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Fugitive Methane Emissions in Natural Gas Processing

Methane (CH,) is the second largest contributor to global warming after CO,

" Greenhouse warming potential of CH, is 37 X greater than CO,”

Each dot represent a
gas well pad

> 0.5 Million active oil and gas wells in P 7Y

¥
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the U.S.:

= ~30% of U.S. anthropogenic methane
emissions

= Estimates: Leakage rate is 2-10% of
total production!

¢ Well pads if Barnum Shell, Texas _
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Remote sensing requirement

Power harvesting:
** solar panel
¢ batteries
¢ provide enough charge for 5 consecutive

day of operation

All communication protocols needs to be time

synchronized and made compatible for:

** Optimum sensor data sampling rate

¢ power management,

*** Minimized communication bandwidth,
¢ computational workload

¢ analytics optimization on cloud/edge.
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System performance

AIMS’s system integrates 4
communication protocols

1. Wireless HART: motes

2. Serial RS-485: Wind sensors

3. Wide area network: LoRa

4. Satellite communication: cloud

Power requirement:

1.Current ~600mA
2. Voltage 3.3-12V
3. Power ~2W

Overall strategy:
-efficient edge computation
-minimize data transmission

Current(mA) | Voltage (V) Power (mW)
Rpi-Zero 150 5 750
Figaro 56 5 280
sensor
Cell 400 3.3 1320
modem
GPS 20 3.3 66
Wind 20 12 240
sensor
Total 646 1906

Remote gateway



Current implementation
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Require high communication bandwidth
Similar computation carried out multiple time by different users

Good for exploratory work but is not scalable
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Edge computing
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Data storage

Data analyzed at edge- reducing need for wide communication bandwidth
Uniform data analysis and interpretation
Less storage required



Data acquisition rate is dependent on the stability of the wind and local turbulance.
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Data sampling rate driven by autocorrelation of the wind speed/direction.

Wind speed more stable than wind direction

Depending on the data sampling rate-autocorrelation can be slightly different.
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Wind data has a strong geospatial component

-geographical location dependence
-daily and seasonal dependence

Gas leaks may have temporal dependence

Analytics needs to be adaptable to accommodate dynamic
behavior

The data sampling rate will need to be “cognitive”,
recognize the environment and adjust the sampling rate
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Instantaneous Plume: Lagrangian Integral Time Scale Effect
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T, velocity auto-correlation time

As T, increases, instantaneous snapshot shows a more wispy plume and sensor hits
more unlikely unless sensor directly downwind from leak



Methane concentration (ppm)
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The information in chemical plume detection is carried by

] 1. peak height,
1 2. peak width and
! . 3. timestamp

o Additional information:
1. background methane level
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Peak detection algorithm:

-wavelet convolution Implemented in Python
-derivatives crossing zero Run on a buffered dataset with 10 min of data acquired at 1
-maxima preceded by a delta Hz frequency

Computationally efficient

Perform well with a given signal Reduce data size by 99% compared to all data acquired




Wind data processing

Real time data is characterized by turbulence
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Instantaneous plume may be wispy and narrow
leading to sporadic sensor readings
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Classification using Multi-Mode Feature Recognition

Shale gas sites found in Texas

Conventional:
- Single set of satellite images
- Empirical feature engineering.

* Multi-Mode Feature Cognition
- Methane abs@ 1.65 pm, 2.3 um
- Shape, Heat, Road Connectivity ...

* Deep Learning to extract high-order
hierarchical features
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Deep Learning — Extraction of Hierarchical Features

Feature Recognition Classification
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Classification using Multi-Mode Feature Recognition

Kansas, Identification of Livestocks




Conclusions

e Data strategy is driven by industrial applications where signal integrity
determines the analytics output.

 Edge computing can reduce data size by orders of magnitude making loT
solution more amenable for remote applications where data bandwidth

and connectivity is an issue.

 Contextual data can enable Internet of Things applications to be
automated



