft tails of the interatomic potential, and also there is a change in the distribution of 
occupied phonon modes.  The temperature range of interest for this work is around 600°C (873 
K), which is much larger that the Debye temperature for Nickel (450 K), and thus we can ignore 
the quantum mechanical filling of vibrational modes (the second contribution) and use classical 
molecular dynamics to determine the contribution of the anharmonisity in the interatomic 
bonding. As these molecular dynamics simulations must be performed using forces obtained 
from first principles, these calculations are computationally expensive, and thus we have used a 
set of test simulations with forces obtained from empirical potentials to carefully identify the 
most computationally efficient set of parameters that yields a meaningful prediction.  
Four sets of simulations were performed which test both the validity of using only a 3x3x3 
supercell and the ability of the SQS to reproduce the properties of the random solid solution.  
Elastic constants were computed from fits to the averaged pressure (stress) response of the 
materials to quasistatic isothermal deformation of the material at different temperatures. For each 
simulation, the system was equilibrated under NPT, and then switched to the NVE ensemble 
with the averaged stress tensor recorded as a function of a slow homogeneous deformation of the 
simulation box. The interactions of Ni and Cr were modeled using the embedded atom method 
(EAM), and the average of 20 simulations was used to obtain each datum.  Figure 36 shows the 
comparison of the reported experimentally measured elastic constants of pure Ni along with the 
elastic constants obtained by us using 108, and 2048 atoms simulation cells. The MD results for 
the two system sizes fall exactly on top of each other, indicating that the smaller simulation cell 
captures the elastic softening but includes larger uncertainty. This is an important result for our 

a B 'C
11C 12C 44C
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future DFT-MD simulations. Secondly the empirical potentials track the overall trend in the 
softening reasonably well, but over estimate the softening in C12 and underestimate the softening 
in C11 and C44. The second plot in Figure 36 shows the comparison of elastic constants of Ni and 
Ni-20Cr obtained though MD simulations. For the alloy the results are shown for both the large 
random alloy, and the smaller SQS, indicating that the SQS performs well at reproducing the 
properties of the random alloy. The elastic constants for the alloy are softer than those of pure Ni, 
but the softening behavior tracks almost identically. 

 
Figure 36. Plots of elastic constants of Ni and Ni-20Cr as a function of temperature above the Debye temperature. 
C11, C12, and C44 are plotted in blue, gold, and green respectively. The left plot shows the comparison of 
experimental (dot-dashed) and values obtained from MD simulations of 108 atoms (solid) and 2048 atoms (dashed). 
The right plot shows the comparison of MD obtained elastic constants of Ni (dot-dashed) with Ni-20Cr (solid: 108 
atoms, dashed: 2048 atoms). 

While the trend in individual elastic constants track the experimental values, the trends in both 
elastic anisotropy ratio, 2C44/(C11-C12), and Poisson’s ratio do not follow the experimental trend 
(Figure 37). This indicated a limitation of using EAM potentials, which are fit to reproduce 0 K 
elasticity, the crystal’s lattice parameter, and the binding energy, but not to reproduce the 
anharmonicity in the interatomic bonding. It should be noted that the 0 K DFT results do a much 
better job at reproducing the anisotropy ratio (2.31 for Ni and 2.20 for Ni-20Cr). 
 

 
Figure 37. Plots of the anisotropy ratio (left) and (100) Poisson’s ratio (contraction along (010)/due to stress along 
(100)) for Ni and Ni-20Cr as a function of temperature above the Debye temperature. Blue line is experimentally 
results for Ni, gold for Ni obtained with MD using EAM potentials, and the green line for Ni-20Cr from MD with 
EAM. 
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While the results above indicate a problem with the EAM for capturing subtleties in the 
temperature dependence of elastic response of Ni alloys, the EAM prediction for the averaged 
isotropic properties of the Ni-20Cr alloy is reasonable, as shown in Figure 38.  Both plots show 
the experimentally measured Young’s modulus for poly crystalline Ni-20Cr. The computed 
temperature dependent values of the elastic stiffness tensor as used to compute the 
polycrystalline Young’s modulus using both the Voigt (average stiffness) and Reuss (average 
compliance) models which provide lower and upper bounds, respectively, for the elastic response 
of a polycrystalline assembly. 

 
 

Figure 38. Young’s modulus in terms of elastic constants computed with molecular dynamics at different 
temperatures compared against experimental data. Left image are results for 2048 atoms and right image are ones 
for 108 atoms built with special-quasi-random structures. 

From these results we conclude that, for our current needs in this project, the experimentally 
obtained elastic constants for Ni can be extrapolated to higher temperature by fitting 
Watchman’s functional form of the elastic softening: 

𝐶NO(𝑇) = 𝐶NO; − 𝐵NO𝑇𝑒
VWXW , Equation 20 

where Coij is the 0 K elastic constant, Bij is a parameter related to the Gruneisen parameter, and 
TM is a temperature related to the Debye temperature for vibrations along the ijth deformation 
mode. The elastic constants for Ni-20Cr at high temperature can be obtained to a first 
approximation by shifting the Coij for pure Ni to that for Ni-20Cr that we have already computed 
using DFT. Thus, in this manner we have identified an initial set of elastic constants for our 
model.  
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 Isotropic elasticity in DEM 

2.2.4.1.General model components of isotropic elasticity model in DEM for metallic 
materials 

Two main components of the isotropic elasticity model were: i) Creation of representative DEM 
assemblies that can be used for simulation of continuum solids, ii) Ensuring the same elastic 
response in tension and compression characteristic of crystalline metallic materials.  
While heterogeneity of DEM is a powerful and advantageous feature for modeling of continuum 
solids, its extent has to be controlled in order to obtain meaningful continuum behavior. Figure 
39a shows a typical DEM assembly with a highly heterogeneous element size distribution. A 
broad size distribution, characteristic of many granular materials, leads to large local 
heterogeneity of materials and phenomena such as force percolation (Figure 39b and Figure 39c) 
where minority of elements carry majority of forces. To avoid this in continuum modeling the 
isotropic elasticity model had its size distribution reduced to ΔR = 𝑅Y/6 where 𝑅Y is the arithmetic 
mean element radius. This size distribution prevents crystallization and keeps random element 
arrangement, while allowing for less variation in material properties and element force 
propagation capabilities.  

 
Figure 39. Stress distribution in a DEM assembly: a) Typical, non-uniform stress distribution in a granular medium. 
Colors indicate the relation of average force on a particle to assembly mean; b) and c) - force percolations; thickness 
of the bar is proportional to the magnitude of the force at a given contact. b) Force percolation characteristic for non-
uniform assemblies as in a) - majority of the load is carried by only small number of particles; c) Greatly reduced 
force percolation after assembly generation and pre-processing steps applied in this work.  

a) b) c)
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Figure 40. Two bonded elements subject to first tension, then compression. Material response needs to be the 
same in tension and compression in order for DEM models to correctly capture metal behavior. 

  

  

Figure 41. Force vs. displacement of the upper element from Figure 40. In the plot on the left, the slope of the line 
changes in compression. In the plot on the right, the slope does not change, which is the desired behavior. 

To ensure the elastic tension-compression response characteristic of metallic materials, element 
stiffnesses were set to zero and only the parallel bonds contributed to material deformation. As 
shown in Figure 40-Figure 41, a non-zero element stiffness results in different force-
displacement response in compression and in tension, which is not desirable in most of this work. 

2.2.4.2.Assembly generation 
Element assemblies were generated by randomly positioning elements in a cubical or 
rectangular space until a predefined void fraction of 0.40 was achieved. The void fraction 
was selected to be approximately halfway between the best estimates for the random close 
pack (RCP) case of 0.36 and the jamming transition of 0.44 where an unbonded assembly 
will become unstable and readily flow. Element radii were randomly drawn from a uniform 
distribution with a range ΔR = 𝑅Y/6 where 𝑅Y is the arithmetic mean element radius. 
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Mass-scaling was employed to improve calculation speed; in this approach, element sizes are 
increased by several orders of magnitude to increase the critical time step for numerical stability 
(see, e.g., (Belheine et al., 2009; Evans and Frost, 2007; Ning et al., 2015; Yun and Evans, 2011; 
Zhao et al., 2017)). Simulations were performed in the absence of gravity so that the increased 
element sizes do not generate excessive self-weight within the assembly. Changing the particle 
size also affects the dimensionless inertial number, I, which is used to define the line of 
demarcation between quasi-static and dynamic simulations (Roux and CHevoir, 2005): 𝐼 =
𝛾𝑑̇ \𝑃 𝜌⁄` , where 𝛾̇ is strain rate, d is element diameter, P is pressure, and ρ is particle density. 
Simulations with an inertial number less than 10-3 are quasi-static. In the current work the 
average inertial number is lower than 5x10-4. 
After the model domain was randomly populated with elements the system was relaxed by 
simulating the evolution of the system with damped dynamics until element accelerations are 
minimized. After equilibration, all neighboring elements within a chosen cutoff distance (called 
the gap cutoff parameter, gc, max) were fused together with parallel bonds to form a contiguous 
network, and then the bounding walls were removed. Stress equilibration is not necessary as 
once parallel bonds are installed the elements’ contact stiffnesses are removed. At this point the 
elements cease to be particle-like and are instead a trellis of bonds, all initially fully relaxed with 
no internal forces or moments. The total number of bonds formed is a function of the gap cutoff 
parameter. If the gap between elements is smaller than the predefined gap parameter, gc, max, a 
bond will form between these elements. 

2.2.4.3.Isotropic elasticity for materials without elastic tension-compression symmetry 
Besides the zero-element stiffness model, we have also implemented strategies for development 
of models with a non-zero element stiffness which can be useful for continuum materials which 
response is not the same in tension and compression. The development consisted of two 
additional preprocessing steps in between first and second generation step described in the 
previous section: 

1) Removal of “floaters”  

“Floaters” are elements generated in DEM that have no or too little contacts. They are a 
numerical artifact and need to be removed to provide reliable models. Implemented was a 
floater-removal algorithm based on one proposed by (Potyondy and Cundall, 2004). Algorithm 
changed the size of elements until their number of contacts becomes physically admissible while 
their average contact force remains within fixed interval around mean contact force of the whole 
assembly. Figure 42 shows the result of applying our floater removal algorithm. Values of 
contact forces carried by elements increased by two orders of magnitude compared to newly 
generated assembly due to increased number of element contacts.  

2) Reduction of locked-in stresses  

Locked-in stresses are residual stresses present in a DEM assembly due to its discrete nature 
rather than numerical features. They originate from unhomogeneous stress distribution related to 
element size distribution as well as varying coordination numbers. After bonding the assembly, 
large locked-in stresses would put elements in excessive tension or compression introducing bias 
in the simulations of continuous materials. To reduce locked-in stresses implemented was an 
algorithm similar to one used for removal of “floaters”. Namely, the element size was changed 
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until the contact force of that element was below an upfront set threshhold - a very low force 
value, negligible compared to meaningful forces developed in deformation simulations.  

 
Figure 42. Generation and pre-processing of a DEM assembly with non-zero element stiffness. 1) Generation of a 
random assembly of polidisperse spherical elements 2) Assembly after removal of floaters 3) Assembly after 
reduction of locked-in stresses. |F| is the magnitude of the total contact force on each element. Forces after Step 2) 
are larger due to increased number of contacts. Forces in 3) are intentionally reduced to low values and made more 
uniform (Figure 39b) and c). 

2.2.4.4.Results of implementing isotropic elasticity for metals in DEM 
A stress-strain response from a representative model is shown in Figure 43. The deformation was 
driven by top and bottom walls and the response was linear and tension-compression symmetric. 
The Young’s modulus value was within the range of values for metals and was readily adjustable 
by modifying the stiffness of parallel bonds allowing it to reach any value. On the other hand, the 
Poisson’s ratio was limited to values around 0.18-0.25. Such restricted Poisson’s ratio also arises 
in other emerging mesoscopic methods for simulating continuum materials such as bond-based 
peridynamics (Kumar et al., 2016; Madenci and Oterkus, 2016a). 

 
Figure 43. Elastic deformation of an isotropic material modeled with DEM. Assembly is first loaded, then unloaded. 
Stress-strain curves during both processes overlap and show a linear trend. Elements are colored based on 
displacement which values are consistent with element position relative to the walls that are initiating the 
deformation.  

1) |F|, [N] 2) |F|, [N] 3) |F|, [N]

Load Unload
Displacement, [m]
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 Anisotropic Elasticity in DEM 
There were two approaches developed for DEM model of anisotropic elasticity, emergent and 
imposed approach. In the imposed approach, each contact was formulated such as to model cubic 
elasticity while in the emergent approach, cubic elasticity was a consequence of collective 
behavior of the entire, heterogeneous assembly. The imposed approach was completely 
developed while due to software limitations was implemented only on small assemblies thus it is 
in the preliminary result phase. The emergent approach was completed and is currently being 
considered for publication 

2.2.5.1.Introduction of cubic anisotropy in DEM 
The elastic response of cubically symmetric crystals is defined by the fourth rank elastic 
stiffness tensor with three independent moduli C11, C12, and C44 to provide the following 
stress-strain relationship: 

 

 
 

Equation 21 

This relatively simple expression belies that cubically symmetric materials have a complex 
directionally dependent deformational response to a load. To present the rationale behind the 
approach set forth here for replicating this within DEM, it is necessary to describe the 
subtleties of cubic anisotropy in more depth. The extra variable needed to describe elastic 
response of cubic materials over isotropic media is often expressed as the Zener anisotropy 
ratio, 𝑍 = Kbcc

bddVbde
. This describes a material’s deviation from isotropic behavior with a ratio 

of one indicating that the material is isotropic. Figure 44 shows the directionally dependent 
stiffness of three cubic materials with Z ranging from less than one to greater than one. The 
materials’ stiffness in response to a uniaxial normal load varies with crystal loading 
direction (the left most plot in each sequence in Figure 44). Moreover, on any surface the 
material will have a hard and soft direction of shear. These soft and firm shear stiffnesses 
are plotted in the second and third plots in each sequence, respectively. The right-most plots 
show the soft and stiff shear stiffnesses overlaid, demonstrating that the soft and stiff shear 
stiffnesses are degenerate on the high symmetry {100} and {111} planes. In these plots, it 
can be seen that materials with an anisotropy ratio Z < 1 have the largest normal stiffness 
along á100ñ direction and the highest shear stiffness on {111} planes, while materials with Z > 1 
have the largest normal stiffness along á111ñ direction and largest shear stiffness on {100}. 
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Figure 44. Elastic indicatrix for strontium fluoride, magnetite, and nickel. In each plot, the left most plot is the 
directionally dependent stiffness of the materials in response to a normal stress. The middle two plots show the shear 
stiffness along the soft and stiff shear directions on the plane normal to the polar direction, and the right most plot 
shows these shear stiffnesses overlaid. In the upper plots (labeled “Plane Strain”) the stiffness is in response to an 
imposed uniaxial normal or in-plane shear strain while keeping the other strains values at zero, and the lower plots 
labeled “Plane Stress” are the stiffnesses in response to an imposed uniaxial normal or in-plane shear stress while 
keeping the other stress values at zero. In all plots, the values of stiffness are plotted scaled by the materials’ C11. 
The Zener ratios for strontium fluorite, magnetite and nickel are 0.78, 1.22, and 2.64, respectively. As the Zener 
ratio transitions from less than to greater than one, the materials’ stiff axis transitions from á100ñ to á111ñ. 

The goal of this work was to capture cubic elasticity in DEM using the parallel bond formalism 
that is already implemented in many DEM software packages. In these packages, the user may 
assign a normal and shear stiffness for individual parallel bonds and thus the task becomes 
determining a method for assigning these stiffnesses based on bonds’ initial orientations relative 
to a set of imagined crystallographic axes such that the emergent collective response of the 
bonded assembly is described by the stiffness tensor in Equation 21. 

2.2.5.2.Imposed approach for modeling of anisotropic, cubic elasticity 
The imposed approach attempted to introduce proper cubic anisotropy on each bond in the 
assembly by formulating the three stiffness parameters (Figure 44) from cubic stress-strain 
relation. This involved deriving bond stiffness that would satisfy stress-strain relation of a cubic 
material under plane strain conditions (Figure 44) and would preserve the three stiffness 
directions outlined in Figure 44. The resulting stiffness was expressed as a 3x3 matrix with 
components depending on normal direction, , and two shear directions,  and , 

 

 

Equation 22 
 

Where  and  are angles of initial bond orientation in spherical coordinates. The stiffness 
matrix and its components were 
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Equation 23 

 

 

 

 
 

 
 

Equation 24 
 

With  

 

 

 
Equation 25 

 

 

Where , , and are fitted parameters.  

The preliminary results were obtained with a small, not necessarily representative assembly as 
the implementation of this model was restricted by the software and involved considerable 
computational performance decrease. The results, shown in Figure 45, indicated that this 
approach spanned a larger variety of cubic materials then the emergent approach as shown below. 
Even though the assembly size was not representative, the results still indicate the potential of 
this approach and justify its possible future development.  
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Figure 45. Ratios of elastic constants of real cubic materials (blue diamonds) and several materials modeled with 
imposed anisotropy approach (red circles). 

2.2.5.3.Emergent approach for modeling of anisotropic, cubic elasticity 
2.2.5.3.1. Emergent Approach formulation 

The goal of this approach was to capture cubic elasticity in DEM using the parallel bond 
formalism that is already implemented in many DEM software packages. In these packages, the 
user may assign a normal and shear stiffness for individual parallel bonds and thus the task 
becomes determining a method for assigning these stiffnesses based on bonds’ initial 
orientations relative to a set of imagined crystallographic axes such that the emergent collective 
response of the bonded assembly is described by the stiffness tensor in Equation 21. 
As the packing of elements in DEM is random, and on average isotropic, it is presumed that the 
cubic response must arise from the collective behavior of the assembly rather than being met at 
each individual element.  Within this approach there are three steps of reasoning that can be used 
guide the selection of a directionally dependent function for assigning bond stiffnesses: From 
von Neumann’s principle, the angular dependence of the stiffness distribution must possess cubic 
symmetry, that is, four axes of threefold rotational symmetry about the <111> directions of the 
imagined crystal. Second, the stiffness tensor in Equation 21 possesses only three independent 
variables, of which only one describes the deviation from isotropic elasticity. With only one 
degree of anisotropy it is conjectured that any angular stiffness function with the proper 
rotational symmetry could give rise to collective behavior that is cubically anisotropic.  Finally, 
in cubic materials there is a qualitative change in the directionally dependent normal stiffness as 
the Zener anisotropy ratio, Z, transitions from smaller to greater than one. As can be seen in 
Figure 7, for Z<1 the normal stiffness is maximal along <100>, while for Z>1 the modulus is 
stiffest along <111>. It is therefore presumed that changing the angular distribution of parallel 
bond stiffnesses from being maximal along <111> to maximal along <100> will alter the 
direction a system’s deviation from isotropic elasticity. 
To meet these criteria, one could construct angular bond stiffness functions from a sum of 
suitably symmetrized spherical harmonics functions, and then iterate the shape of the angular 
distribution to explore the angular function space. However, rather than doing this, the goal of 
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this article is to present a proof of concept that DEM can be used to model cubically elastic 
media. To this end, a more pragmatic approach was chosen, with two very simple piecewise 
functions defined as the external surface of a set of overlapping prolate spheroids (as shown in 
Figure 46). The shape of the distribution is described by a single parameter a that describes the 
aspect ratio (major to minor axes) of a family of spheroid with constant volume. One function is 
maximal along <100> and is composed of three spheroids with major axes along the <100> 
directions, while the second function, maximal along <111>, is composed of 4 co-centered 
spheroids with principal axes along the four <111> directions. In each case the spheroids the 
stiffness along a direction is given by the maximum radius of the three or four spheroids in 
which the radius is given by the equations: 

 Equation 26 
 

 
 

Equation 27 

and the dimensionless parameter 

 Equation 28 

 

n is the initial contact normal direction, Ab is the bond area, Lb the bond length, and kl the 
stiffness magnitude. Bond length is defined as the sum of element radiuses, Lb=R1+R2. N 
indicates the number of spheroids – 3 or 4 in this work. For the case of N=3 spheroids 
aligned along á100ñ: 

 
 

Equation 29 

 

 
 

Equation 30 
 

 
 

Equation 31 

 

where nx, ny, and nz are the x, y, and z components of unit vector n. For the case of N=4 spheroids 
aligned along á111ñ the spheroid radii are given by:  

( ) ( ) ( )0, / ,mk a k A L r a=n n

( )0 / b
l

b

Ak A L k
L

=

( ) { }( )1 2, max , ,...,m Nr a r r r=n

( )

2
3

1 2 2 2 2

i
i

x y z i

ar
n n n a

=
+ +

( )

2
3

2 2 2 2 2

i
i

y x z i

ar
n n n a

=
+ +

( )

2
3

3 2 2 2 2

i
i

z y x i

ar
n n n a

=
+ +



60 
 

 
Equation 32 

 

 
Equation 33 

 

 
Equation 34 

 

 
 Equation 35 

 

In this way, the anisotropic behavior of the DEM model is controlled by three independent 
tuning parameters: an and as, the anisotropy in the system of spheroids used to assign the normal 
and shear stiffnesses, respectively, and ak =kn/ks, the ratio of the normal and shear stiffness 
magnitudes.  In Appendix A, a general analytic model is presented for determining the elastic 
moduli of a material with angularly dependent stiffness functions if the bonds are all deformed 
uniformly due to a homogeneous deformation of the assembly. In Appendix B, the model is used 
to prove that that the stiffness functions based on overlapping spheroids (Equation 26- Equation 
35) result in cubically anisotropic elasticity. 
The expression chosen to represent the spheroids has the property of describing spheroids of 
constant volume independent of a. In exploring the space of model parameters, it is useful to define 
log normalized parameters a as the log of a shifted and scaled parameter that varies from 0 to 1 so that 
generally  

 
 

Equation 36 

The plots in Figure 46 show the angular dependence of normal stiffness (blue) and shear stiffness 
(gold) assigned to parallel bonds in the Z<1 and Z>1 models at the vertices of the domain of log-
normalized model parameters. In this work, only the space of model parameters was explored with 
an and as running from 0.022 to 5 and ak ranging from 0.005 to 1. Parameters outside this range would 
lead to unrealistically exaggerated shapes of the spheroid distributions. These extreme limiting shapes 
are shown on Figure 46 and include cases where the shear stiffness becomes much smaller than the 
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normal stiffness or the spheroid distribution becomes very narrow and pointy along its major 
directions. 

 
 
Figure 46. (a) Shows two piecewise angular functions with cubic symmetry defined as the outer surface of 
overlapping spheroids. The upper left function is constructed from three identical spheroids with major axes along 
the ⟨100⟩ directions and the function on the lower right is formed by four identical spheroids with major axes along 
the ⟨111⟩ directions. (b & c) The angular distributions of parallel bond normal stiffness (blue) and shear stiffness 
(gold) as a function of the model parameters an, as, and ak plotted on the normalized log scale (see text and Equation 
36 for explanation). In this space the log normalized parameters αn and αs span from 0.029 to 3.5 and αk spans 0.078 
to 5.5. Figure (b) is for modeling materials with Z<1 which are stiffest along the ⟨100⟩ directions and so the normal 
stiffness is represented by three spheroids aligned along these directions. Figure (c) shows stiffness distributions for 
modeling materials with Z>1 which are stiffest along the ⟨111⟩ directions, and so the normal stiffness is represented 
by four spheroids aligned along these directions. 

2.2.5.3.2. Assembly generation and deformation 
Assembly generation followed the steps described in Section 2.2.4.2. The influence of the gap 
cutoff parameter on the bonded network, the element coordination number, and the resulting 
elastic response was verified for a number of gap cutoff parameter values from 1.7x10-4 𝑅Y to 0.8 
𝑅Y. 
The stiffnesses of individual bonds were assigned based on the bonds’ initial orientation 
according to the spheroid distributions described in Equation 26- Equation 35. Elements that 
were initially bonded to box walls were used as “grip elements” to apply the elastic 
deformation, as discussed subsequently. A typical assembly is shown in Figure 47. 
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Figure 47. Properties of a typical modeled assembly: a) 3D representation, dark blue elements are the grip elements; 
b) probability distribution function of bond orientations; c) bonds as seen on a cross-section of the assembly colored 
by their anisotropic shear stiffnesses, [Pa/m]; d) measurement spheres. 

2.2.5.3.3. Measuring Average Stresses and Strains in the Assembly 
Stresses and strains in the assembly were computed using spherical measurement volumes 
(O'Sullivan, 2011; Potyondy and Cundall, 2004). Their radii and placement were random, 
the former being user-defined and the latter being constrained to exist fully within the 
assembly. Specifically, stresses and strain rates were measured and strains were computed 
through time integration of the measured strain rates. Stresses and strain rates were averaged 
over all measurement spheres. A total of 5,000 measurement spheres were typically used, each 
with a radius that corresponds to 6 times mean element radius. On average, 165 elements 
contributed to the stress/strain measurement of each measurement sphere. 

2.2.5.3.4. Determining the Size of the Minimum Representative Volume 
The minimum representative volume (MRV) is the smallest assembly with a sufficient 
number of elements to produce an average macroscopic response independent of assembly 
size. The MRV is typically evaluated by the convergence of effective properties, in this case 
the averaged C11, C12 and C44 constants of a cubic material. The MRV was determined as the 
next-to-smallest assembly size in which variation in properties from one assembly to another 
originated solely from uncertainty in the randomly placed measurement spheres rather than the 
variations in assembly packing. The MRV was found for an assembly with model parameters 
described in Section 2.2.5.3.2. The gap parameter was 0.17 𝑅Y which corresponded to a stable 
element coordination number of Cn ≈ 8. Tested assemblies had between 5,000 and 80,000 
elements. 
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2.2.5.3.5. Computing the Stiffness Tensor 
MRV assemblies were used for computing the full stiffness tensor. Element assemblies were 
deformed along the six independent strain paths (three uniaxial strain and three pure shear) 
up to a maximum strain of 10−3. During each of these simulated deformations the assembly’s 
internal stress and strain state was determined using measurement spheres as described 
previously. 
Uniaxial compression simulations were performed by setting the grip element velocities to 

 Equation 37 
 

 Equation 38 
 

 Equation 39 
 

for deformations label as 𝜺(H), 𝜺(K), 	𝜺(g) deformations respectively. For the cases of pure shear 
deformation strains 𝜺(h), 𝜺(i), 	𝜺(j) are imposed by grip element velocities of: 

 Equation 40 

 

 Equation 41 

 

 Equation 42 

 

with 𝛾̇ = 0.2	1/s. For each of the six deformations linear fits of stress/strain vs. time were 
performed to each of the six stress/strain components so that the ith and jth components of stress 
and strain during the kth deformation are described by: 

 Equation 43 
 

 Equation 44 
 

where the slopes a and b are fitting parameters. The stress and strain are related via the stiffness 
tensor giving six sets of six coupled equations: 
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 Equation 45 
 

 (36 equations in total), which can be written also in terms of the fitted slopes: 

 Equation 46 

 

The stiffness tensor must be symmetric about its diagonal (Cij = Cji) and so contains only 21 
independent elements. To reduce the system to 21 independent equations, the equations for stress 
elements under conjugate deformation paths were added together to obtain equations: 

𝑎N
(o) + 𝑎o

(N) = 𝐶NO𝑏O
(o) + 𝐶oO𝑏O

(N), for 𝑖 ≤ 𝑘 Equation 47 
 

The motivation for this approach is to impose only the conditions on Cij required to satisfy 
Newton’s third law. If the assembly is truly behaving as a cubically anisotropic elastic medium, 
it should be evident from computing the full stiffness tensor. The systems of 21 coupled 
equations in (Equation 46–Equation 47) were solved numerically using the generalized 
minimal residual (GMRES) method in MATLAB (Saad and Schultz, 1986). The results were 
rounded to 0.1 GPa. 
Stiffness tensor components obtained with DEM have a certain amount of statistical noise 
because they are obtained with a randomly distributed bond network. This introduces slight 
differences in the values of elastic constants that would be otherwise equal, and similarly gives 
small non-zero values when they must be zero for a continuum. Uncertainties were quantified as 
the largest deviation of each group of constants from the mean value of a symmetrized tensor. 
This included the average magnitude of small non-zero terms in the stiffness tensor that should 
be equal to zero. 
By computing the 21 independent elements of the stiffness matrix explicitly, and demonstrating 
the correct rotational invariance of the properties, it was shown that the assemblies’ properties 
possessed the correct cubic symmetry. Once this was established further calculations of elastic 
moduli were performed using a single deformation with simultaneous compression along y 
with shear applied in the xz plane. This deformation was imposed by assigning a velocity u 
to the external grip elements based on their position relative to the center of the assembly, 
xc=[xc, yc, zc]:  

 
 

Equation 48 

where 𝛾̇ is the strain rate. Simulations were continued until the strains reached values 
between 1×10-5 and 1×10-3. 
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2.2.5.3.6. Determining the Accessible Anisotropic Space 
Parameter sweeps were used to determine the applicability of the proposed approach for 
modeling cubic materials. Parameter sweeps included changing values and ratios of the ai and aj 
constants (Equation 29 -  Equation 35) as well as normal to shear stiffness ratios from Equation 
26 - Equation 27. Simulations were performed for materials with Z>1 and Z<1. The limits of the 
anisotropic behavior were determined and results were compared with known values for 
common cubic materials (Simmons and Wang, 1971). Table 8 shows ranges of parameters used 
in the sweeps. 

Table 8. Ranges of parameters used in determining the accessible anisotropic space. 

Material an as as/an kn kn/ks 
Z>1 0.01-5.0 0.01-100 0.01-500 1x1013 1-5,000 
Z<1 0.01-10.0 0.01-50 0.01-500 1x1013 1-5,000 

 
2.2.5.3.7. Minimum Representative Volume and Gap Cutoff Parameter 

The minimum representative volume (MRV) was determined using a representative set of 
spheroid parameters for a material with a Zener ratio larger than one. Normal stiffness followed 
the 4 spheroid distribution with  an=4.31 and kn=1 × 1013 (Equation 26 and Equation 32 - 
Equation 35) and shear stiffness the three spheroid distribution with as=10.0 and ks=3.55 x 1012 

(Equation 26 and Equation 29-Equation 31). The influence of the gap cutoff parameter on 
bonding and the elastic response was also quantified. The variation in elastic constants with the 
number of elements in an assembly is shown in Figure 48a and MRV was chosen to measure 
30,700 elements. Also, the coordination number as a function of maximum gap size (Equation 8) 
is shown in Figure 48b. 

(a) 

    

(b) 

 

Figure 48. (a) Normalized elastic constants as a function of element number. MRV was chosen to have 30,700 
elements. Values were normalized by those obtained with the largest assembly (82,238 elements) (b) Coordination 
number of a MRV assembly as a function of maximum gap parameter. Gap cutoff parameter was 0.17𝑅Y and yields a 
stable element coordination number of 7.7. 
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2.2.5.3.8. Description of the Model Assembly 
The standard assembly used in subsequent simulations consisted of 30,700 elements held 
together with 118,008 bonds and an average coordination number of 7.7. This results in a cubic 
assembly with sides of length 60.0 𝑅Y. Figure 49 shows the elastically deformed assembly and 
Figure 50 shows an example elastic response of the assembly. 

 
Figure 49. MRV assembly compressed in the y direction and sheared in xz. Elements are color-coded by the 
magnitude of element displacement in units of the mean element radius 𝑹t . 

The stress-strain curves in Figure 50 generally follow a linear trend, except for a very small 
region at the beginning of the simulation. Final strains were at least two orders of magnitude 
larger in the directions of specified deformations relative to the unstrained directions. 

 
Figure 50. Stresses-strain curves in the deformation directions, (a) normal and (b) shear, and the corresponding 
elastic constants. Stress-strain curves are linear besides in the initial part of the simulation. 

(a) (b)
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2.2.5.3.9. Full Stiffness Tensor 
The full stiffness tensor was obtained for a representative case of anisotropy parameters, the 
same as the one used for the MRV. The full stiffness tensor the DEM assembly was measured to 
be: 

 

 

 

Equation 49 
 

Averaging the cubically equivalent so stiffness element, and setting to zero those that would be 
zero under cubic symmetry give the tensor: 

 

 
 

 
Equation 50 

 

Here 𝐶H̅H =
(bddvbeevbww)

g
, 𝐶H̅K =

(bdevbdwvbew)
g

, and 𝐶h̅h =
(bccvbxxvbyy)

g
. The variations in stiffness 

of the cubically equivalent element, including the ones that would be zero,  provides a method 
for quantifying uncertainty. The largest uncertainty in this set of stiffness elements is in C11 and 
C12 values and measures 0.3 GPa. The C44 uncertainty is 0.1 GPa whereas the mean magnitude 
of terms that should otherwise be zero measures 0.15 GPa. These uncertainties are below 
detection in typical mechanical deformation experiments. The symmetry and cubic nature of the 
tensor presented in Equation 49 - Equation 50 implies that to use the proposed approach only two 
deformations are needed to describe a cubic material in the model. 

2.2.5.3.10. Rotational Invariance of the Stiffness Tensor 

The same model discussed in Section 3.3.8 was used to assess the rotational invariance of the 
elastic properties. The rotation matrix applied to obtain the rotated stiffness tensor is presented in 
Equation 51: 
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which corresponds to angles of 60°, 30°, and 45° about the x, y, and z axes, respectively. 
Rotating the stiffness tensor Equation 49 with this transformation matrix gives the tensor: 

 

 

 

 

Equation 52 

 

This tensor represents the stiffness tensor if the principle axis of the stiffness distributions instead 
of being aligned with the Cartesian axis were rotated by R-1. We can therefore verify that the 
elastic behavior is rotationally invariant by assigning the stiffnesses to the assembly from the 
spheroid distributions rotated by R-1 and then computing the DEM stiffness tensor. The result is: 

 

 
 

Equation 53 
 

which is in good agreement with Equation 52 within the uncertainty established from Equation 
49 and Equation 50. Rotating Equation 53 back and diagonalizing as in case of full stiffness 
tensor (Equation 50) yields: 

 

 

 

 

Equation 54 
 

with uncertainty in C11, C12, and C44 of 0.7, 0.7, and 0.1 GPa, respectively. The average value of 
the non-zero terms that should otherwise be zero is 0.2 GPa. The tensors in Equation 50 and 
Equation 54 agree to within 0.1, 0.2, and 0.2 GPa for C11, C12, and C44, implying rotational 
invariance of the proposed anisotropy approach. 

2.2.5.3.11. Reproducibility with Different Assemblies 

To establish that the model’s elastic behavior is robustly reproducible with different element 
assemblies the stiffness tensor calculations were repeated for two additional DEM samples 
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generated with different random seeds. These different element assemblies had the same average 
packing density and a similar total number of elements, (30,714 and 30,718 compared to original 
30,700). For all three assemblies, the elastic response was obtained using two different sets of 
model parameters that yielded the elastic constants of C12/C11=0.3 and C44/C11=0.43. Results are 
shown in Table 9. The elastic constants are very close for the three different assemblies in case 
of both parameter sets indicating that the model is reproducible and can be readily applied to 
various DEM assemblies. 

Table 9. Elastic response of DEM assemblies generated with different random seeds. 

Parameter set Value Sample 1 Sample 2 Sample 3 
Set 1 C12/C11 0.30 0.30 0.31 

C44/C11 0.43 0.44 0.44 
Set 2 C12/C11 0.30 0.30 0.31 

C44/C11 0.42 0.42 0.42 

 
2.2.5.3.12. Accessible Anisotropic Space 

In order to determine the space of cubic elastic anisotropy that can be accessed by the DEM 
model, simulations were performed to compute a random cloud of elastic moduli for model 
parameters selected with a uniform random sampling of the normalized log space. The 
resulting data cloud showing the anisotropic space accessible by both the Z<1 and Z>1 
models is shown in Figure 51. For reference, this accessible space is plotted alongside the 
literature reported moduli for a wide range of cubic materials (Simmons and Wang, 1971). 
The domain of the elasticity space that can be accessed here is a property of the granular 
model and is not expanded by extending the range of the model parameters sampled. 
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Figure 51. Comparison of elastic behavior with cubic materials. Red dots show literature reported elastic constants 
for a variety of cubic metals, ceramics, and oxides (Simmons and Wang, 1971). The open circles show the elastic 
moduli obtained with the DEM model from a random sampling of the an, as, and ak normalized log space. In this 
plot, the vertical dot-dashed grid lines are contours of constant Poisson ratio in the á100ñ direction, C12/(C11+C12) in 
steps of 0.1. The dashed black lines emanating radially from the bottom right are contours of constant Zener ratio (in 
steps of 0.25), with the solid line showing the contour for Zener ratio =1, and thus isotropic behavior. The red line 
cutting from bottom left to top right is the line along which the Cauchy symmetry relation, C12=C44, holds true. 
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2.2.5.3.13. Obtaining Specific Model Parameters 
Because the space of model input parameters is three dimensional while the space of the 
resulting model’s normalized elastic moduli is two dimensional, many different model 
parameters sets can lead to the same anisotropic elastic behavior.  To elucidate the mapping from 
model parameters to emergent elastic moduli (and to enable efficient determination of model 
parameters for a desired elasticity) interpolation schemes have been developed based on an 
artificial neural network (ANN). Feed forward ANNs with a two hidden layers of nine neurons 

each were trained to a randomly selected set of 70% of the log normalized model parameters 
used to compute moduli plotted in Figure 52. For both the Z<1 and the Z>1 models twenty 
ANNs were trained starting from different initial conditions, and the variance between the ANNs 
used to test the quality of training and uncertainty in the interpolation. The trained ANNs 
reproduced a validation dataset (half of the remaining data selected at random) with an R-
squared value better than 0.997 — as well as should be expected for the uncertainty in the 

Figure 52. Surfaces of constant elastic moduli plotted in the space of log-normalized model parameters with the 
x,y, and z axes the normal, shear, and stiffness ratios respectively. Blue surfaces (plots (a) and (d)) are contours of 
C12/C11 ratio. Orange surfaces (plots (b) and (e)) are contours of C44/C11. The top row (plots (a–c)) are for the Zener 
ratio >1 model, while the bottom row is for the Zener ratio < 1 model. Plots (c) and (f) show the two moduli 
contours overlaid. 
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computed elastic moduli. Using these ANN to explore the model parameter space in Figure 52 & 
Figure 53 shows contour surfaces in the log-normalized parameter space that have constant 
elastic moduli — Figure 52 shows isosurfaces of dimensionless C12 and C44, while Figure 53 
shows isosurfaces of Zener ratio and constant Poisson ratio along á100ñ, defined as C12/(C11+C12). 
These plots show that for any desired elastic response there are a range of possible model 
parameters that could reproduce it. The question of which alternative a user should choose will 
be discussed in more detail. 

 
2.2.5.3.14. Limits of the Accessible Domain of Elastic Properties 

It is clear from the data cloud plotted in Figure 51 that there is only a limited domain of the 
elasticity space that can be accessed by the DEM models, and there are many known cubic 
materials possessing elastic constants that fall outside this domain. It is thus worthwhile to 
consider what sets the fundamental limits of the DEM model, and what this tells us more 
generally about the nature of atomic bonding. The domain of accessible moduli can be roughly 

Figure 53. Surfaces of constant Poisson ratio plotted in the space of log-normalized model parameters with the x,y, 
and z axes the normal, shear, and stiffness ratios respectively. Blue surfaces (plots (a) and (d)) are contours of 
constant Zener ratio 2C44/(C11-C12) ratio. Orange surfaces (plots (b) and (e)) are contours of constant á100ñ Poisson 
ratio defined as C12/(C11+C12). The top row (plots (a–c)) are for the Zener ratio >1 model, while the bottom row is 
for the Zener ratio < 1 model. Plots (c) and (f) show the two moduli contours overlaid. 
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described as having Zener ratios between 0.65 and 1.5 with C44> 0.6 C12. The surfaces of 
constant modulus in Figure 52 show that in both the Zener ratio >1 and the Zener ratio < 1 
models the strongest influence on elastic properties is the change in the ratio of shear to normal 
stiffness, ak, with C12 diminishing and C44 increasing as ak is increased. In the Zener ratio <1 
model the isosurfaces for C12 (C44) are concave up (down) with varying anisotropy of the normal 
stiffness distribution. These surfaces have a valley in the log normalized parameter space running 
along an » 0.7. This corresponds to a normal stiffness anisotropy ratio of an = 1, the condition of 
no directional dependence in bonds’ normal stiffness. In the Zener ratio >1 model the directions 
of curvature of the C12 and C44 isosurfaces are reversed. The parameter that has the weakest 
impact on the models’ elastic moduli is as, the anisotropy ratio of the shear stiffness, which is 
perhaps not surprising as the input parameter space was restricted so that shear stiffness 
amplitudes were always softer that normal stiffnesses. 
Rather than considering the normalized C12 and C44 moduli it is instructive to examine surfaces 
of constant Zener ratio and á100ñ Poisson ratio n (the ratio of lateral contraction due to an 
elongation along a á100ñ direction and defined by C12/(C11+C12)) as is shown in Figure 53. The 
Poisson ratio is similar in behavior to C12 in Figure 52, being strongly dependent on ak. The 
Poisson ratio increases quickly with diminishing shear stiffness when the stiffness ratio is just 
less than 1, but the speed of change slows once the shear stiffness is negligible in comparison to 
the normal stiffness. When the stiffness ratio is just less than 1 the DEM assemblies exhibit  n 
close to zero (that is, there is no coupling between deformations in orthogonal directions), and 
for shear stiffnesses larger than the normal stiffnesses the DEM assemblies become auxetic. This 
unusual behavior can be understood by considering the deformation of an idealized case of four 
identical elements connected by parallel bonds at 45° to a loading axis (see Figure 54). It is 
trivial to show that the Poisson ratio of this idealized element cluster is 
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 Figure 54. Idealized 4 element model to illustrate the effect of normal to shear stiffness ratio on the Poisson 
contraction. 
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Clearly if this simple model were rotated by 45° so that the bonds were parallel or perpendicular 
to the loading the Poisson contraction of the assembly would be zero, and so with a large random 
assembly the collective behavior will fall between these extremes. 
The simple example in Figure 54 shows that Poisson contraction of the DEM assembly 
originates from the balance of shear and normal deformations of the bonds. The contraction does 
not originate from geometric rotation of bonds acting like network of pinned bars in a complex 
truss — a good thing as the atomic bonding in a material are not simple pair interactions. 
However, the Poisson contraction is still a collective property and does not stem from Poisson 
contraction of individual elements. Each element represents a chunk of elastic material 
seamlessly welded to its neighboring elements, and so each element should experience a Poisson 
contraction. This is not captured in standard DEM models which treat elements as rigid and 
represent their elastic behavior with independent contact laws. Correctly capturing Poisson 
coupling in this formalism would require the equilibrium length of a bond between two elements 
to alter based on the combined state of all the other bonds those elements participate in. This is a 
fundamental limitation of the current parallel bond DEM that we will seek to remedy in future 
work, and unfortunately, may require losing the simplicity of independent local contact laws. It 
is clear from Figure 51–Figure 53 that the DEM networks simulated in this work have trouble 
producing a Poisson ratio greater than about 0.3. It was found that this limit could be increased 
by changing the density of the bonding network to reduce the average element coordination, but 
a thorough investigation of this is beyond the scope of this report. 
Also shown in Figure 53 are surfaces in parameter space with constant Zener ratio. It can be seen 
that these lie vertically and so are only weakly coupled to the stiffness ratio, ak.  The anisotropy 
increases as an or as move away from 1 (an or as move away from 0.703), and dependence on as 
fades as ak diminishes.  The limit to the elastic anisotropy achievable with the DEM model can 
be understood by looking at the plots of the directionally dependent stiffness shown in Figure 46 
(and also later in Figure 55). As the shear or normal anisotropy parameter becomes large or small 
the corresponding stiffness distribution becomes very acute, either composed on needle like 
lobes or pancake like discs. In these extreme cases, the solid angle subtended by the directions of 
high stiffness is very low and, as the elements have an average coordination of eight, the 
likelihood of a contact lying exactly along the stiff direction becomes low. This means that 
although the bond stiffnesses are highly anisotropic, there are a number of very stiff bonds 
embedded in a network of much softer bonds and thus one would expect to require a large MRV. 
Beyond the problem of numerically sampling a stiffness distribution with long tails, a second and 
more fundamental limit on the accessible elastic properties is set by the integral of the stiffness 
functions. In Appendix C, the analytic model derived in Appendix A is compared with the DEM 
simulations. Performing a random sampling of the parameter space, as was performed for DEM 
in Figure 51, produces a very similar accessible domain of elasticity as that shown in Figure C.1. 
The analytic model and DEM simulations display elastic anisotropy ranging from 0.6 to 1.5. 
Where the models differ is in their ability to cross the red C12=C44 line.  
In Appendix D, the analytic model is used to determine how the limits of the accessible elastic 
domain are related to the angular stiffness functions. For expanding this domain to reach more 
extreme anisotropies, it is shown that larger values of Z can be achieved if the stiffness functions 
are altered to permit independent tuning of shear and normal stiffness along the á110ñ directions. 
To test this a set of modified stiffness functions was defined that added or subtracted a stiffness 
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contribution due to a function defined as the envelope of six spheroids aligned along á110ñ. For 
the Z>1 model these new stiffness functions were defined with the normal stiffness 𝑘z(𝒏, 𝑎z) =
𝑘; |𝑟〈HHH〉(𝒏, 𝑎z) + 0.5𝑟〈HH�〉(𝒏, 𝑎z)�, and shear stiffness 𝑘�(𝒏, 𝑎�) = 𝑘; |𝑟〈H��〉(𝒏, 𝑎�) −

0.5𝑟〈HH�〉(𝒏, 𝑎�)�, where 𝑟〈H��〉, 𝑟〈HHH〉, and 𝑟〈HH�〉  are radial functions describing the envelope of 
three, four, and six overlapping spheroids aligned with the principal axes along the 〈100〉, 〈111〉, 
and 〈110〉 directions, respectively. For the Z<1 model the stiffness functions were 𝑘z(𝒏, 𝑎z) =
𝑘; |𝑟〈H��〉(𝒏, 𝑎z) + 0.5𝑟〈HH�〉(𝒏, 𝑎z)�, and 𝑘�(𝒏, 𝑎�) = 𝑘; |𝑟〈HHH〉(𝒏, 𝑎�) − 0.5𝑟〈HH�〉(𝒏, 𝑎�)�. 
The domain of elasticity that can be accessed using these functions is also plotted in Figure 
C.1(a) and is considerably wider in Z that the simpler model, but is still bounded by the C12=C44 
line. 
To examine the cause of the C12=C44 boundary, Appendix D also examines the integral that 
dictates the quantity 𝐶HK − 𝐶hh. This was found to be always negative; there is no modification 
that could make this positive. That is, a system of parallel bonds deformed homogeneously 
cannot have 𝐶HK − 𝐶hh > 0. This then raises a question: what is different about the DEM 
simulations that enables 𝐶HK − 𝐶hh  to be positive in some circumstances? In the analytic model, it 
is seen that 𝐶HK − 𝐶hh  becomes identically zero when the shear stiffness goes to zero in 
agreement with the Cauchy relationship that 𝐶HK = 𝐶hh  in materials held together with center to 
center pair interactions only. That the DEM simulations are able break through this we attribute 
to non-homogeneous displacement of the elements. In the DEM simulations the orientation and 
stiffness of bonds is random, and thus the deformation field of the elements will include locally 
non-affine displacements. The result will be a larger fraction of elastic energy stored in bonds 
oriented in soft directions and deformation fields that could involve local rotation of clusters of 
elements. The authors speculate that these could be responsible positive values of 𝐶HK − 𝐶hh. 
A more systematic approach to expanding the accessible elastic domain would be through the 
use of stiffness functions constructed from a more complete basis set. For example, one could 
define a stiffness distribution using a correctly symmetrized set of spherical harmonics. For more 
flexibility still, one could define the shear stiffness to depend on the direction of displacement in 
addition to the orientation of the bond. The standard parallel bond model used in DEM has only a 
single shear stiffness; that is, for a given contact normal, the shear stiffness is the same in all 
directions perpendicular to the contact. This is not the case in a cubically elastic medium where, 
as can be seen in Figure 44, on any contact plane there will be a soft and stiff direction of shear. 

2.2.5.3.15. Selection of Element Packing Density, Coordination, and Polydispersity 

The choice of assembly packing fraction, element polydispersity, and coordination number all 
affect the collective macroscopic elastic behavior but were not fully explored in this work. 
Rather, a set of reasonable choices for these parameters were found for which the sensitivity of 
the model to the variation in packing, element size distribution and element coordination was 
low. 
The packing efficiency is quantified here by the assembly porosity, or void fraction, as is 
common in the geotechnical literature for granular materials. A lower limit of an admissible void 
fraction is 0.36 which corresponds to a closest possible packing of monodispersed spheres. 
Smaller void fractions can be obtained in highly polydisperse assemblies, but in this work the 
element size distribution was relatively low — only large enough to prevent regular crystal-like 
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packing of elements. An upper limit of void fraction occurs at around 0.44 with the jamming 
transition in a non-bonded assembly, above which the assemblies become so loose that they are 
mechanically unstable. Although the elements in the assemblies in this work are bonded, the 
bonding network with a high void fraction would be very loose and thus a poor representation of 
an elastic continuum. The interaction cutoff for bonding adjacent elements was tuned so that the 
average element coordination was 8.0. In general, a higher coordination number may give 
macroscopic response closer to continuum behavior; however, more redundant bonding in and 
assembly inhibits Poisson contraction and so a compromise was needed reach higher Poisson 
ratios and C12 values relative to C11 and C44. 

2.2.5.3.16. Choosing Optimal Model Parameters 

The most surprising result from Figure 53 is that it does not matter how one chooses to introduce 
anisotropy into the directional dependence of the bond stiffnesses. One can create a DEM model 
with the same macroscopic Zener anisotropy ratio using stiffness distributions defined by either 
oblate (a < 1) or prolate (a > 1) spheroids, providing one imposes the correct cubic symmetry of 
these distributions.  The concept is particularly noticeable in Figure 55 which shows the locus of 
parameters that all yield a particular elasticity tensor, along with spherical plots of the stiffness 
distributions that produced them. The contours show a remarkable mirror symmetry in the as = 1 
plane (as = 0.703 plane).  For both the Zener ratio <1 and >1 models the angular functions for 
normal stiffness that produce the left-hand contour are built from prolate spheroids.  These 
distributions resemble the angularly dependent normal stiffness in Figure 44, while the right-
hand contour is constructed using oblate distributions of normal stiffness that appear to have 
little in common with the moduli in Figure 44. 
At this point, some questions arise. Which of the many choices of parameters for a desired elastic 
response should one choose? And, how can one discriminate between the choices? and should 
one switch from angular functions based on spheroids to a basis set that provides more flexibility 
such as spherical harmonics? 
Sticking with spheroid angular functions, a number of arguments can be made to steer the choice 
of model parameters. One approach is to choose parameters that reflect the underlying behavior 
of the material of interest. With this rationale, one might choose parameters in which the same 
anisotropy ratio is used for shear stiffnesses as for normal stiffness — restricting oneself to 
parameters on the diagonal an = as plane as plotted in Figure 56. On this equianisotropy plane 
one still has to decide whether to use oblate (a < 1) or prolate (a > 1) distributions. Keeping with 
the philosophy of mimicking the bonding behavior of the material the best choice might be to use 
parameters with a >1. 
An alternative approach to choosing between model parameters that produce equivalent 
macroscopic elastic response is to ask what is different about the system at the microscopic level, 
and to choose the system with the least microscopic heterogeneity, and thus, the smallest MRV. 
With this rationale, one would choose the parameters for an and as closest to one – and when 
faced with the choice of prolate or oblate distributions, opting for oblate distributions would be 
preferable as these have a more equitable distribution of stiffness over a given solid angle. To 
quantify heterogeneity, we compute the mean normalized standard deviation of the distribution 
of local strains obtained from the set of measurement spheres. This noise metric for the eight sets 
of model parameters (labeled i–viii) along the contour in Figure 55(a) are given in Table 10. For 
this system which, is not strongly anisotropic, the distribution of local strains is narrow with a 
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width of around 5-6%, for both the normal and shear components of strain. There is no obvious 
trend in this heterogeneity with the model parameters, other than that the noise in the normal 
strain is slightly larger than the noise in the shear strain. 
An alternative means to quantify this internal state of the DEM assembly can be made indirectly 
by comparing the elastic moduli of the DEM element assembly to the moduli of the analytic 
model with the same stiffness functions. This comparison was also performed for parameter sets 
indicated in Figure 55(a) with the results reported in Table 10. In these cases the mean field 
analytic model and the DEM simulations are in good agreement and there is no overall trend in 
the deviation. The comparison was also performed over the entire log normalized parameter 
domain for the Z > 1 model as shown in Figure C.1(b) in Appendix C. Here the assumption is 
that differences between the mean field analytic model and the DEM model arise because of 
heterogeneous deformation and therefore, the deviation in moduli between the two is a metric of 
the heterogeneity in the DEM assembly. In Figure C.1(b) it can be seen that the deviation from 
mean field behavior depends most strongly on the ratio of the shear to normal stiffness, and that 
C12 matches the mean field model when the normal and shear stiffnesses have similar 
magnitudes, while C44 matches the mean field model when the shear stiffness is low. 
As a final comment, the rationale for selecting the parameters for spheroid-based models can be 
applied to choosing other angular functions and selecting the model parameters for these 
alternative functions. The advantage to be gained from selecting more flexible angular functions, 
besides reducing the MRV, is expanding the boundaries of accessible elastic behavior. 
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Table 10. Table quantifying variation in internals state for DEM parameters shown in Figure 55.(a) which all have 
the same normalized elastic moduli of C12/C11 = 0.2 and C44/C11 = 0.35.   The 2nd and 3rd columns show the mean 
normalized noise in measurement sphere normal and shear strains, and the last two columns quantify the deviation 
from the analytic model derived in Appendix A.  

Model Parameters Normalized 
measurement sphere 

noise (%) 

Deviation from analytic model: 
(Cij/C11)DEM – (Cij/C11)Model 

Set an as ak 𝜀H (%) 𝜀h (%) Deviation: ΔHK Deviation: Δhh 
i 1.30 0.03 0.33 5.8 5.0 -0.028 0.017 
ii 1.82 0.12 0.22 5.7 4.8 -0.013 0.003 
iii 2.83 0.88 0.24 6.1 4.3 -0.008 -0.015 
iv 1.78 3.61 0.22 5.4 4.3 -0.014 0.006 
v 0.50 0.03 0.34 5.8 5.1 -0.025 0.014 
vi 0.34 0.12 0.23 5.5 5.0 -0.012 0.006 
vii 0.21 0.88 0.27 5.8 4.5 -0.007 -0.002 
viii 0.38 3.61 0.22 5.4 4.5 -0.005 0.009 

 

Figure 55. Contours of identical elastic behavior. Plot (a) shows contours of C12/C11= 0.2, and C44/C11= 0.35 for the 
Zener ratio <1 model. Plot (b) shows contours of C12/C11= 0.35, and C44/C11= 0.35 for the Zener ratio >1 model. 
The vertical dashed red line indicates the line along which the bond normal and shear stiffnesses are isotropic. The 
inset polar plots show the shear (gold) and normal (blue) stiffness distributions (all plotted on the same absolute 
scale).  
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2.2.5.3.17. Summary of Elastic Anisotropy 
In this work, the discrete element method (DEM) was adapted to enable a random packing of 
elements to model materials with cubic anisotropy. The ability to capture cubic elasticity is a 
prerequisite for extending the discrete element method to model stochastic mechanical processes in 
monolithic solids which consist of cubically anisotropic elastic constituents (polycrystals, 
composites, etc.). Additionally, the DEM model presented here provides a roadmap for adapting 
traditional DEM to model orthotropic rocks and geotechnical materials. This extension to DEM 
was accomplished using the established parallel bond contact formalism and is capable of 
modeling a broad range of cubic materials with Zener ratios smaller and larger than one. 
Anisotropy in the collective elastic response of the DEM assembly comes from assigning the 
stiffness of element to element bonds depending on the bonds’ initial orientation — and crucially, 
assigning them using an angular dependence function that has the same underlying cubic 
symmetry as the crystal it mimics. In this first demonstrative work, these angular functions 
where defined by the envelope of three or four overlaid spheroids with principal axes aligned, 
respectively, along the á100ñ or á111ñ directions of the crystal being represented. The models 
have three parameters that define the overall elastic behavior (an, as, and ak, respectively, the 
normal and shear stiffness anisotropy, and the ratio of the shear to normal stiffness magnitude). 
A fourth parameter sets the overall magnitude of the resulting stiffness tensor. Two different 
models were presented to capture the properties of materials with Zener ratio <1 and Zener ratio 
>1. It was demonstrated that the models’ elastic behaviors have the correct symmetry and 
rotational invariance. 
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The research presented here also explored the mapping between the model parameters and the 
resulting elastic properties and examined the limits on domain of elastic properties that can be 
accessed with the DEM model. An artificial neural network (ANN) was trained to interpolate 
between input DEM model parameters and the ensuing elastic moduli of the DEM assembly. The 
interpolation scheme enabled connections between the model parameters and resulting behavior 
to be elucidated efficiently and revealed the surprising result that only the scale of the asymmetry 
aspect ratio in the contact mechanics is important, not its direction of deviation. The ANN 
analysis further revealed that the input parameters are non-unique and thus a desired set of elastic 

Figure 56. Contours of elastic moduli on the plane of the parameter space on which the normal and shear 
stiffnesses have identical anisotropy ratio (an=as). The red dashed line marks the parameters at which the 
normal and shear stiffnesses are isotropic (an=as=1). Plots (a & b) are for the Zener ratio >1 model and (c & d) 
are for Zener ratio <1. Plots (a & c) show the normalized moduli C12/C11 (blue) and C44/C11 (gold). Plots (b & 
d) show the Zener ratio (blue) and Poisson ratio (gold). 
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stiffness tensor ratios can be achieved with numerous combinations of input parameters. 
Accompanying the DEM model, an analytic mean field model of the DEM elasticity was 
presented and used to examine the limit on the accessible domain of elastic properties. This 
model reveals that the accessible domain can be expanded to larger and smaller Zener anisotropy 
ratios by changing the functional form of the angular stiffness functions, but that there is a hard 
limit to increasing the Poisson ratio that is set by the Cauchy C12=C44 limit. The combination of 
the ANN and the mean field model can be used to quickly and efficiently choose an optimal set 
of DEM model parameters to represent a system with a specific desired stiffness tensor. 

 Isotropic plasticity without hardening 

2.2.6.1.Plastic deformation in DEM 
The DEM model of isotropic non-hardening plasticity relies on the framework outlined in 
Section 2.2.1. In traditional DEM simulations of bonded assemblies such as rock, plasticity is 
modeled through permanent breakage of parallel bonds. The resulting stress-strain response is a 
brittle failure as shown in Figure 57. The bonds break when their tensile or shear stresses exceed 
their tensile, 𝜎b , or shear strength, 𝜏b . The tensile 𝜎Y  and shear 𝜏̅ stresses on the bond are 
expressed as, 

 
 

Equation 56 

 

 
Equation 57 

Here 𝑭𝒏 and 𝑭𝒔 are the bond normal and shear forces, 𝑴𝒃 and 𝑴𝒕 are the bending and twisting 
moments, 𝐴̅ = 𝜋𝑅YK is the bond area, and 𝐼 = H

h
𝜋𝑅Yh and 𝐽 = H

K
𝜋𝑅Yh are the moment of inertia and 

the polar moment of inertia. Schematic display of each force and moments contribution to bond 
deformation is shown in Figure 58. 
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Figure 57. Brittle fracturing in a typical DEM simulation – stress-strain response and assembly cross-section. Dark 
colors represent elements with coordination number lower than 5. 

 
Figure 58. Basic deformation mechanisms contributing to parallel bond failure 

To implement plasticity without hardening, the bonds are allowed to reform after breaking 
until their gap parameter becomes larger than the gap cutoff (Equation 8), at which point the 
bond will remain broken. Additionally, whenever a bond breaks, the assembly is scanned and 
new bonds are formed according to the gap cutoff criterion. With these modifications, the model 
introduces plastic deformation through a combination of two mechanisms: (1) elongation of 
bonds (i.e., free volume generation); and (2) promoting local sample deformation along high 
shear stress planes to facilitate shear banding. The contribution of these two mechanisms is 
influenced by the relative fraction of particular bond breaking modes – tensile and shear failure.  
The bond strengths were defined by an expression derived to satisfy two criteria: (1) the bond 
breaks at least once before it reaches its final length and is excluded from the computation; and 
(2) the bond does not reach lengths significantly larger than the length determined by the gap 
cutoff parameter (Equation 8). 
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Neglecting the bending and twisting moment contributions, the normal and shear stresses, 
respectively (Equation 56-Equation 57), on the bond are proportional to the product of bond 
normal and shear stiffness and the displacement of one of the elements at time i, ui: 

 
Equation 58 

 
Equation 59 

Approximating the displacement as the gap cutoff parameter gmax yields 

 Equation 60 
 

 Equation 61 

The expression in Equation 61 holds exactly for a bond under pure tension with one of the 
elements being stationary. For other failure modes using Equation 60-Equation 61 leads to 
multiple bond failures before the final failure which is the desired behavior, for example, to 
simulate slip under shear. In practice, the strengths are corrected with additional factors, 
𝛽z, 𝛽� 	< 1.0 that tune the macroscopic stress to target values: 

 
 

Equation 62 

2.2.6.2.Assembly generation 
Assembly was generated using the same steps as outlined in Section 2.2.4.2 except that the after 
removal of walls it was carved down to create a dog-bone shaped tensile sample (Figure 59). The 
sample was deformed by imposing the displacement of the elements on the outer circular faces 
of the sample, hereafter referred to as grip elements. Similar to physical tensile experiments, the 
dog-bone sample shape was used to prevent stress concentrations causing premature failure 
adjacent to the grip region of the sample. The dog-bone assembly shape was created by removing 
all elements with centers of mass that lie outside a volume defined as a cylindrical region and 
two hyperboloid shoulder regions. 
Starting with a rectangular box with the origin at its corner, the sample shape was defined 
according the following conditions, 
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Equation 63 

Element with a height 𝐻H ≤ 𝑧� < 𝐻K is included in the assembly if 𝑓� ≤ 0 

 

 
Equation 64 

 

Hi is either H1 or H2, 𝑥, 𝑦, 𝑧 are transformed coordinates of the element centroid, 𝑥�, 𝑦�, 𝑧� such 
that the assembly center coincides with the coordinate system origin, 𝑊 is the width/side of the 
original box, 𝑅��� is the radius of the cylindrical section and 𝑐 = 2𝑅���, a parameter that 
determines the size of the hyperbolic regions (𝑐 = 2 herein). 

2.2.6.3.Model properties and implementation 
The described model was used to simulate tensile testing of a DEM assembly. The grip elements 
(Figure 59a) were defined to have a fixed axial velocity (i.e., a constant displacement rate, 𝑢�̇) to 
stretch the assembly until failure. Lateral motion of the grip elements was unconstrained. The 
velocity of the grip elements was selected to give a dimensionless inertial number, defined as 𝐼 =
𝛾̇𝑑 \𝑃 𝜌⁄`  where 𝛾̇ is the shear strain rate, 𝑑 is mean element diameter, 𝑃 is bulk stress, and 𝜌 is 
assembly density, of approximately 10-4. This value is an order of magnitude less than the 
threshold needed to maintain quasi-static conditions (da Cruz et al., 2005). During the 
simulations, the volume-averaged macroscopic stresses and strain rates in the sample were 
calculated using 500 spherical measurement volumes randomly located within the assembly. 
Each measurement volume encompassed approximately 130 elements. Average strains were 
obtained by integration of average strain rates. 
The assembly used in this work is shown in Figure 59a while its properties are summarized in 
Table 11. The solid fraction of the assembly was Φ = 0.60 while for comparison, Φ�b� ≅
0.64	for a random close packing of monodispersed spheres. Bond modulus and normal-to-shear 
stiffness ratio were calibrated to reproduce specimen-scale response consistent with a generic 
metallic material. This resulted in a material with an average Young’s modulus of 169 GPa and 
Poisson’s ratio of 0.23. Bond strength scaling factors 𝛽z and 𝛽� were set to produce yield stresses 
of approximately 200 MPa. Figure 59b shows distribution of normal bond stresses during the 
elastic part of the simulation. All of the mentioned parameters can be calibrated to give a desired 
yield stress and elastic modulus value, while Poisson’s ratio is more restricted in this formulation. 
Such restricted Poisson’s ratio also arises in other emerging mesoscopic methods for simulating 
continuum materials such as bond-based peridynamics (Kumar et al., 2016; Madenci and 
Oterkus, 2016a). 
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Figure 59. The DEM assembly: (a) showing grip elements (dark blue), components of sample generation, and 
local cage with blue elements being the neighbors (nodes) (b) bonds colored by their normal stress (units in Pa) 
at a point in the region of elastic deformation. 

Table 11. Model properties 

 Parameters Value 

Elements Maximum relative element diameter 𝑑¢£¤/𝑑Y 1.0833 

Minimum relative element diameter 𝑑¢Nz/𝑑Y 0.9167 

Bonds 

Bond modulus, [Pa] 1.0595x1012 
Normal-to-shear stiffness ratio, [] 5.0 

𝛽z 0.02 - 0.06 
𝛽� 0.012 - 0.026 

Gap parameter, [m] 0.08𝑑̅ 

Assembly 

Number of elements 15,512 
Number of parallel bonds 58,962 

Average coordination number 7.6 
Solid fraction Φ 0.6 

Relative height 𝐻/𝑑Y 50 
Relative radius of the cylindrical section 𝑅���/𝑑Y 12.5 

Displacement rate, 𝑢�̇ 0.83 𝑑̅/𝑠 
Young’s modulus, [GPa] 169 

Poisson’s ratio 0.23 

Yield stress, [MPa] 200 

2.2.6.4.Deformation analysis 
Two different metrics, called d2min and local cage deformation herein, were used to assess the 
mechanisms of plastic deformation in the model. These metrics quantify local plasticity, thus 
enabling visualization of shear bands and other deformation localizations that deviate from the 
affine deformation of the sample. 
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The d2min analysis compares the displacement of each element u with the expected continuum 
displacement at that point. The analysis does not rely on absolute values of the differences, but 
rather, on their relative deviations at a given time and any deviations from the mean. The 
continuum displacement was computed for a cylindrical sample of equivalent height and radius 
of the gauge length portion of the assembly. The continuum displacement field for a deformation 
along z can be defined as: 

 

 
Equation 65 

 

where zc is the z-component of the element position, L0 is the initial height of the assembly, and 
𝛿 is the total displacement, defined as 𝛿 = (𝐿z©ª − 𝐿�) 2⁄ . The new height Lnew is computed 
from the positions of the top and bottom grip elements as 𝐿z©ª=𝑧¢£¤ − 𝑧¢Nz  with 𝑧¢£¤ =
max(𝑧�N + 𝑅AN) and 𝑧¢Nz = min¯𝑧�O + 𝑅AO°. Here i and j correspond to the top and bottom grip 
elements, respectively. Computation of zmin assumes that since the assembly starts with its base 
at z=0.0, any tensile deformation will result in a negative z location. Finally, the d2min metric is 
defined as 𝑑K¢Nz = ‖𝒖 − 𝒖�z‖K. 
The local cage deformation metric uses a notional polyhedral “cage” around an element with 
nodes as the neighboring elements (Figure 59a). The cage deformation, dc, is defined as the 
maximum difference between displacements u of any two nodes, i.e. neighboring elements, 𝑑� =
max(‖𝒖N − 𝒖o‖). This metric was found to work well for shear band visualization. 

2.2.6.5.Volume conservation analysis 
Volume conservation was tracked in the central, uniform diameter cylindrical section of the 
assembly, i.e. in the uniform gauge section spanning from H1 to H2 (Figure 59). Volume 
conservation was analyzed using three different metrics: comparison of ideal (i.e., where plastic 
deformation is volume conserving) and current cross-sectional areas of the cylinder, computation 
of plastic volume change, and computation of the  coefficient, which relates the elastic and 
plastic volume change, as defined below. 
The volumetric strain during plastic deformation  was computed by subtracting the 
calculated elastic volumetric strain  from the total volumetric strain  at a given 
stress : 

 
 

Equation 66 

where  , is the Young’s modulus of the assembly, and is its Poisson’s ratio. 
When plastic deformation is volume conserving, the total volume change would be equal to the 
elastic volume change leading to a zero plastic volume change. 
The coefficient represents the relation of elastic and plastic volume change at any time i of the 
simulation: 
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Equation 67 

Here is the instantaneous strain and is the difference between current 
volume  and the initial volume , thus referring to the total volume. When is 0.0, plastic 
deformation of the system is volume conservative. Positive values indicate the volume is 
increasing with plastic extension. Below the yield stress, is not well defined and thus it should 
be considered only in the plastic region of the deformation. 
Ideal cross-sectional area  at time i was calculated using the definition of coefficient 
(Equation 67) and represents the cross-sectional area of the cylindrical portion of the assembly if 
the plastic deformation of model was perfectly volume conserving. Assuming the gauge height 

 gives: 

 
 

Equation 68 

The volume of the cylindrical section at any given strain was computed as the volume of a tight 
envelope built around the cylinder from positions of element centers. The only elements included 
in the construction of the envelope were elements originally present in the cylindrical region 
between vertical positions H1 to H2 (Figure 59). 

2.2.6.6.Non-hardening Plasticity Results 

To gain insight into the element-scale formation of fractures, plastic deformation was performed 
with the bond strengths adjusted to give three different bond breakage modes: (1) bonds break 
only in tension; (2) bonds break approximately evenly in tension and in shear; and (3) bonds 
break only in shear. This was achieved by: (1) setting the shear strength value relatively high; (2) 
setting both shear and tensile strengths to similar values; and (3) setting the tensile strength 
relatively high. 

Figure 60 shows the stress-strain curves for all three cases. The strain at which the sample fails 
increases with an increasing number of bonds that fail in shear. This originates in the interchange 
of the two deformation mechanisms – elongation and slip. When bonds break in tension, the 
material deforms by bond elongation in the axial direction, which promotes cracks to open. On 
the other hand, when bonds break in shear, the assembly is able to deform somewhat along shear 
band planes and thus introduce slip-like behavior that increases the ductility. 
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Figure 60. Stress-true strain curves for Case 1 (all bond failures are in tension), Case 2 (bond failure mode is 
approximately equal between tension and shear), and Case 3 (all bond failures are in shear). 

Results of the d2min deformation analysis are presented in Figure 61. The angle of high and low 
d2min patterns are closer to the 45-55º characteristic angles for shear bands in Case 3 where all 
bond failures are in shear. This is also true for the final fracture angle. For Case 1 the fracture 
angle is much closer to horizontal, while for bonds only failing in shear, the fracture forms along 
a characteristic angle that is similar to shear bands (e.g., 45-55º). However, while the d2min 
analysis reasonably predicts the future crack location and inclination in Cases 1 and 2, it fails to 
do so in Case 3. 
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Figure 61. Results of the d2min analysis in the central cross-sections of the assembly for cases where (1) bonds break 
only in tension; (2) approximately half of the bond failures are in tension; and (3) bonds break only in shear. (a) at a 
strain of approximately 0.005 and (b) at fracture. 

The localization of deformation on shear bands is even more visible through the local cage 
deformation analysis (Figure 62). The shear bands were visualized by plotting elements with 
local cage values 2-3 times larger than the assembly mean. The angles in Figure 62a were 
obtained from fitting the shear band areas in three dimensions with a plane. The angles in Figure 
62b were computed from fitting of the actual fracture planes. Note that due to the 3D nature of 
these planes, they do not always look to match the depicted 2D representation. When the bonds 
fail predominantly in tension, we get a behavior similar to mode I fracture with a fracture plane 
almost 90° from the loading axis. In contrast, as the fraction of bonds breaking in shear increases, 
the localization patterns become less horizontal and into the range of 48 – 60° seen for bulk 
metallic glasses (BMGs) in tension (Lund and Schuh, 2003; Schuh et al., 2007; Zhang et al., 
2003). As opposed to the d2min patterns, the shear bands in the cage analysis align with the final 
fracture angle and position in the assembly for all cases. 
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Figure 62. Results of the local cage deformation analysis in the assembly and its central cross-sections (a) at a strain 
of approximately 0.5% and (b) at fracture (b). Gold/orange indicates cage deformation values 2-3 times larger than 
the mean. Light blue (b) indicates the elements surrounding the fracture.  

Figure 63 shows the results of volume conservation analysis. The results indicate that the volume 
during plastic deformation is not conserved. While the assembly contracts laterally as shown in 
Figure 63a, the reduction in cross-sectional area and the rate of contraction is not sufficient to 
maintain a constant volume. The results are similar for all three cases, though plastic volume 
change and  coefficients are lower for the mixed failure and shear-only failure cases. 
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Figure 63. Results of the volume conservation analysis: a) Current and ideal cross-sectional areas of the assembly b) 
Plastic volume change as a function of strain with average 𝛼 coefficient values during main plastic deformation parts 
of the simulations. In Case 1 all bond failures are in tension, in Case 2 the bonds failure mode is approximately 
equal between tension and shear, and in Case 3 all bond failures are in shear. 

2.2.6.7.Comparison with plastic deformation of non-hardening solids and other methods used 
for plasticity simulations of continuum materials 

The isotropic, non-hardening DEM model developed here for solid materials can be viewed as an 
initial framework for the modeling of many amorphous materials, for instance glassy polymers 
and bulk metallic glasses (BMGs). Indeed, the limited plastic deformation (~1%, Figure 60) and 
localization of deformation onto shear bands (Figure 62, cases 2-3) is reminiscent of the 
observed tensile behavior for ductile BMGs (Dmowski et al., 2010; Scudino et al., 2011). 
On the micro- and nanoscales, amorphous materials like BMGs are inherently heterogeneous, 
both in structure and mechanical properties (Ding et al., 2014; Dmowski et al., 2010; Ketov et al., 
2015; Li et al., 2015; Liu et al., 2011; Wang et al., 2016). This gives rise to a number of unique 
mechanical phenomena like non-affine deformation (Hufnagel et al., 2016), local, irreversible 
plasticity occurring during elastic deformation (Hufnagel et al., 2016), and length-scale 
dependence of stress-strain response (Furukawa and Tanaka, 2009; Murali et al., 2011; Rycroft 
and Bouchbinder, 2012). Due to the complexity of these phenomena and limitations of 
experimental measurements, computational models are often needed to help understand the 
structure and properties of amorphous materials (Anand and Su, 2005). This is because the 
atomistic details of the fracturing process and related shear banding are quite difficult to capture 
experimentally (Sun and Wang, 2015). However, the atomistic models commonly used to 
provide insight (e.g., molecular dynamics) are generally limited to two atomic component 
systems and very short time scales. Because of these limitations, there is motivation to develop 
mesoscale modeling methods that can inherently capture the stochastic nature of shear band 
formation and fracture and provide a practical way to predict mechanical performance in 
engineering applications. 
DEM models inherently begin with an assembly structure that introduces heterogeneity to the 
local mechanical properties through the random structure variability, i.e., locally dense versus 
relatively loosely bonded regions, akin to the real variability of amorphous materials. Moreover, 
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the additional inclusion of random heterogeneity into the element interaction laws (e.g., stiffness, 
strengths, etc.) is straightforward. In either case, the intrinsic heterogeneity of the DEM model 
captures non-affine deformation on a local level as well as the emergence of shear band 
localization (Figure 62, Cases 2-3). Fracturing in the model is spontaneous and when shear bond 
failure controls the deformation, the fracture angle falls in the observed range of angles (48 – 
60°) for BMGs in tension (Lund and Schuh, 2003; Schuh et al., 2007; Zhang et al., 2003) (Figure 
62, Case 3). The nature of the fracture – brittle mode I or shear band instability – can be 
controlled by adjusting relative contributions from two bond breakage modes – tensile and shear. 
This is consistent with molecular dynamics findings of (Murali et al., 2011) where the brittle 
BMG fracture was found to originate from void nucleation whereas ductile BMG fracture 
developed through shear banding. In the DEM-based model presented here, tensile breakage of 
element bonds favors void nucleation by separating the elements and expanding the volume 
more rapidly (Figure 63b) while the shear breakage introduces more lateral, shearing 
deformation of the assembly. 
For some examples of non-hardening solids, such as bulk metallic glasses, large quantities of 
heat can be generated during local plasticity and thus the evolution and propagation of shear 
bands is intimately related to how locally generated heat enables thermally activated deformation 
processes, or even localized melting (Greer et al., 2013; Hufnagel et al., 2016; Schuh et al., 
2007). These processes are dictated by a balance of the rate of heat production and heat 
dissipation through thermal conduction. Accordingly, predictive models of plasticity in BMGs, 
such as those developed by Li (Zhao and Li, 2011), often solve for the deformation field and the 
temperature distribution simultaneously. The DEM model as presented in this manuscript only 
models the displacement fields of the materials undergoing plasticity as an important first step; 
however, there is no fundamental impediment to extending it to simultaneously model thermal 
evolution and including temperature dependent plasticity laws. Indeed, computing the thermal 
conductivity for granular materials is routinely performed with DEM simulations and is used as a 
well-established diagnostic of granular packing (Evans et al., 2011; Yun and Evans, 2010). 
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Table 12. Summary of numerical methods currently used for modeling plastic deformation of non-
hardening solids and their comparison with DEM. 

Method Advantages Disadvantages Differences with DEM 

Coarse-grain 
models 

Continuum 
representation 

(Furukawa and 
Tanaka, 2009; 
Rycroft and 
Bouchbinder, 2012) 

 

Captures well certain 
deformation phenomena 

Cannot model stress-strain 
distribution near crack tip 

Cannot model complex, 
multiaxial loads 

DEM can model complex loads 
and resolve stress-strain 
distribution during interactions 
with objects such as a crack tip 

FEM 

Continuum 
representation 

(Dolbow et al., 
2001; Gao et al., 
2016; Tandaiya et 
al., 2009; Zheng and 
Shen, 2011) 

Modeled deformation is 
quantitatively and 
qualitatively accurate 

Difficulties handling 
discontinuities and crack 
propagation. Increased 
complexity to do so 

DEM readily handles 
discontinuities and models 
crack propagation 

Phase field 

Continuum 
representation 

(Zhang and Zheng, 
2014; Zheng and 
Shen, 2011) 

Modeled deformation is 
quantitatively and 
qualitatively accurate 

Fracturing based on density 
distribution not real 
detachment of material. 

DEM treats fractures and cracks 
explicitly. 

RFM, DRFM 

Discrete 
representation 

(Picallo et al., 2009, 
2010) 

Can handle discontinuities 

Can model both ductile and 
brittle plastic deformation 

Unclear if possible for 
expansion to model 
anisotropy, creep, fatigue 
etc. 

Regular lattice model as 
opposed to heterogeneous DEM 

Peridynamics 

Discrete 
representation 

(Fu et al., 2001; 
Madenci and 
Oterkus, 2016a; 
Madenci and 
Oterkus, 2016b; 
Silling, 2000; Sun 
and 
Sundararaghavan, 
2014) 

Can handle discontinuities 

Good agreement with 
experimental data for 
various types of materials 

Thus far applied only on 
regular lattice mesh, no 
geometric heterogeneity 

Needs detailed constitutive 
laws  

Limitation on Poisson’s 
ratios achieved 

Integral, not differential 
formulation 
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MD and other 
atomistic 

Atomistic 
representation 

(Lund and Schuh, 
2003; Murali et al., 
2011) 

Most microscopically 
accurate and least relying on 
constitutive laws. 

Source of a lot of credible 
information on the physics 
of BMG deformation and 
fracturing. 

Limited to small 
dimensions, short times, 
and binary atomic systems 

DEM can model larger systems 
during longer, representative 
times. 

DEM formulation is very 
similar, mathematically, so it 
can more readily incorporate 
MD findings, like the LJ 
potential. 

Results of this study reveal that DEM has distinctions compared to other discrete methods and 
the modeling methods currently used for amorphous materials such as coarse-grain models, finite 
element models, and phase field and atomistic simulations (Hufnagel et al., 2016; Sun and Wang, 
2015). The characteristics of these methods compared to DEM are outlined in Table 2. As 
opposed to coarse-grain models (Furukawa and Tanaka, 2009; Rycroft and Bouchbinder, 2012; 
Sun and Wang, 2015), DEM is capable of modeling multiaxial, complex deformation including 
stress and strain distributions near the crack in the material (Jebahi et al., 2013). Although these 
tasks can be readily accomplished by continuum methods, such as the finite element method 
(FEM) or the phase field method, both of which require constitutive laws (Dolbow et al., 2001; 
Gao et al., 2016; Tandaiya et al., 2009; Zheng and Shen, 2011), DEM provides a more 
straightforward treatment of the actual material separation at fracture. FEM differential, 
continuum formulation requires complex treatment of discontinuities such as fracture (Zheng and 
Shen, 2011), while phase field models do not resolve the fracture explicitly, rather as a zero 
density in the density field (Zhang and Zheng, 2014). In inherently discontinuous DEM, 
fracturing occurs spontaneously (i.e., it is an emergent behavior) and fracture propagation is 
modeled explicitly by removal of bonds between elements followed by their relative 
rearrangements. Handling of discontinuities and fracturing is a strength of other discrete methods 
– including peridynamics (Fu et al., 2001; Madenci and Oterkus, 2016a; Madenci and Oterkus, 
2016b; Silling, 2000; Sun and Sundararaghavan, 2014), and lattice-based random fuse and 
ductile random fuse models (Picallo et al., 2009, 2010). Both of these methods were successful 
in reproducing brittle (Ha and Bobaru, 2011; Picallo et al., 2009) and ductile behavior (Madenci 
and Oterkus, 2016b; Picallo et al., 2010; Sun and Sundararaghavan, 2014) of solid materials. A 
limitation of the present work, and similar to bond-based peridynamics, that that our current 
DEM formulation limits the Poisson’s ratio to about 0.2 and does not properly conserve volume 
during plastic deformation (Madenci and Oterkus, 2016a). Regarding the elastic properties, it has 
been demonstrated that a modified DEM formulation can be used to give anisotropic elastic 
constants matching many realistic cubic single crystals and accurate modelling of the elastic 
properties is an ongoing area of research (Truszkowska et al., 2017).  
The major differences when comparing other discrete methods, such as peridynamics and 
random fuse models, to DEM are that DEM is naturally heterogeneous, its grid is not regular, 
and its elements are truly distinct entities. This makes DEM compelling framework with the 
potential to model phenomena that other discrete and mesoscale methods do not capture. Finally, 
atomistic simulations like molecular dynamics (MD) are widely used to study the microscale 
behavior of amorphous materials (Lund and Schuh, 2003; Murali et al., 2011) and DEM and MD 
are very similar in their mathematical formulations. Accordingly, DEM can incorporate elements 
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and findings of MD results in forms closer to the original atomistic ones while enabling 
simulations at representative spatial and temporal scales, currently unattainable by MD. 
In future work, DEM may be further modified to include more complex, physically justified 
element interaction laws to more accurately simulate the material response on the local scale. 
This may be accomplished by considering constitutive laws like that proposed by (Anand and Su, 
2005) and those used in MD simulations. With further development, the DEM framework for 
continuum modeling may provide a powerful predictive tool for plasticity and damage evolution 
in solids. 

2.2.6.8.Summary of Non-Hardening Plasticity 
This work successfully adapted the discrete element method, originally developed for the 
modeling of unbound granular assemblies and later, brittle solids, to model isotropic non-
hardening plasticity in solids. Additionally, two deformation analysis tools, d2min and local cage 
deformation, were explored to visualize non-affine deformation and shear band formation 
leading up to fracture. While both tools indicate degrees of local deformation of the assembly, 
the local cage deformation highlighted the presence of shear bands and better showed how they 
evolved to cause final fracture.  
The DEM model successfully simulated tensile plastic deformation by shear band formation until 
failure up to strains of about 1%, which is a behavior characteristic for some non-hardening 
materials of practical importance such as bulk metallic glasses. The model behavior was 
governed by two competing mechanisms, bond elongation and slip, which have relative 
contributions that are set by the bond failure mode, tensile or shear. As the shear/slip mechanism 
becomes more pronounced, deformation becomes localized on shear bands, one of which 
eventually fractures, which is behavior akin to metallic glasses in tension. 

 Isotropic plasticity with strain hardening 
There were two DEM models developed for simulation of plastic deformation with 
hardening. The first one relied exclusively on parallel bond formalism described in the 
previous sections while in the second an additional, non-linear pairwise potential was 
introduced on top of the linear parallel bond deformation. Both models followed the same 
basic DEM framework and assembly generation described earlier with any additional steps 
indicated.   

2.2.7.1.Hardening with parallel bond formalism only 
2.2.7.1.1. Local and nearest-neighbor hardening 

Figure 64 shows the results of implementing two strain hardening methodologies – one that acts 
locally at a single element and another that hardens the neighborhood including the next nearest 
neighbors. To match the experimental behavior, the percent hardening value was a free variable. 
In the local hardening scheme, only the broken and subsequently reformed bond would be 
hardened, whereas in the nearest neighbor scheme all the surrounding bonds would be hardened 
as well. Models were found to fracture at about 5-8% strain regardless of what hardening scheme 
was used.  
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Figure 64. Simulations of tensile testing with various degrees and types of hardening compared to the experimental 
data. Note that the experimental samples fail at around 20% strain and the displayed data is from experiment that 
were stopped before failure occurred. 

2.2.7.1.2. Investigation of plasticity mechanisms 

To understand what triggers the onset of fracture in our simulations, we selected regions around 
the crack to compare with regions far away to identify local structural signatures that control 
fracture (Figure 65). We have also performed identical simulations and analysis with using 
geometrically identical assemblies with statistically different element arrangements to confirm 

Figure 65. Investigated cross-sections 
around and away from crack. Green 
particles are the ones included in the 
analysis. 
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that our conclusions are a general feature of our DEM method rather than an artifact of one 
assembly (Figure 66). 

 
 

 
 

 
 

 
 

 
 

 
Figure 66. Statistically different assembly were used to give similar stress-strain response (at right); however, the 
onset of failure is different due to structural differences between the assemblies. The second assembly (at left) 
fractured at a different location from the first one (Figure 65). 

Our analysis has involved looking for structural defects (e.g., elements with low coordination 
number) prone to initiating fracture along with other potential fracture indicators like 
inhomogeneous stress or force distributions. Figure 67 shows some of the structural analysis 
tools we developed for probing the local element coordination number. Figure 67a shows the 
average element coordination values in measurement volumes used to compute stresses and 
strains in the assemblies. Blue colored volumes indicate coordination numbers slightly lower 
than average and the red colored, slightly higher. Although the differences are small, this 
analysis indicates certain structural patterns exist including regions of relatively low coordination 
number that may be structurally weaker than other parts of the assembly. Figure 67b shows 
coordination numbers of every element in a center slice of the assembly in Figure 65. Even 
though coordination values look evenly distributed, when only low values are plotted (Figure 
67c) patterns consistent with Figure 67a emerge, indicating spots of lower coordination in the 
bottom part of the assembly. Figure 68 compares the two different assemblies, their front and 
center cross-sections with only low coordination values plotted. Comparing these low 
coordination maps to Figure 65 and Figure 66, it can be seen that predicting the failure location 
solely based on structural patterns is not straightforward; however, we believe it provides useful 
information that should be considered in any future work. 
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Figure 67. Results of coordination number analysis of the assembly in Figure 65: a) Measurement spheres and 
spheres with high (red) or low (blue) average coordination b) Element coordination number in the assembly during 
fracturing c) Elements with number of contacts less than 6 during fracturing as seen from the opposite side to b). 

 

 
Figure 68. Elements with low coordination number during initial stages of the simulation in the first (Figure 65) and 
statistically different second (Figure 66) assembly. Two cross-sections were analyzed, one in the center and another 
offset from the center. 

Figure 69 shows the element coordination number during the simulation in the vicinity of the 
crack as failure progresses. Figure 70 shows the two assemblies split into 20 layers, with each 
layer colored by its average coordination number. 10, 20, and 50 layer segmentations were tested 
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and the results confirm that structural inhomogeneous likely affect the location of specimen 
failure in the DEM simulations. 

 
 
Figure 69. Elements with a low coordination in the area around the crack as the simulation progresses in the first 
assembly. 

 

 
Figure 70. Both assemblies split into 20 layers, with each layer colored by its average coordination number. Besides 
the grip elements on top and bottom the coordination number does not vary greatly in each layer but a pattern 
emerges indicating slightly lower coordination in the assembly’s bottom halves where failure initiated. 

Besides analyzing the structure of the assemblies, we have also analyzed the deformation using 
the metrics presented in Section 2.2.6.4. Results of the d2min analysis, shown in Figure 71, 
indicated locally large deformations at a few locations but did not identify shear band formation. 
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The results of local cage deformation analysis shown in Figure 72 clearly indicate deformation 
occurs by shear bands that crisscross though the sample gauge length at ~45° to the loading axis 
as expected. However, these presence of shear bands does not seem to be related to the location 
of final fracture.  

 
Figure 71. d2min analysis of the second assembly. Left – all the d2min values in a central cross-section; Right – red 
values indicate particles with d2min values about 2 or more times larger than the assembly mean. 

 
Figure 72. Shear band formation captured by the cage deformation analysis: a) Cage deformation values in the 
assembly’s cross-section. b) Particles with cage deformation values 1.97 or more times larger (orange) than the 
average in the assembly’s cross-section c) 3D view of the particles with large cage deformation. In b) and c) the blue 
particles are the sample interior, the red and cyan are top and bottom grip particles that drive the deformation. 

2.2.7.1.3. Force restoration 

When a bond breaks it reaches a maximum shear stress, after which, if its length is smaller than a 
fixed threshold the bond is reformed slowing slip-like plastic deformation behavior. The bond 
reforming for the models discussed above did not restore any force on the bond; hence, each 
reformed bond has ~0.0 initial stress but a longer length. This can cause elements to extensively 
stretch apart in the normal direction, potentially opening into a crack. On the assembly scale, 
such crack formation may cause premature brittle fracture rather than plastic slip.  
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In a plastically deforming metal, normal force is generally sustained across slip planes while 
shear deformation occurs. To better represent the physics of metal deformation and suppress 
crack formation, we have investigated reforming bonds with the normal force restored to the 
same value prior to shear failure. To investigate the influence of force restoration we have 
simulated the first assembly in this section (Figure 65) with the normal force being fully or 
partially restored every time a bond breaks in shear. Figure 73 shows the stress-strain responses 
of an assembly with only 10% of the normal force being restored such that the resulting 
macroscopic stress values become comparable with the experimental data. Restoring the full 
normal force to that same model causes a very large increase in macroscopic strain hardening 
response of the assembly, possibly due to bond reorientation and geometric hardening. Thus, it is 
concluded there is a strong interaction between force restoration and hardening that needs to be 
understood.  

 
Figure 73. Simulations of tensile testing with normal force restoration compared to simulations without force 
restoration and our experimental data. 

2.2.7.1.4. Small assemblies with hardening distribution 

To further investigate the insensitivity to the details of the hardening law, we have developed a 
hardening distribution law and tested it with small and fast 3D models. The small models were 
first simulated using our usual hardening schemes and compared to the large models as plotted in 
Figure 74. The agreement in the macroscopic stress-strain response was sufficiently close to 
consider the small models as a good first approximation in allow further testing.  
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Figure 74. Comparison of stress-strain response in large and small models. 

We used an exponential distribution function to introduce non-local hardening. When a bond 
broke, hardening is applied to all bonds that fall into the hardening region determined by the 
distribution. The amount of hardening followed an exponential decay curve as shown in Figure 
75 and would equally affect axial and lateral bonds. The hardening of the broken bond was 
determined by: 

𝜏b = (1 + 𝐶K)𝜏′b Equation 69 

Where C2 is the hardening factor and 𝜏 are the shear strengths before and after hardening. The 
hardening of any other bond in the assembly was determined as 

𝜏b´ = |1 + 𝐶H𝑒Vµ¶9·¸¶𝐶K�𝜏′b´ Equation 70 
 

Here dAj is the distance between the broken bond and the other bond. C1 is a scale parameter that 
determines the maximum amount of original hardening that will be applied to the other bonds. 𝛼 
is the parameter that controls speed of exponential decay – the lower the 𝛼, the more non-local 
the hardening will be. As seen in Figure 75, 𝛼 value of 2 causes hardening of the entire assembly 
whereas 𝛼 = 20 limits the hardening to the next nearest neighbor. 
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Figure 75. Hardening distribution scheme. Graph shows the influence of various values of the 𝛼 parameter on the 
non-locality of hardening. Small 𝛼 values will cause hardening of the entire assembly (blue line = 2) while large will 
limit it to as little as next nearest neighbors (green line = 20). Pictures on the right show exaggerated hardening that 
follows this distribution in a case of central bond breaking. 

 

The simulations were performed with various values of the 𝛼 coefficient and thus variable 
localization of the hardening. The scale parameter C1 was tuned so that the stress-strain response 
of each set compared reasonably to our experiments. Results, shown in Figure 76, indicated that 
once the stress-strain response is tuned to become similar to experimental data, regardless of the 
non-locality of hardening used, all assemblies fail at similar strains. Overall, it was concluded 
that the model response is relatively insensitive to the details of the hardening function. As 
explained in the next section, the actual permanent bond failure and related failure of the sample 
are mostly a function of the maximum gap parameter. Furthermore, while the failure mechanism 
is a combination of void formation and shear banding, the desired element slip mechanism is 
generally not achieved by any of the proposed models. The models deform by elongation with 
insufficient lateral contraction, which also causes low volume conservation shown in Section 4. 
Nevertheless, proposed model may be capable of simulating proper metal deformation with 
further changes to its force-displacement laws. Thus, the various hardening schemes proposed in 
this sections may still be of use depending on the simulated material.  
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Figure 76. Macroscopic stress-strain response of assemblies with varying amount of non-local hardening as 
compared to experimental data. All the assemblies fail roughly at the same strains regardless the amount of non-
local hardening introduced. The small differences in strain to failure were attributed to failure occurring near the 
grip or in the interior of the assembly. 

2.2.7.2.Introduction of a non-linear pair-wise potential 
2.2.7.2.1. Pair-wise potential formulation 

This part of our work achieves a stress-strain response of a metallic material through addition of 
a Lennard-Jones-like pair-wise potential to the bonded DEM framework introduced in Section 
2.2.4.2 and 2.2.6.1. The pair-wise potential had the form of the classical Lennard-Jones 
potential as shown in Figure 77, 

 Equation 71 

 

where  is the force between two elements  and  that depends on the distance between 

element centroids, ,  
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xi and xj are element centroids, is a fitted parameter that determines the magnitude of the pair-
wise force, is a parameter that sets the proximity of elements below which pair-wise force 
becomes repulsive, and is a user-defined cut-off radius, above which the pair-wise potential 
value is set to 0.0. Here was set to twice the minimum element radius, which introduces the 
possibility of elements not repelling one another while still slightly overlapping due to the 
presence of a small attractive force at very small separation distances. However, we selected this 
approach as the best compromise relative to using twice the maximum element radius or twice 
the mean element radius as these approaches would result in elements exhibiting repulsion when 
still at a distance.  
As shown in Figure 77, the pair-wise potential would reach a maximum value after which it 
would decrease, eventually asymptotically approaching 0.0. As opposed to parallel bond force, 
the pair-wise force was not incremental and did not, in general, start with a 0.0 value. It was not 
explicitly dependent on relative velocities of interacting elements.  

 
Figure 77. Pair-wise potential force as a function of element distance normalized by mean element diameter. 
Rc0 indicates the cut-off distance used in the main part of this work and Rc1 through Rc3 are cut-offs used in the 
later calibration studies. 

The total force on each contact between elements, , consists of the parallel bond, , and 
pair-wise potential contributions, , 
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2.2.7.2.2. Assembly preprocessing 
The assembly was generated in the same way as for other plasticity models. The difference was a 
presence of additional preprocessing step introduced due to the pair-wise potential. As opposed 
to parallel bonds whose forces always start from 0.0 and evolve incrementally, the pair-wise 
potential initially starts with a value that is dependent on element distance and not necessarily 0.0 
(Section 2.2.4.1). In order to ensure low stress values in the assembly before any deformation 
simulation was performed, the assembly was preprocessed following the generation procedure 
described in Section 2.2.4.2.  
Before preprocessing the pair-wise potential was introduced to the assembly in the form that was 
to be used in the later simulations. The parallel bond stiffnesses were set to 0.0 in the 
preprocessing step as it was shown to reduce the processing time and improve achieved initial 
stress. At any time of the preprocessing if the average stress in the assembly reached a value in 
the interval between 0.0 and 0.1 MPa, the preprocessing was stopped and the assembly was 
ready to be used in any deformation simulations. 
Preprocessing consisted of two steps: I. Simulating damped dynamics without any deformation 
and II. Simulation of tension or compression. In part I. similarly to first part of the assembly 
generation step the elements were allowed to reconfigure to equilibrium with no applied 
deformation or constraints. The newly installed pair-wise potential would either cause large 
negative stresses due to remaining overlap or large positive stresses due to long-distance forces 
prevailing the overlap contribution. During the first preprocessing step the elements would find 
their equilibrium configurations by decreasing the overlaps and/or their separation distances. 
After this step the assembly would reach either slightly negative or slightly positive average axial 
stress that would remain unchanged with further cycling. If the final axial stress was still too 
large for the sample to be ready for further simulations, compressive or tensile deformation 
would be applied in the second step of preprocessing. Both deformations were performed using 
the grip particles defined in Section 2.2.6.3 and Figure 59 and would usually not last long as the 
target axial stress would be reached rapidly. Once the sample was ready, it was used in the actual 
deformation simulations with parallel bonds properties restored. A typical preprocessing axial 
stress evolution with time is shown in Figure 78. Single preprocessed sample can be used with 
varying parallel bond properties while changing any of the pair-wise potential parameters 
requires new preprocessing.  



107 
 

 
Figure 78. Time evolution of average axial stress during a typical preprocessing simulation.  

 
2.2.7.2.3. Model properties and implementation 

Figure 59 shows the assembly used in this work and Table 13 summarizes its properties. The 
solid fraction of the assembly was Φ = 0.60 which is slightly lower than Φ = 0.64 for a random 
close packing of monodisperse spheres.  
The tensile testing simulation was calibrated to reproduce strain-controlled experimental stress-
strain response of tensile testing of a NIMONIC 75 nickel-chromium alloy at high temperature of 
600°. 
  

Initial high negative 
stress due to particle 
overlaps

Equilibrium 
configuration – stress 
change stops

Tensile 
stretch and 
additional 
stress 
increase
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Table 13. Model properties 

 Parameters Value 

Elements Maximum relative element diameter 𝑑¢£¤/𝑑Y 1.0833 

Minimum relative element diameter 𝑑¢Nz/𝑑Y 0.9167 
Element density, kg/m3 8908.0 

Parallel 
Bonds 

Bond modulus, [Pa] 5.926e11 
Normal-to-shear stiffness ratio, [] 5.0 

𝛽z 1e25 
𝛽� 1.2032e-3 

Gap parameter, [m] 𝑑̅ 
Pair-
Wise 

Potential 

Repulsion distance, [write over d] 12
13𝑑

̅ 
Potential magnitude parameter, [J] 9.3176e4 

Cut-off radius, Rc [over d] 1.48𝑑̅ 
Assembly Number of elements 15,512 

Initial number of bonds 74,531 
Average coordination number 9.6 

Solid fraction 0.6 
Relative height 𝐻/𝑑Y 50 

Relative radius of the cylindrical section 𝑅���/𝑑Y 12.5 
 

2.2.7.2.4. Volume change computation 
Volume conservation was investigated on three different levels: globally for the cylindrical part 
of the dog-bone shape assembly, locally for horizontal segments of the whole assembly, and 
locally for each of the local cages.  
Volume change of the cylindrical part was computed from the volume of a three-dimensional 
tight envelope created from element centroids. The tight envelope yielded slightly better fit than 
its alternative – convex hull. Volume for later times of the simulation was computed only from 
the elements originally present in the cylindrical region thus effectively tracking cylinder 
deformation. In computing the coefficient (Equation 67), and were the global, average, 
instantaneous axial stress and strain. 
Local cage volume change was computed from three-dimensional convex hulls created from 
vertices of each cage. The vertices were fixed – initial neighbors of the central cage element 
were used throughout the computation. The strain  in the computation of coefficient was not 
changed. This approach provided means for element-wise study of the volume conservation and 
identification of any patterns of high and low conservation regions. 

s

e

a is ie
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2.2.7.2.5. Stress-strain response 

The rate of DEM deformation was 0.083𝑑̅/𝑠 and the simulations where repeated with two higher 
rates, 0.42𝑑̅/𝑠 and 0.83𝑑̅/𝑠. Results with all three rates were almost identical and within the 
experimental uncertainty. Figure 79 shows the stress-strain response compared to three sets of 
experimental data. Table 14 summarizes elastic and plastic properties from experimental work 
and numerical simulation. The plastic deformation follows closely the experimental values for all 
three sets, including the 0.02% offset value and the failure stress and strain (Table 14). On the 
other hand, the elastic properties display some more discrepancy, particularly with Poisson’s 
ratio being 0.21. While the Young’s modulus can be adjusted to a value closer to the 
experimental one, the Poisson’s ratio modifications would likely need improvements to the 
model itself and its limitations are a common feature of other emerging mesoscopic methods 
such as peridynamics (Kumar et al., 2016).  

   
Figure 79. Comparison of experimental and numerical stress-strain responses for tensile testing of NIMONIC 75 at 
600°C. 

Besides the tensile testing simulations, performed were also the unloading simulations in which 
the sample was deformed in tension until the desired strain and then subsequently compressed. 
The unloading modulus (Fig. 80) for each case was computed from a reduced dataset due to the 
curves non-linearity. The reduction consisted of symmetric trimming of the data points with 
respect to beginning and end of unloading. The percent of data removed from the dataset for 
interpolation on each end was fixed for all cases. The unloading stress-strain response shown in 
Figure 80 had a consistent pattern and the Young’s modulus closely matched the one obtained 
with tensile simulations. 
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Table 14. Elastic and plastic properties of numerical models compared with experimental data. 

Model Young’s 
modulus, GPa 

Yield strength, 
MPa (0.2%) 

Ultimate tensile 
strength, MPa Strain to failure, % 

Numerical 136.2 222.2 544.2 22.47 

Exp 1 194.8 227.9 554.9 23.11 

Exp 2 198.8 218.5 562.8 25.79 

Exp 3 200.2 218.3 554.6 24.38 

 

 
Figure 80. Stress-strain curves for the unloading simulations and the corresponding moduli.  The sample was first 
stretched in tension until the indicated strain and then compressed to zero average stress. The dashed lines represent 
the interval over which the unloading moduli were obtained with a linear fit.  

 
2.2.7.2.6. Deformation analysis 

Figure 81 shows the results of the d2min analysis. During the earlier stages of plastic deformation, the 
central region of the sample has low d2min values thus the deformation is closer to continuum. In the near-
failure stages the d2min analysis indicates the position of the fracture with better agreement with continuum 
below the fracture.  

5% strain
150.6 GPa

10% strain
137.4 GPa

15% strain
141.3 GPa

22% strain
155.7 GPa

Young’s modulus: 136.2 GPa
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Figure 81. Results of the d2min analysis in the central cross-sections of the assembly at different strains and at failure. 

Results of local cage deformation analysis are shown in Figure 82 revealing localization of 
deformation on shear bands. The shear bands were visualized by highlighting the elements with 
local cage deformation values higher than 2.0-2.3 times the assembly mean. The angles of shear 
bands and the fracture were obtained through three-dimensional fitting of a plane and are also 
indicated. The fracture angle of 40° is within the range of fracture angles of NIMONIC 75. 

 
Figure 82. Results of the local cage deformation analysis in the assembly and its central cross-sections at 
different strains and at failure. Gold/orange indicates cage deformation values more than two times larger 
than the mean. Light blue indicates the particles surrounding the fracture.  

2.2.7.2.7. Volume conservation 

The results of volume conservation analysis are shown in Figure 83. Even though the cylindrical 
region visibly contracts (Figure 83a), reduction in cross-sectional area does not compensate for 
assembly elongation and the volume is not conserved (Figure 83b). 
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Figure 83. a) Ideal vs. current cross-sectional area of the cylindrical region in Figure 59. b) Plastic volume 
conservation as a function of axial strain with 𝛼 coefficients obtained through linear interpolation of indicated 
intervals. 

Figure 84 shows elements with volume change that is twice higher than the assembly mean. As 
expected, volume change is higher towards the interior of the assembly and lowest in the grip 
region. At the same time, high volume change seems to be only partially aligned with the shear 
bands shown in Figure 82.  

 
Figure 84. Orange elements have their local cage volume change twice larger than the assembly mean. 

2.2.7.2.8. Interaction between parallel bond force and the pair-wise potential 

Figure 85 shows schematic interaction between two bonded elements A and B in tension and 
compression with deformation parallel to the contact normal and with no pair-wise potential. By 
convention, the contact force results from element A acting on element B (Potyondy and Cundall, 
2004). Similarly, the parallel bond force is the action of the parallel bond on element B 
(Potyondy and Cundall, 2004). This implies that if the bond is in tension, the force on element B 
is negative and the two elements attract each other. On the other hand, in compression, the force 
on element B is positive and there is repulsion between elements A and B. The consequence of 
this is that elements slipping past each other experiencing local compression will be 
accompanied by element repulsion and a tendency to form cracks or voids quickly on slip bands.  

a) b)

!" = 0.82
!" = 0.57

!" = 0.83

4.5% strain 18.5% strain
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The presence of a supplementary pair-wise potential significantly changes this scenario. 
Following the convention outlined in section 2.2.7.2.1, for elements in close proximity the pair-
wise potential on element B in both tension and compression will result in a negative force thus 
introducing attraction between the two elements. This not only provides additional tensile 
deformation resistance, but also promotes slip without easy crack or void formation since it 
hinders the repulsion introduced by the parallel bond during compressive phases of local 
deformation.  
 

               
 

2.2.7.2.9. Hardening mechanism 

There are three major sources of hardening in this work - unbounded normal parallel bond force, 
contact reorientation, and the pair-wise potential.  
The unbounded normal force on parallel bonds is a consequence of constraining the bond failure 
exclusively to failure in shear. The constraint, imposed by setting the normal strength of the bond 
to unphysically large values, causes the bonds force to develop continuously until the shear stress 
exceeds that bonds shear strength (Equation 56 - Equation 57). Only when the bond breaks in 
shear and is being reformed is the normal force on it reset to 0.0. Both normal and shear forces 
are reset to 0.0 and the bond is excluded from the computations if bonds gap exceeds the gap 
cutoff parameter (Equation 8). If the bond orientation is such that the shear force does not 
develop very rapidly or almost at all, the normal force will be able grow considerably until its 
reset to 0.0 following bond breakage in shear or the bond becomes longer than the threshold and 
becomes inactive. This process of load transfer to bonds aligned in strong directions is the major 
source of hardening in this work, by far exceeding the latter two. Furthermore, it is even more 
supported due to the deformation direction being aligned with bonds which shear force is 
underdeveloped – in this case the vertical bonds. Figure 86 shows the stress-strain response of 
assemblies with no pair-wise potential and three different maximum gap parameters. Except the 
response for the smallest parameter, the stress-strain responses undergo hardening and the 
responses are very linear which originates from linear nature of the force-displacement law. The 
maximum strains are much higher in the later cases than for the shortest bond case and allow 
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Figure 85. Parallel bond forces in tension (left) and 
compression (right). Parallel bond introduces 
attraction in tension and repulsion in compression. 
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bonds to elongate in the vertical, deformation direction while developing a high normal force due 
to negligible shear force increase.  

 
Figure 86. Stress-strain response for two different gap cutoff parameters in simulations without the pair-wise 
potential for cases with high bond normal strength and a normal strength five times larger than the shear strength. 
Stress was normalized by the stress value at the yield point. 

Defining hardening per bond as positive normal force time derivative, 50.6% of total bonds 
harden at the end of the tensile testing simulation, just before failure. Out of these 50.6%, 68.5% 
have bond breakage frequency lower than the assembly mean in the last third of the plastic 
deformation and 47.6% have breakage frequency lower than a quarter of the mean. This indicates 
a direct correlation between the increasing normal force that induces macroscopic hardening 
response and the lower bond breakage. Looking at the whole assembly, 68% of all bonds have 
the breakage frequency lower than the mean signifying that not all the bonds with less frequent 
breakage develop high normal force and contribute to hardening. This is a consequence of 
heterogeneous nature of the assembly and bond orientation as different bonds carry varying 
amounts of force. Similarly, not all the hardening bonds are oriented in the deformation direction, 
meaning that their normal forces do not directly contribute to the axial stress. 
Figure 86 shows the results of setting the normal strength of the bonds to values comparable to 
shear strength using a bond stiffness dependent expression (Equation 62). The resulting 
hardening rates are considerably lower than in the cases with high normal strength. This 
confirms that the main source of hardening in the model was the high normal force originating 
from practically unconstrained normal strength. 
The second, though less impactful source of hardening is contact reorientation. Figure 87 shows 
best-fit spherical harmonics to the 3D histograms of contact orientation, contact normal force, 
and contact shear force. During the simulation, contact orientation changes from near isotropic to 
anisotropic and vertically oriented. This is not surprising, given that contacts align themselves 
with deformation direction. Figure 88 shows the normalized time evolution of anisotropy of 
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contact orientation, which again confirms the transition to vertical alignment. On the other hand, 
based on the 3D histograms, the normal and shear forces do not change their dominant direction 
and anisotropy greatly, although based on the values in Figure 88 the changes are still 
considerable.  

 
Figure 87. Fits of the 3D histograms of a) contact orientation, b) normal and c) shear forces at the beginning of the 
simulation and at two different strains. Note scale change from left to right in (c). 

4.5% strain 18.5% strainInitiala)

b)
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Figure 88. Evolution of lateral (left) and axial (right) normalized anisotropy in fitted 3D histograms for contact 
orientation, normal force, and shear force.  

Finally, a minor hardening contribution comes also from the shape of the pair-wise potential 
(Figure 77) which induces non-linear element interaction but also slight well-shaped increase of 
force after the initial linear region. This is the same mechanism as described in section 2.2.7.2.8.  

2.2.7.2.10. Calibration 

The proposed model has a number of calibration parameters that must be considered collectively 
for any given material. Meanwhile, there exist certain trends in the calibration process as well as 
in the model itself that should considerably reduce the parameter fitting procedure. 
The primary feature of the model relevant to calibration is that the parallel bonds and pair-wise 
potential are treated as independent entities. The amount of each may range from none to any 
value by setting their relative magnitudes, bond stiffnesses and pair-wise potential magnitude 
factor 𝜀 (Equation 72). In this work the influence of this relative contribution was measured with 
the average ratio of average pair-wise potential and bond force.  
When no pair-wise potential was present, the stress-strain response was purely linear as in Figure 
86 and Figure 89. Hardening occurs for larger maximum gap parameters (Equation 8) and 
normal bond strength higher than shear strength (Equation 62).  
The pair-wise potential introduced non-linearity to the stress-strain response. As shown in Table 
15, even a small amount of the pair-wise potential considerably affected the maximum strain. 
Larger contribution of the pair-wise potential lead to higher Poisson’s ratios while the maximum 
strain reached would decrease. The yield strain tended to remain constant though the yield stress 
decreased with increasing pair-wise potential influence.  
The pure pair-wise potential case displayed a bell-shape stress-strain response as shown in 
Figure 89. The large contributions of pair-wise potential in the model shift the stress-strain 
response from the linear parallel bond-dominated to a bell-shaped, potential-dominated one. 
Large contribution of the pair-wise potential caused deviations from linear elastic behavior and 
significant shifts in yield strain towards higher, unphysical values. At the same time with 
increasing potential influence the Poisson’s ratio values become higher and closer to values 
consistent with those observed in physical tests of metals. 
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Figure 89. Normalized stress-responses for models with different contribution of pair-wise potential, Fp, to parallel 
bond, Fb, force (Fr=Fp/Fb) and pair-wise potential cut-off radius Rc (in terms of mean element diameter d). The gap 
cut-off parameter in the calibration models equaled 0.5𝑑̅£R© . 

 
Table 15. Elastic and plastic properties of models with different model parameters. Stress-strain curves for all 

models are shown in Figure 50. The gap cut-off parameter in the calibration models equaled 0.5𝑑̅£R© . 

ID Fp/Fb Rc,	𝒅t𝒂𝒗𝒆 E, GPa 𝝊 𝜺𝒀,% 𝝈𝒀,𝑴𝑷𝒂 𝜺𝒎𝒂𝒙,% 𝝈𝒎𝒂𝒙,𝑴𝑷𝒂 
1 0.0 0.0 130.9 0.23 0.06 72.6 12.7 136.7 
2 0.2 1.0 130.2 0.15 0.05 74.6 11.4 135.2 
3 2.0 1.0 144.9 0.16 0.05 74.9 3.8 147.1 
4 21.1 1.0 140.8 0.17 0.05 68.6 3.5 450.5 
5 0.5 1.1 124.4 0.17 0.06 76.2 11.6 143.9 
6 2.2 1.1 144.9 0.22 0.05 75.9 8.0 164.6 
7 21.1 1.1 120.5 0.17 0.05 67.8 6.0 479.5 
8 0.04 2.5 137.0 0.18 0.60 801.2 15.1 1430 
9 0.38 2.5 145.3 0.18 0.50 772.6 13.6 1549 
10 15.5 2.5 192.7 0.29 0.40 964.6 13.3 4503 
11 1.0 2.5 0.8 0.31 5.0 45.9 11.0 61.1 

 
As shown in Figure 89 and Table 15, the most viable potential to bond force ratios fall in the 
range of 0.1 to less than 10.0. These ratios introduce desired non-linearity while maintaining 
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linearity of the elastic region. In practice, the case with no potential can serve as the first 
calibration guideline as tuning the bond properties approximately determines the maximum 
stress and strain reached as well as elastic properties of the sample. Further addition of the 
potential will influence the plastic response depending on potential magnitude and maximum 
interaction distance, Rc (Equation 72-Equation 73). Selecting different Rc values allows for 
variable influence of the potential during the later stages of plastic deformation. Smaller Rc 
values will cause the potential to become negligible in the earlier stages of plasticity while larger 
will maintain its influence until failure. This has a clear influence on the stress-strain response, 
leaving the later part of plastic response more linear in cases with lower Rc values as shown in 
Figure 90. For any amount of potential influence, care must be taken that the bond strengths are 
high enough to not fail in the elastic region. Once calibrated, the stress-strain response can be 
scaled by proportionally changing the parallel bond stiffnesses and potential magnitude. If the 
bond strengths are independent of bond stiffnesses, these also need to be scaled accordingly. 

 
Figure 90. Normalized stress-responses for models with different Rc cutoff values compared to the model with 
parallel bonds only. 

2.2.7.2.11. Choice of assembly size 
An important component of discrete element modeling is establishing the number of elements 
needed for the minimum representative volume (MRV). MRV represents the smallest number of 
elements that collectively act as a continuum. Determination of MRV commonly proceeds by 
increasing the number of elements until some chosen volume-averaged metric does not change 
significantly with further size increase. The MRV is then chosen as the smallest set of elements 
with such response.  

Figure 91 shows the stress-strain response of assemblies with four different sizes, including the 
one used in this work and Table 16 shows their properties. The overall response is somewhat 
similar for all four assemblies while the oscillations decrease with increasing assembly size. The 
final strain reached before failure increases considerably for the smallest assembly. The largest 
assembly has almost identical stress-strain response as the smaller one used here. Even though 
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the response is smoother in the larger assembly, given the matching of the stress-strain curves 
and doubled computational load, it is justifiable to use the smaller assembly except if higher 
accuracy is needed.  

 
Figure 91. Stress-strain response of assemblies with different number of elements. 

 

Based on the elastic properties of the four assemblies summarized in Table 16, the properties in 
the 806 and 4,394 elements assemblies vary considerably from the larger assemblies and their 
Poisson’s ratios are not reliable. The match in for the current and the larger assembly is not as 
close as in the case of the plastic stress-strain response. As shown in Section 5.2.10 the deviation 
in the elastic properties, especially the Poisson’s ratio is a property of this model. As it is, the 
model is suited for plastic deformation with elasticity being regarded only in an approximate 
sense. 
 
Table 16. Elastic and plastic properties of models with different number of elements compared to the original model. 

Number of 
elements E, GPa 𝝊𝒙𝒙 𝝊𝒚𝒚 𝝊 𝜺𝒀,% 𝝈𝒀,𝑴𝑷𝒂 𝜺𝒎𝒂𝒙,% 𝝈𝒎𝒂𝒙,𝑴𝑷𝒂 

806 117.4 -0.04 0.08 0.02 0.06 160.7 46.0 639.2 
4,394 172.8 0.32 0.48 0.40 0.07 133.3 29.1 510.3 

15,512 136.2 0.23 0.18 0.21 0.1 162.1 22.5 544.2 
35,878 151.5 0.18 0.18 0.18 0.08 131.1 23.6 539.5 
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2.2.7.2.12. Reproducibility with different assemblies 

The reproducibility of the model was verified with three additional models generated with 
different random seeds. The plastic stress-strain response of the models compared to the original 
model are shown in Figure 92 and the elastic properties in Table 17. While the plastic stress-
strain response in all the cases is almost identical, the elastic properties vary considerably.  

 
Figure 92. Stress strain response of the assemblies generated with different random seeds compared to the original 
assembly.  
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Table 17. Elastic properties of the original model and the models formed with three different random seeds. The 
“large” refers to largest model used as described in Section 2.2.7.2.11. These are all interpolated over a fixed 
interval. 

 Young’s 
modulus 

[GPa] 

Poisson’s ratio 
in xx direction 

[-] 

Poisson’s ratio 
in yy direction 

[-] 

Mean 
Poisson’s ratio 

[-] 

Original seed 136.2 0.23 0.18 0.21 

Seed 2 129.9 0.1 0.1 0.1 

Seed 3 121.1 0.13 0.27 0.20 

Seed 4 142.6 0.11 0.14 0.12 

Original seed, large 151.5 0.18 0.17 0.18 

Seed 2, large 142.1 0.18 0.19 0.19 

Seed 3, large 139.0 0.22 0.19 0.21 

Seed 4, large 135.5 0.17 0.13 0.15 

 
A characteristic feature of these models is occasional higher anisotropy between the Poisson’s 
ratio in the two lateral directions, here xx and yy. This size-dependent discrepancy diminishes in 
the larger assemblies, also shown in Table 17, but the value does not necessary become similar 
for all tested seeds. Both the Young’s modulus and the Poisson’s ratio seem to fall into a range 
of values with a deviation that lessens with the assembly size.  
Figure 94 shows some of the data and linear fits used to obtain the elastic properties. While the 
data is linear for the Young’s modulus, Poisson’s ratio is often obtained from a considerably 
more oscillatory dataset. This is likely a consequence of both the discrete nature of the assembly 
and the presence of a pair-wise potential that varies with absolute distance rather than 
incrementally reaching higher force values initially starting from zero for all the elements. Again, 
the proposed model is suitable for simulation of materials plastic response and its elastic 
properties should be used in an approximate sense, considering that they are represented by 
intervals rather than single values. As shown in Figure 94, the datasets used for obtaining the 
elastic properties are considerably more linear in case of larger assemblies. The properties for 
larger assemblies shown in Table 17 also display smaller deviation. This indicates that elastic 
behavior of our DEM model needs a larger minimum representative volume than the plasticity 
simulations. This finding is expected since elasticity is characterized by smaller displacement 
and thus needs larger resolution for quantification of these changes. 
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Figure 93. Elastic property fits for all four seeds in regular size models. The Poisson ratio plots show datapoints as 
markers and fits as lines. O is the original seed and S with number indicates the random seed. Fitting was performed 
in both lateral directions – xx and yy as indicated. 
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Figure 94. Elastic property fits for all four seeds in large models. The Poisson ratio plots show datapoints as markers 
and fits as lines. O is the original seed and S with number indicates the random seed. Fitting was performed in both 
lateral directions – xx and yy as indicated. 
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 Appendix A. Analytic Model of Elasticity 
Consider a DEM assembly that contains  parallel bonds per unit length, uniformly distributed 
over orientation, and with an average length . The bonds have normal and shear stiffness that 
depend on orientation, , and respectively. If the assembly is deformed with a 
homogeneous strain  (and one assumes that deformation of the bonds is affine) then the 
displacement of a bond with orientation  is given by: 

bN
l

( )ˆnk n ( )ˆsk n
e

n̂
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  A .1 

Where the displacement can be separated into normal and shear components: 

  A .2 

and  

  A .3 

The elastic energy stored in the deformed bond is: 

  A .4 

Averaging over all orientations gives the total elastic energy density: 

   A .5 

The elements of the elastic stiffness tensor  are given by the second derivative of the elastic 
energy density so that: 

  A .6 

where is the multiplicity of the symmetry equivalent index combinations (so that for example 

, , , , and ). 

Switching to the notation of the reduced stiffness matrix, we can compute the stiffness element
by imposing a homogeneous strain state : the sum of two superimposed 

strains with magnitudes  and along strain directions  and . The energy density of the 
assembly with this deformation is: 
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  A .7 

Taking the second derivatives with respect to gives: 

  A .8 

  A .9 

 

Appendix B. Proof of Cubic Elasticity from Spheroid Stiffness 
Distributions 

Cubic elasticity requires that , , 

, all other elements are identically zero, and that . Each case 

will be considered separately, first showing that , , and  are non-zero and independent 

and then showing that and  are identically zero. Finally, it will be shown that the 

symmetry of the stiffness functions  and  leads to equivalence between the symmetry related 
elastic constants in a cubic systems. 
 

Demonstration that  is Non-zero 

Considering strain path: 

   B .10 
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and direction  parameterized by polar angle, , and azimuthal angle, , the elastic constant 
 can be written as the integral: 

  B .11 

 

Demonstration that  is Non-zero 

Considering the additional strain path: 

  B .12 

one obtains: 

  B .13 

where the angularly dependent stiffness functions have been written simply as and for the 
sake of brevity. 
 

Demonstration that is Non-zero 

Using the strain path: 

  B .14 

one obtains: 

  B .15 

 

Demonstration that is Identically Zero 
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Mixing the normal and shear deformation using the strain paths one obtains: 

  B .16 

The stiffness functions and  are constructed to possess cubic symmetry (triad axes along 
) and so also posses mirror symmetry on the  plane. The term  is 

antisymmetric in  and so the expression integrates identically to zero. 

 

Demonstration that  is Identically Zero 

Mixing shear deformations along different directions using the strain path: 

   B .17 

one obtains: 

   B .18 

In this expression,  is antisymmetric in  and, as with , the expression integrates 
identically to zero. 

 

Demonstration that , , and  are Independently Tunable 

For non-isotropic elasticity one requires that . Using the equations above: 

   B .19 

It can hence be seen by comparison of this with the equation for that , , and  must be 
independent. 
 

Symmetry Relationships Between Stiffness Elements 
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The final task is to show that if and posses cubic symmetry, then the elastic constants also 

satisfy the cubic symmetry relations so that, for example, . By possessing cubic 
symmetry, the stiffness function is invariant under a three-fold rotation about [111] so that: 

  B .20 

where: 

  B .21 

is the transformation matrix for a three-fold rotation about [111] axis. Consider imposed normal 
strain along : 

  B .22 

so that  is given by: 

  B .23 

Using the symmetry relationship, we can write this in terms , a normal strain path along : 

  B .24 

Rearranging the order of these matrix products and substituting for  gives: 

  B .25 

and as  and , and the integral is performed 
over the full solid angle we see that: 
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  B .26 

A similar approach can be used to prove the equivalence of the other symmetry related stiffness 
elements; however, this is left as an exercise for the reader. 

 

Appendix C. Comparison of Analytic Model with DEM Model 
As with the DEM simulation, a simple method for identifying the accessible elastic domain using 
the analytical model is to randomly sample the parameter space and plot the resulting cloud of 
elastic properties. The results are shown in Figure Fig. C.1(a). It can be seen that the domain is 
remarkably similar to that which is accessible by the DEM model presented in Figure 8. Also 
shown in Fig. C.1(b) is the deviation between the analytic model and the DEM model in both 

 and  for the case where Z>1. It can be seen that deviation of the models is 

lowest in  for high  and the reverse for . It we assume that the deviation 
between the analytic and DEM models is due to the non-affine internal deformation in the DEM 
model, then we can see that an optimal choice of model parameters is to choose anisotropy 
factors  and  as close to 1 as possible, and choosing  to minimize the non-affine 
deformation of the assembly. 

 
Figure C.1: (a) Domain of elasticity space accessible by spheroid based stiffness interactions demarked by plotting 
the elasticity from 10,000 randomly sampled points in the input parameter space. The blue and gold data is for the 
model using stiffness functions used in the DEM model, and it can be seen that the accessible domain is similar to 
the at in Figure 8 for the DEM model. The purple and orange data is generated using stiffness functions ad before 
but with the addition of correction terms from the addition of spheroids aligned along the <110> directions. (b)  
Deviation between the analytic model and DEM simulations plotted at 500 randomly sampled points of the log 
normalized input parameter space. Red is zero deviation. 
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Appendix D. Insights for expanding the accessible domain of 
elasticity 

The accessible domain of elasticity space is enclosed in one direction by a line of constant Zener 
ratio and in the other by the Cauchy relationship . The boundaries of accessible space 
of the DEM model are parallel to those of the analytic model, but while both models can achieve 
similar levels of elastic anisotropy, the DEM model can access a region considerably to the right 
of the  boundary of the analytic model. That is, the analytic model cannot produce 

values of . To examine how the angular distributions of bond stiffness could be 

revised to push past the boundaries in Z and , we can examine the integral equations 
that give rise to these quantities. The Zener ratio is given by: 

  D .27 

where the tilde denotes the dimensionless elastic stiffness element normalized by  and the 
functions  and  are 

  D .28 

If we consider just the case for the Z > 0 model in which  peaked along  and  along 

, then to push the boundaries in Z, we wish to maximize the numerator of Z while 
minimizing its denominator. That is we wish to maximize the overlap of  and k in the 
numerator, and minimize overlap of  and k in the denominator. The functions  and  are 
plotted overlain with their respective stiffness functions in Figure D.1. From these figures it is 
clear that Z could be increased if was altered so that bonds were stiffer for normal 

displacements along the  directions, and that was varied to make bond softer in shear 

along . With the spheroid-based forms of and , it is not possible to independently tune 

the stiffness of the  directions, and thus the model predicts that the best next iteration of a 
stiffness function would include the flexibility to tune the stiffness in these directions as well. In 
the complementary direction the distance from the boundary is given by: 
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where: 

  D .30 

These are also plotted in Figure D.1. The function  has maxima along the  directions, 

but is antisymmetric, and so the overlap with  integrates to zero. The term  is negative for 

all directions, and so the integral of its overlap with is also negative. This means that not only 

is  always less than or equal to zero, there is no change that can be made to the stiffness 

functions that will make  while still possessing cubic symmetry in  and . This 

makes it all the more remarkable that the DEM model is able to obtain values of  in 
excess of 0.1. We attribute this to a not overly redundant bond network permitting non-affine 
deformation of the assembly. 
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Figure D.1: The overlap kernels for the integrals for F and  for the Z model. Bond stiffness functions are 
plotted as a translucent green surface. For the other function positive values are plotted in gold, and negative values 
in blue. The left-hand column is for the integral of the normal stiffness, and the right column for the shear stiffness. 
The top row is for the kernels in the integrals of the numerator of Z, the middle row for the terms in it denominator. 
Expanding the boundary of the accessible domain in Z requires maximizing the top row and minimizing the middle 
row.   The bottom row shows the kernels of the integrals in . The integral over  is identically zero by 

symmetry, and as function weighting the integral over  is everywhere negative , and there is no 

change to the stiffness functions consistent with the cubic symmetry that will ever  make  positive.  
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