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ABSTRACT

Carbon dioxide (CO2) storage into geological formations is regarded as an important 

mitigation strategy for anthropogenic CO2 emissions to the atmosphere. This study first 

simulates the leakage of CO2 and brine from a storage reservoir through the caprock. 
Then, we estimate the resulting pressure changes at the zone overlying the caprock also 

known as Above Zone Monitoring Interval (AZMI). A data-driven approach of arbitrary 

Polynomial Chaos (aPC) Expansion is then used to quantify the uncertainty in the above 

zone pressure prediction based on the uncertainties in different geologic parameters. 

Finally, a global sensitivity analysis is performed with Sobol indices based on the aPC 

technique to determine the relative importance of different parameters on pressure 

prediction. The results indicate that there can be uncertainty in pressure prediction locally 

around the leakage zones. The degree of such uncertainty in prediction depends on the 

quality of site specific information available for analysis. The scientific results from this 

study provide substantial insight that there is a need for site-specific data for efficient 

predictions of risks associated with storage activities. The presented approach can provide 

a basis of optimized pressure based monitoring network design at carbon storage sites.

INTRODUCTION

Capture and geologic storage of carbon dioxide (CO2) is considered as one of a portfolio 

of solutions for the reduction of anthropogenic greenhouse gas emissions. The increasing 

emphasis on the commercialization and implementation of CO2 capture and storage 

(CCS) has led to the development of system-wide mathematical models for the 

quantitative assessment of system performance and the risk associated with it. A major 

technical and regulatory concern that has gained attention of the research community is 

the unanticipated leakage of CO2 and brine from deep storage reservoirs to overlying 

geologic formations such as the Above Zone Monitoring Interval (AZMI) and groundwater 

aquifers1,2,3, through preferential migration pathways such as, wellbores, faults, fractures 

and presence of high-permeability zones in the caprocks. While the leaked CO2 and brine 

may possess threat to the environmental receptors, it is also possible that it would 

attenuate pressure and CO2 saturation. The knowledge of changes in pressure helps for 

adequate management of the reservoir. Hence, it becomes important to monitor the 

above zone pressure, since it may provide potentially useful source of information about
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seal performance and subsurface pressure response to CO2 and brine leakage from the 

storage reservoir.

The United States Department of Energy (DOE) through its National Risk Assessment 

Partnership (NRAP)4,5, is conducting research to develop and demonstrate science-based 

methodologies to quantify the environmental risks associated with long-term geologic 

storage of CO26. Central to this research is the development of Integrated Assessment 

Models, or IAMs to describe site-scale performance of geologic storage systems. These 

IAMs are system-based models that simulate and couple the primary sub-system 

components of the storage system, i.e., storage reservoir, migration pathways (i.e., seals, 

wellbores, faults and fractures), groundwater, and atmosphere, with the goal of predicting 

potential leakage performance/storage security through the period of active CO2 injection, 

and post-injection site care. Since the integration of fully characterized numerical models 

of individual sub-system into an IAM is both challenging and computationally expensive, 

the NRAP approach calls for modeling the sub-system components using simplified 

reduced order characterizations, or reduced order models (ROMs), that are much more 

computationally efficient3,5,7-13.

One such ROM development effort has focused on characterizing the CO2 and brine 

leakage through the primary sealing layer to the interval directly overlying that seal (the 

AZMI). A ROM developed and previously reported by Namhata and coworkers14 predicts 

spatially-varying changes in pressure through time in response to that fluid leakage. The 

AZMI ROM is believed to provide a useful approximation of real-world response, but also 

includes a number of conceptual and quantitative uncertainties. Insufficient or lack of 

information related to geological properties represents one important source of parameter 

uncertainty that may lead to significant uncertainties in model predictions, with potential to 

mask the influence of secondary physical processes15. Because full-physics numerical 

simulation models are computationally expensive, it may require several hours to days to 

complete a single, deterministic realization; as such, exploring uncertainty/variability in 

system performance using such models and brute-force Monte Carlo simulation is 

generally considered intractable16-20. This makes it favorable to use advanced stochastic 

tools to model uncertainties of complicated processes involved in the geologic storage of 

carbon modeling. It also holds true for a coupled ROM approach. Application of advanced 

stochastic tools to predict uncertainties in coupled ROM systems like the reservoir-
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caprock-AZMI coupled model used in this study will be computationally efficient over a 

complex Monte Carlo like analysis.

In this study, we use a recently developed data-driven uncertainty quantification approach, 

called the arbitrary polynomial chaos (aPC) expansion that provides a massive stochastic 

model reduction15,21 to analyze the uncertainties in predictive ability of the AZMI ROM. 

aPC has certain advantages over more conventional polynomial chaos methods. This 

approach provides a more robust convergence21 in comparison to the classical methods 

(e.g., Wiener, 1938; Ghanem and Spanos, 1993; Le Maitre and Knio, 20 1 0)22-24 once 

underlying distributions of uncertain parameters dictated by real-world data; it also allows 

for use of arbitrary probability distributions of uncertain parameters21. The more complex 

the system is, the greater will be the associated uncertainty of the system models. 

Uncertainty of any parameter in the modeling procedure propagates through the model to 

impact the model predictions. Hence, it is important to rank the influence of the model 

input parameters on the output space. This aids in better understanding the system 

behavior, adding value to the task of analyzing model uncertainties and sensitivities.

Sensitivity analysis is widely used to identify the contribution of uncertainty sources within 

the modeling process21 and that in turn helps in improving the understanding of model 

behavior25. We performed global sensitivity analysis (GSA) using variance-based Sobol 

sensitivity index parameterization25. The motivation to GSA over a local sensitivity analysis 

approach is that local analysis is unable to cover the non-linear variation of model 

responses over the entire range of probability distributions of the input parameters26. The 

aim of GSA is to quantify the relative importance of each individual input parameter on 

model output prediction, and rank those parameters by importance. The aPC-based 

response surface used in the uncertainty quantification is based on orthonormal 

polynomials whose properties are well exploited27. The goal of this study is to 

probabilistically assess the role of various geologic parameters in AZMI pressure 

predictions.

RESULTS AND DISCUSSIONS 

Above Zone Model Setup
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In this modeling effort, we aim to study the migration of subsurface fluids (here, CO2 and 

brine) to the AZMI and the resulting changes in pressure. The modeled system comprises 

three components: reservoir, caprock and the AZMI. The calculations in reservoir and 

caprock are necessary to model the pressure changes in the AZMI. This study 

demonstrates the application of above zone pressure modeling using the AZMI ROM by 

using the Kimberlina CO2 storage site (California, USA) as an example 28-31. The reservoir- 

scale CO2 migration model developed by Wainwright et al., 201330 is based on a 

geological study in the Southern San Joaquin Basin, California. The model uses geologic 

and hydrogeologic data obtained from many oil fields in that region. The model domain 

extends 71.3 km in the eastern direction and 91.6 km in the northern direction as shown 

in Figure 1. The simulation assumes that CO2 injection is conducted in the center of the 

domain into the 400-m thick and at about 2750 m deep Vedder formation (depth is at top). 

The Vedder formation is quite permeable which should allow large industrial scale fluid 

injectivity. The injection well location is also marked in the Figure 1. Since we intend to 

use the reservoir simulator results in seal ROM, NSealR7, the reservoir area is converted 

into 100 by 100 grid block system, for consistency. The location of the conceptual injection 

well is at coordinate (34, 46) in that reduced-resolution spatial domain. The overlying 

Temblor-Freeman shale with a nominal thickness of 200 m is considered a suitable 

caprock for stratigraphic containment of the supercritical CO2 injected into the underlying 

Vedder formation. This storage formation site model is used because there are 

considerable data available. In this paper, we use the modified Kimberlina model of 

Wainwright et al., 201330 as used by Pawar and co-authors4 to simulate the reservoir 

pressure and saturations. A hypothetical scenario is assumed where 5 million tons of CO2 

is injected per year for a period of 50 years. There are several faults known to be present 

in the reservoir. Fault zone properties are quite uncertain; however, there are qualitative 

observations that most fault zones are less conductive than the adjacent sandstone 

formations17. In the reservoir simulations, the potential for leakage of CO2 and/or brine 

through permeable faults and/ or fractures has been ignored, i.e., the seal is characterized 

with realizations of uniform, but varying permeability. Also, the potential for fault 

reactivation in response to fluid injection is not addressed. Since there is no information 

about the fault zones, we just assumed that there are no faults transcending into the 

caprock and/or above layers. Supplementary Figs. S1 and S2 show the pressure and 

saturation at the reservoir-seal interface, respectively. It can be seen from Fig. S1 that the 

pressure increase spreads from the injection zone to the boundaries of the domain during
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the 50 year CO2 injection period, and the pressure increase gradually decreases once the 

injection stops. Fig. S2 shows that when compared to pressure, the CO2 plume is more 

localized, and the observable increase in CO2 saturation can only be seen right above the 

injection zone. After the reservoir simulation, we use the NRAP Seal Barrier ROM, 

NSealR7 to compute the migration of CO2 and brine through the seal to overlying AZMI 

formation through intrinsic permeability and/or the presence of natural/induced fractures 

in the seal. NSealR uses a two-phase, relative permeability approach with Darcy’s law for 

one-dimension (1-D) flow computations of CO2 through the horizon in the vertical direction. 

The reservoir pressure and saturation generated using the Kimberlina model30 is used as 

an input to NSealR to produce CO2 and brine flux from top of the seal in a 100 by 100 

uniform grid format. The CO2 flux through the 200-m thick Temblor-Freeman shale 

calculated using NSealR is shown in Supplementary Fig. S3. Although the case 

considered assumes a single thickness seal, NSealR allows for spatially varying thickness 

and effective permeability.

The AZMI ROM used in this study to predict above zone pressure changes due to leakage 

through the primary seal has been previously described by Namhata et al., 201614. A 

hypothetical AZMI system for Kimberlina is defined for the model analysis. This 

conceptual base case system consists of a 10-m thick AZMI layer overlying the 

aforementioned Temblor-Freeman shale of thickness 200 m. The AZMI formation 

features have been derived from the existing Olcese sandstone which overlies the 

Temblor-Freeman shale. It is assumed that the AZMI is initially fully saturated with brine. 

The reference parameters used for the Kimberlina site in this model are taken from 

Wainwright et al., 201330 and are shown in Table 1. Relative permeability has important 

implications for fluid flow in subsurface geological systems. The Brooks-Corey32 model 

has been used to define relative permeability in the AZMI ROM. The relative permeability 

curve used for this study has been shown in the Supplementary Fig. S4.

Figure 2 presents the changes in pressure response in the AZMI over time generated 

using flux from the seal for the simulation periods previously discussed. The highest 

increase in pressure in the AZMI is observed above the injection point at the end of 

injection (i.e., 50 years), with the maximum predicted increase in pressure of 0.185 MPa. 

The change in pressure gradually decreases away from the injection point location. After 

CO2 injection stops, the rate of increase in pressure abruptly stops with the termination of
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injection, followed by an initial fast rate of pressure decrease that gradually slows and 

approaches a stable, but positive net pressure change by the end of the simulation (i.e., 

following a post-injection period of 150 years). Supplementary Fig. S5 shows the time 

evolution of pressure change for the base case.

Uncertainty Quantification of Above Zone Pressure

Many geologic parameters are influential in predicting the CO2 and brine flow dynamics in 

the AZMI ROM. Due to lack of information stemming from a limited ability to make direct 

measurements, parameters such as porosity and permeability, to name two, often remain 

uncertain33,34. These uncertainties can have a substantial effect on the output of the ROM. 

Thus, a quantitative analysis of the impact of these uncertainties on the predictive 

capabilities of the model was performed and is presented in this section.

A model-based uncertainty analysis, though efficient, requires statistical data for all of the 

model input parameters, which increases the demand on data availability or results in 

highly subjective assumptions to deal with missing data15. Uncertainties in complex 

systems can be efficiently and accurately quantified using stochastic models based on an 

approach using data-driven polynomial chaos expansion (PCE) methods35-38. Thus, the 

uncertainty quantification of the AZMI ROM was performed using the arbitrary Polynomial 

Chaos (aPC) approach15,21. In aPC, the statistical moments are the only source of 

information required to define the stochastic parameters. Hence, accurate descriptions of 

the probability density functions (PDF) of the uncertain parameters are not required to 

perform the analysis.

Statistical Distribution of Input Parameters

The data-driven aPC method, as described in the Methods section, only requires 

information on finite number of moments, and does not explicitly require the shapes of 

probability density functions. The arbitrary distributions can be either discrete, continuous, 

or discretized continuous and can be specified either through a few statistical moments, 

analytically as PDF/CDF, numerically as a histogram, or theoretically through the even 

more general format of a probability measure15.
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In this study, the uncertainty analysis was performed for five input parameters: AZMI 

permeability (Razmi), AZMI porosity (Oazmi), thickness of AZMI (Hazmi), caprock 

permeability (kcaprock) and caprock thickness (Hcaprock). Though the study is site specific, 

caprock and AZMI thickness are considered to be a part of the list of uncertain parameters. 

The purpose of using these parameters is to have an idea of how the uncertainty will be 

in a generalized setup in case there is not enough information about the formation 

thickness. Also, the thickness of formation usually doesn’t tend to be uniform throughout 

storage sites and hence this assessment will be helpful in finding out the effect of thickness 

on pressure buildup. Figure 3 demonstrates the stochastically generated distributions of 

the parameters that have been used in the analysis. The data distribution pattern is 

generated based on data available from the US National Petroleum Council Public 

Database38,39.

AZMI Output Statistics

We analyze these statistical moments for the AZMI ROM for the simulation period of 200 

years. Mean and standard deviation of changes in pressure response above the AZMI 

over time is shown in Figures 4 (a) and 5 respectively, based on the uncertainty of the five 

input parameters. A total of 56 = (5 + 3)!/(5! x 3!) detailed simulations (see equation 

(3)) is carried out to generate the uncertainties in model outputs based on aPC framework. 

It can be seen from Figure 4 (a) that the mean of pressure buildup above the AZMI from 

the aPC simulations is approximately 0.50 MPa higher than that of the base case scenario 

in Figure 2. Since the highest-pressure buildup above the AZMI occurs right above the 

injection well location, we checked the variation in pressure change output from the entire 

set of simulations to that of the calculated mean. The analysis is shown in Figure 4 (b) by 

plotting the range of predictions from the 56 simulations. We also estimate the probability 

of detecting a pressure build-up above the injection well using cumulative distribution plot. 

Figure 6 shows the probability distribution of pressure build-up above the injection point. 

This result can be used to predict the risk associated with CO2 leakage at the AZMI. If the 

system is required to be assessed based on a threshold AZMI pressure, the probability of 

failure can be calculated based on such results. It can be seen from Figure 5 that the areal 

extent of standard deviation increases as more CO2 is injected into the system. Then the 

deviation starts to decrease considerably over time. The maximum deviation in pressure 

change is also above the injection well location. It is consistent with the fact that the greater
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the amount of leakage, the greater will be the pressure buildup. Thus it becomes important 

to gather high-accuracy data of the geologic properties. Uncertainties of input parameters 

can lead to significant deviations in model outputs. Hence, the need for site-specific data 

is an essential requirement for efficient model predictions which validates what 

geoscientists know. Larger variation in input parameters of a model will lead to large 

deviations in outputs, which will lead to failure in understanding of the storage system and 

hence predict the containment risk properly. This work shows a parameter based 

uncertainty. Model based uncertainty analysis (e.g., Goodman et al., 201340) can also be 

carried out by comparing predictions for similar simulation settings using other coupled 

reservoir-caprock-AZMI models to account for the uncertainty in model 

representativeness. The large uncertainties in the AZMI ROM prediction makes it 

important to analyze the role of each individual parameter on the output space. Therefore, 

we do a sensitivity analysis of the AZMI ROM, shown in the following section.

Sensitivity Analysis of Modeling Parameters

Assessment of the relative importance of the input parameters on the AZMI ROM output 

is required to understand the degree of their individual impact on the model predictions. 

This assessment is performed using a global sensitivity analysis with Sobol indices that 

are based on the aPC technique as described in Ashraf et al., 201326 and Oladyshkin et 

al., 201227, as described in the Methods section. As discussed in these previous works, 

the global aPC-based sensitivity analysis obtains global sensitivity information at low 

computational costs.

Quantitative sensitivity information for the AZMI ROM is extracted from the polynomial 

response surface. The Sobol indices (equation (10)) and the total Sobol indices (equation 

(11)) calculations are being done for the AZMI modeling scenario. The results are based 

on the 3rd order aPC expansion being assessed by fifty-six detailed simulations carried out 

for the uncertainty analysis. Model sensitivity analysis is performed for the five previously 

described input parameters (i.e., AZMI permeability, AZMI porosity, AZMI thickness, 

caprock permeability and caprock thickness) that have been used to quantify the model 

uncertainty. The test evaluated the impact of these parameters on the model output- 

pressure buildup response. The total Sobol sensitivities of input parameters on the ROM 
output are summarized in Figure 7. The figure presents the sensitivity results above the
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injection point and a point approximately 4 km down south from the injection point at the 

end of injection period (= 50 years) and at the end of simulation (= 200 years). Table 2 

represents the ranked 2nd order Sobol indices for the five uncertain parameters at the end 

of injection (= 50 years). The Sobol sensitivity calculation is shown for the 2nd order 

expansion and not the 3rd. The results are shown just to represent how parameter- 

parameter interaction can play a role in sensitivity calculation.

Figure 8 shows the time profile of the total Sobol indices (St,) measured using equation 

(11), quantifying the contribution of a modeling parameter on the uncertainty of the 

pressure: (a) above the injection well, i.e. coordinate (34,46) and, (b) 4 km away from 

injection well southwards, i.e., coordinate (30,44). The sensitivity is normalized by 

variance at each time step. It should be noted that the sum of St, of each parameter need 

not be equal to one, suggesting the presence of parameter-parameter interaction effects41. 

The AZMI permeability (Razmi) is clearly the most influential parameter, with higher total 

Sobol index corresponding to higher pressure buildup. If the permeability of the AZMI is 

high, pressure should easily dissipate resulting in lower pressure buildup in the AZMI. If 

the formation has a higher porosity, it means it can store more CO2 per unit volume of the 

porous medium. This allows the incoming CO2 to later accumulate the porous space and 

causing pressure change in the area. When the flow physics changes from injection to a 

gravity-dominated system, we observe a distinct change in the sensitivity patterns. During 

the injection period, Hazmi, kcaprockand Hcapmckare more dominant than Razmiand 0azmi. The 

reason is that the incoming CO2 takes time to mobilize and accumulate in the AZMI. Initially 

the model is largely dominated by the incoming flux through the seal which is dependent 

on kcaprock and Hcapmck and the pressure buildup is also positively affected by the thickness 

of the AZMI, Hazmi. Higher permeability of caprock leads to higher CO2 and brine mobility, 

which leads to higher pressure buildup in the AZMI from incoming CO2 and brine. The 

sensitivity of the pressure output with respect to higher AZMI permeability jumps up, right 

after stopping the injection.

METHODS

Arbitrary Polynomial Chaos Expansion

Assuming a physical model,
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n = f (<y) (1)

where,

m = {m1,.....eRm,M >1 is a vector of uncertain parameters (model inputs), and,

n = {n1;..... ,nN}T eRn,N >1 is a vector of model outputs of interest.

The model output is a random variable if the parameter vector is uncertain. In our study 

the model output is a function of saturation and pressure. Polynomial chaos theory has a 

long history and according to Wiener, 193822, n can be expressed in the following form:

M

n(") = (2)
i = l

where, c, ’s are coefficients quantifying the dependence of model output on its input and 

are orthogonal polynomial forming basis in the input probability space.

Since the AZMI ROM is space-time dependent, the model output is written as n (X,w) 

where the vector X = {x,y,t} consists of two space coordinates and time. Hence, 

coefficients, c, is determined for each point in space and time, i.e., ct(X).

In practice, this PCE is truncated at a finite number of basis functions, ^. The number of 

the terms M in equation (2) depends on the total number of input parameters N and the 

order d of the expansion, i.e., the highest degree of polynomial basis functions, according 

to the following:

M =
(N + d)\ 
(N!d!) (3)

In the current study, we choose 3rd order aPC expansion. We use a 3rd order of expansion 

since it has a freedom to describe non-monotonic behaviors in comparison to the 2nd order. 

Also, the choice of 3rd problem is supported by the work of Oladyshkin and co-workers42 

where the authors have shown convergence analysis of aPC-based Sobol analysis 

concluding that all expansion beyond 2nd can capture non-linearity of a model. The detailed 

model description is provided in the Supplementary section.
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Uncertainty Quantification

Uncertainty analysis using PCE can be typically characterized using two methods: 

intrusive and non-intrusive. In the present context, non-intrusive probabilistic collocation 

method (PCM)36,43 is used, since it evaluates the coefficients in model expansion using a 

small number of model simulations and requires no manipulation using partial differential 

equation7. The method requires computing model n with M different sets of parameters m 

that are called collocation points. In the current study, we use the recent version of PCM 

as described in Oladyshkin et al., 2011a17 to compute the collocation points.

The model outputs n(w) are directly based on the model and the specified distribution of 

input parameters. The mean value (u) and standard deviation (a) of n(w) are given by the 

following analytical relations:

^(n) ~ci, (4)

Likewise, all other moments of O can be obtained analytically, based on expansion 

coefficients and the moments of input parameters. The uncertainty outputs are space­

time dependent, hence they are written as pi(x,y, t) and a(x,y, t).

Sobol Sensitivity Indices

A variance-based sensitivity analysis approach by calculation of Sobol Sensitivity Indices25 

was used. Studies on the combination of PCE techniques with Sobol indices have been 

performed in several previous studies27,44,45. The basic idea behind this approach is to 

replace the analyzed system with an approximating function that permits the calculation 

of numerical and mathematical benefits of a sensitivity analysis26. Since the calculation of 

output variances from statistics of input variables of polynomials is relatively fast, 

polynomials are used for the approximation. For the AZMI modeling scenario, the solution 

is approximated by orthogonal polynomials with ascending polynomial degree.

Let us assume we break the system output into components as follows:

D— n0 + 'Zini + YjiYjj>i^ij + ••• (5)
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where, indices i and j show dependency on two or more variables. If we consider the input

vector w to have n component w, for i=1,....., n, then, =ft (^) and =/i7- (^i,^j).

Saltelli et al., 200841 defined the higher order sensitivity index, or Sobol index46, 

representing the significance of variation in output generated from the joint uncertainty in 

several input variables, i.e., from the interaction of uncertain parameters, as:

V[£(^,^-)] - V[£(^K)] -V[£(/2|^-)] (6)

where, ¥[E(^|wi,w/)] is the variance of output expectations for a gi ven value of inputs 

Wj and o)j. If all the indices containing a given variable are added, we get total Sobol 

index15:

(7)

The total Sobol index is a sensitivity measure to rank parameters according to their 

influence on model output. The higher the index, the greater is the effect of the 

corresponding input parameter on the model output. Sobol indices are calculated 

analytically27 from the expansion coefficients of the aPC, shown in equation (2).
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CONCLUSIONS

This work presents the application of reduced order models (ROMs) to predict the 

pressure response in the Above Zone Monitoring Interval (AZMI) and flux response above 

the caprock using the hypothetical Kimberlina CO2 storage site (California, USA) as a base 

case example problem. We presented a data-driven arbitrary polynomial chaos expansion 

(aPC) method for uncertainty and sensitivity analysis of above zone pressure predictions. 

The data-driven approach provides a response surface based on a global orthonormal 

polynomial basis for arbitrary distributions. The method does not require extensive 

statistical knowledge for the data analysis. Thus, the aPC approach provides ability to 

model complex systems with unknown probability distribution functions, when only data 

sets of limited size or prior knowledge is available. The primary goal was to demonstrate 

the application and feasibility of a PC-based methods in the context of realistic 

CO2 injection scenarios. We implemented this method with the base case Kimberlina 

storage scenario. Five uncertain parameters with assumed uncertainty distributions are 

used to compute the mean of above zone pressure buildup and the associate deviations 

in prediction related to the model uncertainties. The results show large uncertainties in the 

above zone pressure prediction, making it important to analyze the role of each individual 

parameter on the output space. Also, it emphasizes the need for site-specific data for 

efficient model predictions. The above zone pressure sensitivity to different geological 

parameters is then evaluated and quantified using Sobol indices. The results have shown 

that the most influential parameter for the pressure buildup responses is the permeability 

of the AZMI layer. The other parameters have almost equal influence on the predictions 

with different trends over time. Since, in general, the involved input uncertainties are 

hypothetical and just for demonstration purposes, the implications of this study are limited 

to the probabilistic assumptions made in this study and might not truly represent the actual 

CO2 storage system.
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Table 1. Reference parameters used for this study: horizontal permeability (kh), anisotropy 
ratio (kv/ kh), porosity (0), pore compressibility (fip), van Genuchten parameters (a, m), 
Brooks-Corey parameter (), bubbling pressure (Pb), residual brine saturation (Srb) and 
residual CO2 saturation (Src).

Parameter Reservoir Caprock AZMI
kh(mD) depth dependent* 0.002 0.1
ky/ kh 0.2 0.5 0.5

0 depth dependent* 0.338 0.32
& (10-10 Pa-1) 4.9 14.5 14.5
a (10-5 Pa-1) 13 0.42 -

m 0.457 0.457 -
Y - - 2

Pb - 0.01 0.02
Srb 0.30 0.45 0.35
Src 0.25 0.40 0.30

*depth dependent values are taken from Wainwright et al. (2013)30

Table 2: Second-order Sobol indices for five parameters: [1] AZMI permeability (kAzw), [2] 
AZMI porosity (Oazmi), [3] thickness of AZMI (Hazmi), [4] caprock permeability (k^ck) and 
[5] caprock thickness (Hcapmck) at coordinates above the injection well, i.e. coordinate 
(34,46) and, 4 km away from injection well southwards, i.e., coordinate (30,44) at the end 
of injection (= 50 years).

Sobol index Value at (34,46) Rank at (34,46) Value at (30,44) Rank at (30,44)

Si 0.215 4 0.285 2

S2 0.171 5 0.467 1

S3 0.397 1 0.165 3

S4 0.268 3 0.081 6

S5 0.303 2 0.073 7

Si-2 0.042 8 0.102 4

Si-3 0.055 7 0.037 8

Si-4 0.003 10 0.003 11

Si-5 0.001 14 0.002 13

S2-3 0.017 9 0.085 5

S2-4 0.001 13 0.004 10

S2-5 0.001 15 0.003 12

S3-4 0.002 11 0.001 14

S3-5 0.001 12 0.001 15

S4-5 0.073 6 0.006 9
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FIGURES

»%< Conceptual injection point location

Figure 1: Plan view of the model domain (in blue) with numerical grid. The red point is the 
location of the conceptual injection well (coordinate (34,46)).
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Figure 2: Changes in pressure response (in MPa) at the top of the AZMI at 20, 50, 100 
and 200 years after the start of CO2 injection (base case results).
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Figure 3: Distribution of AZMI permeability (kAzMi), AZMI porosity (<DAzmi), thickness of 
AZMI (HAZMi), caprock permeability (kcapr0Ck) and caprock thickness (Hcapr0Ck) for aPC 
uncertainty analysis.
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Figure 4: Plots showing (a) mean change in pressure response (in MPa) at the top of 
AZMI over time based on aPC analysis, (b) mean pressure change (black line) and range 
of pressure change from 56 simulations (grey shaded region) above injection point, i.e., 
coordinate (34,46) and 4 km away from injection well southwards, i.e., coordinate (30,44) 
over time.
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Figure 5: Probability of detection of pressure build-up (shown in red line) at the top of the 
AZMI above injection point, i.e., coordinate (34,46) at the end of injection. The black dotted 
line shows the mean of pressure build-up based on a PC analysis.
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Figure 6: Estimation of standard deviation of the change in pressure response (in MPa) 
prediction by AZMI ROM at the top of AZMI.
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Figure 7: Sensitivity of AZMI ROM output for changes in pressure with respect to the 
uncertain parameters: AZMI permeability (kAZMi), AZMI porosity (<DAzmi), thickness of AZMI 
(HAZMi), caprock permeability (kcaprock) and caprock thickness (Hcaprock) at: (a) above the 
injection well, i.e. coordinate (34,46) and, (b) 4 km away from injection well southwards, 
i.e., coordinate (30,44).

Figure 8: Sobol sensitivity results for AZMI ROM outputs over time at (a) above the 
injection well, i.e. coordinate (34,46) and, (b) 4 km away from injection well southwards, 
i.e., coordinate (30,44).
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