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ABSTRACT

Carbon dioxide (CO;) storage into geological formations is regarded as an important
mitigation strategy for anthropogenic CO, emissions to the atmosphere. This study first
simulates the leakage of CO, and brine from a storage reservoir through the caprock.
Then, we estimate the resulting pressure changes at the zone overlying the caprock also
known as Above Zone Monitoring Interval (AZMI). A data-driven approach of arbitrary
Polynomial Chaos (aPC) Expansion is then used to quantify the uncertainty in the above
zone pressure prediction based on the uncertainties in different geologic parameters.
Finally, a global sensitivity analysis is performed with Sobol indices based on the aPC
technique to determine the relative importance of different parameters on pressure
prediction. The results indicate that there can be uncertainty in pressure prediction locally
around the leakage zones. The degree of such uncertainty in prediction depends on the
quality of site specific information available for analysis. The scientific results from this
study provide substantial insight that there is a need for site-specific data for efficient
predictions of risks associated with storage activities. The presented approach can provide

a basis of optimized pressure based monitoring network design at carbon storage sites.

INTRODUCTION

Capture and geologic storage of carbon dioxide (CO-) is considered as one of a portfolio
of solutions for the reduction of anthropogenic greenhouse gas emissions. The increasing
emphasis on the commercialization and implementation of CO, capture and storage
(CCS) has led to the development of system-wide mathematical models for the
quantitative assessment of system performance and the risk associated with it. A major
technical and regulatory concern that has gained attention of the research community is
the unanticipated leakage of CO, and brine from deep storage reservoirs to overlying
geologic formations such as the Above Zone Monitoring Interval (AZMI) and groundwater
aquifers’23, through preferential migration pathways such as, wellbores, faults, fractures
and presence of high-permeability zones in the caprocks. While the leaked CO; and brine
may possess threat to the environmental receptors, it is also possible that it would
attenuate pressure and CO; saturation. The knowledge of changes in pressure helps for
adequate management of the reservoir. Hence, it becomes important to monitor the

above zone pressure, since it may provide potentially useful source of information about
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seal performance and subsurface pressure response to CO; and brine leakage from the

storage reservoir.

The United States Department of Energy (DOE) through its National Risk Assessment
Partnership (NRAP)#5, is conducting research to develop and demonstrate science-based
methodologies to quantify the environmental risks associated with long-term geologic
storage of CO28. Central to this research is the development of Integrated Assessment
Models, or IAMs to describe site-scale performance of geologic storage systems. These
IAMs are system-based models that simulate and couple the primary sub-system
components of the storage system, i.e., storage reservoir, migration pathways (i.e., seals,
wellbores, faults and fractures), groundwater, and atmosphere, with the goal of predicting
potential leakage performance/storage security through the period of active CO; injection,
and post-injection site care. Since the integration of fully characterized numerical models
of individual sub-system into an IAM is both challenging and computationally expensive,
the NRAP approach calls for modeling the sub-system components using simplified
reduced order characterizations, or reduced order models (ROMs), that are much more

computationally efficient357-13,

One such ROM development effort has focused on characterizing the CO, and brine
leakage through the primary sealing layer to the interval directly overlying that seal (the
AZMI). A ROM developed and previously reported by Namhata and coworkers'4 predicts
spatially-varying changes in pressure through time in response to that fluid leakage. The
AZMI ROM is believed to provide a useful approximation of real-world response, but also
includes a number of conceptual and quantitative uncertainties. Insufficient or lack of
information related to geological properties represents one important source of parameter
uncertainty that may lead to significant uncertainties in model predictions, with potential to
mask the influence of secondary physical processes'. Because full-physics numerical
simulation models are computationally expensive, it may require several hours to days to
complete a single, deterministic realization; as such, exploring uncertainty/variability in
system performance using such models and brute-force Monte Carlo simulation is
generally considered intractable'®20. This makes it favorable to use advanced stochastic
tools to model uncertainties of complicated processes involved in the geologic storage of
carbon modeling. It also holds true for a coupled ROM approach. Application of advanced

stochastic tools to predict uncertainties in coupled ROM systems like the reservoir-
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caprock-AZMI coupled model used in this study will be computationally efficient over a

complex Monte Carlo like analysis.

In this study, we use a recently developed data-driven uncertainty quantification approach,
called the arbitrary polynomial chaos (aPC) expansion that provides a massive stochastic
model reduction’2' to analyze the uncertainties in predictive ability of the AZMI ROM.
aPC has certain advantages over more conventional polynomial chaos methods. This
approach provides a more robust convergence?! in comparison to the classical methods
(e.g., Wiener, 1938; Ghanem and Spanos, 1993; Le Maitre and Knio, 2010)?*?4 once
underlying distributions of uncertain parameters dictated by real-world data; it also allows
for use of arbitrary probability distributions of uncertain parameters?!. The more complex
the system is, the greater will be the associated uncertainty of the system models.
Uncertainty of any parameter in the modeling procedure propagates through the model to
impact the model predictions. Hence, it is important to rank the influence of the model
input parameters on the output space. This aids in better understanding the system

behavior, adding value to the task of analyzing model uncertainties and sensitivities.

Sensitivity analysis is widely used to identify the contribution of uncertainty sources within
the modeling process?’ and that in turn helps in improving the understanding of model
behavior?s. We performed global sensitivity analysis (GSA) using variance-based Sobol
sensitivity index parameterization?s. The motivation to GSA over a local sensitivity analysis
approach is that local analysis is unable to cover the non-linear variation of model
responses over the entire range of probability distributions of the input parameters?6. The
aim of GSA is to quantify the relative importance of each individual input parameter on
model output prediction, and rank those parameters by importance. The aPC-based
response surface used in the uncertainty quantification is based on orthonormal
polynomials whose properties are well exploited?”. The goal of this study is to
probabilistically assess the role of various geologic parameters in AZMI pressure

predictions.

RESULTS AND DISCUSSIONS

Above Zone Model Setup
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In this modeling effort, we aim to study the migration of subsurface fluids (here, CO, and
brine) to the AZMI and the resulting changes in pressure. The modeled system comprises
three components: reservoir, caprock and the AZMI. The calculations in reservoir and
caprock are necessary to model the pressure changes in the AZMI. This study
demonstrates the application of above zone pressure modeling using the AZMI ROM by
using the Kimberlina CO; storage site (California, USA) as an example 283!, The reservoir-
scale CO. migration model developed by Wainwright et al.,, 2013%° is based on a
geological study in the Southern San Joaquin Basin, California. The model uses geologic
and hydrogeologic data obtained from many oil fields in that region. The model domain
extends 71.3 km in the eastern direction and 91.6 km in the northern direction as shown
in Figure 1. The simulation assumes that CO- injection is conducted in the center of the
domain into the 400-m thick and at about 2750 m deep Vedder formation (depth is at top).
The Vedder formation is quite permeable which should allow large industrial scale fluid
injectivity. The injection well location is also marked in the Figure 1. Since we intend to
use the reservoir simulator results in seal ROM, NSealR’, the reservoir area is converted
into 100 by 100 grid block system, for consistency. The location of the conceptual injection
well is at coordinate (34, 46) in that reduced-resolution spatial domain. The overlying
Temblor—Freeman shale with a nominal thickness of 200 m is considered a suitable
caprock for stratigraphic containment of the supercritical CO- injected into the underlying
Vedder formation. This storage formation site model is used because there are
considerable data available. In this paper, we use the modified Kimberlina model of
Wainwright et al., 20133 as used by Pawar and co-authors* to simulate the reservoir
pressure and saturations. A hypothetical scenario is assumed where 5 million tons of CO;
is injected per year for a period of 50 years. There are several faults known to be present
in the reservoir. Fault zone properties are quite uncertain; however, there are qualitative
observations that most fault zones are less conductive than the adjacent sandstone
formations'”. In the reservoir simulations, the potential for leakage of CO. and/or brine
through permeable faults and/ or fractures has been ignored, i.e., the seal is characterized
with realizations of uniform, but varying permeability. Also, the potential for fault
reactivation in response to fluid injection is not addressed. Since there is no information
about the fault zones, we just assumed that there are no faults transcending into the
caprock and/or above layers. Supplementary Figs. S1 and S2 show the pressure and
saturation at the reservoir-seal interface, respectively. It can be seen from Fig. S1 that the

pressure increase spreads from the injection zone to the boundaries of the domain during



the 50 year CO; injection period, and the pressure increase gradually decreases once the
injection stops. Fig. S2 shows that when compared to pressure, the CO. plume is more
localized, and the observable increase in CO; saturation can only be seen right above the
injection zone. After the reservoir simulation, we use the NRAP Seal Barrier ROM,
NSealR” to compute the migration of CO, and brine through the seal to overlying AZMI
formation through intrinsic permeability and/or the presence of natural/induced fractures
in the seal. NSealR uses a two-phase, relative permeability approach with Darcy’s law for
one-dimension (1-D) flow computations of CO; through the horizon in the vertical direction.
The reservoir pressure and saturation generated using the Kimberlina model*°is used as
an input to NSealR to produce CO- and brine flux from top of the seal in a 100 by 100
uniform grid format. The CO; flux through the 200-m thick Temblor—Freeman shale
calculated using NSealR is shown in Supplementary Fig. S3. Although the case
considered assumes a single thickness seal, NSealR allows for spatially varying thickness

and effective permeability.

The AZMI ROM used in this study to predict above zone pressure changes due to leakage
through the primary seal has been previously described by Namhata et al., 2016". A
hypothetical AZMI system for Kimberlina is defined for the model analysis. This
conceptual base case system consists of a 10-m thick AZMI layer overlying the
aforementioned Temblor—Freeman shale of thickness 200 m. The AZMI formation
features have been derived from the existing Olcese sandstone which overlies the
Temblor-Freeman shale. It is assumed that the AZMI is initially fully saturated with brine.
The reference parameters used for the Kimberlina site in this model are taken from
Wainwright et al., 20133 and are shown in Table 1. Relative permeability has important
implications for fluid flow in subsurface geological systems. The Brooks-Corey®? model
has been used to define relative permeability in the AZMI ROM. The relative permeability

curve used for this study has been shown in the Supplementary Fig. S4.

Figure 2 presents the changes in pressure response in the AZMI over time generated
using flux from the seal for the simulation periods previously discussed. The highest
increase in pressure in the AZMI is observed above the injection point at the end of
injection (i.e., 50 years), with the maximum predicted increase in pressure of 0.185 MPa.
The change in pressure gradually decreases away from the injection point location. After

CO: injection stops, the rate of increase in pressure abruptly stops with the termination of
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injection, followed by an initial fast rate of pressure decrease that gradually slows and
approaches a stable, but positive net pressure change by the end of the simulation (i.e.,
following a post-injection period of 150 years). Supplementary Fig. S5 shows the time

evolution of pressure change for the base case.

Uncertainty Quantification of Above Zone Pressure

Many geologic parameters are influential in predicting the CO; and brine flow dynamics in
the AZMI ROM. Due to lack of information stemming from a limited ability to make direct
measurements, parameters such as porosity and permeability, to name two, often remain
uncertain®234. These uncertainties can have a substantial effect on the output of the ROM.
Thus, a quantitative analysis of the impact of these uncertainties on the predictive

capabilities of the model was performed and is presented in this section.

A model-based uncertainty analysis, though efficient, requires statistical data for all of the
model input parameters, which increases the demand on data availability or results in
highly subjective assumptions to deal with missing data'™. Uncertainties in complex
systems can be efficiently and accurately quantified using stochastic models based on an
approach using data-driven polynomial chaos expansion (PCE) methods®*2. Thus, the
uncertainty quantification of the AZMI ROM was performed using the arbitrary Polynomial
Chaos (aPC) approach'>?'. In aPC, the statistical moments are the only source of
information required to define the stochastic parameters. Hence, accurate descriptions of
the probability density functions (PDF) of the uncertain parameters are not required to

perform the analysis.

Statistical Distribution of Input Parameters

The data-driven aPC method, as described in the Methods section, only requires
information on finite number of moments, and does not explicitly require the shapes of
probability density functions. The arbitrary distributions can be either discrete, continuous,
or discretized continuous and can be specified either through a few statistical moments,
analytically as PDF/CDF, numerically as a histogram, or theoretically through the even

more general format of a probability measure™s.
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In this study, the uncertainty analysis was performed for five input parameters: AZMI
permeability (kazvi), AZMI porosity (®ana), thickness of AZMI (Hazna), caprock
permeability (keaprox) @nd caprock thickness (Heaproc). Though the study is site specific,
caprock and AZMI thickness are considered to be a part of the list of uncertain parameters.
The purpose of using these parameters is to have an idea of how the uncertainty will be
in a generalized setup in case there is not enough information about the formation
thickness. Also, the thickness of formation usually doesn’t tend to be uniform throughout
storage sites and hence this assessment will be helpful in finding out the effect of thickness
on pressure buildup. Figure 3 demonstrates the stochastically generated distributions of
the parameters that have been used in the analysis. The data distribution pattern is
generated based on data available from the US National Petroleum Council Public

Database3839,

AZMI Output Statistics

We analyze these statistical moments for the AZMI ROM for the simulation period of 200
years. Mean and standard deviation of changes in pressure response above the AZMI
over time is shown in Figures 4 (a) and 5 respectively, based on the uncertainty of the five
input parameters. A total of 56 = (5 + 3)!/(5! x 3!) detailed simulations (see equation
(3)) is carried out to generate the uncertainties in model outputs based on aPC framework.
It can be seen from Figure 4 (a) that the mean of pressure buildup above the AZMI from
the aPC simulations is approximately 0.50 MPa higher than that of the base case scenario
in Figure 2. Since the highest-pressure buildup above the AZMI occurs right above the
injection well location, we checked the variation in pressure change output from the entire
set of simulations to that of the calculated mean. The analysis is shown in Figure 4 (b) by
plotting the range of predictions from the 56 simulations. We also estimate the probability
of detecting a pressure build-up above the injection well using cumulative distribution plot.
Figure 6 shows the probability distribution of pressure build-up above the injection point.
This result can be used to predict the risk associated with CO, leakage at the AZMI. If the
system is required to be assessed based on a threshold AZMI pressure, the probability of
failure can be calculated based on such results. It can be seen from Figure 5 that the areal
extent of standard deviation increases as more CO- is injected into the system. Then the
deviation starts to decrease considerably over time. The maximum deviation in pressure

change is also above the injection well location. It is consistent with the fact that the greater
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the amount of leakage, the greater will be the pressure buildup. Thus it becomes important
to gather high-accuracy data of the geologic properties. Uncertainties of input parameters
can lead to significant deviations in model outputs. Hence, the need for site-specific data
is an essential requirement for efficient model predictions which validates what
geoscientists know. Larger variation in input parameters of a model will lead to large
deviations in outputs, which will lead to failure in understanding of the storage system and
hence predict the containment risk properly. This work shows a parameter based
uncertainty. Model based uncertainty analysis (e.g., Goodman et al., 2013%°) can also be
carried out by comparing predictions for similar simulation settings using other coupled
reservoir-caprock-AZMI models to account for the wuncertainty in model
representativeness. The large uncertainties in the AZMI ROM prediction makes it
important to analyze the role of each individual parameter on the output space. Therefore,

we do a sensitivity analysis of the AZMI ROM, shown in the following section.

Sensitivity Analysis of Modeling Parameters

Assessment of the relative importance of the input parameters on the AZMI ROM output
is required to understand the degree of their individual impact on the model predictions.
This assessment is performed using a global sensitivity analysis with Sobol indices that
are based on the aPC technique as described in Ashraf et al., 201326 and Oladyshkin et
al., 201227, as described in the Methods section. As discussed in these previous works,
the global aPC-based sensitivity analysis obtains global sensitivity information at low

computational costs.

Quantitative sensitivity information for the AZMI ROM is extracted from the polynomial
response surface. The Sobol indices (equation (10)) and the total Sobol indices (equation
(11)) calculations are being done for the AZMI modeling scenario. The results are based
on the 3 order aPC expansion being assessed by fifty-six detailed simulations carried out
for the uncertainty analysis. Model sensitivity analysis is performed for the five previously
described input parameters (i.e., AZMI permeability, AZMI porosity, AZMI thickness,
caprock permeability and caprock thickness) that have been used to quantify the model
uncertainty. The test evaluated the impact of these parameters on the model output--
pressure buildup response. The total Sobol sensitivities of input parameters on the ROM

output are summarized in Figure 7. The figure presents the sensitivity results above the
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injection point and a point approximately 4 km down south from the injection point at the
end of injection period (= 50 years) and at the end of simulation (= 200 years). Table 2
represents the ranked 2™ order Sobol indices for the five uncertain parameters at the end
of injection (= 50 years). The Sobol sensitivity calculation is shown for the 2 order
expansion and not the 3. The results are shown just to represent how parameter-

parameter interaction can play a role in sensitivity calculation.

Figure 8 shows the time profile of the total Sobol indices (S;) measured using equation
(11), quantifying the contribution of a modeling parameter on the uncertainty of the
pressure: (a) above the injection well, i.e. coordinate (34,46) and, (b) 4 km away from
injection well southwards, i.e., coordinate (30,44). The sensitivity is normalized by
variance at each time step. It should be noted that the sum of Sy, of each parameter need
not be equal to one, suggesting the presence of parameter-parameter interaction effects*!.
The AZMI permeability (kazvn) is clearly the most influential parameter, with higher total
Sobol index corresponding to higher pressure buildup. If the permeability of the AZMI is
high, pressure should easily dissipate resulting in lower pressure buildup in the AZMI. If
the formation has a higher porosity, it means it can store more CO; per unit volume of the
porous medium. This allows the incoming CO:; to later accumulate the porous space and
causing pressure change in the area. When the flow physics changes from injection to a
gravity-dominated system, we observe a distinct change in the sensitivity patterns. During
the injection period, Hazur, Keaprock @Nd Heaprock @re more dominant than kazvoand ®azw. The
reason is that the incoming CO; takes time to mobilize and accumulate in the AZMI. Initially
the model is largely dominated by the incoming flux through the seal which is dependent
0N Keaprock @Nd Heaproo @nd the pressure buildup is also positively affected by the thickness
of the AZMI, Haza. Higher permeability of caprock leads to higher CO, and brine mobility,
which leads to higher pressure buildup in the AZMI from incoming CO. and brine. The
sensitivity of the pressure output with respect to higher AZMI permeability jumps up, right

after stopping the injection.

METHODS

Arbitrary Polynomial Chaos Expansion

Assuming a physical model,



where,
w = {wq, . ... ,wy} € RM M > 1 is a vector of uncertain parameters (model inputs), and,
Q={0,,.... ,On}T € RY, N > 1 is a vector of model outputs of interest.

The model output is a random variable if the parameter vector w is uncertain. In our study
the model output is a function of saturation and pressure. Polynomial chaos theory has a

long history and according to Wiener, 193822, () can be expressed in the following form:

M

0@) = ) (@) @)

i=1

where, ¢;’s are coefficients quantifying the dependence of model output on its input and

Y;(w) are orthogonal polynomial forming basis in the input probability space.

Since the AZMI ROM is space-time dependent, the model output is written as Q (X, w)
where the vector X = {x,y,t} consists of two space coordinates and time. Hence,

coefficients, ¢; is determined for each point in space and time, i.e., ¢;(X).

In practice, this PCE is truncated at a finite number of basis functions, y;. The number of
the terms M in equation (2) depends on the total number of input parameters N and the
order d of the expansion, i.e., the highest degree of polynomial basis functions, according
to the following:

(N + d)!
BCIED) (3)

In the current study, we choose 3™ order aPC expansion. We use a 3™ order of expansion
since it has a freedom to describe non-monotonic behaviors in comparison to the 2™ order.
Also, the choice of 3 problem is supported by the work of Oladyshkin and co-workers#?
where the authors have shown convergence analysis of aPC-based Sobol analysis
concluding that all expansion beyond 2" can capture non-linearity of a model. The detailed

model description is provided in the Supplementary section.
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Uncertainty Quantification

Uncertainty analysis using PCE can be typically characterized using two methods:
intrusive and non-intrusive. In the present context, non-intrusive probabilistic collocation
method (PCM)3643is used, since it evaluates the coefficients in model expansion using a
small number of model simulations and requires no manipulation using partial differential
equation’. The method requires computing model O with M different sets of parameters w
that are called collocation points. In the current study, we use the recent version of PCM

as described in Oladyshkin et al., 2011a'” to compute the collocation points.

The model outputs Q(w) are directly based on the model and the specified distribution of
input parameters. The mean value (1) and standard deviation (g) of Q(w) are given by the
following analytical relations:

n@Q) =cq, o) = 4

Likewise, all other moments of €2 can be obtained analytically, based on expansion
coefficients and the moments of input parameters. The uncertainty outputs are space-

time dependent, hence they are written as u(x, v, t) and a(x, y, t).
Sobol Sensitivity Indices

A variance-based sensitivity analysis approach by calculation of Sobol Sensitivity Indices?®
was used. Studies on the combination of PCE techniques with Sobol indices have been
performed in several previous studies?”4445 The basic idea behind this approach is to
replace the analyzed system with an approximating function that permits the calculation
of numerical and mathematical benefits of a sensitivity analysis?®. Since the calculation of
output variances from statistics of input variables of polynomials is relatively fast,
polynomials are used for the approximation. For the AZMI modeling scenario, the solution
is approximated by orthogonal polynomials with ascending polynomial degree.

Let us assume we break the system output into components as follows:

Q=00+ 20 + 2 Xjsi iy + - (5)
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where, indices 7 and j show dependency on two or more variables. If we consider the input
vector w to have n component w; for i=1,......, n, then, Q; = f; (»;) and 2;; = f;; (w;, ;).
Saltelli et al., 20084 defined the higher order sensitivity index, or Sobol index*,
representing the significance of variation in output generated from the joint uncertainty in
several input variables, i.e., from the interaction of uncertain parameters, as:

_ V[E(@|wy, ;)] = VIE@l|w)] = V[E(2]w;)] (6)
i = Vi)

where, V[E(2|w;, w;)] is the variance of output expectations for a gi ven value of inputs

w; and w;. If all the indices containing a given variable w; are added, we get total Sobol

ST1=51+251]+2251]16+ (7)

J#i JEi k+i

index'®:

The total Sobol index is a sensitivity measure to rank parameters according to their
influence on model output. The higher the index, the greater is the effect of the
corresponding input parameter on the model output. Sobol indices are calculated

analytically?” from the expansion coefficients of the aPC, shown in equation (2).
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CONCLUSIONS

This work presents the application of reduced order models (ROMs) to predict the
pressure response in the Above Zone Monitoring Interval (AZMI) and flux response above
the caprock using the hypothetical Kimberlina CO, storage site (California, USA) as a base
case example problem. We presented a data-driven arbitrary polynomial chaos expansion
(aPC) method for uncertainty and sensitivity analysis of above zone pressure predictions.
The data-driven approach provides a response surface based on a global orthonormal
polynomial basis for arbitrary distributions. The method does not require extensive
statistical knowledge for the data analysis. Thus, the aPC approach provides ability to
model complex systems with unknown probability distribution functions, when only data
sets of limited size or prior knowledge is available. The primary goal was to demonstrate
the application and feasibility of aPC-based methods in the context of realistic
CO: injection scenarios. We implemented this method with the base case Kimberlina
storage scenario. Five uncertain parameters with assumed uncertainty distributions are
used to compute the mean of above zone pressure buildup and the associate deviations
in prediction related to the model uncertainties. The results show large uncertainties in the
above zone pressure prediction, making it important to analyze the role of each individual
parameter on the output space. Also, it emphasizes the need for site-specific data for
efficient model predictions. The above zone pressure sensitivity to different geological
parameters is then evaluated and quantified using Sobol indices. The results have shown
that the most influential parameter for the pressure buildup responses is the permeability
of the AZMI layer. The other parameters have almost equal influence on the predictions
with different trends over time. Since, in general, the involved input uncertainties are
hypothetical and just for demonstration purposes, the implications of this study are limited
to the probabilistic assumptions made in this study and might not truly represent the actual

CO, storage system.
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Table 1. Reference parameters used for this study: horizontal permeability (), anisotropy
ratio (k./ k»), porosity (@), pore compressibility (5,), van Genuchten parameters (o, m),
Brooks-Corey parameter (y), bubbling pressure (P»), residual brine saturation (S,,) and
residual CO; saturation (S..).

Parameter Reservoir Caprock AZMI
kn(mD) depth dependent* 0.002 0.1
ky/ kn 0.2 0.5 0.5
@ depth dependent* 0.338 0.32
B, (107 Pa™) 4.9 14.5 14.5
a (107 Pa™) 13 0.42 -
m 0.457 0.457 -
y - - 2
Py - 0.01 0.02
S 0.30 0.45 0.35
Se 0.25 0.40 0.30

*depth dependent values are taken from Wainwright et al. (2013)3°

Table 2: Second-order Sobol indices for five parameters: [1] AZMI permeability (kazu), [2]
AZMI porosity (®az), [3] thickness of AZMI (Hazw), [4] caprock permeability (Keaprock) @nd
[5] caprock thickness (H..pock) @t coordinates above the injection well, i.e. coordinate
(34,46) and, 4 km away from injection well southwards, i.e., coordinate (30,44) at the end
of injection (= 50 years).

Sobol index Value at (34,46) Rank at (34,46) Value at (30,44) Rank at (30,44)

S1 0215 4 0.285 2
S: 0.171 5 0.467 1
Ss 0.397 1 0.165 3
S4 0.268 3 0.081 6
Ss 0.303 2 0.073 7
Si2 0.042 8 0.102 4
Sis3 0.055 7 0.037 8
Si4 0.003 10 0.003 11
Sis 0.001 14 0.002 13
S23 0.017 9 0.085 5
S24 0.001 13 0.004 10
Szs 0.001 15 0.003 12
Ss.4 0.002 11 0.001 14
Sss 0.001 12 0.001 15
Sas 0.073 6 0.006 9
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FIGURES

i<  Conceptual injection point location

Figure 1. Plan view of the model domain (in blue) with numerical grid. The red point is the
location of the conceptual injection well (coordinate (34,46)).
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Figure 2: Changes in pressure response (in MPa) at the top of the AZMI at 20, 50, 100
and 200 years after the start of CO: injection (base case results).

XX



600

C
(0]
N 400
|*<__2
b
© 200 ro 200
0 5 10 15 0 0.2 04 0.6
kKAZMI <mD> ¢AZMI
600 -—-—--' : r-
6 o
1 400
go
b
10 200
00
Q
0 —
10 15 20
HAZMI kcaprock<mD> x10'3
500 —--r
o 400
5 300
to
b 200
S
Q 100
0

180 200 220 240

 caprock

Figure 3: Distribution of aAzmi permeability (kAzMi), Azmi porosity (<bazmi), thickness of
AzMI (HAzmi), caprock permeability (keapriCk) and caprock thickness (Hcapock) for aPC
uncertainty analysis.
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Figure 4: Plots showing (a) mean change in pressure response (in MPa) at the top of
AZMI over time based on aPC analysis, (b) mean pressure change (black line) and range
of pressure change from 56 simulations (grey shaded region) above injection point, i.e.,
coordinate (34,46) and 4 km away from injection well southwards, i.e., coordinate (30,44)

over time.
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Figure 5: Probability of detection of pressure build-up (shown in red line) at the top of the
AZMI above injection point, i.e. coordinate (34,46) at the end of injection. The black dotted

line shows the mean of pressure build-up based on aPC analysis.
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Figure 6: Estimation of standard deviation of the change in pressure response (in MPa)
prediction by AZMI ROM at the top of AZMI.
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Figure 7: Sensitivity of AZMI ROM output for changes in pressure with respect to the
uncertain parameters: AZMI permeability (kazmi), AZMI porosity (<bazmi), thickness of AZMI
(HAazmi), caprock permeability (keaprock) @and caprock thickness (Heaprock) at: (a) above the
injection well, i.e. coordinate (34,46) and, (b) 4 km away from injection well southwards,
i.e., coordinate (30,44).

Figure 8: Sobol sensitivity results for AZMI ROM outputs over time at (a) above the
injection well, i.e. coordinate (34,46) and, (b) 4 km away from injection well southwards,
i.e., coordinate (30,44).
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