13657

ORNL/TM

Q |
7] -
V.W! S o
..EM&.T 3 9 O
N O>ag £
O . c=a.,'n
weo f8ng
* 320,90
roc@o
Soon
25
EPERD
Ce>=m
[ ] s r
=20 ©
F 2
o

rickson
Kolda

Bruce Hend
Tamara G

-
=

-

s




This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and
Technical Information, P.O. Box 62, Oak Ridge, TN 37831; prices available
from (615) 576-8401.

Available to the public from the National Technical information Service, U.S.
Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161.

This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States nor any agency
thereof, nor any of their employees, makes any warranty, express or implied,
or assumes any legal liability or responsibility for the accuracy, completeness,
or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or setvice by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or any agency thereof.




DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.




ORNL/TM-13657

Computer Science and Mathematics Division

. PARTITIONING RECTANGULAR AND STRUCTURALLY
NONSYMMETRIC SPARSE MATRICES FOR PARALLEL PROCESSING

Bruce Hendrickson' and Tamara G. Kolda?

! Parallel Computing Sciences Department
Sandia National Laboratories
Albuquerque, NM 87185-1110

Email: bah@cs.sandia.gov

2 Computer Science and Mathematics Division
Oak Ridge National Laboratory
Oak Ridge, TN 37831-6367
Email: kolda@msr.epm.ornl.gov

Date Published: September 1998

Research supported by the Applied Mathematical Sciences Re-
search Program, Office of Energy Research, U.S. Department of
Energy, under contracts DE-AC05-960R22464 and DE-AC04-
94AL85000 with Lockheed Martin Energy Research Corp.

Prepared by
Oak Ridge National Laboratory
Qak Ridge, Tennessee 37831-6285
managed by
Lockheed Martin Energy Research Corp.
for the
U.S. DEPARTMENT OF ENERGY
under contract DE-AC05-960R22464




Contents
1 Introduction . . . . . . . . . . e e e e e e 1
2 Applications . . . . ... .. ... . ... e e e e e e e e e e e 2
3 Parallel Matrix-Vector Multiplication . . . . . e e e e 4
3.1 Matrix-Vector Multiply (Row-Based) . . . . ... ... .. ... ... .. .... 5
3.2 Matrix-Transpose-Vector Multiply (Row-Based) . . . . . ... .. .. ... ... 5
3.3 Anmalysis . . . . . .. e e e e 6
4 A Bipartite Graph Model . . . . . . . . L 7
5 Algorithms for Bipartite Graph Partitioning . . . . . ... .. ... ... ... .... 10
5.1 Alternating Partitioning . . . . . . e e e e e e e e e 10
5.2 Kernighan-Lin / Fiduccia-Mattheyses . .. ... ... .. .... .. .. ..., 11
5.3 Spectral . . . . . L e e e e e e e e 12
5.4 Multilevel . . . . ... e e e e e e e e e 13
54.1 Phasel: Graph Coarsening . . . .. ... ... ... .. ... ...... 13
5.4.2 Phase 2: Partitioning the Coarse Graph . . . . . ... .. .. ... ... 14
5.4.3 Phase 3: Uacoarsening and Refinement . . ... ... ... ....... 15
6 Experimental Results. . .. ... ..... e e e e e e e e e e e e e e 15
6.1 Least Squares . . . . . . . . it e e e e e e e e e e e 16
6.2 Linear Programming . . . . . . . . o i i i i e e e e e e e e e e e 18
6.3 Truncated SVD . . . . . . . . . e e e e e e e e 20
6.4 Preconditioned Linear Systems . . . . ... ... ... . ... ... ... 21
7 Conclusions . . . . . . . o i i i e e e e e e e e e e e e e e e e 23
8

References . . . . . . . i i i i et e e e e e e e e e e e e e e e 24




PARTITIONING RECTANGULAR AND STRUCTURALLY
NONSYMMETRIC SPARSE MATRICES FOR PARALLEL PROCESSING

Eruce Hendrickson and Tamara G. Kolda

Abstract

A common operation in scientific computing is the multiplication of a sparse, rectan-
gular or structurally nonsymmetric matrix and a vector. In many applications the matrix-
transpose-vector product is also required. This paper addresses the efficient parallelization
of these operations. We show that the problem can be expressed in terms of partitioning
bipartite graphs. We then introduce several algorithms for this partitioning problem and
compare their performance on a set of test matrices.

1. Introduction

Matrix-vector and matrix-iranspose-vector products that repeatedly involve the same large,
sparse, structurally nonsymmetric or rectangular matrix arise in many iterative algorithms.
Examples include algorithms for solving linear systems, least squares problems, and linear
programs. To efficiently implement these types of methods in parallel, the nonzeros of the
sparse matrix must be distributed among processors in such a way that the computational
work per processor is balariced and the interprocessor communication is low. This can usually
be achieved by an appropriate partitioning of the matrix. Specifically, given a structurally
nonsymmetric or rectangular matrix A, the key is to find permutations P and @ so that the
nonzero values of PAQ are clustered in the diagonal blocks as illustrated in Figure 1. As

Figure 1: Matrix before and after partitioning.

we show in §3, this nearly block diagonal structure helps reduce the communication cost in
matrix-vector products. Firthermore, by requiring that the block rows (or block columns) have
approximately the same rumber of nonzeros, the floating point operations are well balanced
among processors.’

INote that our approach is specifically targeted for sparse matrices. For dense matrices or sparse matrices
with nonzero patterns that are difficult to exploit, two-dimensional decompositions are typically used; see




Despite the utility of rectangular or structurally nonsymmetric matrix partitioning, little
work has been done in this area. If the matrix is square and structurally symmetric, the problem
can be expressed in terms of graph partitioning, and a number of good algorithms and software
tools have been developed for this use [20, 25, 42]. These methods can be used for partitioning
a square, structurally nonsymmetric matrix A by considering the sparsity pattern of the A+ AT
matrix. But this trick is appropriate only if the matrix is nearly structurally symmetric. The
square symmetric methods are not applicable to rectangular matrices.

Previous attempts to address the general matrix partitioning problem include the work of
Kolda [29] and an earlier report on this research [19]. In trying to accelerate the convergence
of block iterative methods such as block Gauss-Seidel, O’Neil and Szyld [34] and Choi and
Szyld [7] considered a closely related problem. Their PABLO and TPABLO algorithms were
geared towards placing large matrix values into the diagonal blocks.

In §3, we describe the matrix-vector and matrix-transpose-vector kernels and show how
the partitioning affects communication. Further, we show that we only need to use the row
partition to maintain balance in the number of nonzeros per processor and consequently have
some leeway in the column partition that we can exploit for other purposes. For example, in the
case of preconditioned iterative methods for structurally nonsymmetric matrices, we can use
this freedom to find a partition that is good both for the matrix and its explicit preconditioner.
We discuss this further in §§2-4.

In §4, we describe the relationship between matrix partitioning and graph partitioning. An
m X n rectangular or structurally nonsymmetric matrix corresponds to a bipartite graph on
m+n nodes with the number of edges equal to the number of nonzeros in the matrix. We show
that the matrix partitioning problem can be described as a bipartite graph partitioning problem
in which edge cuts are related to parallel communication and constraints on the partition sizes
correspond to work load per processor.

In §5, several algorithms for partitioning the bipartite graphs are presented. Modifications
of the well-known spectral {36], Kernighan-Lin [27]/Fiduccia-Mattheyses {10], and Multilevel [6,
22, 25, 26] methods are given for the bipartite graph model. The modification of the spectral
method was previously introduced by Berry, Hendrickson, and Raghavan [5]. Further, the
Alternating Partitioning method of Kolda [29] is presented; this method is specific to the
bipartite case. '

Finally in §6, we measure the performance of various methods for partitioning rectangular or
k structurally nonsymmetric matrices. We compare different methods on a collection of matrices
from least squares, linear programming, truncated singular value decomposition (SVD), and
preconditioned linear systems. Our results indicate that the best approach is generally the
Multilevel Method with either Fiduccia-Mattheyses or Alternating Partitioning and Fiduccia-
Mattheyses refinement.

2. Applications

Matrix-vector products involving sparse, rectangular or structurally nonsymmetric matrices
occur in a wide variety of numerical methods. One very important example is the solution of
a nonsymmetric system

Hendrickson, Leland, and Plimpton {23] or Lewis and van de Geijn [32].

-




-3-

with an iterative method such as BiCG [12] or QMR [13]. During each iteration, these methods
require the computation of Ar and A7 s for some vectors r and s. To use the partitioned matrix,

PAQ, we can solve
(PAQ)y = Pb,

where QTz = y. Note that permuting the rows and columns of a matrix changes its eigenvalues;
however, because we do not know the exact role that eigenvalues play in these methods, we
cannot predict whether the effect will be positive or negative. In this case, the number of rows
and columns assigned to cach partition must be equal so that the diagonal blocks of PAQ
are square and the data layout of the vectors is correct for other parallel operations (like dot
products). If A is structurally symmetric or nearly so, a symmetric partitioning scheme is likely
more appropriate.

Generally, iterative methods involve preconditioning. Suppose we have an explicit precon-
ditioner such as an approaimate inverse M ~ A~1. (See Benzi and Ttima [3] for 4 survey of
approximate inverse preconditioners.) In that case, we need to find P and @ such that both
PAQ and QTMPT ~ (PAQ)™! are well partitioned. By well partitioned, we mean that (1) the
communication costs are low, (2) the block rows of PAQ are balanced (i.e., have approximately
equal numbers of nonzeros), and (3) the block rows of QT M PT are balanced. Note that con-
ditions (2) and (3) are stronger than merely requiring that the block rows of P(A + MT)Q are
balanced, and these condi:ions are necessary because there is usually a synchronization point
between the application of the matrix and the preconditioner. Once a particular P and () are
determined, in the case of left preconditioning we need to solve

(QTMPT)(PAQ)y = (QTM)b,

where y = QTz. In essence, we need only reorder the variables according to Q7 throughout
the iterative method. If M is a right preconditioner, we solve

- (PAQ)YQTMPT)y = Pb,

where y = PM~'z. In this case, we reorder the variables throughout the method by P.
Note that we may even use this idea when A and M are symmetric and a method such as
(preconditioned) conjugate gradients [16] is being used.

Like iterative methods for linear systems, iterative methods for least squares problems re-
quire numerous matrix-vector products, and in this case, the matrices are rectangular. Consider

a system of the form
min ||Az — bll2,

where A is an m X n masrix with m > n. This problem can be solved by iterative methods
such as LSQR [35] that require computations of the form Ar and ATs every iteration. Using
the permuted matrix does not change the minimal value of the least squares objective function.

Another situation in which A is rectangular arises in interior point methods for linear
programming,

min Iz
st. Az =0b,
z >0

Here A is a real m X n watrix with m < n. At each iteration of the method, the next search




direction is computed by solving the set of equations
T
D A Az _|w ’ (1)
A 0 Ay v

where y is the dual variable and D is a diagonal matrix that changes each iteration. Alterna-
tively, we may solve the normal equations,

(AD2ATY) Ay =

See Wang and O’Leary [43] for an algorithm that solves these equations iteratively as well as an
overview of other such methods. When iterative solvers are employed, frequent multiplications
involving A and A7 are needed. Even when using direct methods, multiplies by 4 and A7
are required to compute w and v or r at each iteration. Permuting A does not change the
eigenvalues of either of the two systems mentioned previously. '

Lastly, computing the truncated SVD of a large sparse matrix 4 via a Lanczos procedure re-
quires frequent multiplies by A and AT. This arises in, for example, latent semantic indexing for
information retrieval [4], clustering for hypertext matrices [5], and geophysical applications [40].
Permuting A does not change its singular values, and the singular vectors of the original matrix
are just permutations of those for the permuted matrix. .

3. Parallel Matrix-Vector Multiplication

Since matrix-vector multiplications are ubiquitous numerical kernels, it is important to devise
effective algorithms for their parallel execution. To perform this operation efficiently, we must
evenly divide the computational load while requiring a minimum amount of communication.
In this section we show how matrix partitioning can be used to obtain this objective for the
matrix-vector and matrix-transpose-vector multiply operations. :

Suppose an m x n matrix A has already been reordered and partitioned into a block p x p
structure,

Ay Ay - Ay
Az Az - Ay

A= . VR I - @
Apl AP2 ot App

where p is the number of processors. Here A;; is of size m; x nj, where 3 ., m; = m and
X jn; = n. We assume that most of the nonzeros are on the block diagonal as a result of the
partitioning.

We present algorithms for a row-based partitioning; that is, each processor is assigned a
block row, and we assume that the m;’s have been chosen in such a way that the number
of nonzeros per block row is nearly equal. For now we assume nothing about the n;’s. The
algorithm we describe for computing Az is widely used; see, e.g., [39].

Analogous algorithms exist for a column-based partitioning. Specifically, if we have a matrix
that is partitioned into block columns, we can simply work with the transpose of the matrix
that is partitioned by rows.

-




3.1. Matrix-Vector Multiiply (Row-Based)

For the row-based algorithra, processor 7 owns the 7th block row of A, that is,
[An A - Ap].
To compute the product y = Az in parallel, divide the vector z into conformal block format,

Ty
I2

Tp

where block z; is of length n;. Processor ¢ holds z;.

Consider the procedure from the point of view of processor i. First, a message is sent to
each processor j # i for which Aj; # 0. This message contains only those elements of z;
corresponding to nonzero columns in A;;. While the processor waits to receive messages, it
computes the contribution from the diagonal matrix block,

y,{i) = Ayz;.

The block Aj;, while still sparse, may be dense enough to exhibit good data locality. Then, for
each j # i such that A;; is nonzero, a message is received containing a sparse vector Z; that
only has the elements of z, corresponding to nonzero columns in A;;, and

v = Az,

is computed. (We assume that processor ¢ already knows which elements to expect from
processor j.} Finally, the ith block of the product y is computed via the sum

Yi= Z y.(j) .
J
Block y; is of size m;.

3.2. Matrix-Transpose-Vector Multiply (Row-Based)

In the row-based method, to compute z = ATv, p’r'ocessor i holds v;, the ith block of v of size
m;, and the ith block row of A. As before, the procedure is sketched from processor i’s point
of view. First, the off-diagonal blocks are used to compute

i T
z;-l) = Aijvi,
for each j s ¢ for which 4i;; # 0. Observe that the number of nonzeros in zgi) is equal to the
number of nonzero rows in AiTj, i.e., the number of nonzero columns in A4;;. Next, processor i

sends to each other processor j # i, the nonzero® elements of z§i) , if any. While waiting to receive

2Here we mean any elements that are not guaranteed to be zero by the structure of A;;. Elements that are
zero by cancellation are still communicated.




_6-

messages from the other processors, processor i computes the diagonal block contribution
= A:?';vi

{4

Next, from each processor j such that 4;; # 0, it receives z; ), which contains only the nonzero

elements of z(J ) (Again, we assume that processor i already knows which elements to expect

from processor j.) Finally, processor ¢ computes the ith component of the product,

;= 2(1) + Z 59)

JFi

Block z; is of size n;.

3.3. Analysis

We now present some facts for the row-based kernels; analogous facts exist for the column-based
kernels. .

In both the matrix-vector and matrix-transpose-vector algorithm, a processor is responsible
for the multiplication associated with the matrix blocks it owns. This leads to the following
fact.

Fact 1. The number of multiplies that processor ¢ performs in either the matrix-vector or
matrix-transpose-vector operations is equal to the number of nonzeros in block row i.

_ Thus, the workload per processor is the same for both the matrix-vector and matrix-
transpose-vector multiplies. If the partitioning process ensures that the numbers of nonzeros
per block row are nearly equal, the computational workload per processor will be balanced.
Recall that a message goes from i to j in computing Az if Aj; is nonzero, and only the
elements of z; corresponding to nonzero columns in A;; are sent. This leads to the following.

Fact 2. The number of messages sent by processor i in the matrix-vector multiply is equal to
the number of nonzero blocks A;; with j # i. Further, the volume of messages sent by processor
i is the sum of the number of nonzero columns in each Aj; with j # i.

Similarly, a message goes from ¢ to j' in computing ATv if A;; is nonzero, and only the

)

nonzero elements of z;’ are sent.

Fact 3. The number of messages sent by processor i in the matrix-transpose-vector multiply
is equal to the number of nonzero A;; with j # 4. Further, the volume of messages sent by
processor i is the sum of the number of nonzero columns in A;; with j # 4.

Combining facts 2 and 3 yields the following three facts.

Fact 4. The total number of messages sent in either the matrix-vector or matrix-transpose-
vector multiply is equal to the number of nonzero off-diagonal blocks.

Fact 5. If a message is sent from processor i to processor j in the matrix-vector multiply,
then a message of the same length will be sent from processor j to processor t in the matrix-
transpose-vector multiply.




-3

This means that the matrix-vector and matrix-transpose-vector multiplies share the same
communication pattern with the direction of the messages reversed.

Fact 6. In either the matrix-vector or matrix-transpose-vector multiply, the total message
volume is equal to the sum of the number of nonzero columns in each off-diagonal block.

As our numerical results in §6 show, reducing the total number of nonzeros in the off-
diagonal blocks typically reduces the total message volume and the maximum message volume
handled by a single processor.

It is useful to observe that a single decomposition can lead to efficient matrix-vector and
matrix-transpose-vector products, and this helps facilitate parallelization of the applications
described in §2.

In the preceding discussion, we assumed that the m;’s are chosen so that the nonzeros per
block row (and hence the ‘work per processor) are balanced. We made no assumption about
the n;’s, and we can exploit this freedom in several ways.

1. Choose the n;’s to minimize communication in the matrix-vector products. This is ac-
complished by leaving the n;’s unconstrained.

2. Choose the n;’s to each be nearly equal, which would balance BLAS-1 operations on the
n-long vectors. These operations are a component of most iterative methods.

3. As discussed further in the next section, if we have an approximate inverse preconditioner,
say M ~ A™!, we can simultaneously partition A and M. Our partitioned matrices are
given by PAQ and QTMPT. We can choose the m;’s to balance the work associated
with A and the n;’s to likewise balance the effort of computing with M.

As mentioned earlier, i matrix can be partitioned by rows or columns, whichever leads
to better performance. For example, consider a row partitioning of a matrix that has dense
rows but no dense columns. It may be difficult to balance the load since a single processor is
saddled with all the nonzeros in the dense row. Furthermore, the processor owning the dense
row will need to receive a large amount of information to compute its contribution to Az.
Partitioning the matrix by columns resolves these problems. Not only is the load balancing
problem easier, but the communication volume now depends on the nonzero rows in the off-
diagonal blocks. A dense row will contribute only one nonzero row to any block that contains
it, so the communication volume will generally be reduced.

4. A Bipartite Graph Model

As discussed in §3, the key to an efficient parallel matrix-vector multiplication algorithm is in
the partitioning of the rows and columns of the matrix. For structurally symmetric matrices,
this problem has been well studied and is generally phrased in terms of graph partitioning,.
The structure of an n x 7. structurally symmetric matrix A = [a;;] can be described by an
undirected graph G = (V, &) with V = {1,2,...,n} and (3,5) € € if and only if a;; (and hence
aj;) is nonzero (see Figure 2). Vertices and edges can have weights if desired. A partitioning
of the vertices of G corresponds to a symmetric partitioning of the rows and columns of A. For
example, a division of the vertices into 2 sets induces a block 2 x 2 structure for the matrix.
Each edge that crosses between the two sets corresponds to a nonzero value in the off-diagonal
blocks of the matrix. The standard approach to structurally symmetric matrix partitioning is




-8-
1 2 3 45 1
1{x X X X
2| X x 2 5
3|x % X
4% X X X / /
5Lx X X X 3 A

Figure 2: Graph of a symmetric matrix.

to try to minimize these cross edges, while maintaining some balance on the number of rows
(or the number of nonzeros) in the two sets. This graph bisection problem is known to be
NP-hard [14]. ' .

This approach is not well suited to rectangular or structurally nonsymmetric matrix par-
titioning. If the matrix is rectangular, then the graph model does not apply. If the matrix is
square, the standard graph model can only encode a symmetric structure. A directed graph
model can encode nonsymmetry in a square matrix, but more generally, these approaches force
the row partition to be identical to the column partition. Although this is reasonable for struc-
turally symmetric matrices, it is unnecessarily restrictive for structurally nonsymmetric ones;
that is, a better partition may be achieved by allowing the rows and columns to be partitioned
separately.

For the rectangular or structurally nonsymmetric case, an alternate graph model of the
matrix can be used. The nonzero structure of an m x n matrix A = [a;;] corresponds to
an undirected bipartite graph G = (R,C,€) with R = {r,...,rn}, C = {e1,...,¢x}, and
(ri,¢;) € € if and only if a;; # 0 (see Figure 3). Note that no edge connects two rows or two
columns. If desired, edges and vertices can have weights assigned to them. A partitioning of

1.2 3 n
1] x
. ” ct
2l %
3| x b R 2
4 x "
5| x -

Figure 3: Bipartite graph of a matrix.

the vertices in R induces a division of the rows of the matrix; likewise, a partitioning of the C
vertices corresponds to a division of columns. Unlike the standard graph model, the bipartite
model allows a different number of row and column vertices and can represent nonsymmetric
structure. Further, the row and column partitions are separate.

More formally, we propose the following bipartite graph partitioning problem. Given a bipar-
tite graph ¢ = (R, C, £) with weighted edges and vertices, we wish to find p disjoint partitions
P;=R; U C; with R; CR and C; C C such that the following three criteria are satisfied.

1. The total weight of edges crossing between partitions is minimized.

2. There is a bound (possibly infinite) on the maximum difference in total row vertex weight




between any two part:tions.

3. There is a bound (possibly infinite) on the maximum difference in total column vertex
weight between any two partitions.

This is a generalization of the standard graph partitioning problem.

The matrix partitioning problem from the matrix-vector multiply in §3 can be expressed in
the bipartite graph partitioning model. Suppose we want to divide the matrix over p processors.
As discussed in §3 this can e accomplished by either a row-based or a column-based partition.
Without loss of generality, we will focus on the row-based option. Assign each vertexr; € R a
weight equal to the number of nonzeros in row ¢ of A. This weight corresponds to the number
of multiplication operations a processor will have to perform if it owns this row. Let edges and
column vertices have unit weights. Now apply bipartite graph partitioning in so that (1) the
total number (or weight) of edges crossing between the partitions (P; = R;UC;, i =1,...,p)
is minimized and (2) the total vertex weight in each set R; is approximately equal. The
first constraint leads to low communication while the second ensures load balance. Such a
partitioning correspc;nds to a nearly block diagonal structure for the matrix. Note that no
constraints on column balance are necessary; that is, the bound in condition (3) of the bipartite
graph partitioning problem is infinite. :

Several caveats are necessary. First, with weights on the vertices, perfect load balance may
be difficult or impossible to achieve. In practice it is much simpler to merely require that the
difference between the total vertex weights in R; and R; be less than or equal to the maximum
weight of any single row vertex. Second, with no restrictions on the column vertices we can
divide them in any way—perhaps even assigning no columns to a given partition if that is what
is best for the communication pattern. Third, as discussed in §3, the communication volume
induced by a partition is not equal to the number of graph edges cut but rather to the number
of columns in the. off-diagonal blocks that have nonzeros in them. This column count can
be expressed in the graph inodel. Specifically, each of these nonzero columns corresponds to a
vertex with neighbors in another partition. However, this more accurate metric is more difficult
to model and minimize than the number of edges cut, so we choose to focus on edge cuts as an
approximation. The same approximation is used (although not widely acknowledged) in the
standard graph partitionin;g model. Lastly, the edges are each given weight one, but other edge
weighting schemes are possible. For example, we could weight an edge from r; to ¢; by |ai;] if,
for some reason, we want to encourage large matrix values to be in the block diagonal.

By not constraining the partition of the columns, we allow for whatever partition leads
to the minimal number of edge cuts. Other possible objectives are discussed in §3.3. One
alternative is to balance the BLAS-1 operations associated with the n-long vectors. This can
be accomplished by setting; the weight of each column vertex to one and adding the additional
constraint (3) that the difference in total vertex weight between any pair C; and C; be no more
than one (i.e., the maximum vertex weight in C). :

The other objective mentioned in §3.3 is to enable efficient matrix-vector products for two
matrices simultaneously, as in the case when an approximate inverse preconditioner is employed
in an iterative method to solve a linear system. Specifically, for square A and M, we want to find
P and Q such that PAQ and QT M PT (or equivalently, PMTQ) are both well partitioned. We
can address this by partitioning an appropriately weighted bipartite graph. Before there was
an edge from r; to ¢;, if a;; was nonzero and each edge was weighted as one. Now, (ri,c;) € £




--10-

if either ai; or my; is nonzero. Further, the weight of the edge from r; to c; is

v 2 iHa;#0and my; #0,
w(ri,¢5) = { 1 if a;; # 0 xor mj; #0.

The weight of vertex c; is equal to the number of nonzeros in column j of M7 (or row j of M).
We add the condition (3) that the difference in total vertex weight between any pair ; and
C; be no more than the maximum vertex weight in C. The solution of the resulting bipartite
graph partitioning problem produces a balanced row decomposition of A and a balanced column
decomposition of M7. The weighted cut edges reflect the total communication volume required
by the two matrix-vector products.

5. Algorithms for Bipartite Graph Partitioning

Now that the rectangular and structurally nonsymmetric matrix partitioning problems have
been modeled using a bipartite graph, we need algorithms for partitioning such graphs. In
this section we propose several algorithms that are adapted from techniques for the standard
graph model and one that is specific to bipartite graphs. Each method partitions the bipartite
graph into two sets (P; = Ry U(C; and Py = Ry UCs). Any power-of-two number of sets can
be generated by dividing the two sets recursively. And further, any number of sets can be
produced this way by a simple generalization of the partitioning problem to generate sets of a
specified size ratio.

5.1. Alternating Partitioning

The alternating partitioning method, introduced by Kolda [29}, is specific to bipartite graphs.
Given a column partition, the algorithm produces the best possible row partition. It then
takes this new row partition and generates the best possible column partition. The algorithm
alternates back and forth between rows and columns until no further improvement is observed.
The initial partition can be random, or it can be the output of some other algorithm.

Given a partitioning of the column vertices, the optimal row vertex partition can be com-
puted in the following manner. Let s} denote the total edge weight between row vertex i and
adjacent column vertices in partition 1; similarly, let s7 denote the total edge weight between
row vertex i and adjacent column vertices in partition 2. Then s; = sT — 5] is the gain asso-
ciated with assigning node ¢ to partition 1. (Conversely, —s; = s; — s;‘“ is the gain associated
with assigning node 7 to partition 2.) Our goal is to assign the vertices to sets in such a way
that the total gain of vertices assigned to partition 1 is maximized. In the unconstrained or
constrained with unit weights case, this can be done optimally as stated in the following two
theorems.

Theorem 1. Suppose that the column partition is fixed and that there is no constraint on the
row partition. Let the s;’s (as described above) be sorted so that

Siy 2 8ip 200 2 Sip, -

Select j* so that for all j > j*, s;; is positive, and for all j < j*, s;; is nonpositive. Then an
optimal assignment of the row vertices is R1 = {ry,...,7i. } and Ry = {ri .., \,...,Tm}-




- 11-

This result follows from. the observation that each row is placed in its optimal partition.
Note that the optimal solution is unique unless one or more s;; values is zero.

When the total row vertex weight in each partition is constrained, we can generalize the
algorithm in a natural way. Choose a dividing point 7 as close as possible to j* that satisfies the -
bounds on the total vertex weight. If the row vertices are unit weighted (or equally weighted),
then this approach is optimral, as shown by the following theorem.

Theorem 2. Suppose that the column partition is fixed. Let the s;’s be sorted so that
8y 2 8ip 2t 2 Siy,

Select j* so that for all j > j*, s;; is positive, and for all j < j*, s;; is nonpositive. Let ; be the
closet index to j* that satisfies the balance constraint. If the row vertices have equal weights,
then an optimal assignment of the row vertices is Ry = {ry,,..., Ti; }and Ry = {1',~;+1 yeesTi

Proof. By Theorem 1, j* is an optimal assignment if there are no balance constraints. The
choice of 7 ensures that a minimal number of vertices are placed in a set for which their gain is
negative. Further, the vertices with the smallest negative gains are chosen. O

In the general weightec. and constrained case, the problem is equivalent to the Knapsack
Problem which is known to be NP-hard [15]. '

Let |£| denote the number of edges in G or correspondingly the number of nonzeros in A, and
let |R| and |C| denote the number of row and column vertices. An iteration consists of finding a
row partition given a fixed column partition and then finding a column partition given a fixed
row partition. It is not hard to show that the complexity of each iteration is O(|€| + [R]| + [C]).
The computational steps in an iteration are the generation of gain values for each vertex and
the determination of j* (o j) via a weighted median procedure. Computing the gains for all
vertices requires an addition or subtraction for each edge, at a cost of O(|€]). Finding the
weighted median of a set cf k values requires O(k) operations (see, for instance, problem 10.2
of [8]), and it is used on . set of |R]| gains and then a set of |C| gains. Our implementation
actually uses a simpler, binary search algorithm for median finding. Although it works well in
practice, it is not guaranteed to run in linear time.

The number of iterations is variable but guaranteed finite [29). Alternatively, a maximum
allowable number of iteratipns can be specified.. .

This method was derived from the Semi-Discrete Decomposition that was introduced by
O’Leary and Peleg [33] for image compression and that was also used for latent semantic
indexing in information retrieval by Kolda and O’Leary [28, 31, 30).

5.2. Kernighan-Lin / Fiduccia-Mattheyses

The Kernighan-Lin [27] algorithm is a widely used method for improving a graph partition. As
with alternating partitioning, the initial partition can be random, or it can be the output of
another algorithm. A reformulation by Fiduccia and Mattheyses [10] improved the performance
of the basic approach.

The Fiduccia-Mattheyses (FM) algorithm consists of a sequence of passes over the graph
in which vertices are moved from one partition to the other. Move selection is based on the
gain concept described in §5.1, but gains are computed relative to the partition the vertex is
currently in. The vertex with the largest gain value is the one whose move will maximally
- reduce the number of edgss cut. Moves worsen the quality of the partition are allowed, which




-12-

enables the algorithm to escape local minima. Moves are permitted only if they do not violate
the balance constraints or if the set the vertex is leaving is larger than its goal weight. Within
a pass, vertices are allowed to move only once to avoid infinite looping. The basic structure of
a pass is as follows.

1. Mark all vertices as eligible.

2. For each vertex, compute the gein associated with moving it from its current partition to
the other; the gain may be negative.

3. Among moves that improve the balance criteria or that at least do not violate the balance
constraints, select the eligible node with the greatest gain. If there are no further eligible
nodes, exit.

4. Move the selected node to the other partition, mark it as ineligible, and update the gains
of all of its neighbors.

5. If this is the best partition yet seen, save it.
6. Go to Step 3.

Fiduccia and Mattheyses observed that careful use of data structures allows a single pass
to be performed in linear time. A priority queue can be used to keep track of the gain values
for each type of move (i.e., from set 1 to set 2 or from set 2 to set 1). A bucket sort can be
used to compute the initial gains and to efficiently update the gain values. In this way, a pass
through the outer loop can be implemented to run in time O(|€| + |R| + |C|). See Fiduccia and
Mattheyses [10] for a detailed discussion of data structures.

‘We have adapted this basic algorithm to address the bipartite graph partitioning problem.
The key change is that there are now four types of moves: rows or columns can move from
either the first or second set. We maintain a priority queue for each of these move types. To
select a vertex to move, we examine the first item in each of the four queues and choose the -
move with the highest gain that obeys the balance considerations in Step 3. In this way, we
ensure that the runtime is linear in the size of the graph.

In practice the performance can be improved by stopping the outer loop when a new best
partition has not been encountered in a while—say within the past 50 moves, for instance.
Another optimization (not in our current implementation) is to evaluate the gain values lazily.
In the standard FM algorithm, the gain for every vertex is calculated before each pass. The
gains are updated as the sequence of moves changes them. In the lazy implementation, only the
gain values of vertices with neighbors in the other partition are computed before each pass. If
a vertex moves to the boundary (i.e., one of its neighbors moves to the other set), then its gain
is calculated and kept updated from then on. If we have a reasonably good starting partition,
then the number of vertices on the partition boundary should be small, and most gains will
never need to be calculated. For multilevel algorithms (like the approach described in §5.4),
FM is used to improve partitions that are already fairly good. In this setting, lazy evaluation
can significantly reduce execution times [22].

5.3. Spectral

A popular algorithm for standard graph partitioning is spectral bisection, which uses an eigen-
vector of the Laplacian matriz associated with the graph [21, 36, 38]. We can apply spectral




- 13-

partitioning to a rectangular or structurally nonsymmetric problem by first symmetrizing it.
Given a bipartite graph G == (R,(,£) of a matrix A, form the corresponding structure matrix
A = [a;j] (@i is nonzero if (r;,¢;) € £ and its value is equal to the weight of the edge), and
then form the symmetric (7n + n) x (m + n) matrix

. 0 A
=[5 1)

The symmetric A has a well-defined Laplacian matrix that can be used for partitioning. The
symmetric partitioning of A can then be used to generate both row and column partitions of
A. This approach was used by Berry et al. [3].

In order to apply spectral partitioning, the Laplacian of A,

L=D- A4,

is computed where D = diag{d;,ds,...,dmyn} and d; = Zj @;j. The matrix L is symmetric
and positive semidefinite. 1'urthermore, we have the following.

Theorem 3 (Fiedler [11). If the graph of A is connected, then the multiplicity of the zero
eigenvalue is one.

Observe that A and A have the same graph. Let w denote a Fiedler vector of L, that is, an
eigenvector corresponding to the smallest positive eigenvalue of L. Let u denote the first m
and v the last n elements of w. Note that u corresponds to rows of A and v to columns. Now
sort the elements of u and v so that

Ujy 2 Uiy 2 00 2 Ui,

and
Ujy 2 Ujp 200 2 V5,

This ordering of the elements of u can be used to partition the rows of A. Simply split this
sorted list into high-valued and low-valued entries to satisfy the balance criteria. The same
algorithm applied to v partitions the columns of A.

For the standard graph partitioning problem, spectral bisection generally produces good
partitions, but the eigenvector calculation is expensive.

5.4, Multilevel

The most popular methods for standard graph partitioning use a muiltilevel approach [6, 22; 25,
26]. A multilevel method starts with a graph that has a large number of vertices, successively
merges vertices until it has a coarse graph with a small number of vertices (phase 1), partitions
the coarse graph (phase Z), and successively uncoarsens the graph, periodically refining the
partition step (phase 3). We have adapted this general framework to the bipartite graph
partitioning problem.

5.4.1. Phase 1: Graph Coarsening

Let G = (R,C,£) be the current graph. We want to form a smaller graph G = (R,C,€) by
merging pairs of vertices of G. Row vertices merge only with row vertices, likewise for column




- 14 -

vertices. The following procedure determines which row vertices to pair and eventually merge.
1. Mark all row vertices as eligible.

2. Choose an arbitrary eligible row vertex, say r;. If no more row vertices are eligible, the
pairing is complete.

3. Find an eligible row vertex r; with the property that some column vertex is adjacent to
both 7; and r;. If no such row vertex exists, mark r; as ineligible and return to Step 2.

4. Slate vertices r; and r; to be merged, and mark both as ineligible. Return to Step 2.

An analogous procedure is used to determine the column pairing.

Given a set of vertices V and edges £, a matching is a subset of edges £ C &€ such that no
vertex is adjacent to more than one edge in £. A matching £ is mazimal no more edges can be
added to £ without destroying the matching property.

Theorem 4. If A is the matrix associated with G, then the row pairing algorithm identifies
a maximal matching among edges of the (symmetric) graph of AAT. (Similarly, the column
pairing constructs a maximal matching among edges of the graph of ATA.)

Proof. Recall that a;; is nonzero if and only if (r;,¢;) € £. Element (3,7) of AAT is nonzero
if and only if vertices 7; and r; have a column neighbor in common. Thus, the above process
serves as a greedy algorithm for growing a matching in the graph of AAT. A greedy algorithm
generates a maximal matching since, by construction, any unmatched row has no other rows it
can pair with. O

Theorem 5. Let H be the matrix with unit values that has a nonzero structure corresponding
to G. The cost of the row-pairing algorithm is O(|HTe|? + |R|). (Similarly, the cost of the
column-pairing algorithm is O(|H el2 +1Ch.)

Proof. All the work in the a.lgonthm costs O(|R|) except for the search for the paired row T;
in step 3. This step can involve examining all paths of length 2 in the graph. As argued in
the proof of Theorem 4, each such path will contribute a unit value into HHT. The number of
such paths will thus be the total value of all the entries in HHT; that is, e HH e = |HTel2. O

Once all the pairings have been determined, the pairs are merged together. Suppose 7
is the result of merging r; and r;, then the weight of 74 is the sum of the weights of r; and
7;. There is an edge between 7, and & if any of their constituent vertices were adjacent in G
and the weight of the edge is the sum of all the weights of the edges between their constituent
vertices. This is analogous to adding the corresponding row and column pairs in A to form A.

The coarse graph maintains the bipartite structure of the original graph and has about half
as many vertices. To further coarsen, the process is repeated until the graph has only a small
number of vertices, say 100. If at any point too few rows and columns are paired, the coarsening
procedure terminates.

5.4.2. Phase 2: Partitioning the Coarse Graph

Once a small enough bipartite graph has been generated, it is partitioned. Any method can be
used; and if the graph is small, the quality of the final answer does not seem sensitive to this
choice. In our implementation, we have chosen to use a random partition.

L4




-15-

5.4.3. Phase 3: Uncoarsening and Refinement

In phase 3, the mergings from phase 1 are successively “undone.” If coarse vertex 7 is in
partition 1, then its two ccnstituent vertices, r; and rj, are in partition 1. Before the next
“undo” step, a refinement can be performed. In the course of the refinement, for example, r;
may move from partition 1 to partxtlon 2. The “undo” steps continue until the original graph
is obtained.

For refinement, we have experimented with three different options: alternating partition-
ing from §5.1, Fiduccia-Mattheyses from §5.2, and a combination of alternating partitioning
followed by Fiduccia-Mattheyses.

6. Experimental Results

The software is a modificasion of the Chaco package (written in C) developed by Hendrick-
son and Leland [20] for partitioning structurally symmetric matrices. All calculations were
performed on a 300 MHz Pentium II with 128 MB memory unless otherwise noted.

Table 1 lists the methods that are tested. The partitioning is done recursively; that is,
first the vertices (rows and columns) are partitioned into two sets, then each of those sets are
partitioned into two sets, ind so on until we reach the desired number of partitions. If we
perform, for example, a row-based partition, each time we split a set into two partitions we
require that the difference in the total row vertex weight in each partition be less than or equal
to the maximum weight of any single vertex in the set.

The natural partitioning (Natural) is a simple partition based upon the ordering the matrix
had when it was given to us; often those orderings are meaningful. In the row-based case with
no constraints on the cohmnns, for example, the ordering of the rows and columns are fixed,
but we still need to construct a row partition that obeys the balance constraints and .a column
partition that minimizes communication. This is done recursively; that is, first the nodes are
partitioned into two sets, taen each of those sets are partitioned, and so on.

The Fiduccia-Mattheyses (FM) and alternating partitioning (AP) methods require some
initial partition. Some experimentation convinced us that the methods work best when FM is
initialized with a natural partition and AP with a random partition, so all further runs were
performed in this way. The spectral method (Spectral) uses the multilevel Rayleigh Quotient It-
eration/Symmiq eigensolver {1] from the Chaco partitioning software [20]. The multilevel (ML)
algorithms divide the coarsest graph randomly and use various refinement strategies: Fiduccia-
Mattheyses (FM), Alternating Partitioning (AP), and Alternating Partitioning followed by
Fiduccia-Mattheyses (AP4-FM). We handle disconnected graphs specially in all cases except
the natural partitioning and Fiduccia-Mattheyses (because we use the Natural ordering to gen-
erate the initial partition in this case) by identifying all the connected components, assigning
components to partitions i1 a greedy fashion, and only partitioning what remains. The desired
number of coarse row and column vertices for the multilevel methods is 100. Refinements were
performed at every other i:eration of the uncoarsening phase.

The test matrices were gathered from the various applications discussed in §1 (see Table 2).
The two items in the last row of the table refer to a matrix and its preconditioner, as is discussed
in § 6.4. Dense rows and columns are noted because that will affect whether the partitioning is
row- or column-based. We consider a row or column to be dense if more than 1/32 of its values

are nonzero.
For each test matrix, w2 show two tables. The first table details the communication pattern.




- 16 -

Abbreviation Method
Natural Natural Ordering
M Fiduccia-Mattheyses

AP Alternating Partitioning

Spectral Spectral Method

ML-FM Multilevel Fiduccia-Mattheyses

ML-~AP Multilevel Alternating Partitioning

ML-AP+FM Mulitilevel Alternating Partitioning plus Fiduccia-Mattheyses
Table 1: Partitioning methods.

Matrix Application Rows | Columns NNZ Density | Dense?
pig-large | Least Squares 28254 17264 75018 1.5e-4 —
pig-very Least Squares 174193 105882 463303 3.7e-4 —
d£1001 Linear Program 6071 12230 35632 4.8e-4 1 Row
Amatrix Linear Program | 123221 141344 1437692 8.3e-5 72 Rows
we1998 Truncated SVD | 719736 96300 27546437 4.0e-4 1672 Cols
memplus Preconditioned 17758 17758 99147 3.1e4 —
precond Linear System 76372 2.4e-4 —

Table 2: Test matrices.

The Edge Cuts column lists the number of nonzeros outside the block-diagonal, that is, the edges
in the bipartite graph that are cut by the given vertex partition. The Pert Time column lists
the time (in seconds) to compute the partition. The Total Msgs and Total Vol columns list,
respectively, the total number of messages and total message volume for computing either Az
or ATy. (Recall from Facts 4 and 6 that those values are equal for Az and ATv.) The Maz
Msg and Maz Vol columns list, respectively, the maximum number and maximum volume of
messages handled by a single processor in the computation of Az or A7v, incoming or outgoing.

The second table for each matrix lists the block partition information. We have partitidned
these matrices to balance the number of multiplies per processor, that is, the number of nonzero
matrix elements per processor. Each processor holds one block row or one block column.
Columns 2-5 list the details for the Block Rows. The Min Rows and Maz Rows list, respectively,
the minimum and maximum number of rows in any block row. The Min NZ and Maz NZ
columns list, respectively, the minimum and maximum number of nonzeros in any block row.
Although the numbers of rows owned by processors may vary significantly, variation in the
number of nonzeros should be small when the partition is row-based since this balances the
computational work. The next four columns list analogous values for the Block Columns.

We choose the number of processors, p, in each case so that the number of nonzeros per
processor is 10,000, give or take a factor of three.

6.1. Least Squares

The pig-large and pig-very matrices are from least squares problems relating to pig breeding
data [18, 24] and were obtained from Duff [9]. ‘

The pig-large matrix is of size 28,254 x 17,264 with 75,018 nonzeros.

The results of row-based partitioning the pig-large matrix over eight processors are given
in Tables 3 and 4. The natural partitioning takes a small amount of time to compute (0.21




-17 -

Method Edge | Part | Total | Total | Max | Max
. Cuts | Time | Msgs | Vol | Msgs | Vol

Natural 49048 0.21 32 | 21172 7 5534
FM 15659 1.40 56 | 11309 7 2618
AP 20251 2.16 56 11714 7 1985
ML-FM 8013 3.14 55 2454 7 607
ML-AP 10299 2.74 56 4830 7 1138
ML-AP+FM 7671 5.25 56 2292 7 443
Spectral 5693 | 167.93 53 2721 7 829

Table 3: Communication pattern for row-based partmonmg of the pig-large matrix on eight
Processors.

Block Row ) Block Column
Method | Min | Max | Min | Max | Min | Max | Min | Max
Fows { Rows | NZ '{ NZ Cols { Cols | NZ NZ

Natural 3124 6375 | 9372 9381 0 6203 0 | 39439
FM 3342 3786 | 9376 9379 1318 2955 { 6851 | 11483
AP 3310 3740 | 9376 9379 2154 2162 | 7748 | 10917
ML-FM 3397 3652 | 9376 9379 2003 2280 | 8223 | 10150
ML-AP 3206 3954 | 9376 | 9379 | 2155 | 2161 | 8756 | 10329
ML-AP+FM 3441 3621 | 9376 9378 2006 2303 | 8701 | 10198
Spectral 3138 3694 | 9373 | 9381 | 2018 | 2374 § 8600 | 10412

Table 4: Block information for the row-based partitioning of the pig-large matrix on eight
Processors.

seconds) because the matrix still must be divided in such a way that each block row has
approximately the same number of nonzeros. Notice that the natural partitioning requires
‘the fewest messages (32) but the highest total volume (21,172). Also note that the minimum
number of columns in a blcck is zero, which means that the processors with zero columns have
no parts of the vector z in the Ax computation. Those processors will not have any messages
to send nor any diagonal component (A;z;) to compute and will be idle until they receive
messages from the other processors.

In contrast, the various partitioning methodsincrease the total message count to at or near
the maximum of 56 but drastically reduce the total message volume (by a factor of more than
nine in the best case) and the maximum volume handled by a single processor (by a factor
of more than 12 in the best case). Further, the partitionings yield more balanced column
partitions even though no constraint was used. Of course, the number of nonzeros handled by
each processor is about equal as required. In fact, the number of nonzeros handled by a single
processor varies by far less: than 1% as we can see by looking at the minimum and maximum
number of nonzeros in each block row.

The multilevel-AP+FM (ML-AP+FM) method yielded the best partitioning and required
about 5 seconds of processing time, on par with the other methods. In general, the muiltilevel
methods yielded the best total volume and maximum single processor volume. The FM method
was the fastest partitioning method but did not reduce the message volume as much as the
other methods. The spectral method was the slowest method by a factor of more than 30 but
did not produce the best partition.

Recall that our methods attempt to find partitionings that minimize the number of edge




- 18-

cuts. This does not correspond exactly to total message volume but is merely an approximation.
On this problem, notice that the reduction in edge cuts corresponds roughly to the reduction
in total message volume. For example, the ML-AP+FM method has the fewest edge cuts as
well as the least communication volume.

Method Edge Part | Total | Total Max | Max
Cuts | Time | Msgs Vol Msgs Vol °

Natural 292055 2.45 290 | 109180 30 | 16772
FM 99252 26.53 837 75270 31 4808
AP 142967 23.99 931 88610 31 5227
ML-FM +38552 40.41 851 12973 31 1332
ML-AP 54261 37.84 926 24737 31 1929
ML-AP4+FM 38096 60.87 831 13019 31 1240

Table 5: Communication pattern for row-based partitioning of the pig-very matrix on 32

processors.
Block Row Block Column
Method Min Max Min Max | Min | Max Min Max
Rows | Rows NZ NZ Cols | Cols NZ Nz

Natural 4825 14481 | 14475 | 14481 0| 16720 0 { 129623
FM 4976 6004 | 14476 | 14480 1213 4814 9844 21187
AP 4857 6621 | 14477 | 14480 2673 3841 9942 20778
ML-FM 5234 5802 | 14475 | 14483 2964 3544 13851 16231
ML-AP 4892 6637 | 14477 | 14480 3210 3509 | 12821 16529
ML-AP+FM 5263 5646 | 14476 | 14480 2960 3529 | 13191 16150 .

Table 6: Block information for the row-based partitioning of the pig-very matrix on 32 pro-
Cessors. .

The pig-very matrix is of size 174,193 x 105,882 with 463,303 nonzeros. Tables 5 and 6
show the results of partitioning this matrix row-wise over 32 processors. In this case we do not
show results for the spectral method because it was too time consuming,.

The results are very similar to the results obtained for the pig-large matrix. There is a
clear correspondence between edge cuts and total message volume. The multilevel methods
yield the best partitions, in the best case reducing the total message volume by a factor of
eight. The maximum message volume handled by a single processor is decreased by a factor of
more than 13 in the best case at the cost of about three times more messages.

The natural partitioning seems promising in terms of message count, but the maximum
message volume handled by a single processor is more than that handled by all 32 processors
for the multilevel (ML) partitionings.

6.2. Linear Programming

The 6,071 x 12,230 d£1001 matrix is a linear programming constraint matrix with 35,632
nonzeros. This matrix was obtained from Netlib.> The matrix contains one dense row and so .
was partitioned column-wise.

3nttp://www.netlib.org/1p/ ) ’




- 19 -

Methoc! Edge | Part | Total | Total | Max | Max

Cuts | Time | Msgs Vol Msgs | Vol

Natural 30989 0.08 44 19804 7 8751

FM 8132 1.80 56 7493 7 1247

AP 12171 0.86 56 11552 7 1967

ML-FM 6553 2.02 56 5875 7 1022

ML-AP 7860 1.49 56 7040 7 1145

- ML-AP4+FM 6651 2.68 56 5959 7 994
Spectral 14734 40.61 55 10633 7 2993

Table 7: Communication pattern for column-based partitioning of the d£f1001 matrix on eight
processors.

Block Row Block Column
Method | Min Max | Min | Max | Min { Max | Min | Max
Hows | Rows | NZ NZ Cols | Cols | NZ NZ

Natural 0 3088 0 | 18545 1375 1602 | 4449 4457
FM 588 823 | 4173 4611 1289 1707 | 4448 4462
AP 659 858 | 3743 5512 | 1017 | 1977 | 4449 | 4464
ML-FM 696 856 | 4042 4749 1287 1822 | 4448 4460
ML-AP 755 763 | 4001 | 4883 1324 1749 | 4453 4455
ML-AP+FM 717 812 | 4194 4729 1323 | 1763 | 4444 4460
Spectral 426 1215 | 1859 7299 932 1937 | 4448 4458

Table 8: Block information for the column-based partitioning of the df1001 matrix on eight
Processors.

Tables 7 and 8 show the results of partitioning the df1001 matrix over eight processors.

The original matrix does not have much structure, and the only reason the total number of

t messages for the Natural partition is only 44 (v. 56) is that some partitions contain no rows.
In the best case we can reduce the total message volume by a factor of more than three and

the maximum message volime on a single processor by a factor of more than eight. The block

columns are very balanced in terms of the number of nonzeros per block. The block rows are

reasonably balanced for the FM and multilevel (ML) methods although this was not enforced

by any constraint. Again we can observe that edge cuts corresponds to-total message volume.

Table 9: Communication pattern for column-based partitioning of the Amatrix matrix on 128

Processors.

The 123,221 x 141,344 Amatrix was obtained from Rothberg [37]. This matrix has 1,437,692
nonzeros and contains 72 dense rows.

Method Edge Part | Total | Total | Max | Max
Cuts Time | Msgs Vol Msgs | Vol

Natural 1414303 4.60 766 | 358721 ‘126 | 94346
FM 967664 54.42 4461 | 325724 94 | 18718
AP 1006357 40.58 5427 | 372168 83 | 19780
ML-FM 993194 74.18 7770 | 330508 119 | 21551
ML-AP 975488 78.20 6088 | 376243 107 { 19575
ML-AP+FM 965200 | 115.16 5877 | 397407 119 | 18179




-20 -
Block Row Block Column
Method Min Max | Min Max Min | Max | Min Max
Rows | Rows | NZ NZ Cols | Cols NZ NZ
Natural 0 68010 0 | 826156 361 3896 | 11196 11265
FM 1 7377 248 | 137166 381 | 4111 | 11202 | 11262
AP 126 1997 999 | 158408 383 4548 1 11179 11274
ML-FM 35 1927 940 | 174351 382 | 2409 | 11199 | 11258
ML-AP 98 2161 1062 92798 373 3898 11195 | 11278
ML-AP+FM 40 4011 1032 | 112416 376 4010 11195 11256

Table 10: Block information for the column-based partitioning of the Amatrix matrix on 128
Processors.

Tables 9 and 10 contain the results of a column-based partitioning of this matrix over
128 processors. This is an interesting partitioning problem because even though all of the
partitionings reduce the edge cuts by at least 25%, the total message volume is not reduced
much and in some cases (AP, ML-AP, ML-AP+FM) even increases. Thus for this problem,
the assumption that edge cuts correlate with communication volume is invalid. Despite this,
the partitioning is still beneficial because it reduces the total message volume handled by a
single processor by a factor of five in the best case and even decreases the maximum number
of messages that any processor handles. Further, the FM and AP methods do better than
the multilevel methods in that they have a smaller total number of messages, approximately
the same total message volume, a smaller number of maximum messages per processor, and
approximately the same maximum volume per processor. Further, computing the partitionings
for the FM and AP methods is faster than for the multilevel methods.

6.3. Truncated SVD

The 719,736 x 96,300 we1998 matrix with 27,546,437 nonzeros is used in a geophysical appli-
cation where a truncated SVD must be computed (see Vasco, Johnson, and Marques [40]); the
matrix was provided by Vasco and Marques [41]. This matrix has 1672 dense columns and so
was partitioned row-wise. Because of the size of the matrix, the problem was run on an SGI

" Onyx with two processors and six gigabytes of memory, so the timings cannot be compared
with the timings of the other problems. '

Method Edge Part Total Total Max Max
Cuts Time Msgs Vol Msgs Vol
Natural 25030959 95.61 3065 | 6481846 1023 | 5067422
FM 21952461 651.83 | 401074 | 3108517 826 12271
AP 22089460 | 1541.85 | 375587 | 3061108 769 10796
ML-FM 21831402 | 1428.13 | 354089 | 2989724 787 15224
ML-AP 21895852 | 2011.43 | 352771 | 2930819 | 813 13142
ML-AP+FM | 21823900 | 2512.78 | 351472 | 2930031 763 11010

Table 11: Communication pattern for row-based partitioning of the we1998 matrix on 1024
Processors.

In Tables 11 and 12, we show the result of partitioning we1998 over 1024 processors. The
situation is almost the opposite of that for Amatrix. The number of edge cuts is only modestly




- 921 -
Block Row Block Column
Method Min Max | Min ['Max | Min | Max | Min Max
Rows | Rows NZ Nz Cols | Cols Nz NZ

Natural 277 1377 | 26700 | 27126 0 | 38141 0 | 20495167
M 135 2013 | 26745 | 27037 4 643 | 2327 136809
AP 153 2978 | 26666 | 27126 0 475 0 175255
ML-FM 154 2162 | 26782 | 27014 1 593 88 141041
ML-AP 135 3275 | 26648 | 27150 0 577 0 144909
ML-AP+FM 154 3195 | 26787 | 27014 1 544 48 132539

Table 12: Block information for the row-based partitioning of the we1998 matrix on 1024
Processors.

reduced, but the total message volume is halved by every partitioning method. The total
number of messages goes up by a factor of about 125, depending on the method, but the
maximum number of messages handled by a single processor is actually reduced by about 20%,
and the maximum volume handled by a single processor is reduced by a factor of about 400.

The block rows are very evenly divided with each containing about 27,000 nonzeros. The
block columns, on the other hand, are not so even, with some blocks being assigned no columns.
However, in the natural partitioning one partition has 40% of the columns and 7% of the nonze-
ros. Since the partition is row-wise, this has no impact on load balance but leads to the very
large value for maximum communication volume in Table 11. With the other decompositions,
no partition has more thar. 0.7% of the columns and 0.6% of the nonzeros.

6.4. Preconditioned Linear Systems

Here we give results for working with a preconditioned linear system. As mentioned earlier,
the goal is to partition a matrix A and its approximate inverse preconditioner M so that both
PAQ and QTMPT are well partitioned; that is, the work per processor is balanced, and the A
communication costs are low. :

The memplus matrix is available from MatrixMarket.# (It contained 27,003 explicitly stored
zeros, which were removed.) The matrix is of size 17,758 with 99,147 nonzeros. We used research
code provided by Benzi and Tiima [2] to generate an approximate inverse preconditioner via the
method of Grote and Huckle {17]. The resulting preconditioner had 76,372 nonzeros. The two
matrices were combined into a bipartite graph with weighted edges and vertices as described
in §4. The memplus matrix will be partitioned row-wise and the transpose of the preconditioner
will be partitioned column-wise.

The results of the various partitioning strategies for memplus and its preconditioner are given
in Tables 13 and 14. There are two rows for each partitioning strategy: the first corresponds
to memplus and the second to the transpose of the preconditioner. Using ML-FM, the total
message volume is reduced by nearly a factor of 6 for the matrix and by over 16 for the
preconditioner, although the number of messages does increase in each case. Further, the
maximum message volume on a single processor is reduced by a factor of nearly five and more
than eight respectively. The FM, ML-AP, and ML-AP+FM methods behaved similarly. The
AP method was not quite as good as the previously mentioned four methods. The Spectral |
method was nearly as bad as no partitioning at all.

4nttp://math.nist.gov/MatrixMarket/




Table 13: Communication pattern for memplus and its (transposed) preconditioner on eight

.99 .

Method Edge | Part | Total | Total | Max | Max
Cuts | Time | Msgs Vol Msgs | Vol
Natural 84044 0.21 38 | 37468 7 6655
68495 51 | 42545 7 7545
FM 26276 1.99 55 9793 71 1822
7334 48 4232 7 1350
AP 38462 2.53 46 19695 7 5336
10933 39 7668 7 3187
ML-FM 16076 4.34 56 6333 7 ] 1339
4996 55 2595 7 886
ML-AP 16416 5.11 56 7155 7 1659
4145 51 2243 7 1147
ML-AP+FM | 16609 6.85 56 7200 7 | 1903
3024 51 2077 7| 1177
Spectral 55722 | 78.60 52 | 30113 7] 5218
43823 48 | 32065 7 | 6672
Sym ML-FM | 16515 1.71 56 6056 71 2877
853 37 583 7 161

Pprocessors.
Block Row Block Column
Method Min Max Min Max | Min | Max | Min Max
Rows | Rows NZ NZ Cols | Cols Nz NZ
Natural 204 3664 | 12279 | 12503 2009 2429 7242 | 36717
1919 | 16158 9541 9551
FM 1694 2881 | 12144 | 12555 2097 2570 | 10355 | 13921
8129 | 10467 9544 9549
AP 279 2944 | 12347 | 12587 2021 2408 | 10394 | 17749
5637 | 10993 9541 9551
ML-FM 1961 2451 | 12196 | 12627 2135 2387 | 11464 | 14458
8387 | 10664 9543 9549
ML-AP 1767 2563 | 12205 | 12658 2147 2484 | 11327 | 14373
7844 | 10197 9543 9549
ML-AP+FM 1629 2600 | 12173 | 12621 2149 2444 | 10997 | 15092
8121 | 10286 9543 9548
Spectral 264 3928 | 12269 | 12519 | 1909 3180 8474 | 21221
3236 | 14676 9541 9551
Sym ML-FM 1749 2416 | 11410 | 14002 1749 2416 { 11439 | 13988
. 8109 | 10342 7891 | 10455

Table 14: Block information for memplus and its (transposed) preconditioner on eight proces- -

SOrs.




e

- 923.

The number of nonzeros per block row is required to be nearly equal for memplus and
likewise for the block columins of the transposed preconditioner.

We have also added a row for the symmetric ML-FM scheme in Chaco [20]. The scheme
partitions the graph ¢ = (V, &) defined by V = {1,2,...,n}, where n is the order of the matrix,
and (1, j) € & if either a;;, ¢.ji, m;;, or m;; is nonzero with an edge weight equal to the number
of those entries that are nonzero. The weight of vertex ¢ is equal to the number of nonzeros
in row ¢ of A plus the numoer of nonzeros in column 7 of M. The resulting symmetric matrix
was converted into a weighted graph and partitioned by the multilevel partitioning routine in
Chaco. , .
Because this process couples the structure of A and M, the partitioner is unable to balance
them independently. Consequently, neither A nor M are well load balanced, as evidenced by the
min and max nonzero values for rows of A and and columns of M. Although the total work for
performing both products s well balanced, this may be insufficient because a synchronization
may be necessary in betwesn the two products. '

However, by weakening the load balance constraint in this manner, a much better partition
is now found, leading to a significant reduction in communication cost. It is also worth noting
that the run time of Chaco is decidedly less than that for the bipartite partitioning algorithms;
there are two reasons for +his. First, the bipartite graph has twice as many vertices, so the
partitioning problem is larger. Second, some of the performance enhancing features in Chaco
(principally lazy evaluation) are not currently in the bipartite partitioning code.

7. Conclusions

There are numerous algorithms requiring repeated parallel matrix-vector and matrix-transpose-
vector multiplies with rectangular or structurally nonsymmetric sparse matrices. We outlined
parallel matrix-vector multiply routines and demonstrated that their performance depends on
the partitioning of the matrix. We showed that partitioning a rectangular or structurally non-

‘symmetric matrix corresponds to partitioning a bipartite graph. We also showed that the

bipartite partitioning model can allow for simultaneous partitioning of a matrix and its explicit
preconditioner. We then presented several methods for the bipartite graph partitioning prob-
lem: Alternating Partitioring, Kernighan-Lin/Fiduccia-Mattheyses, Spectral, and Multilevel.

We gave results for partitioning several large matrices arising from various applications.
Overall, we found that the Multilevel methods usually work best. The best refinements seem
to be either Fiduccia-Mattheyses or Alternating Partitioning plus Fiduccia-Mattheyses. The
later is a little more expensive in terms of time. The Spectral method was by far the worst and
failed to even converge on many problems.

A number of areas for future study exist. It is important to know if the theoretical gains
in performance shown by our results hold in practice, so we are currently implementing the
paraliel matrix-vector multiply on various parallel architectures. The work on simultaneously
partitioning a matrix and its explicit preconditioner can be extended further to the case where
there is an explicit factored preconditioner. We also intend to optimize the research code we
have been using for the partitioning by incorporating many of the enhancements available in the
best codes for standard graph partitioning (e.g., lazy evaluation). Lastly, as the results from the
Amatrix and wel1998 matrices show, edge cuts may only loosely correlate with communication
volume, and we plan to investigate alternative refinement strategies that target a more accurate
metric for the communication cost.




- 24 -

Acknowledgements

One of the challenges of this problem was obtaining large matrices to work with. We have the
following people to thank for providing us with data and/or data conversion utilities as well
as helpful advice: Michele Benzi, Mike Berry, lain Duff, Osni Marques, Karin Remington, Ed
Rothberg, Mike Saunders, Matt St. John, Weichung Wang, and Houngyun Zha. We would like
to acknowledge that the following conversion utilities were used: Harwell-Boeing I/O Routines
in C (hbio1.0)® and the mps2mat routine available in LIPSOL.® Also, thanks to Al Geist for
helpful discussions on the fine points of load balancing and to Eric de Sturler on preconditioning
of iterative methods. We would like to further thank Michele Benzi for his useful comments on
an earlier draft of this work.

8. References

[1] S. T. BARNARD AND H. D. SIMON, A fast multilevel implementation of recursive spectral
bisection for partitioning unstructured problems, Concurrency: Practice and Experience, 6
(1994), pp. 101-117.

[2] M. Benzi AND M. TOMA. Private Communication, 1998.

[3] M. BENzZi AND M. TOMA, A comparative study of sparse approzimate inverse precondi-
tioners, Tech. Rep. LA-UR-98-0024, Los Alamos Natl. Lab., 1998.

[4] M. W. BERRY, S. T. Dumals, AND G. W. Q’BRIEN, Using linear algebra for intelligent
information retrieval, SIAM Review, 37 (1995), pp. 573-595.

[5] M. W. BERRY, B. HENDRICKSON, AND P. RAGHAVAN, Sparse matriz reordering schemes
for browsing hypertext, in The Mathematics of Numerical Analysis, J. Renegar, M. Shub,
and S. Smale, eds., vol. 32 of Lectures in Applied Mathematics, American Mathematical
Society, 1996, pp. 99-122.

6] T. Bui AND C. JONES, A heuristic for reducing fill in sparse matriz factorization, in Proc.
6th SIAM Conf. Parallel Processing for Scientific Computing, SIAM, 1993, pp. 445—452.

[7] H. CHot AND D. B. SzvYLD, Application of threshold partitioning of sparse matrices to
Markov chains, in Proc. IEEE International Computer Performance and Dependability
Symposium (IPDS’96), IEEE Computer Society Press, 1996, pp. 158-165.

[8] T. H. CorMEN, C. E. LEISERSON, AND R. L. RIVEST, Introduction to Algorithms, MIT
Press, Cambridge, MA, 1990.

[9] I. DUFF. Private Communication, 1998.

[10] C. M. Fipuccia aND R. M. MATTHEYSES, A linear time heuristic for improving network
partitions, in Proc. 19th IEEE Design Automation Conf., 1982, pp. 175-182.

[11] M. FIEDLER, Algebraic connectivity of graphs, Czechoslovak Mathematical J., 23 (1973),
PD. 298-305.

Shttp://math.nist.gov/mesd/Staff/KRemingt on/harvell_io/harwell.io.html
Shttp://wuw.caam.rice.edu/ zhang/lipsol/




- 95-

[12] R. FLETCHER, Conjugate gradient methods for indefinite systems, in Numerical Analysis
Dundee 1975, G. A. Warson, ed., no. 506 in Lecture Notes in Mathematics, Springer-Verlag,
Berlin, 1976, pp. 73-89.

(13] R. W. FREUND AND N. M. NACHTIGAL, QMR: A quasi-minimal residual method for
non-Hermitian linear systems, Numer. Math., 60 (1991), pp. 315-339.

[14] M. GAREY, D. JOHNSON, AND L. STOCKMEYER, Some simplified NP-complete graph
problems, Theoretical Computer Science, 1 (1976), pp. 237-267.

[15] M. R. GAREY AND D. S. JOHNSON, Computers and Intractability: A Guide to the Theory
of NP-Completeness, W. H. Freeman and Company, New York, 1979.

(16] G. H. GoLuB AND C. F'. VAN LoAN, Matriz Computations, The Johns Hopkins University
Press, Baltimore, 2nd ed., 1989.

[17] M. GROTE AND T. HUCKLE, Parallel preconditioning with sparse epprozimate inverses,
SIAM J. Sci. Comput., 18 (1997), pp. 838-853.

[18] M. HEGLAND, Description and use of animal breeding data for large least squares problems,
Tech. Rep. TR-PA-93-1i0, CERFACS, Toulouse, France, 1993.

[19] B. HENDRICKSON AND T. G. KOLDA, Partitioning sparse rectangular matrices for parallel
computations of Az and ATv, in Proc. PARA98 Workshop on Applied Parallel Computing
in Large Scale Scientifiz and Industrial Problems, to appear.

[20] B. HENDRICKSON AND R. LELAND, The Chaco user’s guide, version 2.0, Tech. Rep.
SAND95-2344, Sandia Natl. Lab., Albuquerque, NM, 87185, 1995.

, An improved spectral graph partitioning algorithm for mapping parallel computa-
tions, SIAM J. Sci. Stat. Comput., 16 (1995}, pp. 452—469.

[21]

[22] ——, A multilevel algorithm for partitioning graphs, in Proc. Supercomputing ’95, ACM,
1995. ' .

{23] B. HENDRICKSON, R. LELAND, AND S. PLIMPTON, An efficient parallel algorithm for
matriz—vector multiplication, Int. J. High Speed Comput., 7 (1995), pp. 73-88.

[24] A. HOFER, Schitzung von Zuchtwerten feldgepriifter Schweine mit einem Mehrmerkmals-
Tiermodell, PhD thesis, ETH-Zurich, 1990. Cited in [18].

[25] G. KARYPIS AND V. KUMAR, A fast and high quality multilevel scheme for partitioning ir-
regular graphs, Tech. Rep. 95-035, Dept. Computer Science, Univ. Minnesota, Minneapolis,
MN 55455, 1995.

, Parallel multilenel graph partitioning, Tech. Rep. 95-036, Dept. Computer Science,
Univ. Minnesota, Minneapolis, MN 55455, 1995.

(26]

[27] B. W. KERNIGHAN AND S. LIN, An efficient heuristic procedure for partitioning graphs,
Bell System Technical J., (1970).

[28] T. G. KoLDA, Limited-Memory Matriz Methods with Applications, PhD thesis, Applied
Mathematics Program, Univ. Maryland, College Park, MD 20742, 1997.




- 926 -

[29) ——, Partitioning sparse rectangular matrices for parallel processing, in Proc. 5th Intl.
Symposium on Solving Irregularly Structured Problems in Parallel (Irregular *98), to ap-
pear.

[30] T. G. KoLpa AND D. P. O’LEARY, Latent semantic indezing via a semi-discrete matriz
decomposition, in The Mathematics of Information Coding, Extraction and Distribution,
G. Cybenko, D. P. O’Leary, and J. Rissanen, eds., IMA Volumes in Math. and Its Applics.,
Springer-Verlag, 1998.

[31] , A semi-discrete matriz decomposition for latent semantic indering in information

retrieval, ACM Trans. Information Systems, (to appear).

[32] J. G. LEwis aAND R. A. vAN DE GENN, Distributed memory matriz-vector multiplication
and conjugate gradient algorithms, in Proc. Supercomputing ’93, IEEE Computer Society
Press, 1993, pp. 484-492.

[33] D. P. O’LEARY AND S. PELEG, Digital tmage compression by outer product expansion,
IEEE Trans. Comm., 31 (1983), pp. 441-444.

[34] J. O’NEIL AND D. B. SzYLD, A block ordering method for sparse matrices, SIAM J. Sci.
Stat. Comput., 11 (1990), pp. 811-823.

[35] C. C. PAIGE AND M. A. SAUNDERS, LSQR: An algorithm for sparse linear equations and
sparse least squares, ACM Trans. Mathematical Software, 8 (1982), pp. 43-71.

[36] A. PoTHEN, H. D. SiMON, AND K.-P. Li10U, Partitioning sparse matrices with eigenvec-
tors of graphs, SIAM J. Matrix Anal. Appl., 11 {1990), pp. 430-452.

{37] E. ROTHBERG. Private Communication, 1998.

[38] H. D. SIMON, Partitioning of unstructured problems for parallel processing, in Computing
Systems in Engineering, no. 2/3, Pergammon Press, 1991, pp. 135-148. '

[39] R. S. TUMINARO, J. H. SHADID, AND S. A. HUTCHINSON, Parallel sparse matriz vector
multiply software for matrices with data locality, Concurrency: Practice and Experience,
10 (1998), pp. 229-247.

[40] D. W. VASCO L. R. JOHNSON AND O. MARQUES, Global Earth structure: Inference
and assessment. Submitted to Geophysical Journal International, 1998.

[41] D. W. Vasco AND O. MARQUES. Private communication, 1998.

{42] C. WaLsHaw, M. Cross, AND M. EVERETT, Mesh partitioning and load-balancing for
distributed memory parallel systems, in Proc. Parallel & Distributed Computing for Com-
putational Mechanics, Lochinver, Scotland, 1997, B. Topping, ed., 1998.

[43] W. WANG AND D. P. O’LEARY, Adaptive use of iterative methods tn interior point meth-
ods for linear programming, Tech. Rep. CS-TR-3560, Dept. Computer Science, Univ. Mary-
land, College Park, MD 20742, 1995.




- 97

ORNL/TM-13657

INTERNAL DISTRIBUTION

. 1-2. T.S. Darland 10. T. Zacharia
' 3-7. T. G. Kolda 11." Laboratory Records - RC
8. M. R. Leuze 12-13. Laboratory Records Dept.
9. E.Ng 14. Central Research Library
15-16. OSTI

EXTERNAL DISTRIBUTION

17. Daniel A. Hitchcock, Acting Director, Division of Mathematical, Information, and
Computational Sciences, Department of Energy, ER-31, 19901 Germantown Road,
Room E-230, Germantown, MD 20874-1290

18. Frederick A. Howes, Division of Mathematical, Information, and Computational
Sciences, Department of Energy, ER-31, 19901 Germantown Road, Room E-236,
Germantown, MD 20874-1290

19. David B. Nelson, Associate Director, Office of Computational and Technology
Research, Department of Energy, ER-30, 19901 Germantown Road, Room E-219,
Germantown, MD 20874-1290 ,




