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ABSTRACT 

 

The presence of faults/ fractures or highly permeable zones in the primary sealing caprock 

of a CO2 storage reservoir can result in leakage of CO2. Monitoring of leakage requires the 

capability to detect and resolve the onset, location, and volume of leakage in a systematic 

and timely manner. Pressure-based monitoring possesses such capabilities. This study 

demonstrates a basis for monitoring network design based on the characterization of CO2 

leakage scenarios through an assessment of the integrity and permeability of the caprock 

inferred from above zone pressure measurements. Four representative heterogeneous 

fractured seal types are characterized to demonstrate seal permeability ranging from highly 

permeable to impermeable. Based on Bayesian classification theory, the probability of each 

fractured caprock scenario given above zone pressure measurements with measurement 

error is inferred. The sensitivity to injection rate and caprock thickness is also evaluated 

and the probability of proper classification is calculated. The time required to distinguish 

between above zone pressure outcomes and the associated leakage scenarios is also 

computed. 



 

 

1. INTRODUCTION 

 

CO2 capture and storage (CCS) is considered a promising strategy for the reduction of 

anthropogenic greenhouse gas emissions to the atmosphere (IPCC, 2005). However, 

injecting large volumes of CO2 may cause subsurface pressurization over large spatial 

domains, resulting in leakage that returns the injected CO2 to the atmosphere and 

potentially harming natural resources (e.g., groundwater resources) (Birkholzer and Zhou, 

2009; Pruess, 2004). To protect the environment and public health, a comprehensive risk 

profile should be established for each CCS project. To monitor these risks, it is necessary 

to have the capability to identify and resolve the onset, location, and volume of leakage 

from the reservoir in a systematic and timely manner. The monitoring of pressure changes, 

as an indication of leakage, represents one approach to provide this information, and has 

been explored by a number of investigators (Nogues et al., 2011; Sun and Nicot, 2012; 

Zeidouni and Pooladi-Darvish, 2012; Benisch and Bauer, 2013; Hovorka et al., 2013; Jung 

et al., 2013; Strandli and Benson, 2013; Azzolina et al. 2014; Wang and Small, 2014).  In 

many of these studies highly simplified conceptual models have been used for the affected 

subsurface layers, including an assumption of homogeneous porosity and permeability in 

each (though in several cases the single values for each zone are treated as uncertain inputs 

to the model). In this paper, we maintain an idealized geometry for the subsurface system, 

but incorporate heterogeneity in the fracture pattern of the caprock and its resulting 

location-specific effective permeability.  In addition, we apply a probabilistic approach in 

which uncertainty in the subsurface may be resolved by successive monitoring results. 

 

Monitoring for leak detection at CO2 storage sites serves a number of purposes, including 

ongoing assurance that the site is maintaining its integrity, verification that credited 

quantities of stored CO2 do in fact remain underground, and alerting operators when 

changes are needed to modify or stop operations, including possible initiation of more 

intensive monitoring and remediation.  Subsurface models complement monitoring by 

allowing interpretation of the observed data to identify the location and size of possible 



leakage sources, and to predict the subsequent costs and risks of alternative response 

options (see, for example, Gerstenberger and Christophersen, 2016).  Models that consider 

the performance of both the subsurface system and the monitoring network are especially 

useful in this regard, allowing a pre-construction estimate of the performance of alternative 

monitoring technologies and network designs under plausible leakage scenarios, including 

overall false positive and false negative rates for system-wide leak detection (Yang et al. 

2011, 2012).  Once such performance models have been developed and applied, they may 

be used for optimization of a monitoring network, as previously shown for near-surface 

groundwater leak detection (e.g., Loaiciga, 1989; Loaiciga et al., 1992; Meyer et al., 1994; 

Mahar and Datta, 1997; Reed and Minsker, 2004; Dhar and Datta, 2007).  Similar 

optimization approaches have recently been proposed for the design of CO2 leakage 

detection networks (Sun et al., 2013; Yonkofski et al., 2016).  

 

Pressure monitoring in the Above Zone Monitoring Interval, or AZMI, has been proposed 

for early detection of leakage (Hovorka et al., 2013) because of the fast traveling speed of 

pressure perturbations and the proximity of the AZMI to storage formations (Nordbotten 

et al., 2004). However, unlike the storage formations, the AZMI will be subjected to less 

pressure disturbance during injection activities, which will require a monitoring network 

capable of detecting these smaller signals as well as interpreting potential anomalous 

pressure signals. From an operations perspective, deep pressure monitoring wells are costly 

to drill and maintain—drilling and instrumentation costs can easily exceed $ 1 million per 

well, which is in addition to annual maintenance and operation costs (U.S. Environmental 

Protection Agency, 2010). Thus, there is strong incentive to optimize the design of 

pressure-based monitoring networks (Sun et al., 2013).   

 

In this paper, we focus on leakage of CO2 through the primary caprock and resulting 

pressure changes in the AZMI. The primary aim of this work is to characterize the time 

required to distinguish AZMI pressure outcomes and associated leakage scenarios through 

a probabilistic assessment of the integrity and permeability of the caprock and also the 

amount of CO2 injected into the reservoir. We present a method for integrating monitoring 

and modeling results to draw inferences regarding the integrity of the caprock, including 



how quickly these inferences can be made for different representative caprock types and 

conditions. These scenarios represent effective caprock permeability from almost 

impermeable to highly permeable cases. We then model the probability distributions of 

pressure build-up in the AZMI for each of these scenarios, with the modeled pressure fields 

assumed to be observed with measurement errors. These distributions serve as the 

likelihood function for a Bayesian classification model, in which the posterior probabilities 

are computed for each of the four caprock fracture scenarios. We also evaluate the 

influence of the thickness of the caprock and the CO2 injection rate on the modeled pressure 

build-up and the subsequent performance of the Bayesian classification procedure. The 

modeling approach used in this study is based on the systematic framework shown in 

Figure 1. The results from this work can in the future form the basis for more refined 

evaluation and optimization of monitoring technologies and networks. 

 

2. MODEL SETUP  

 

The CO2 storage system is modeled as a three-layer system with two aquifers separated by 

a sealing caprock of thickness 50 m (Figure 2 (a)). The lower aquifer is the storage reservoir 

where CO2 is injected at a base case rate of 1 MT per year for a period of 30 years. Higher 

and lower injection rates are also considered in a sensitivity analysis. The base case 

thickness of the reservoir is assumed to be 100 m. The reservoir is located at a depth of 

1000 m. The areal extent of the subsurface storage system is defined as 10 km × 10 km. 

The assumed reservoir features are summarized in Table 1. Reservoir simulations (Figure 

3) are conducted using TOUGH2. CO2 and brine flux from the seal are then simulated for 

a period of 30 years of injection and 170 years of post-injection using the seal model, 

NSealR (Lindner et al., 2015). NSealR is a reduced order model (ROM) developed by the 

U.S. Department of Energy’s National Risk Assessment Partnership (NRAP) program 

(NETL, 2011). NSealR uses a two-phase, relative permeability approach with Darcy’s law 

for one dimensional (1-D) flow computations of CO2 through the horizon in the vertical 

direction. The above zone thickness used in this study is 50 m. It is assumed that the AZMI 

layer has a porosity of 0.1 and a permeability of 10.5 mD.  The residual CO2 and brine 

saturations were set at 0.01 and 0.02 respectively and the bubbling pressure was set to equal 



0.01 MPa. Three base case observation wells screened at 900 m depth are also considered. 

The locations of the wells are shown in Figure 2 (b). The locations are chosen to be 

representative of a possible spatial layout, primarily for demonstration purposes. 

 

The sealing caprock is modeled for four different fractured network scenarios: (I) fractured 

network with low aperture; (II) randomly distributed clusters of fractures with high 

apertures; (III) fractured network zone with high aperture near the injection well and; (IV) 

densely fractured network with high aperture. These four scenarios are assumed to be 

representative of the range of possible storage seal scenarios with an impermeable seal 

layer with almost no leakage possible represented by scenario (I); permeable and high risk 

storage scenarios represented by scenarios (III) and (IV) and a high integrity, almost 

impermeable seal with low leakage risk represented by scenario (II).  

 

2.1. FRACTURED SEAL SCENARIOS 

 

Quantitative assessment of storage system performance suggests that safe, effective long-

term containment is highly probable in cases where there is an in-tact low-permeability 

seal to prevent vertical fluid migration.  To date, however, little consideration has been 

given to scenarios in which the primary sealing layer contains regions fracturing or faulting 

that effectively represent heterogeneities in seal permeability. In this model, the sealing 

caprock is considered to be 50 m thick. In order to add heterogeneity to our analysis, we 

simulate semi-stochastic fracture network characteristics using FRACGEN (McKoy et al., 

2006). This software is specifically designed for modeling fracture networks and fractured 

reservoirs. The fracture network used in this model is based on the stochastic allocation of 

fracture lengths, positions, orientations and density in space. Model details are provided in 

the Supporting Information. 

 

To demonstrate the overall methodology, we have chosen four possible fracture scenarios 

as represented graphically in Figure 4 to provide a discrete sample from a range of plausible 

caprock types with varying susceptibility to leakage.  In this regard the four scenarios can 

be thought of as representative of alternative conceptual models for the caprock system. 



Fracture modeling details used in each of these scenarios can be found in Table S-2 of the 

Supporting Information. The four seal scenarios generated for this work are expected to be 

representative of fractured seal scenarios ranging from an almost impermeable caprock 

layer (good storage seal case) to a highly permeable caprock layer (worst storage seal case). 

These scenarios are intended to illustrate how alternative seal fracture properties can be 

defined, simulated, and used to induce a leakage and fluid migration pattern from the 

injection zone, through the caprock and into the AZMI. Since the NSealR model uses seal 

permeability as an input, we use a parallel plate model for fractures to compute the effective 

permeability of the fractured networks. More refined uncertainty analysis could be 

explored by allowing prior parameter values (e.g., fracture properties) to be uncertain for 

each scenario, with observations providing simultaneous updating of parameter 

distributions and model probabilities, as is done in Bayesian model discrimination and 

Bayesian model averaging (Hoeting et al., 1999; Wintle et al., 2003).   

 

Application of Bayesian model averaging to groundwater modeling with uncertain 

conceptual models and scenarios is found in Meyer et al. (2007), Rojas et al. (2008, 2010) 

and Ye et al. (2010).  In these applications, no single model is assumed to be “true”, nor is 

the set of models assumed to be exhaustive of all possibilities.  Rather the prior and 

posterior probabilities for each model are understood in a relative sense (as would be 

“weights” in a model averaging calculation), and this is the context in which we interpret 

the calculated posterior probabilities for the set of scenarios considered.  Indeed, the 

purpose is to see when an inference can be made with a high level of surety that one 

scenario (or combination of scenarios, especially those including scenarios conducive to 

leakage) is more likely than others, and not the determination of exact probabilities for 

each.  In practice, selection of alternative scenarios would consider all available 

information for a site (i.e., providing an “informed prior”), and would cover the full range 

of possible conceptual models that could inform the level of leakage risk.  Meyer et al. 

(2007), Rojas et al. (2008), Rojas et al. (2010) and Ye et al. (2010) demonstrate model sets 

of 8, 3, 7, and 25 model scenarios, respectively.  It is likely that application of the proposed 

leak detection methodology at actual, complex sites will involve the consideration of 

significantly more than four conceptual alternatives. 



 

2.2. EFFECTIVE CAPROCK PERMEABILITY 

 

Defining the aperture and the permeability of a fracture separately seems counterintuitive, 

since these parameters are considered to be mutually dependent, and directly related if the 

fractures are rectangular slits. Parallel plate theory (Snow, 1964; Sarkar, 2004) is used to 

compute fracture permeability (See Supporting Information). Figure 5 shows the effective 

permeability plot for the four fractured scenarios. The calculated permeabilities are then 

used to compute flow through the seal using NSealR. While fracture flow is advective at 

the scale of individual pores and fractures, it is represented as a diffusive flux, characterized 

by permeabilities and pressure gradients at the spatial grid scale of the model. As this study 

focuses on the above zone pressure build up due to associated CO2 leakage through the 

primary caprock, we determine whether the four-different fractured caprock scenarios lead 

to pressure build up profiles that are statistically distinguishable (Table 2).  

 

2.3. AZMI MODEL RESULTS 

 

The AZMI ROM (Namhata et al., 2016) is used to calculate the above zone pressure build 

up for each of the caprock scenarios. Figure 6 presents the changes in pressure responses 

in the AZMI over time, generated using the flux from the seal for each of the fracture 

scenarios for the simulation periods previously identified. 

 

3. BAYESIAN CLASSIFICATION METHODOLOGY 

 

An expert’s belief regarding the relative probability that each caprock fracture scenario is 

present at a site can be combined with observed pressure monitoring and modeling results 

using Bayesian classification theory. The belief of the expert is assumed to be a prior 

distribution of the presence of each of the four scenarios at a CO2 storage site. In the 

Bayesian classification methodology, the posterior distribution is then derived by 

combining the prior distribution with the monitored pressure at the three monitoring 

locations. If there is no information on the prior distribution, an equally probable prior is 



assumed so that the results will totally depend on the monitored (or, modeled) pressure 

outputs. In this case, the posterior probability of a fracture scenario is proportional to the 

likelihood function for the modeled pressure outputs (time and location dependent), given 

each fracture scenario. 

 

To characterize the performance of the classification procedure, simulated leakage – 

pressure outcomes are generated for each scenario and translated into an assumed sequence 

of AZMI pressure measurements. The likelihood function for the above zone pressure 

measurements using the AZMI ROM has two components: firstly, the uncertainty in the 

true value of the above zone pressure that results from uncertainties in caprock fracture 

properties; and secondly, the uncertainty that might be associated with the modeling error. 

The first uncertainty is captured by 100 discrete FRACGEN simulation results. The latter 

is captured by assuming log normal measurement error function that maps simulated 

modeling results to pressure values that are assumed to be measured. To determine the 

ability to infer true caprock fracture scenario type at the site, we simulate multiple 

realizations for each fracture scenario, assume they are measured with error, and use the 

Bayesian classification procedure to infer the probability that each scenario is present. 

Good performance occurs when the procedure predicts high probability for the scenario 

used to simulate the leakage and associated pressure realizations (and low probability for 

the others).  

 

3.1. Mean Pressure Buildup 

 

As shown in Figure 2 (b), we have assigned three above zone monitoring wells for our base 

case analysis. The number and location of the monitoring wells chosen in this study are 

illustrative. The regions closer to the injection well are expected to see higher pressure 

build up, making them an obvious choice for monitoring. The three locations chosen are in 

regions right above or near the injection well. In this analysis, we calculate the above zone 

pressure build up due to CO2 injection in the storage reservoir for each of the fractured seal 

scenarios (Figure 6). The pressure build ups at the three monitoring locations are then 

calculated for each scenarios and at each time step. The mean of the monitored pressure 



build up is then used for the analysis. The purpose of choosing the mean pressure build up 

(∆Psimulated) over individual monitoring point analysis is that it provides the ability of the 

mean pressure build up to capture the spatial variability in output predictions over 

individual analysis. The mean pressure build up range from the 100 simulations for each 

scenario is shown in Figure 7. 

 

3.2. Inferring Fracture Scenario 

 

Assuming no knowledge about the seal, we assign equal prior probability (= 0.25) for each 

of the four fracture scenarios (Table 2). This approach is commonly utilized in multi-model 

Bayesian analysis, ensuring that the alternatives begin on an equal footing and allowing 

the observations to provide the differentiating evidence for changes in their relative weights 

in the posterior distribution.  At actual site applications, the full set of geologic site 

characterization data and expert knowledge can be utilized to inform prior probabilities 

(Gerstenberger and Christophersen, 2016). The mean above zone pressure build up in the 

three monitoring wells (∆Psimulated) is chosen to be the variable for analysis of the fracture 

seal scenarios. The expected effective permeabilities of the caprock for each of the fracture 

scenarios are shown in Table 2. The greater the effective permeability of the seal, the more 

will be the pressure build up in the AZMI resulting in higher ∆Psimulated.  For the cases 

considered and simulated in our study, the ∆Psimulated ranges from 0 to 0.325 MPa. Since 

we consider measurement errors, the observed values tend to extend beyond this range. For 

simplicity in the statistical analysis (mainly for lognormal analysis), we add a minimum 

threshold value of 0.001 MPa to the ∆Psimulated.  

 

We then estimate the likelihood of observing ∆Psimulated given each caprock fracture 

scenario, f(∆Psimulated |Scenario j), where j is the scenario number. We first generate 100 

realizations of each caprock fracture scenario incorporating values shown in Table 1, and 

compute ∆Psimulated. Secondly, we simulate the effects of measurement errors, by assuming 

that the above zone pressure build ups (∆Pmeasured) are log-normally distributed about the 

model simulation values: 

 

(1) 



∆ ~lognormal	 ,   

where, 

log	 ∆  

log . . 1 /  

 

We calculate the median ∆Psimulated values from each FRACGEN simulation for the 

respective lognormal distributions of ∆Pmeasured (specifying the parameters a representing 

the logarithm of the median of the respective measurements). The lognormal distribution 

is commonly assumed for the distribution of measurement errors around a true value, 

particularly for quantities such as concentrations and (in this context) pressure increments, 

which are assumed to be non-negative (Sohn et al. 2000; Ramaswami et al. 2005; Wang 

and Small, 2014). The second parameter b represents the standard deviation of the 

logarithm of ∆Pmeasured. These second parameters are specified by the coefficients of 

variation (c.v.) of ∆Pmeasured. The lognormal distribution is reasonably approximated by a 

normal distribution when the c.v. of the error is low, and a normal error distribution has 

also been used for pressure measurements in previous studies (e.g., Gavalas et al. 1976). 

 

Thus, the lognormal distribution of ∆Pmeasured is computed using the simulation results of 

∆Psimulated|i for each simulation i and at each time step t and the assumed measurement error 

(coefficient of variation here) for each ∆Psimulated measurement (determined by b). The pdf 

of the lognormal distribution serves as the likelihood function for the pressure observations 

given the simulation result: 

∆ | , log
∆ √

exp
∆

 

 

The overall log-likelihood of a given fracture scenario is given by the sum of individual 

log-likelihoods from all 100 simulations for each case:  

loglikelihood scenario	 ∆ | ,  

  

(2) 

(3) 



Using Bayes theorem, the prior distribution of each caprock fracture scenario and the 

likelihood function are combined to calculate the posterior distribution of each caprock 

fracture scenario given by: 

scenario	 |∆

exp ∆ | 	 Prob scenario	
∑ exp ∆ | 	 Prob scenario	

 

  

 

3.3. Time to Detect Leakage 

 

The primary aim of this work is to compute the time required to distinguish between above 

zone pressure outcomes and the associated leakage scenarios. The time to detect leakage 

or no leakage are calculated using the posterior probabilities given each of the four 

scenarios. We compute two different time values, (a) the time to no leakage assurance 

given there is no leakage (Tno leak) and, (b) time to leakage confirmation given there is a 

leakage (Tleak). For simplicity, we assume that the fracture scenario I is a no leakage 

scenario. Tno leak provides an assessment of the system behavior by calculating the time 

required to correctly conclude that there is leakage from the caprock assuming that the 

caprock is of scenario I type i.e., almost impermeable caprock. Tleak provides an estimate 

of how long it takes to correctly conclude that there is leakage from the caprock assuming 

that the caprock is of scenario types II, III or IV. Posterior probability thresholds of 90% 

are assumed to be required for drawing the no-leak or leak scenario inferences. 

Mathematically, 

 

	 , when, scenario	I |∆ 0.9|scenario	I 	 

and, 

, when, scenario	I |∆ 0.9|scenario	 : I 

 

3.4. Influence of Input Parameters 

 

(4) 

(5) 

(6) 



Along with the uncertainties in fracture properties (represented in Table S-2, See 

Supporting Information), there can be other uncertainties associated with a CO2 storage 

system that impact the above zone pressure monitoring results. To illustrate the sensitivity 

of model predictions to variations in selected modeling parameters, we change the CO2 

injection rate and thickness of the primary caprock to compute their effect on simulation 

results and the probability of properly inferring caprock fracture scenarios. The base case 

model was set up for a caprock of thickness 50 m and an injection rate of 1 MT/ year for 

30 years. We make changes to the base case and also present simulation results for a 10 m 

and 100 m thick caprock; and injection rates of 10 MT/ year and 50 MT/ year. 

 

4. RESULTS 

 

The base case model was implemented for each of the four caprock fracture scenarios. The 

above zone pressure buildup was then calculated using the AZMI ROM. For posterior 

analysis we use the mean pressure buildup from three monitoring well locations as 

described previously. Figure 8 shows the posterior probability of each of the caprock 

fracture scenarios as a function of time from the start of injection. The posterior 

probabilities are calculated for each of the fracture scenarios given the simulation results 

from a particular fracture scenario. This demonstrates whether and how quickly a true 

fracture scenario can be distinguished from the others considered, based solely on pressure 

measurements in the AZMI. Since the fracture scenarios are general in nature, chosen to 

be representative of probable caprock types with different leakage potential, the results are 

intended to provide a simple representation of how the monitored pressure will evolve and 

be interpreted for similar scenarios.  

 

In Figure 8, we present the posterior distribution of each scenario given one of the four 

scenarios. All of the plots have been shown until 35 years from the start of injection. Since 

the main aim of this work is to identify the time required to distinguish above zone pressure 

outcomes and the associated leakage scenarios, we concluded from all the simulations that 

the maximum associated time is less than 35 years. In each of the plots, there is no change 

in posterior probability from the prior values (= 0.25) in the first 3 years. It can be seen 



from the scenario I plot that the posterior probability of scenario I given scenario I reaches 

0.90 at 5 years from the start of injection. This is expected because with more and more 

monitoring, the posterior probability is expected to increase for a particular scenario given 

the same scenario. A similar trend is expected for the other scenarios, but they take longer 

to reach a statistically significant posterior probability (= 0.90). While the leakage 

scenarios can, as a group, be distinguished from the non-leakage case, the method is often 

unable to distinguish the scenarios from each other. This is because there is no flow of CO2 

in the initial years to the AZMI, resulting in no pressure buildup. Scenario I being 

distinctively different from the rest of the scenarios has a very distinct posterior pattern. 

Since this scenario represents a negligible leakage case, we don’t see the posterior of other 

scenarios, especially scenarios III and IV, increasing. Scenario II being a low leakage case, 

there will be no/ very less migration of fluids, hence there is a slight increase in its posterior 

initially. 

 

For posterior probability plots of scenarios III and IV given scenarios III and IV 

respectively, there is an increasing trend as these scenarios are representative of high 

leakage cases, with almost no leakage effect from scenario I and very low impact from 

scenario II. Given scenario III, we see an increase in the posterior probability of scenarios 

II and IV at a later stage of injection since both these scenarios also have increasing 

pressure buildup over time. But the posteriors remain less compared to the posterior of 

scenario III. In case of scenario II, which is representative of low permeability caprock 

with the potential for a low to moderate amount of CO2 leakage, we see higher probability 

of scenario I compared to scenario II itself in the first 5 years. The reason being in its initial 

years, there is negligible leakage of CO2 in scenario II, similar to that of scenario I. So there 

is a clear impact on posteriors for that case. 

We next conducted sensitivity analysis to determine the effect of changing caprock 

thickness (from a base case of 50 m) and the injection rate (from a base case of 1 MT/ year) 

on model inferences to: 

 

(a) Caprock thickness of 10 m and 100 m 

(b) Injection rate of 0.25 MT/ year and 5 MT/ year. 



 

Figures 9 and 10 shows the inferred posterior probabilities over time for caprock thickness 

10 m and 100 m, respectively, keeping all the other inputs to the simulation the same as 

the base case simulation. Figures 11 and 12 shows the posterior distribution over time for 

injection rate of 0.25 MT/ year and 5 MT/ year, respectively, for 30 years. From Figures 9 

and 10 it can be seen that the general characteristic trend of the posteriors are similar to 

that in Figure 8. With a decrease in caprock thickness to 10 m (Figure 9), there will be 

more leakage of CO2 in the AZMI compared to that from a caprock of thickness 50 m. This 

distinctive feature is captured for posteriors given scenario II plot, where the time to predict 

confidently that the change in pressure is due to scenario II is increased from the base case. 

For scenario III and IV, which are in general high leakage scenarios, the pattern is similar 

to that of the base case. When the caprock thickness is increased to 100 m (Figure 10), we 

expect lower CO2 leakage into the AZMI compared to that of the base case. In this case 

too, scenario II cannot be distinguished from scenario I as quickly as the rest of the 

scenarios. Comparing the curves in Figures 9 and 10 to that of 11 suggests that changing 

the caprock thickness has very little effect on the magnitude of predicted probabilities. This 

is not the case when we change the injection rates. A lowering of the injection rates yields 

a lower or similar statistical ability to infer the caprock fracture scenario compared to that 

of the base case. Increasing the injection rate (Figure 11) yields an increase in the statistical 

ability for inferring the caprock fracture scenario. This is as expected – increasing the 

injection rate increases the likelihood of CO2 leakage and in turn results in an increase in 

above zone pressures yielding a more likely detection of caprock fracture scenarios. The 

present model is formulated based on the assumption that there is no prior scenario-specific 

knowledge. In case of prior information about the caprock geology, the probability of 

inferring the caprock scenarios will also change. In this study, to show the impact of prior 

knowledge on caprock type inference and also the time taken to detect a leak/ no leak 

scenario, we slightly change the prior information situation from that of Table 2. The prior 

of Scenario I is changed to 0.50 and the rest of the scenarios are taken to have a 0.1667 

prior probability. The resulting inferred posterior probabilities are shown in Figure 13. It 

can be seen that, with higher prior information of Scenario I, the posterior probability of 

Scenario I given Scenario I is quite high from the beginning. In the Scenario II plot it can 



be seen that the time to infer the leakage due to Scenario II has changed a lot. The other 

scenarios have almost similar inference ability to that of the base case. 

 

As the primary aim of this work is to calculate Tno leak and Tleak, we present the respective 

times for the base case and the four other scenarios in Tables 3 and 4. In Table 3, the time 

to no leak assurance is shown. This will help in understanding the minimum time required 

to confidently say that there are no significant monitorable pressure changes in the AZMI. 

The higher the caprock thickness and the lower the injection rate, more will be the time 

required to reach a no leak assurance conclusion since we expect to have low leakage in 

such situations. For an opposite scenario, with low caprock thickness and high injection 

rate, the time to no leak assurance will be much less. In Table 4, the time to leakage 

confirmation is shown. This is the time needed to conclude that most probably there is a 

leakage in the system based on the pressure data. The most time needed to conclude that 

there is a leakage in the system occurs with scenario II when the caprock thickness is low 

and the injection rate is low and medium. This occurs because, for such a scenario, there is 

expected to be much less leakage or no leakage. In order to reach a statistically significant 

conclusion that there is a chance of leakage, a long time is required. On the other hand, in 

scenario III where the fractured zones are above the injection well and below the 

monitoring wells, we expect to see high leakage rates for almost all of the scenarios. Thus, 

the time to leakage confirmation is much lower in this case. For scenario IV, where the 

caprock is highly fractured throughout the space, we expect a higher distribution of flux 

and in turn higher above zone pressure. Thus, the ability to detect a leak is also lower for 

this scenario. This can be seen from Table 4, where the average time to detect a leak is 6 

years.  

 

 

 

5. CONCLUSION 

 

In this study, we simulate a caprock with semi-stochastic fracture network characteristics 

using FRACGEN (McKoy et al., 2006). Each model scenario is specified by fixed 



statistical properties for fracture placement and size, providing the basis for simulation of 

multiple stochastic outcomes for each of these conceptual models. For demonstration 

purpose, four representative heterogeneous fractured seal types are generated, ranging from 

an almost impermeable caprock layer (good storage seal case) to a highly permeable 

caprock layer (worst storage seal case). Existing reduced order models (ROMs) are used 

to predict the pressure response in the Above Zone Monitoring Interval (AZMI) and flux 

response above the caprock for a hypothetical base case CO2 storage scenario. The 

probability distributions of pressure build-up in the AZMI are modeled for each of the four 

caprock fracture scenarios. The modeled pressure fields are assumed to be observed with 

measurement errors. A Bayesian classification methodology is then developed where the 

pressure distributions are used as likelihood functions to compute posterior probabilities 

for each scenario. The Bayesian model is primarily used to calculate two parameters: 

firstly, the inferred probability of a given fracture scenario and secondly, the time required 

to distinguish above zone pressure outcomes and the associated leakage scenarios. The 

results indicate that with an ideal storage case where the caprock is very thick and almost 

impermeable, the time taken to infer that no leak is occurring is relatively short. Similarly, 

if the storage scenario is not ideal for CO2 injection, i.e., the thickness of the seal is low 

and it is highly fractured with high permeability, then the time to infer that leakage is 

occurring is short. The injection rate and the thickness of the caprock have influence on the 

predicted caprock fracture scenario and the detection power of the simulated above zone 

pressure monitoring. Reduction in uncertainties of caprock geology, especially more 

knowledge of fracture network properties through site characterization, can lead to higher 

confidence in the predicted caprock fracture scenario and also improve the statistical power 

of detecting leakage through the caprock. Above zone pressure monitoring, combined with 

other monitoring techniques, such as groundwater quality monitoring, seismic monitoring, 

surface deformation monitoring and any other applicable monitoring techniques can be 

used to predict CO2 leakage rates from the reservoir with a higher confidence.  
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Figure 1: Schematic framework of Bayesian design for above zone pressure monitoring.  
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Figure 2: (a) Schematic diagram of the simplified geological model used for the base case 
study; (b) Top view of the spatial locations of base case monitoring wells.  
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Figure 3: Evolution of (a) pressure (in MPa) and, (b) CO2 saturation at the top of the 
injection reservoir at 2, 5, 10 and 30 years after the start of CO2 injection. 
 



 

Scenarios Fracture apertures (in ft.) 

I 

 

 

 1.35E-06 – 2.68E-06 

 2.68E-06 – 4.01E-06 

 4.01E-06 – 5.34E-06 

 5.34E-06 – 6.67E-06 

 6.67E-06 – 8.00E-06 

 

II 

 1.77E-06 – 1.50E-05 

 1.50E-05 – 2.82E-05 

 2.82E-05 – 4.14E-05 

 4.14E-05 – 5.47E-05 

 5.47E-05 – 6.79E-05 

 

III 

 6.90E-06 – 1.88E-05 

 1.88E-05 – 3.07E-05 

 3.07E-05 – 4.26E-05 

 4.26E-05 – 5.45E-05 

 5.45E-05 – 6.64E-05 

 

IV 

 3.95E-05 – 4.54E-05 

 4.54E-05 – 5.13E-05 

 5.13E-05 – 5.71E-05 

 5.71E-05 – 6.30E-05 

 6.30E-05 – 6.89E-05 

 

 

Figure 4: Graphical representation of fractured seal scenarios: (I) fractured network with 
low aperture; (II) densely fractured network with high aperture; (III) randomly distributed 
clusters of fractures with high apertures and; (IV) fractured network zone with high 
aperture above injection well. 



 

(a) (b) 

(c) (d) 

Figure 5: Calculated effective caprock permeability (in mD) for base case model with four 
fracture scenarios:  (a) Scenario I, (b) Scenario II, (c) Scenario III and, (d) Scenario IV. 
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Figure 6: Change in pressure response (in MPa) at the top of AZMI through 200 years from the start of injection for the base case model 
with four caprock fracture scenarios. 
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Figure 7: Range of mean of pressure build up at three designated monitoring well locations for all 
caprock fracture scenarios over time. 
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 Scenario I 

 Scenario II 

 Scenario III 

 Scenario IV 
 

Figure 8: Posterior probabilities inferred for four different caprock fracture scenarios given a true 
value for a particular scenario (mentioned on top of the plots) until 35 years from the start of 
injection.  Base case caprock thickness of 50 m and base case injection rate of 1 MT/yr. 
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 Scenario I 
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Figure 9: Posterior probabilities inferred for four different caprock fracture scenarios given a true 
value for a particular scenario (mentioned on top of the plots) until 35 years from the start of 
injection.  Low caprock thickness case of 10 m and base case injection rate of 1 MT/yr. 
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Figure 10: Posterior probabilities inferred for four different caprock fracture scenarios given a 
true value for a particular scenario (mentioned on top of the plots) until 35 years from the start of 
injection.  High caprock thickness case of 100 m and base case injection rate of 1 MT/yr. 
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 Scenario I 
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Figure 11: Posterior probabilities inferred for four different caprock fracture scenarios given a 
true value for a particular scenario (mentioned on top of the plots) until 35 years from the start of 
injection.  Base case caprock thickness of 50 m and low case injection rate of 0.25 MT/yr. 
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 Scenario I 
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 Scenario IV 
 

Figure 12: Posterior probabilities inferred for four different caprock fracture scenarios given a 
true value for a particular scenario (mentioned on top of the plots) until 35 years from the start of 
injection.  Base case caprock thickness of 50 m and high case injection rate of 5 MT/yr. 
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 Scenario I 

 Scenario II 

 Scenario III 

 Scenario IV 
 

 
Figure 13: Posterior probabilities inferred for four different caprock fracture scenarios given a 
true value for a particular scenario (mentioned on top of the plots) until 35 years from the start of 
injection.  Base case caprock thickness of 50 m and high case injection rate of 1 MT/yr. The prior 
probability of Scenario I is taken to be 0.50 and that of Scenarios II, III and IV to be 0.1667. 
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Table 1: Storage reservoir and caprock features 
 

 
 
 
 
 

Parameters Value 

Density of rock  2600 kg/m3 

Initial pressure at depth =1000 m 10 MPa 

Pressure gradient 104 Pa/m 

Average temperature at caprock 50 oC 

Horizontal  permeability (storage formation) 10-13 m2  (0.1 D) 

Vertical permeability (storage formation) 10-14 m2  (0.01 D) 

Salt (NaCl) mass fraction in brine 0.08 

Porosity (storage formation)  0.1 

Porosity (caprock) 0.05 

CO2 residual saturation 0.1 

CO2 injection period 30 years 

Maximum simulation time 200  years 

Domain size 10 ×10 km 

Boundary condition Open boundary 


